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Abstract

Spatial econometrics relies on spatial weights matrix to specify the cross sectional depen-
dence, which might not be unique. This paper proposes a model selection procedure to choose
an optimal weights matrix from several candidates by using a Mallows type criterion. It also
proposes a model averaging procedure to reduce the squared loss. We prove that these pro-
cedures are asymptotically optimal in the sense of minimizing the squared loss. Monte Carlo
experiments show that proposed procedures have satisfactory �nite sample performances. We
apply the model selection and model averaging procedures to study the market integration in
China using historical rice price.
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1 Introduction

Spatial econometrics study autocorrelation among cross sectional units and have wide applica-

tions.1 Among them, the spatial autoregressive (SAR) model proposed by Cli¤ and Ord (1973) has

received the most attention. To estimate the SAR model, various estimation methods have been

developed.2 These estimation methods treat the spatial weights matrix as given and implicitly

assume that they have the correct speci�cation of the spatial weights matrix. However, currently

there is no concise theory on how to specify the �correct�spatial weights matrix. The purpose of

the current paper is to propose a model selection procedure to choose an optimal spatial weights

matrix from several candidates, and also propose a model averaging procedure to reduce squared

loss.

For selecting a �correct�spatial weights matrix, Kelejian (2008) suggested a J-test for testing

a null SAR model against a set of alternative models with di¤erent spatial weights matrices. His

J-test is based on whether or not predictions based on alternative models add signi�cantly to the

explanatory power of the null model. Kelejian and Piras (2011) suggest a modi�cation of Kelejian�s

J-test which uses available information in a more e¢ cient way. Both Kelejian (2008) and Kelejian

and Piras (2011) have a shortcoming. If we reject the null model (using one of the spatial weights

matrices) with more than one alternative speci�cations, there is no formal procedure proposed

on selecting alternatives. In the current paper, we propose a model selection procedure where a

Mallows type criterion (Mallows, 1973) is used. Commonly used information criteria such as AIC

and BIC cannot be used to select spatial weights matrix, because in two models with di¤erent

spatial weights matrices, the numbers of known parameters are the same. In the current paper,

we propose a spatial weights matrix selection method. Unlike studies featuring the identi�cation

of weights matrix, our focus here is on the true conditional mean of dependent variables given

independent variables. As a step further, we also propose a model averaging to reduce estimation

1Early development in estimation and testing can be found in Anselin (1988, 1992), Kelejian and Robinson (1993),
Cressie (1993), Anselin and Florax (1995), Anselin and Rey (1997), and Anselin and Bera (1998), among others.

2Kelejian and Prucha (1998) proposed a two stage least squares (2SLS) method which uses instrumental variables
(IVs) constructed from exogenous variables and the spatial weights matrix . Lee (2003) chose some speci�c IVs and
got the best two stage least square (B2SLS) estimators. Lee (2004) studies the asymptotic properties of the maximum
likelihood (ML) and quasi-maximum likelihood (QML) estimators of the SAR model. For the SAR model, the spatial
correlation can provide nonlinear moment conditions in addition to linear moments of IV�s in the general method
of moment (GMM) setting. Lee (2007) established asymptotic properties of GMM estimators, which can be more
e¢ cient than the 2SLS estimators. The best GMM can be as e¢ cient as the ML estimators (MLEs) when the true
disturbances are normal. Liu et al. (2010) showed that carefully designed linear and quadratic moment functions
can generate a GMM estimator which is more e¢ cient relative to the QML estimate when the disturbances are not
normal.
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error, which makes use of all the information available. We show that the proposed selection

and averaging procedures are asymptotically optimal in the sense of achieving the lowest possible

squared loss in a class of model selection and model average estimators, respectively. We believe

that our procedures are useful for empirical researchers who might have several spatial weights

matrices available and do not have an explicit guide of which one to use.

The current paper is di¤erent from some other model selection problems in spatial econometrics,

such as specifying spatial lag and spatial error models, or selecting SAR model or matrix exponential

spatial speci�cation (MESS). Debarsy and Ertur (2010) investigate how to distinguish two di¤erent

spatial speci�cations in a panel data model setting, i.e., a spatial lag model or a spatial error model.

They construct �ve di¤erent test procedures: one joint test, two conditional tests and two marginal

tests, for a �xed e¤ects panel model based on Lee and Yu (2010). Han and Lee (2013a, 2013b)

consider J-test to distinguish SAR model and MESS model, where the former implies a geometrical

decline pattern of spillover e¤ect or externalities, while the latter exhibits an exponential decline

pattern of spatial externalities. The current paper will mainly focus on selecting and averaging

di¤erent spatial weights matrices.

The rest of the paper is organized as follows. Section 2 introduces the model and maximum

likelihood estimation (MLE) of SAR models. Section 3 proposes the model selection procedure and

its asymptotic optimality is proved. Section 4 studies the model averaging given a set of spatial

weights matrices. Section 5 provides Monte Carlo experiments to investigate the �nite sample

properties of model selection and model averaging procedures. Section 6 investigates the spatial

weights matrix selection in studying the market integration using historical data set on Chinese

rice prices. Section 7 concludes. Proofs are in Appendices.

2 Model and Estimation

The model considered is a cross sectional SAR

y = �Wy +X� + �, (1)

where y is an n� 1 vector of dependent variables, X is an n� p nonstochastic exogenous variables,
W is a nonstochastic spatial weights matrix and the disturbance �i, i = 1; 2; � � � ; n, of the n-
dimensional vector � are i.i.d. (0; �2). Here, Wy is usually referred to as a spatial lag of y. We

assume that

� � Normal(0; �2In): (2)
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The reduced form for the SAR model is

y = (In � �W)�1X� + (In � �W)�1�

which has a nonstochastic component (In� �W)�1X� and a stochastic component (In� �W)�1�.

Thus, the expected value of y is

� = E(y) = (In � �W)�1X�

and 
 = �2(In��W)�1(In��WT)�1 is the variance matrix of y given X. Let P = X(XTX)�1XT

be the projection matrix and A = In �P.
Assume we have a weights matrix set W = fW1; : : : ;WSg, and thus S candidate models. The

log likelihood function for (1) under the sth model is

log(LH) = �n
2
log(2��2) + log jIn � �Wsj �

k(In � �Ws)y �X�k2
2�2

: (3)

From �rst order conditions w.r.t. � and �2, given the b�s as the MLE of � under the sth candidate
model, the MLEs of � and �2 are

b�s = (XTX)�1XT(In � b�sWs)y (4)

and b�2s = k(In � b�sWs)y �Xb�sk2=n: (5)

So the estimator of � is

b�s = (In � b�sWs)
�1Xb�s = (In � b�sWs)

�1P(In � b�sWs)y = ePsy;
where ePs = (In�b�sWs)

�1P(In�b�sWs). The b�s under the sth model will be used to evaluate the
performance of model selection by the di¤erence of b�s and the true �.

