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Abstract

Ultrahigh dimensional data with both categorical responses and categorical covari-

ates are frequently encountered in the analysis of big data, for which feature screening

has become an indispensable statistical tool. We propose a Pearson chi-square based

feature screening procedure for categorical response with ultrahigh dimensional cat-

egorical covariates. The proposed procedure can be directly applied for detection of

important interaction effects. We further show that the proposed procedure possesses

screening consistency property in the terminology of Fan and Lv (2008). We investigate

the finite sample performance of the proposed procedure by Monte Carlo simulation

studies, and illustrate the proposed method by two empirical datasets.
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1. INTRODUCTION

Since the seminal work of Fan and Lv (2008), feature screening for ultrahigh dimensional

data has received considerable attention in the recent literature. Wang (2009) proposed for-

ward regression method for feature screening in ultrahigh dimensional linear models. Fan,

Samworth and Wu (2009) and Fan and Song (2010) developed sure independence screen-

ing (SIS) procedures for generalized linear models and robust linear models. Fan, Feng,

and Song (2001) developed nonparametric SIS procedure for additive models. Li, Peng,

Zhang and Zhu (2012) developed rank correlation based SIS procedure for linear models.

Liu, Li and Wu (2013) developed a SIS procedure for varying coefficient model based on

conditional Pearson’s correlation. Procedures aforementioned are all model-based methods.

In the analysis of ultrahigh dimensional data, it would be very challenging in specifying a

correct model in the initial stage. Thus, Zhu et al. (2011) advocated model-free procedures

and proposed a sure independence and ranking screening procedure based on multi-index

models. Li, Zhong and Zhu (2012) proposed a model-free SIS procedure based on distance

correlation (Szekely, Rizzo and Bakirov, 2007). He, Wang and Hong (2013) proposed a

quantile-adaptive model-free SIS for ultrahigh dimensional heterogeneous data. Mai and

Zou (2013) proposed a SIS procedure for binary classification with ultrahigh dimensional

covariates based on Kolmogorov’s statistic. The aforementioned methods implicitly assume

that predictor variables are continuous. Ultrahigh dimensional data with categorical pre-

dictors and categorical responses are frequently encountered in practice. This work aims to

develop a new SIS-type procedure for this particular situation.

This work was partially motivated by an empirical analysis of data related to search engine

marketing (SEM), which is also referred to as paid search advertising (PSA). It has been

standard practice to make textual advertisements on search engines such as Google in USA

and Baidu in China. Keyword management plays a critical role in textual advertisements,

and therefore is of particular importance in SEM practice. Specifically, in order to maximize
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the amount of potential customers, the SEM practitioner typically maintains a large number

of relevant keywords. Depending on the business scale, the total number of keywords ranges

from thousands to millions. Practically managing so many keywords is a challenging task.

For an easy management, the keywords need to be classified into fine groups. This is a

requirement enforced by all major search engines (e.g., Google and Baidu). Ideally, the

keywords belong to the same group should bear similar textual formulation and semantic

meaning. This is a nontrivial task demanding tremendous efforts and expertise. The current

industry practice largely relies on human forces, which is expensive and inaccurate. This is

particular true in China, which has the largest emerging SEM market in the world. Then,

how to automatically classify Chinese keywords into pre-specified groups becomes a problem

of great importance. Such a problem indeed is how to handle high dimensional categorical

feature construction and how to identify important features.