For analytical purpose, it can be obtained that

@ ePs
@b�s = (In � b�sWs)

�1Ws(In � b�sWs)
�1P(In � b�sWs)� (In � b�sWs)

�1PWs (6)

and

@b�s
@y

=
�
2nb�sWT

s AWsy � n(WT
s A+AWs)y (7)

+2tracef(In � b�sWs)
�1Wsg(In � b�sWs)

TA(In � b�sWs)y
�
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�
�
kA(In � b�sWs)yk2tracef(In � b�sWs)

�1Ws(In � b�sWs)
�1Wsg

�nyTWT
s AWsy

�tracef(In � b�sWs)
�1Wsg(2b�syTWT

s AWsy � 2yTWT
s Ay)

��1
:

Formula (6) is easy to obtain. See Appendix A.1 for the derivation of (7). The (6) and (7) are

useful in constructing the model selection criterion below.

3 Spatial Weights Matrix Selection Method and Its Asymptotic
Optimality

Given the space of all possible spatial weights matrices, in this section we will select a model by

some selection criterion related to the squared length of error vector. As seminal works on model

selection and averaging such as Li (1987), Shao (1997) and Hansen (2007), our focus is to reduce

the squared loss Ls = kb�s � �k2. The associated risk is Rs = E(Ls) = Ekb�s � �k2. Assuming 

is known, we de�ne the following model selection criterion

Cs = kePsy � yk2 + 2trace(ePs
) + 2 @b�s
@yT



@ ePs
@b�s y:

The �rst term of Cs measures the model �t, while the other terms measures the model complexity

and serve as penalties. From the normality of � and Stein�s Lemma 1 (Stein, 1981), we have

E(Cs) = Rs � trace(
): (8)

See Appendix A.2 for the derivation of (8).

In practice, 
 is unknown. Let b
 be an estimator of 
. So a feasible selection criterion is

bCs = kePsy � yk2 + 2trace(ePs b
) + 2 @b�s
@yT

b
@ ePs
@b�s y: (9)

The following Assumptions 2 and 4 contain some conditions on b
, but the consistency of b
 is

unnecessary, so the model used to estimate 
 can be misspeci�ed. Following Hansen (2007) and

Liu and Ryo (2013), we estimate 
 using the largest model, which, in the current paper, means

the model with the densest spatial weights matrixWs.

De�ne bs = argmin s2f1;:::;Sg bCs, which is the selected model. Next, we build the asymptotic
optimality of this model selection procedure. Assume b�s has a limit ��s. Let infs (sups) indicate
in�mum (supremum) over s 2 f1; : : : ; Sg, Ps = ePs jb�s=��s , R�s = Ekb�s jb�s=��s ��k2, �n = infsR�s,
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p be the number of columns of X, and �max(A) denote the largest singular values of a matrix A.

All the limiting properties here and throughout the text hold under n!1.

Assumption 1 There exists a positive integer G such that
PS
s=1(R

�
s)
�G = o(1).

Assumption 2 k�k2 = O(n), �max(
) = O(1), and �max(b
) = Op(1).
Assumption 3 sups �max(��sWs) = O(1) and sups �maxf(In � ��sWs)

�1g = O(1).

Assumption 4 ��1n sups j(@b�s=@yT)b
(@ ePs=@b�s)yj = op(1).
Assumption 5 ��1n p = o(1) and n�

�1
n sups �max(bPs �Ps) = op(1).

Assumption 1 is commonly-used in literature on the optimality of model selection; see, for

example, condition (A.3) of Li (1987) and condition (2.6) of Shao (1997). The �rst part of As-

sumptions 2, concerning the sum of n elements of �, is also commonly-used in linear regression

models (Liang et al., 2011). The other parts of Assumption 2 and Assumption 3 require the largest

singular values of matrices to be bounded. Assumption 4 is a high level assumption. It is seen from

(6) and (7) that the expression (@b�s=@yT)b
(@ ePs=@b�s)y will be tedious. We discuss the rationality
of Assumption 4 in Appendix A.3. The �rst part of Assumption 5 allows the number of regressors

increase with sample size n, but places a constraint on the growth rate of the number of regressors.

Similar assumptions are condition (22) of Zhang et al. (2013) and condition 6 of Liu and Ryo

(2013). The second part of Assumption 5 requires that b�s converges to ��s at a rate such that
��1n sups �max(bPs � Ps) converges to 0 at a rate quicker than n ! 1 and is similar to condition

(A5) of Zhang et al. (2014).

Theorem 1 Under Assumptions 1-5,

Lbs
infs2f1;:::;Sg Ls

! 1 (10)

in probability as n!1.

The result (10) means that our selected estimator �bs is optimal in the sense that its squared
loss is asymptotically identical to that by the infeasible best candidate estimator. Thus, in large

sample sense, the model selection criterion (9) can successfully minimize the loss.

5



4 Model Averaging and Its Asymptotic Optimality

The model selection in Section 3 can help us to pick up a model and we can proceed estimation

and testing based on this model. An alternative to model selection is model averaging. Rather

than attaching to a single �winning�model, model averaging compromises across a set of candidate

models, by which, it provides a kind of insurance against selecting a very poor model and can

substantially reduce risk compared to model selection (see Leung and Barron, 2006 and Hansen,

2014).

Let the weight vector w = (w1; :::; wS)T, belonging to the set H = fw 2 [0; 1]S :
PS
s=1ws = 1g,

and eP(w) =PS
s=1ws

ePs. The model average estimator of � would then be
b�(w) =XS

s=1
wsb�s =XS

s=1
wsePsy = eP(w)y:

Let squared loss L(w) = kb�(w) � �k2 and associated risk R(w) = EfL(w)g = Ekb�(w) � �k2.
Assuming 
 is known, we de�ne the following weight choice criterion

C(w) = keP(w)y � yk2 + 2tracefeP(w)
g+ 2XS

s=1
ws
@b�s
@yT



@ ePs
@b�s y:

Using the proof steps in Appendix A.2, we can show that EfC(w)g = R(w) � trace(
). Similar
to the previous section, we use b
 to estimate 
, so that a feasible weight choice criterion is

bC(w) = keP(w)y � yk2 + 2tracefeP(w)b
g+ 2XS

s=1
ws
@b�s
@yT

b
@ ePs
@b�s y: (11)

The selected weight is then bw = argminw2H bC(w).
De�ne H = (eP1y � y; � � � ; ePSy � y) and

h = ftrace(eP1 b
) + @b�1
@yT

b
@ eP1
@b�1 y; � � � ; trace(ePS b
) + @b�S

@yT
b
@ ePS
@b�S ygT:

It is straightforward to show that

bC(w) = wTHTHw + 2wTh;

so that bC(w) is a quadratic function of w. Numerous software packages are available for obtaining
the solution to this problem (e.g., quadprog of Matlab), and they generally work e¤ectively and

e¢ ciently even when S is very large.

De�ne R�(w) = Ek
PS
s=1wsb�s jb�s=��s ��k2 and e�n = infw2HR�(w).
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Assumption 6 e��1n sups j(@b�s=@yT)b
(@ ePs=@b�s)yj = op(1), e��1n p = o(1), ne��1n sups �max(bPs �
Ps) = op(1), and there exists a positive integer G such that Se��2Gn

PS
s=1(R

�
s)
G = o(1).

The �rst three parts of Assumption 6 are natural extensions of Assumptions 4-5 in model

averaging study. The fourth part of Assumption 6 is widely used and plays a central role in model

averaging literature such as Wan et al. (2010), Liu and Ryo (2013), and Ando and Li (2014).

Theorem 2 Under Assumptions 2, 3 and 6,

L(bw)
infw2H L(w)

! 1 (12)

in probability as n!1.

The result (12) means that the model averaging estimator �bw is optimal in the sense that its
squared loss is asymptotically identical to that by the infeasible best averaging estimator. Note

that infw2H L(w) � infs Ls, so it is expected that model averaging can reduce estimation error

relative to model selection.

Remark: Although the normality assumption of �i (see (2)) is used in the proofs of Theorems

1 and 2, it is not essential. When we do not assume the normality assumption and assume the

following moment condition

E(�4Gi ) � � <1; (13)

where � is a positive constant, the asymptotic optimality shown by Theorems 1 and 2 still hold.

See Appendix A.6 for the proof of Theorem 2 without using the normality assumption. The

corresponding proof of Theorem 1 without using the normality assumption is simple and is available

upon request from authors.

5 Monte Carlo

We conduct a Monte Carlo experiment to evaluate the performance of model selection and

model averaging procedures in the current paper.

Denoting l as n� 1 vector of ones, the data generating process (DGP) is

Y = �W0Yn + l�0 +X�1 +V

withW0 being the true weights matrix, where � = 0:2, 0:5 or 0:8, �0 = 1, �1 = 1 and X and V are

generated from independent standard normal distributions. We use n = 100, 400. We have totally
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four candidate spatial weights matrices [W1;W2;W3;W4]. TheW1 is a square tessellation where

each unit only interact with its left neighbor (for the left edge unit, it has the right edge unit as

its neighbor). TheW2 is a square tessellation where each unit only interact with its left and right

neighbors (for the left and right edge units, they have then only one neighbor). We call this a

left-right matrix. W3 is a rook matrix, which represents a square tessellation with a connectivity

of four for the inner �elds on the chessboard and two and three for the corner and border �elds,

respectively. We also specify W4 as a queen matrix, which presents a square tessellation with a

connectivity of eight for the inner �elds on the chessboard and three and �ve for the corner and

border �elds, respectively. All these weights matrices are row-normalized. From W1 to W4, the

spatial weights matrices become denser.

For each set of generated sample observations, we obtain the MLE under di¤erent spatial weights

matrix speci�cations and the corresponding root mean square error (RMSE) of estimates.3 Using

these estimates, we can compute the bCs in (9) and make the model selection. We can also have
model averaging according to bC(w) in (11). We do this 1000 times. The average value of the
loss Ls = kb�s � �k2 under each Ws, s = 1; :::; 4 is reported, along with average value of the loss

under model selection and model averaging. To investigate the accuracy of model selection and

performance of model averaging, we also report the selection frequency for each model, and also

the weights of model averaging. Results are summarized in Table 1.

From Table 1, we see that the loss of each model is smallest under the correct model speci�cation,

although its RMSE of parameter estimates are not necessarily smallest. When n = 100, for the

model selection, it will pick up the true model with 88.1% probability when � = 0:5 (84.1% for

� = 0:2 and 85.7% for � = 0:8), which implies that the model selection procedure in the current

paper works. For the model averaging, the true model W1 is given dominant weights 90.5% on

average when � = 0:5 (85.8% for � = 0:2 and 87.2% for � = 0:8). The loss of model averaging

is slightly smaller than that of model selection. Comparing the cases of n = 100 and n = 400,

we see that when sample size gets larger, the model selection and model averaging will have a

better performance. Comparing di¤erent values of �, the RMSEs of estimators and the loss become

larger when � is larger, but the performance of model selection and model averaging procedures

are similar.

We also investigate the in�uence of a denser spatial weights matrix in DGP. Instead ofW1, we

3The estimators of the model selection method is based on the selected model in each replication. We did not
de�ne the parameter estimates of model averaging, so the following tables do not include RMSE by model averaging.
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now use the W4 as the true spatial weights matrix. Results are in Table 2. We see that the loss

is still the smallest for the correct model, along with the RMSE of parameter estimates. However,

comparing with the case withW1 as the true weights matrix, the performance of model selection is

poor in picking up the correct model and the model averaging also performs poor in giving weights

to the correct model. When sample size is larger, the performances of model selection and model

averaging improve to an acceptable degree, but still worse than that of the case withW1 being the

true spatial weights matrix. Also, when � becomes larger, the performances of model selection and

model averaging become better.

Both Tables 1 and 2 have the true spatial weights matrix in the candidate models. What is the

performance of model selection and model averaging when the true model is not in the candidates?

In Table 3, we specify the true spatial weights matrix as the summation ofW2 andW4 (and then

row-normalize it). We see that when the true spatial weights matrix is not in the candidate models,

the losses are relatively small forW2,W3 andW4. This is understandable because the true model

is a weighted average ofW2 andW4. For the model selection, when sample size or � increases, it

will pick up theW1 with a smaller probability. For the model averaging, it also sets smaller weights

to W1 when sample size or � increases. When � = 0:5 or 0:8, the model averaging always has a

clearly smaller loss than the model selection and the loss of the model averaging is the smallest

among all losses for n = 400.

The weighted average ofW2 and W4, although not in the candidates, has a similar structure

to the candidate models. We design a new spatial weights matrixW5 with an exponential decline

pattern of spatial externalities. Each observation is assigned with a positive income generated from

a uniform distribution, and elements of W5 is constructed by expf�10 � jdi � dj jg where di � dj
is their income di¤erence. Thus, when their income di¤erence is larger, their economic distance is

larger and less correlated. From Table 4, we see that when the spatial weights matrix has some

continuous feature with an exponential decline pattern, the model selection will pick up W1 for

most of the time, and the model averaging procedure will also set large weights forW1. The losses

by di¤erent weights matrices are very similar and thus the model selection and averaging also lead

to similar losses.

The approximation of bCs for the risk (expected value of loss) in the current paper depends on
the normal distribution assumption theoretically. We conduct Monte Carlo experiments to evaluate

the performance of model selection and model averaging when the disturbances in the DGP are

not normally distributed. Table 5 reports the results where the disturbances are �(1) distributed

9



(demeaned). Comparing with Table 1, we see that the results are similar so that the performances

of model selection and model averaging are still satisfactory even if the disturbances in the DGP

are not normally distributed.