From statistical point of view, we can formulate the problem as follows. We treat each

keyword as a sample and index it by i with 1 ≤ i ≤ n. Next, let Yi ∈ {1, 2, · · · , K} be

the class label. We next convert the textual message contained in each keyword to a high

dimensional binary indicator. Specifically, we collect a set of most frequently used Chinese

characters and index them by j with 1 ≤ j ≤ p. Define a binary indicator Xij as Xij = 1

if the jth Chinese character appears in the ith keyword and Xij = 0 otherwise. Collect all

those binary indicators by a vector Xi = (Xi1, · · · , Xip)
⊤ ∈ Rp. Because the total number

of Chinese characters is huge, the dimension of Xi (i.e., p) is ultrahigh. Subsequently, the

original problem about keyword management becomes an ultrahigh dimensional classification

problem from Xi to Yi. Many existing methods, including k-Nearest Neighbors (Hastie et al.,

2001, kNN), random forest (Breiman, 2001, RF), and support vector machine (Tong and

Koller, 2001; Kim et al., 2005, SVM) can be used for high dimensional binary classification.

However these methods become instable if the problem is ultrahigh dimensional. As a result,

feature screening becomes indispensable.

This paper aims to develop a feature screening procedure for multiclass classification
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with ultrahigh dimensional categorical predictors. To this end, we propose using Pearson’s

chi-square (PC) test statistic to measure the dependence between categorical response and

categorical predictors. We develop a screening procedure based on the Pearson chi-square

test statistic. Since the Pearson chi-square test statistic can be directly calculated using most

statistical software packages. Thus, the proposed procedure can be easily implemented in

practice. We further study the theoretical property of the proposed procedure. We rigorously

prove that, with overwhelming probability, the proposed procedure can retain all important

features, which implies the sure independence screening (SIS) property in the terminology

of Fan and Lv (2008). In fact, under certain conditions, the proposed method can correctly

identify the true model consistently. For convenience, the proposed procedure is referred to

as PC-SIS, which possesses the following virtues.

The PC-SIS is a model-free screening procedure because the implementation of PC-SIS

does not require one to specify a model for the response and predictors. This is an appealing

property since it is challenging to specify a model in the initial stage of analyzing ultrahigh

dimensional data. The PC-SIS can be directly applied for multi-categorical response and

multi-categorical predictors. The PC-SIS has excellent capability in detecting important

interaction effects by creating new categorical predictors for interactions between predictors.

Furthermore, the PC-SIS is also applicable for multiple response and grouped or multivariate

predictors by defining a new univariate categorical variable for the multiple response or the

grouped predictors. Lastly, by appropriate categorization, PC-SIS can handle the situation

with both categorical and continuous predictors. In summary, the PC-SIS provides a uni-

fied approach for feature screening in ultrahigh dimensional categorical data analysis. We

conduct Monte Carlo simulation to empirically verify our theoretical findings, and illustrate

the proposed methodology by two empirical datasets.

The rest of this article is organized as follows. Section 2 describes the detailed procedure

of PC-SIS and establishes its theoretical property. Section 3 presents some numerical studies.

Section 4 presents two real world applications. The conclusion remark is given in Section 5.
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Technical proofs are given in the Appendix.

2. The Pearson Chi-Square Test based Screening Procedure

2.1. Sure Independence Screening

Let Yi ∈ {1, · · · , K} be the corresponding class label, and Xi = (Xi1, · · · , Xip)
⊤ ∈ Rp

be the associated categorical predictor. Since the predictors involved in our intended SEM

application are binary, we assume thereafter that Xij is binary. This allows us to slightly

simplify our notation and technical proofs. However, the developed method and theory

can be readily applied to general categorical predictors. Define a generic notation S =

{j1, · · · , jd} to be a model with Xij1 , · · · , Xijd included as relevant features. Let |S| = d be

the model size. Let Xi(S) = (Xij : j ∈ S) ∈ R|S| be the subvector of Xi according to S.

Define D(Yi|Xi(S)) to be the conditional distribution of Yi given Xi(S). Then a candidate

model S is called sufficient, if

D(Yi|Xi) = D(Yi|Xi(S)). (2.1)

Obviously, the full model SF = {1, 2, · · · , p} is sufficient. Thus, we are only interested in

the smallest sufficient model. Theoretically, we can consider the intersection of all sufficient

models. If the intersection is still sufficient, it must be the smallest. We call it the true

model and denote it by ST . Throughout the rest of this article, we assume ST exists with

|ST | = d0.

The objective of feature screening is to find a model estimate Ŝ such that: (1) Ŝ ⊃ ST ;

and (2) the size of |Ŝ| is as small as possible. To this end, we follow the marginal screening

idea of Fan and Lv (2008) and propose the Pearson chi-square type statistic as follows.

Define P (Yi = k) = πyk, P (Xij = k) = πjk, and P (Yi = k1, Xij = k2) = πyj,k1k2 . Those

quantities can be estimated by π̂yk = n−1
∑

I(Yi = k), π̂jk = n−1
∑

I(Xij = k), and
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π̂yj,k1k2 = n−1
∑

I(Yi = k1)I(Xij = k2). Subsequently, a chi-square type statistic can be

defined as

∆̂j =
K∑

k1=1

2∑
k2=1

(π̂yk1 π̂jk2 − π̂yj,k1k2)
2

π̂yk1 π̂jk2

, (2.2)

which is a natural estimator of

∆j =
K∑

k1=1

2∑
k2=1

(πyk1πjk2 − πyj,k1k2)
2

πyk1πjk2

. (2.3)

Obviously, those predictors with larger ∆̂j values are more likely to be relevant. As a result,

we can estimate the true model by Ŝ = {j : ∆̂j > c}, where c > 0 is some pre-specified

constant. For convenience, we refer to Ŝ as a PC-SIS estimator.

Remark 1. As one can see, Ŝ can be equivalently defined in terms of p-value. Specifically,

define P̂j = P (χ2
K > n∆̂j), where χ2

K stands for a chi-squared distribution with K degrees

of freedom. Because P̂j is monotonically decreasing function in ∆̂j, Ŝ can be equivalently

expressed as Ŝ = {j : P̂j < pc} for some constant 0 < pc < 1. In the situation, where

the number of categories involved by each predictor is different, the predictor involved more

categories is likely to be associated with larger ∆j values, regardless of whether the predictor

is important or not. In that case, directly using ∆j for variable screening is less accurate.

Instead, using p-value P̂j is more appropriate.

2.2. Theoretical Properties

We next investigate the theoretical properties of Ŝ. Define ωk1k2
j = cov{I(Yi = k1), I(Xij =

k2)}. We then assume the following conditions.

(C1) (Response Probability) Assume that there exist two positive constants 0 < πmin <

πmax < 1 such that πmin < πyk < πmax for every 1 ≤ k ≤ K and πmin < πjk < πmax for

every 1 ≤ j ≤ p and 1 ≤ k ≤ K.
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(C2) (Marginal Covariance) Assume ∆j = 0 for any j ̸∈ ST . We further assume that there

exists positive constant ωmin, such that minj∈ST
maxk1k2(ω

k1k2
j )2 > ωmin.

(C3) (Divergence Rate) Assume log p ≤ νnξ for some constants ν > 0 and 0 < ξ < 1.

Condition (C1) excludes those features with one particular category’s response probability

extremely small (i.e., πyk ≈ 0) or extremely large (i.e., πyk ≈ 1). Condition (C2) requires

that, for every relevant categorical feature j ∈ ST , there exists at least one response category

(i.e., k1) and one feature category (i.e., k2), which are marginally correlated (i.e., ωk1k2
j >

ωmin). Under a linear regression setup, similar condition was also used by Fan and Lv (2008)

but in terms of the marginal covariance. Condition (C2) also assumes that ∆j = 0 for every

j ̸∈ ST . With the help of this condition, we can rigorously show that Ŝ is selection consistent

for ST , that is P (Ŝ = ST ) → 1 as n → ∞ in Theorem 1. If this condition is removed, the

conclusion becomes screening consistent (Fan and Lv, 2008), that is P (Ŝ ⊃ ST ) → 1 as

n → ∞. Lastly, condition (C3) allows the feature dimension p to diverge at an exponentially

fast speed in terms of the sample size n. Accordingly, the feature dimension could be much

larger than sample size n. Then, we have the following theorem.