6 An Empirical Example

Keller and Shiue (2007) use historical data of the price of rice in China to study the role of spatial

features in the expansion of interregional trade and market integration. We have data available

for n = 121 prefectures (from 10 provinces) and T = 108 periods, where months of February and

August are recorded from 54 years in the mid-Qing (Qing Dynasty, 1644-1912).4 The estimation

equation is (1)5 and their reported estimates are the average from 54 years. From Keller and Shiue

(2007)�s estimates, the spatial e¤ect is signi�cant. Thus, spatial features are important as the

geographical distances in�uence the trade and possible arbitrage.

In estimating (1) for the rice price arbitrage, di¤erent weights matrices could be used. We have

distance matrix available [dij ]121i;j=1 among these prefecture capitals, where the dij ranges from 13 to

1854 km. Thus, we can construct one- and two-window distance bands or exponential speci�cations.

For example, the one-window distance band could be (1) W1, where prefectures are neighbors if

the dij � 300; and (2) W2, where prefectures are neighbors if the dij � 600. The two-window

distance band could beW3, where w
(3)
ij = 1 if dij � 300, w(3)ij = 0:5 if 300 < dij � 600 and w(3)ij = 0

if dij > 600. For the exponential speci�cation, we can specify wij = expf�dDijg with Dij = dij
100

and a larger absolute value of a negative �d denotes a more rapid decline in the size of the weights

when dij increases. Keller and Shiue (2007) state that the speci�cation with �d = �1:4 �ts the
data well by a limited grid search in terms of likelihood. For distance band speci�cations, they �nd

that the one-window speci�cation (W1 andW2) perform better than the two-window speci�cation

(W3).

Instead of the likelihood approach in choosing the best spatial weights matrix, we use the model

selection and model averaging approaches proposed in the current paper. Given each year�s data,

we run the cross sectional SAR regression using the candidate spatial weights matrix. We have six

candidates, whereW1,W2 andW3 are based on the one- and two- window distance band, andW4,

4We have the minimum price and the maximum price for each prefecture, where the prices are collected from
counties of each prefecture. We use the log mid-price for the estimation.

5Compared to Keller and Shiue (2007), the weather indicators are not included as exogenous variables due to
the data availability. However, as those weather regressors are insigni�cant in Keller and Shiue (2007), the omission
would not be controversial.
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W5 and W6 use exponential speci�cation wij = expf�dDijg with �d = �0:8 for W4, �d = �1:4
for W5 as in Keller and Shiue (2007), and �d = �2 for W6. For 108 cross sectional regressions,

we record the model selection result, and also compute the mean value of model averaging weights.

The results are in Table 6. We see that amongW1,W2 andW3 which use one- and two-window

distance band, the model selection has similar frequency for each of them, where the two-window

distance band has the highest frequency (0.2406 vs 0.1811 and 0.184). Similar observation is for

model averaging. Thus, compared with Keller and Shiue (2007) who use likelihood criterion and

prefer one-window distance band, we �nd that two-window distance band is preferred to the one-

window distance band. This seems more consistent with the exponential speci�cations below. For

the exponential speci�cations, we see that �d = �1:4 in Keller and Shiue (2007) has the largest
frequency for the model selection and largest weights for model averaging. This implies that

�d = �1:4 is better than �d = �0:8 (which under-values the transportation cost among regions, so
that each prefecture has many neighbors e¤ectively) and better than �d = �2 (which over-values
the transportation cost among regions, so that each prefecture has only neighboring prefectures as

his neighbor).

7 Conclusion

This paper proposes a model selection procedure to choose an optimal weights matrix from

several candidates by using a Mallows type criterion. This procedure shall be useful for empirical

researchers who might have several spatial weights matrices available and do not have an explicit

guide of which one to use. It also proposes a model averaging procedure to reduce estimation

error. We prove that these procedures can asymptotically minimize the squared loss. Monte Carlo

experiments show that proposed procedures have satisfactory �nite sample performances, and an

empirical example is illustrated.

Appendices

A.1 Derivation of Formula (7)

From the log-likelihood function (3), the concentrated maximum likelihood under the sth can-

didate model is

logfLH(b�s)g = �n
2
log(2�)� n

2
log(b�2s) + log jIn � b�sWsj �

k(In � b�sWs)y �Xb�sk2
2b�2s
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= �n
2
log(2�)� n

2
log

kA(In � b�sWs)yk2
n

+ log jIn � b�sWsj �
n

2

= �n
2
log(2�) +

n log(n)

2
� n
2
� n
2
log(kA(In � b�sWs)yk2) + log jIn � b�sWsj:

Thus, @ logfLH(b�s)g=@b�s = 0 implies
�nb�syTWT

s AWsy + ny
TWT

s Ay � tracef(In � b�sWs)
�1WsgkA(In � b�sWs)yk2 = 0;

where we use the result of Abadir and Magnus (2005) (page 369) to calculate the derivative of

determinant. Taking derivative with respect to y on the above formula, we have

0 = �nyTWT
s AWsy

@b�s
@y

� 2nb�sWT
s AWsy + n(W

T
s A+AWs)y

+kA(In � b�sWs)yk2tracef(In � b�sWs)
�1Ws(In � b�sWs)

�1Wsg
@b�s
@y

�2tracef(In � b�sWs)
�1Wsg(In � b�sWs)

TA(In � b�sWs)y

�tracef(In � b�sWs)
�1Wsg(2b�syTWT

s AWsy � 2yTWT
s Ay)

@b�s
@y
;

which implies (7).

A.2 Derivation of Formula (8)

De�ne z = 
�1=2y. Similar to the proof of Theorem 3 of Greven and Kneib (2010), from

normality of � and Stein�s Lemma (1981), we have

Ef(ePsy)T(y � �)g = Ef(
1=2ePs
1=2z)T(z�
�1=2�)g
= Eftrace@(


1=2ePs
1=2z)
@zT

g

= Eftrace(
1=2ePs
1=2) + E[tracef@(
1=2ePs
1=2z)
@b�s @b�s

@zT
g]

= Eftrace(ePs
)g+ E( @b�s
@zT


1=2
@ ePs
@b�s y)

= Eftrace(ePs
)g+ E( @b�s
@yT



@ ePs
@b�s y): (A.1)

So we have

Rs = Ekb�s � �k2 = EkePsy � �k2 = EkePsy � y + y � �k2
= EkePsy � yk2 + 2Ef(ePsy � y)T(y � �)g+ trace(
)

12



= EkePsy � yk2 + 2Ef(ePsy)T(y � �)g � trace(
)
= EkePsy � yk2 + Ef2trace(ePs
)g+ E(2 @b�s

@yT


@ ePs
@b�s y)� trace(
);

which implies (8).