Theorem 1. (Strong Screening Consistency) Under Conditions (C1)–(C3), there exists a

positive constant c such that P (Ŝ = ST ) → 1.

2.3. Interaction Screening

Interaction detection is important for the intended SEM application. Consider two arbi-

trary feature Xij1 and Xij2 . We say they are free of interaction effect if conditioning on Yi,

they are independent with each other. Otherwise, we say they have nontrivial interaction

effect. Theoretically, such an interaction effect can be conveniently measured by

Ωj1j2 =
∑
k

2∑
k1=1

2∑
k2=1

(πk,j1,k1πk,j2,k2 − πk,j1j2,k1k2)
2

πk,j1,k1πk,j2,k2

,
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where πk,j1j2,k1k2 = P (Xij1 = k1, Xij2 = k2|Yi = k) and πk,j,k∗ = P (Xij = k∗|Yi = k).

They can be estimated, respectively, by π̂k,j1j2,k1k2 = {
∑

I(Yi = k)}−1
∑

I(Xij1 = k1, Xij2 =

k2, Yi = k), and π̂k,j,k∗ = {
∑

I(Yi = k)}−1
∑

I(Xij = k∗, Yi = k). Subsequently, Ωj1j2 can be

estimated by

Ω̂j1j2 =
∑
k

2∑
k1=1

2∑
k2=1

(π̂k,j1,k1 π̂k,j2,k2 − π̂k,j1j2,k1k2)
2

π̂k,j1,k1 π̂k,j2,k2

.

Accordingly, those interaction terms with large Ω̂j1j2 values should be considered as promising

ones. As a result, it is natural to select important interaction effects by Ĩ = {(j1, j2) : Ω̂j1j2 >

c} for some critical value c > 0. It is remarkable that the critical value c used here is typically

different from that of Ŝ. As one can imagine, searching for important interaction effects over

every possible feature pair is computationally expensive. To save computational cost, we

suggest to focus on those features in Ŝ. This leads to the following practical solution

Î = {(j1, j2) : Ω̂j1j2 > c and j1, j2 ∈ Ŝ}. (2.4)

Under appropriate conditions, we can also show that I(Î = IT ) → ∞ as n → ∞, where

IT = {(j1, j2) : Ωj1j2 > 0}.

2.4. Tuning Parameter Selection

We first consider tuning parameter selection for Ŝ. To this end, various non-negative

values can be considered for c. This leads to a set of candidate models, which are collected

by a solution path F = {Sj : 1 ≤ j ≤ p}, where Sj = {k1, · · · , kj}. Here {k1, · · · , kp} is

a permutation of {1, · · · , p} such that ∆̂k1 ≥ ∆̂k2 ≥ · · · ≥ ∆̂kp . As a result, the original

problem about tuning parameter selection for c is converted into a problem about model

selection for F . To solve the problem, we propose the following maximum ratio criterion.

To illustrate the idea, we temporarily assume that ST ∈ F . Recall that the true model size

is |ST | = d0. We then should have ∆̂kj/∆̂kj+1
→p cjj+1 for some positive constant cjj+1 > 0,

as long as j + 1 ≤ d0. One the other side, if j > d0, we should have both ∆̂j and ∆̂j+1
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converge in probability towards 0. If their convergence rates are comparable, we should have

∆̂kj/∆̂kj+1
= Op(1). However, if j = d0, we should have ∆̂j →p cj for some positive constant

cj > 0 but ∆̂j+1 →p 0. This makes the ratio ∆̂kj/∆̂kj+1
→p ∞. This suggests that d0 can be

estimated by

d̂ = argmax0≤j≤p−1∆̂kj/∆̂kj+1
,

where ∆̂0 is defined to be ∆̂0 = 1 for the sake of completeness. Accordingly, the final model

estimate is given by Ŝ = {j1, j2, · · · , jd̂} ∈ F . Similar idea also can be used to estimate

the interaction model Î and get the interaction model size d̂I . Our numerical experiments

suggest that it works fairly well.