A.3 Discussion on Assumption 4

Write Bs = (In � b�sWs): From (6), (7) and A = In �P, we have

@b�s
@yT

b
@ ePs
@b�s y =

f2nb�sWT
s AWsy � n(WT

s A+AWs)y + 2trace(B
�1
s Ws)B

T
sABsygT

�b
(B�1s WsB
�1
s PBsy �B�1s PWsy)

kABsyk2trace(B�1s WsB
�1
s Ws) + ny

TWT
s PWsy

+2trace(B�1s Ws)y
TWT

s ABsy�nyTWT
sWsy

: (A.2)

Assume that kyk2 has order n and uniformly for s 2 f1; : : : ; Sg, the smallest singular value of
WT

sWs is bounded away from zero, then nyTWT
sWsy has order n2 uniformly. We further as-

sume that �max(Ws) and �max(B�1s ) are bounded uniformly. Then, from (A.5) in the following

proof and the truth that �max(P) = 1, we know that the terms kABsyk2, trace(B�1s WB�1s Ws),

yTWT
s PWsy, trace(B�1s Ws), and y

TWT
s ABsy are equal to O(n

2) uniformly. So unless there

exists a special relationship among these terms, the denominator of the right hand of (A.2) should

have order n2 uniformly.

Similarly, by the third part of Assumption 2 and the assumptions that kyk2 has order n and
�max(Ws) and �max(B�1s ) are bounded uniformly, we know that the nominator of the right hand of

(A.2) is Op(n2) uniformly. Hence, (@b�s=@yT)b
(@ ePs=@b�s)y = Op(1) uniformly. From Assumption

1, we have �n !1. So Assumption 4 is reasonable.

A.4 Proof of Theorem 1

De�ne e� = (In � �W)�1� such that y = �+ e�. It is seen that
R�s = Ekb�s jb�s=��s ��k2 = EkPsy � �k2 = kPs�� �k2 + trace(Ps
PTs ) � kPs�� �k2; (A.3)

by which, we have

jLs �R�sj =
���kePsy � �k2 � kPs�� �k2 � trace(Ps
PTs )���

=
���k(ePs �Ps)�+ (ePs �Ps)e�+Pse�+Ps�� �k2
�kPs�� �k2 � trace(Ps
P

T
s )
���

13



=
���k(ePs �Ps)�+ (ePs �Ps)e�+Pse�k2
+2f(ePs �Ps)�+ (ePs �Ps)e�+Pse�gT(Ps�� �)� trace(Ps
PTs )���

� jkPse�k2 � trace(Ps
PTs )j+ 2j(Ps�� �)TPs�j+ k(ePs �Ps)�k2
+k(ePs �Ps)�k2 + 2j(Ps�� �)T(ePs �Ps)�j+ 2j(Ps�� �)T(ePs �Ps)e�j

� jkPse�k2 � trace(Ps
PTs )j+ 2j(Ps�� �)TPs�j+ k(ePs �Ps)�k2
+k(ePs �Ps)�k2 + 2R�s1=2k(ePs �Ps)�k+ 2R�s1=2k(ePs �Ps)e�k:

Let bC�s = bCs � ke�k2 such that bs = argmins2f1;:::;Sg bC�s . Then, we have
j bC�s � Lsj =

�����kePsy � yk2 + 2trace(ePs b
) + 2 @b�s@yT
b
@ ePs
@b�s y � ke�k2 � kePsy � �k2

�����
=

�����k(ePsy � �)�e�k2 + 2trace(ePs b
) + 2 @b�s@yT
b
@ ePs
@b�s y � ke�k2 � kePsy � �k2

�����
=

������2(ePsy � �)Te�+ 2trace(ePs b
) + 2 @b�s@yT
b
@ ePs
@b�s y

�����
=

������2(ePs�� �)Te�+ 2e�TPTs e�+ 2trace(ePs b
) + 2 @b�s@yT
b
@ ePs
@b�s y

�����
� 2je�TPTs e�� trace(Ps
)j+ 2j(Ps�� �)Te�j+ 2

����� @b�s@yT
b
@ ePs
@b�s y

�����
+2jtracef(ePs �Ps)b
gj+ 2jtracefPs(
� b
)gj
+2j�T(ePs �Ps)Te�j+ 2j�T(ePs �Ps)Te�j

� 2je�TPTs e�� trace(Ps
)j+ 2j(Ps�� �)Te�j+ 2
����� @b�s@yT

b
@ ePs
@b�s y

�����
+2jtracef(ePs �Ps)b
gj+ 2jtracefPs(
� b
)gj
+2k�kk(ePs �Ps)Te�k+ 2ke�kk(ePs �Ps)Te�k:

So, as in the proof of Theorem 2.1 in Li (1987), in order to prove (10), we need only to verify that

sup
s
R�s

�1

����� @b�s@yT
b
@ ePs
@b�s y

����� = op(1); (A.4a)

sup
s
R�s

�1j(Ps�� �)Te�j = op(1); (A.4b)

sup
s
R�s

�1je�TPTs e�� trace(Ps
)j = op(1); (A.4c)

14



sup
s
R�s

�1j(Ps�� �)TPse�j = op(1); (A.4d)

sup
s
R�s

�1jkPse�k2 � trace(Ps
PTs )j = op(1); (A.4e)

sup
s
R�s

�1k(ePs �Ps)�k2 = op(1); (A.4f)

sup
s
R�s

�1k(ePs �Ps)e�k2 = op(1); (A.4g)

sup
s
R�s

�1k�kk(ePs �Ps)Te�k = op(1); (A.4h)

sup
s
R�s

�1ke�kk(ePs �Ps)Te�k = op(1); (A.4i)

sup
s
R�s

�1jtracef(ePs �Ps)b
gj = op(1); (A.4j)

and

sup
s
R�s

�1jtracefPs(
� b
)gj = op(1): (A.4k)

By Assumptions 4, it is straightforward to show that

sup
s
R�s

�1

����� @b�s@yT
b
@ ePs
@b�s y

����� � ��1n sup
s

����� @b�s@yT
b
@ ePs
@b�s y

����� = op(1);
which is (A.4a).

It is well known that for any two n� n matrices B1 and B2 (Li, 1987),

�max(B1B2) � �max(B1)�max(B2) and �max(B1 +B2) � �max(B1) + �max(B2): (A.5)

From (A.5), Assumption 3, and the truth that �max(P) = 1, we have

sup
s
f�max(Ps)g = sup

s
[�maxf(In � ��sWs)

�1P(In � ��sWs)g]

� sup
s
[�maxf(In � ��sWs)

�1g][1 + sup
s
f�max(��sWs)g]

= O(1): (A.6)

From the normality of e�, (A.6), and Assumptions 1-2, the equations (A.4b)-(A.4e) can be shown
by using the same steps as in the proof of Theorem 2.1 of Li (1987).

From (A.5) and Assumptions 2 and 5, we have

sup
s
R�s

�1k(ePs �Ps)�k2 � ��1n k�k2 sup
s
�2max(

ePs �Ps) = op(1)
and

sup
s
R�s

�1k�kk(ePs �Ps)Te�k � ��1n k�k sup
s
�max(ePs �Ps)ke�k = op(1);
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which are (A.4f) and (A.4i), respectively. Similarly, we can get (A.4g)-(A.4h). Also from (A.5) and

Assumptions 2 and 5, we have

sup
s
R�s

�1jtracef(ePs �Ps)b
gj � ��1n sup
s
f�max(ePs �Ps)�max(b
)rank(ePs �Ps)g

� 2p��1n sup
s
�max(ePs �Ps)�max(b
)

= op(1); (A.7)

which is (A.4j).

From (A.5)-(A.6) and Assumptions 2 and 5, we have

sup
s
R�s

�1jtracefPs(
� b
)gj � ��1n sup
s
f�max(
� b
)�max(Ps)rank(Ps)g

� ��1n f�max(
) + �max(b
)g sup
s
�max(Ps)p

= op(1);

which is (A.4k). This completes the proof.

A.5 Proof of Theorem 2

Let supw indicate supremum over w 2 H. Following the steps in the proof of Theorem 1, we

need only to verify that

sup
w
R�(w)�1

�����XS

s=1
ws
@b�s
@yT

b
@ ePs
@b�s y

����� = op(1); (A.8a)

sup
w
R�(w)�1jfP(w)�� �gTe�j = op(1); (A.8b)

sup
w
R�(w)�1je�TP(w)e�� tracefP(w)
gj = op(1); (A.8c)

sup
w
R�(w)�1jfP(w)�� �gTP(w)e�j = op(1); (A.8d)

sup
w
R�(w)�1jkP(w)e�k2 � tracefP(w)
P(w)Tgj = op(1); (A.8e)

sup
w
R�(w)�1k

XS

s=1
ws(ePs �Ps)�k2 = op(1); (A.8f)

sup
w
R�(w)�1k

XS

s=1
ws(ePs �Ps)e�k2 = op(1); (A.8g)

sup
w
R�(w)�1k�kk

XS

s=1
ws(ePs �Ps)Te�k = op(1); (A.8h)

sup
w
R�(w)�1ke�kkXS

s=1
ws(ePs �Ps)Te�k = op(1); (A.8i)
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sup
w
R�(w)�1jtracef

XS

s=1
ws(ePs �Ps)b
gj = op(1); (A.8j)

and

sup
w
R�(w)�1jtracefP(w)(
� b
)gj = op(1): (A.8k)

Following the �rst part of Assumption 6, we can obtain (A.8a). From the normality of e�, (A.6),
Assumption 2, and the fourth part of Assumption 6, we can obtain (A.8b)-(A.8e) by using the same

steps as in the proof of Theorem 1�of Wan et al. (2010). From (A.5), and Assumption 2, and the

third part of Assumption 6, we have

sup
w
R�(w)�1k

XS

s=1
ws(ePs �Ps)�k2

� e��1n k�k2�maxfXS

s=1
ws(ePs �Ps)TXS

s=1
ws(ePs �Ps)g

� e��1n k�k2�2maxfXS

s=1
ws(ePs �Ps)g

� e��1n k�k2fXS

s=1
ws�max(

ePs �Ps)g2
� e��1n k�k2 sup

s
�2max(

ePs �Ps)
= op(1);

which is (A.8f). Next, following the steps in the proofs of (A.4g)-(A.4k), we can obtain (A.8g)-

(A.8k).

A.6 Proof of Theorem 2 without using the normality assumption

Seeing Appendix A.5, the proofs of (A.8a) and (A.8f)-(A.8k) do not depend on the normality

assumption of �. Thus, we need only to reprove (A.8b)-(A.8e).

From (A.3), (A.5), (A.6), the moment condition (13), Conditions 2 and 6, and Theorem 2 of

Whittle (1960), we have that for any � > 0,

Pr[sup
w
R�(w)�1jfP(w)�� �gTe�j > �]

� Prfsup
s
j(Ps�� �)T(In � �W)�1�j > �e�ng

�
XS

s=1
Prfj(Ps�� �)T(In � �W)�1�j > �e�ng

� ��2Ge��2Gn

XS

s=1
Ef(Ps�� �)T(In � �W)�1�g2G

� C1��2Ge��2Gn

XS

s=1
k(In � �WT)�1(Ps�� �)k2G
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� C1��2G�Gmax(
)e��2Gn

XS

s=1
(R�s)

G

= op(1);

Pr[sup
w
R�(w)�1je�TP(w)e�� tracefP(w)
gj > �]

� Prfsup
s
je�TPse�� trace(Ps
)j > �e�ng

�
XS

s=1
Prfje�TPse�� trace(Ps
)j > �e�ng

=
XS

s=1
Prfj�T(In � �WT)�1Ps(In � �W)�1�� trace(Ps
)j > �e�ng

� C2��2Ge��2Gn

XS

s=1
traceGf(In � �WT)�1Ps
P

T
s (In � �W)�1g

� C2��2G�Gmax(
)e��2Gn

XS

s=1
traceG(P

T
s
Ps)

� C2��2G�Gmax(
)e��2Gn

XS

s=1
(R�s)

G

= op(1);

Pr[sup
w
R�(w)�1jfP(w)�� �gTP(w)e�j > �]

� Prfsup
t
sup
s
j(Ps�� �)TPt(In � �W)�1�j > �e�ng

�
XS

t=1

XS

s=1
Prfj(Ps�� �)TPt(In � �W)�1�j > �e�ng

� ��2Ge��2Gn

XS

t=1

XS

s=1
Ef(Ps�� �)TPt(In � �W)�1�g2G

� C3��2Ge��2Gn

XS

t=1

XS

s=1
k(In � �WT)�1P

T
t (Ps�� �)k2G

� C3��2G�Gmax(
)e��2Gn

XS

t=1

XS

s=1
�2Gmax(Pt) (R

�
s)
G

= op(1);

and

Pr[R�(w)�1jkP(w)e�k2 � tracefP(w)
P(w)Tgj > �]
� Prfsup

t
sup
s
je�TPsPTt e�� trace(Ps
PTt )j > �e�ng

�
XS

t=1

XS

s=1
Prfje�TPsPTt e�� trace(Ps
PTt )j > �e�ng

=
XS

t=1

XS

s=1
Prfj�T(In � �WT)�1PsP

T
t (In � �W)�1�� trace(Ps
P

T
t )j > �e�ng

� C4��2Ge��2Gn

XS

t=1

XS

s=1
traceGf(In � �WT)�1PsP

T
t 
PtP

T
s (In � �W)�1g

18



� C4��2G�Gmax(
)e��2Gn

XS

t=1

XS

s=1
�2Gmax(Pt)trace

G(P
T
s
Ps)

� C4��2G�Gmax(
)e��2Gn

XS

t=1

XS

s=1
�2Gmax(Pt) (R

�
s)
G

= op(1);

where C1, C2, C3 and C4 are positive constants. There results imply (A.8b)-(A.8e), respectively.
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Table 1: True DGP isW1

W1 W2 W3 W4 MS MA

�= 0:2 n = 100 RMSE of � 0.084 0.077 0.101 0.136 0.086
RMSE of �0 0.152 0.140 0.165 0.202 0.151
RMSE of �1 0.101 0.103 0.103 0.105 0.101

Loss 0.033 0.050 0.059 0.064 0.036 0.035
MS accuracy 0.841 0.095 0.030 0.033
MA weights 0.858 0.089 0.023 0.030