3. SIMULATION STUDIES

3.1. Example 1: a Model without Interaction

We first consider a simple example without any interaction effect. We generate Yi ∈

{1, 2, · · · , K} with K = 4 and P (Yi = k) = 1/K for every 1 ≤ k ≤ K. Define the true

model to be ST = {1, 2, · · · , 10} with |ST | = 10. Next, conditional on Yi, we generate

relevant features as P (Xij = 1|Yi = k) = θkj for every 1 ≤ k ≤ K and j ∈ ST . Their

detailed values are given in Table 1. Then, for any 1 ≤ k ≤ K and j ̸∈ ST , we define

θkj = 0.5. For a comprehensive evaluation, various feature dimensions (p = 1000, 5000) and

sample sizes (n = 200, 500, 1000) are considered.

Table 1: Probability Specification for Example 1

j
θkj 1 2 3 4 5 6 7 8 9 10

k=1 0.2 0.8 0.7 0.2 0.2 0.9 0.1 0.1 0.7 0.7
k=2 0.9 0.3 0.3 0.7 0.8 0.4 0.7 0.6 0.4 0.1
k=3 0.7 0.2 0.1 0.6 0.7 0.6 0.8 0.9 0.1 0.8
k=4 0.1 0.9 0.6 0.1 0.3 0.1 0.4 0.3 0.6 0.4
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Table 2: Example 1 Detailed Simulation Results

Main Effect Interaction Effect
p n Method CME IME CIE IIE MS CP%

1000 200 SF 10.0 990.0 0.0 0.0 1000.0 100.0

Ŝ 9.8 0.0 0.0 0.0 9.9 98.6

Ŝ + Î 9.8 0.0 0.0 1.1 11.0 98.6

500 SF 10.0 990.0 0.0 0.0 1000.0 100.0

Ŝ 10.0 0.0 0.0 0.0 10.0 100.0

Ŝ + Î 10.0 0.0 0.0 0.2 10.2 100.0

1000 SF 10.0 990.0 0.0 0.0 1000.0 100.0

Ŝ 10.0 0.0 0.0 0.0 10.0 100.0

Ŝ + Î 10.0 0.0 0.0 0.0 10.0 100.0
5000 200 SF 10.0 4990.0 0.0 0.0 5000.0 100.0

Ŝ 9.6 0.0 0.0 0.0 9.6 96.6

Ŝ + Î 9.6 0.0 0.0 1.1 10.7 96.6

500 SF 10.0 4990.0 0.0 0.0 5000.0 100.0

Ŝ 10.0 0.0 0.0 0.0 10.0 100.0

Ŝ + Î 10.0 0.0 0.0 0.8 10.8 100.0

1000 SF 10.0 4990.0 0.0 0.0 5000.0 100.0

Ŝ 10.0 0.0 0.0 0.0 10.0 100.0

Ŝ + Î 10.0 0.0 0.0 0.0 10.0 100.0

For each random replication, the proposed maximum ratio method is used to select both

Ŝ and Î. Subsequently, the number of correctly identified main effects CME=|Ŝ
∩
ST | and

incorrectly identified main effects IME=|Ŝ
∩

Sc
T | with Sc

T = SF\ST are computed. The

interaction effects are similarly summarized. This leads to the number of correctly and

incorrectly identified interaction effects, which are denoted by CIE and IIE, respectively.

Moreover, the final model size, that is MS=|Ŝ|+ |Î|, is computed. The coverage percentage,

defined by CP=(|Ŝ
∩

ST |+ |Î
∩
IT |)/(|ST |+ |IT |), is recorded. Lastly, all those summarizing

measures are averaged across the 200 simulation iterations and then reported in Table 2.

They correspond to the rows with screening method flagged by Ŝ + Î. For comparison
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purpose, the full main effect model SF (i.e., the model with all the main effect without

interaction) and also the selected main effect model Ŝ (i.e., the model with all the main

effect in Ŝ without interaction) are also included.

The detailed results are given in Table 2. For a given simulation model, a fixed feature

dimension p, and a diverging sample size n, we find that the CME increases towards |ST | = 10

and IME decreases towards 0, and there is no over-fitting effect. This result corroborates

the theoretical result of Theorem 1 very well. In the meanwhile, since there is no interaction

in this particular model, CIE is 0 and IIE converges towards 0 as n goes to infinity.

3.2. Example 2: a Model with Interaction

We next investigate an example with genuine interaction effects. Specifically, the class

label is generated in the same way as the previous example with K = 4. Conditional on

Yi = k, we generateXij with j ∈ {1, 3, 5, 7} according to probability P (Xij = 1|Yi = k) = θkj,

whose detailed values are given in Table 3. Conditional on Yi and Xi,2m−1, we generate Xi,2m

according to

P (Xi,2m = 1|Yi = k,Xi,2m−1 = 0) = 0.05I(θk,2m−1 ≥ 0.5) + 0.4I(θk,2m−1 < 0.5)

P (Xi,2m = 1|Yi = k,Xi,2m−1 = 1) = 0.95I(θk,2m−1 ≥ 0.5) + 0.4I(θk,2m−1 < 0.5),

for every 1 ≤ k ≤ K and m ∈ {1, 2, 3, 4}. Lastly, we define θkj = 0.4 for any 1 ≤ k ≤ K and

j > 8. Accordingly, we should have ST = {1, 2, · · · , 8} and IT = {(1, 2), (3, 4), (5, 6), (7, 8)}.

The detailed results are given in Table 4. The basic findings are qualitatively similar to

those in Table 2. The only difference is that the CIE value no longer converges towards 0.

Instead, it converges towards |IT | = 4 as n → ∞ and p fixed. Also, CP values for Ŝ are no

longer near 100% since Ŝ only takes main effect into consideration. Instead, the CP value

for Ŝ + Î converges towards 100% as n increases and p is fixed.
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Table 3: Probability Specification for Example 2

j
θkj 1 3 5 7

k=1 0.8 0.8 0.7 0.9
k=2 0.1 0.3 0.2 0.3
k=3 0.7 0.9 0.1 0.1
k=4 0.2 0.1 0.9 0.7

3.3. Example 3: a Model with both Categorical and Continuous Variables

We consider here an example with both categorical and continuous variables. Fix |ST | =

20. Here, Yi ∈ {1, 2} is generated according to P (Yi = 1) = P (Yi = 2) = 1/2. Given Yi = k,

we generate latent variable Zi = (Zi1, Zi2...Zip)
⊤ ∈ Rp with Zij independently distributed as

N(µkj, 1), where µkj = 0 for any j > d0, µkj = −0.5 if Yi = 1 and j ≤ d0, and µkj = 0.5

if Yi = 2 and j ≤ d0. Lastly, we construct observed feature Xij as follows. If j is an odd

number, we then define Xij = Zij. Otherwise, define Xij = I(Zij > 0). As a result, this

example involves a total of d0 = 20 features are relevant. Half of them are continuous and

half of them are categorical. To apply our method, we need to first discretize the continuous

variables to be categorical. Specifically, let zα stand for the αth quantile of a standard normal

distribution. We then re-define those continuous predictors as Xij = 1 if Xij < z0.25, Xij = 2

if z0.25 < Xij < z0.50, Xij = 3 if z0.50 < Xij < z0.75, and Xij = 4 if Xij > z0.75. By doing

so all the features become categorical. We next apply our method to the converted datasets

by using p-values as described in the Remark 1. The experiment is replicated in a similar

manner as before with detailed results summarized in Table 5. The results are qualitatively

similar to those in Example 1.