W1 W2 W3 W4 MS MA
n = 400 RMSE of � 0.070 0.039 0.055 0.086 0.067

RMSE of �0 0.105 0.070 0.085 0.121 0.102
RMSE of �1 0.050 0.054 0.052 0.052 0.051

Loss 0.012 0.028 0.039 0.044 0.013 0.013
MS accuracy 0.903 0.072 0.016 0.009
MA weights 0.926 0.061 0.009 0.004

W1 W2 W3 W4 MS MA
�= 0:5 n = 100 RMSE of � 0.163 0.072 0.108 0.264 0.159

RMSE of �0 0.353 0.180 0.245 0.553 0.345
RMSE of �1 0.104 0.157 0.131 0.130 0.110

Loss 0.101 0.236 0.318 0.348 0.120 0.119
MS accuracy 0.881 0.044 0.061 0.015
MA weights 0.905 0.023 0.059 0.013

W1 W2 W3 W4 MS MA
n = 400 RMSE of � 0.146 0.036 0.054 0.195 0.146

RMSE of �0 0.303 0.091 0.123 0.400 0.303
RMSE of �1 0.052 0.133 0.084 0.067 0.052

Loss 0.058 0.194 0.281 0.312 0.059 0.060
MS accuracy 0.984 0.011 0.005 0.000
MA weights 0.996 0.000 0.004 0.000

W1 W2 W3 W4 MS MA
�= 0:8 n = 100 RMSE of � 0.178 0.077 0.129 0.406 0.171

RMSE of �0 0.915 0.411 0.665 2.065 0.881
RMSE of �1 0.108 0.321 0.228 0.204 0.145

Loss 0.587 1.379 1.710 1.777 0.702 0.701
MS accuracy 0.857 0.046 0.065 0.031
MA weights 0.872 0.043 0.058 0.027

W1 W2 W3 W4 MS MA
n = 400 RMSE of � 0.144 0.046 0.089 0.390 0.144

RMSE of �0 0.731 0.242 0.454 1.966 0.729
RMSE of �1 0.053 0.312 0.173 0.113 0.055

Loss 0.366 1.211 1.639 1.715 0.373 0.374
MS accuracy 0.992 0.002 0.007 0.000
MA weights 0.994 0.001 0.005 0.000

Note: (�0; �1) = (1; 1):
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Table 2: True DGP isW4

W1 W2 W3 W4 MS MA

�= 0:2 n = 100 RMSE of � 0.168 0.148 0.132 0.128 0.156
RMSE of �0 0.244 0.221 0.202 0.192 0.227
RMSE of �1 0.102 0.102 0.102 0.102 0.102

Loss 0.032 0.032 0.030 0.028 0.032 0.031
MS accuracy 0.733 0.046 0.092 0.129
MA weights 0.735 0.045 0.092 0.128

W1 W2 W3 W4 MS MA
n = 400 RMSE of � 0.170 0.143 0.105 0.073 0.121

RMSE of �0 0.224 0.192 0.145 0.105 0.163
RMSE of �1 0.051 0.051 0.050 0.050 0.050

Loss 0.012 0.012 0.010 0.007 0.010 0.009
MS accuracy 0.412 0.051 0.148 0.388
MA weights 0.400 0.047 0.168 0.385

W1 W2 W3 W4 MS MA
�= 0:5 n = 100 RMSE of � 0.406 0.320 0.224 0.129 0.262

RMSE of �0 0.836 0.665 0.477 0.283 0.549
RMSE of �1 0.114 0.110 0.106 0.103 0.103

Loss 0.105 0.098 0.073 0.057 0.075 0.072
MS accuracy 0.345 0.047 0.229 0.379
MA weights 0.311 0.040 0.269 0.380

W1 W2 W3 W4 MS MA
n = 400 RMSE of � 0.397 0.301 0.182 0.060 0.120

RMSE of �0 0.805 0.612 0.375 0.131 0.246
RMSE of �1 0.063 0.058 0.053 0.050 0.050

Loss 0.068 0.060 0.033 0.015 0.020 0.019
MS accuracy 0.095 0.034 0.133 0.738
MA weights 0.035 0.015 0.163 0.787

W1 W2 W3 W4 MS MA
�= 0:8 n = 100 RMSE of � 0.565 0.379 0.224 0.092 0.235

RMSE of �0 2.866 1.935 1.154 0.484 1.212
RMSE of �1 0.169 0.137 0.115 0.103 0.106

Loss 0.622 0.579 0.364 0.284 0.347 0.342
MS accuracy 0.139 0.019 0.393 0.449
MA weights 0.087 0.013 0.461 0.439

W1 W2 W3 W4 MS MA
n = 400 RMSE of � 0.531 0.336 0.167 0.037 0.081

RMSE of �0 2.675 1.696 0.848 0.195 0.413
RMSE of �1 0.124 0.085 0.059 0.050 0.051

Loss 0.471 0.419 0.168 0.075 0.092 0.090
MS accuracy 0.048 0.007 0.162 0.783
MA weights 0.000 0.000 0.187 0.813

Note: (�0; �1) = (1; 1):

23



Table 3: True DGP is not in the candidates: W0 =W2 +W4

W1 W2 W3 W4 MS MA

�= 0:2 n = 100 RMSE of � 0.144 0.107 0.113 0.130 0.131
RMSE of �0 0.216 0.175 0.180 0.194 0.198
RMSE of �1 0.102 0.102 0.102 0.103 0.102

Loss 0.032 0.030 0.031 0.032 0.032 0.031
MS accuracy 0.651 0.156 0.094 0.099
MA weights 0.663 0.152 0.091 0.094

W1 W2 W3 W4 MS MA
n = 400 RMSE of � 0.137 0.082 0.071 0.075 0.093

RMSE of �0 0.184 0.118 0.105 0.107 0.130
RMSE of �1 0.051 0.050 0.050 0.051 0.050

Loss 0.013 0.009 0.010 0.011 0.011 0.010
MS accuracy 0.325 0.322 0.165 0.187
MA weights 0.325 0.330 0.166 0.179

W1 W2 W3 W4 MS MA
�= 0:5 n = 100 RMSE of � 0.336 0.188 0.147 0.144 0.217

RMSE of �0 0.697 0.404 0.323 0.312 0.459
RMSE of �1 0.113 0.104 0.106 0.112 0.105

Loss 0.105 0.074 0.073 0.080 0.084 0.075
MS accuracy 0.305 0.313 0.201 0.180
MA weights 0.304 0.318 0.221 0.157

W1 W2 W3 W4 MS MA
n = 400 RMSE of � 0.324 0.166 0.097 0.070 0.140

RMSE of �0 0.659 0.343 0.205 0.151 0.289
RMSE of �1 0.063 0.051 0.054 0.059 0.052

Loss 0.068 0.035 0.032 0.037 0.035 0.025
MS accuracy 0.076 0.433 0.216 0.275
MA weights 0.045 0.454 0.309 0.192

W1 W2 W3 W4 MS MA
�= 0:8 n = 100 RMSE of � 0.470 0.227 0.133 0.113 0.221

RMSE of �0 2.383 1.167 0.69 0.584 1.130
RMSE of �1 0.165 0.110 0.117 0.142 0.119

Loss 0.646 0.485 0.356 0.375 0.417 0.386
MS accuracy 0.174 0.226 0.348 0.253
MA weights 0.133 0.207 0.431 0.229

W1 W2 W3 W4 MS MA
n = 400 RMSE of � 0.439 0.195 0.079 0.049 0.095

RMSE of �0 2.216 0.985 0.404 0.252 0.481
RMSE of �1 0.121 0.054 0.063 0.092 0.068

Loss 0.498 0.313 0.145 0.156 0.160 0.131
MS accuracy 0.032 0.260 0.354 0.354
MA weights 0.003 0.087 0.675 0.235

Note: (�0; �1) = (1; 1):
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Table 4: True DGP is not in the candidates: W0 has exponential decline pattern

W1 W2 W3 W4 MS MA

�= 0:2 n = 100 RMSE of � 0.185 0.177 0.173 0.174 0.18
RMSE of �0 0.263 0.254 0.250 0.249 0.258
RMSE of �1 0.101 0.101 0.101 0.101 0.101

Loss 0.027 0.027 0.027 0.027 0.028 0.027
MS accuracy 0.914 0.030 0.029 0.027
MA weights 0.917 0.030 0.028 0.025

W1 W2 W3 W4 MS MA
n = 400 RMSE of � 0.191 0.186 0.181 0.179 0.186

RMSE of �0 0.250 0.244 0.237 0.234 0.244
RMSE of �1 0.050 0.050 0.050 0.050 0.050

Loss 0.007 0.007 0.007 0.007 0.007 0.007
MS accuracy 0.897 0.029 0.042 0.033
MA weights 0.897 0.031 0.042 0.030

W1 W2 W3 W4 MS MA
�= 0:5 n = 100 RMSE of � 0.484 0.475 0.468 0.464 0.477

RMSE of �0 0.993 0.974 0.960 0.952 0.978
RMSE of �1 0.102 0.102 0.103 0.103 0.103

Loss 0.061 0.062 0.062 0.062 0.062 0.062
MS accuracy 0.915 0.028 0.030 0.027
MA weights 0.915 0.028 0.029 0.028

W1 W2 W3 W4 MS MA
n = 400 RMSE of � 0.491 0.485 0.479 0.476 0.485

RMSE of �0 0.995 0.983 0.970 0.964 0.983
RMSE of �1 0.051 0.051 0.051 0.050 0.051

Loss 0.016 0.016 0.016 0.016 0.016 0.016
MS accuracy 0.898 0.027 0.041 0.033
MA weights 0.898 0.030 0.040 0.032

W1 W2 W3 W4 MS MA
�= 0:8 n = 100 RMSE of � 0.786 0.778 0.771 0.766 0.781

RMSE of �0 3.977 3.936 3.899 3.875 3.948
RMSE of �1 0.115 0.114 0.114 0.115 0.115

Loss 0.341 0.341 0.341 0.341 0.341 0.341
MS accuracy 0.927 0.016 0.025 0.032
MA weights 0.929 0.016 0.025 0.030

W1 W2 W3 W4 MS MA
n = 400 RMSE of � 0.791 0.786 0.779 0.776 0.785

RMSE of �0 3.988 3.960 3.925 3.910 3.958
RMSE of �1 0.053 0.053 0.053 0.052 0.053

Loss 0.088 0.088 0.088 0.088 0.088 0.088
MS accuracy 0.907 0.025 0.040 0.028
MA weights 0.908 0.026 0.039 0.027

Note: (�0; �1) = (1; 1):
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Table 5: True DGP is not normal

W1 W2 W3 W4 MS MA

�= 0:2 n = 100 RMSE of � 0.086 0.081 0.106 0.136 0.087
RMSE of �0 0.162 0.152 0.175 0.207 0.162
RMSE of �1 0.104 0.105 0.107 0.107 0.104

Loss 0.034 0.051 0.061 0.065 0.037 0.037
MS accuracy 0.861 0.085 0.026 0.029
MA weights 0.875 0.078 0.023 0.024

W1 W2 W3 W4 MS MA
n = 400 RMSE of � 0.071 0.04 0.055 0.087 0.069

RMSE of �0 0.110 0.074 0.09 0.127 0.107
RMSE of �1 0.049 0.052 0.051 0.050 0.049

Loss 0.012 0.029 0.039 0.044 0.014 0.013
MS accuracy 0.907 0.066 0.018 0.009
MA weights 0.934 0.053 0.010 0.003

W1 W2 W3 W4 MS MA
�= 0:5 n = 100 RMSE of � 0.161 0.075 0.110 0.267 0.156

RMSE of �0 0.362 0.193 0.253 0.558 0.347
RMSE of �1 0.106 0.159 0.133 0.130 0.112

Loss 0.103 0.238 0.319 0.349 0.119 0.118
MS accuracy 0.898 0.040 0.055 0.007
MA weights 0.914 0.029 0.052 0.005

W1 W2 W3 W4 MS MA
n = 400 RMSE of � 0.147 0.037 0.055 0.196 0.147

RMSE of �0 0.308 0.094 0.127 0.404 0.307
RMSE of �1 0.050 0.129 0.082 0.064 0.050

Loss 0.060 0.195 0.281 0.312 0.060 0.061
MS accuracy 0.987 0.009 0.004 0.000
MA weights 0.997 0.000 0.003 0.000

W1 W2 W3 W4 MS MA
�= 0:8 n = 100 RMSE of � 0.177 0.078 0.131 0.413 0.173

RMSE of �0 0.929 0.426 0.682 2.095 0.909
RMSE of �1 0.109 0.323 0.231 0.204 0.148

Loss 0.594 1.384 1.695 1.763 0.706 0.706
MS accuracy 0.860 0.050 0.064 0.026
MA weights 0.878 0.047 0.053 0.022

W1 W2 W3 W4 MS MA
n = 400 RMSE of � 0.146 0.047 0.089 0.390 0.146

RMSE of �0 0.743 0.245 0.458 1.968 0.743
RMSE of �1 0.051 0.308 0.170 0.111 0.052

Loss 0.377 1.215 1.639 1.716 0.383 0.385
MS accuracy 0.992 0.000 0.004 0.003
MA weights 0.995 0.000 0.002 0.003

Note: (�0; �1) = (1; 1):
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Table 6: Spatial E¤ect in Rice Prices

W1 W2 W3 W4 W5 W6

n = 121 Estimate of � 0.9272 0.9765 0.9478 0.9673 0.9120 0.8637
Estimate of �0 0.0209 0.0125 0.0098 0.0113 0.0270 0.0411

MS result 0.1811 0.1840 0.2406 0.1615 0.2115 0.0213
MA weight 0.1389 0.1667 0.2222 0.2037 0.2500 0.0185
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