4. REAL DATA ANALYSIS

4.1. A Chinese Keyword Dataset
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Table 4: Example 2 Detailed Simulation Results

Main Effect Interaction Effect
p n Method CME IME CIE IIE MS CP%

1000 200 SF 8.0 992.0 0.0 0.0 1000.0 66.6

Ŝ 5.4 0.0 0.0 0.0 5.4 45.7

Ŝ + Î 5.4 0.0 1.4 5.0 12.0 58.2

500 SF 8.0 992.0 0.0 0.0 1000.0 66.6

Ŝ 7.8 0.0 0.0 0.0 7.8 65.5

Ŝ + Î 7.8 0.0 3.8 1.1 12.8 97.8

1000 SF 8.0 992.0 0.0 0.0 1000.0 66.6

Ŝ 8.0 0.0 0.0 0.0 8.0 66.6

Ŝ + Î 8.0 0.0 4.0 0.2 12.2 100.0
5000 200 SF 8.0 4992.0 0.0 0.0 5000.0 66.6

Ŝ 4.9 0.0 0.0 0.0 4.9 41.2

Ŝ + Î 4.9 0.0 0.9 4.0 9.9 49.5

500 SF 8.0 4992.0 0.0 0.0 5000.0 66.6

Ŝ 7.5 0.0 0.0 0.0 7.5 63.1

Ŝ + Î 7.5 0.0 3.5 1.7 12.8 92.9

1000 SF 8.0 4992.0 0.0 0.0 5000.0 66.6

Ŝ 7.9 0.0 0.0 0.0 7.9 66.6

Ŝ + Î 7.9 0.0 3.9 0.2 12.2 99.9

The data contains a total of 639 keywords (i.e., samples), which are classified into K =

13 categories. The total number of Chinese characters involved is p = 341. For each

class, we randomly split the sample into two parts with equal sizes. One part is used

for training and the other for testing. The sample size of the training data is n = 320.

Based on the training data, models are selected by the proposed PC-SIS method and various

classification methods (i.e., kNN, SVM, and RF) are applied. Their forecasting accuracies

are examined on the testing data. For a reliable evaluation, such an experiment is randomly

replicated 200 times. The detailed results are given in Table 6. As seen, the PC-SIS estimated

main effect model Ŝ, with size 14.6 on average, consistently outperforms the full model SF ,
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Table 5: Example 3 Detailed Simulation Results

Main Effect Interaction Effect
p n Method CME IME CIE IIE MS CP%

1000 200 SF 20.0 980.0 0.0 0.0 1000.0 100.0

Ŝ 17.9 0.2 0.0 0.0 18.2 89.6

Ŝ + Î 17.9 0.2 0.0 0.3 18.5 89.6

1000 500 SF 20.0 980.0 0.0 0.0 1000.0 100.0

Ŝ 19.9 0.0 0.0 0.0 19.9 99.9

Ŝ + Î 19.9 0.0 0.0 0.0 19.9 99.9

1000 1000 SF 20.0 980.0 0.0 0.0 1000.0 100.0

Ŝ 20.0 0.0 0.0 0.0 20.0 100.0

Ŝ + Î 20.0 0.0 0.0 0.0 20.0 100.0
5000 200 SF 20.0 4980.0 0.0 0.0 5000.0 100.0

Ŝ 15.7 0.2 0.0 0.0 16.0 78.9

Ŝ + Î 15.7 0.2 0.0 1.0 17.1 79.1

5000 500 SF 20.0 4980.0 0.0 0.0 5000.0 100.0

Ŝ 19.9 0.0 0.0 0.0 19.9 99.9

Ŝ + Î 19.9 0.0 0.0 0.0 19.9 99.9

5000 1000 SF 20.0 4980.0 0.0 0.0 5000.0 100.0

Ŝ 20.0 0.0 0.0 0.0 20.0 100.0

Ŝ + Î 20.0 0.0 0.0 0.0 20.0 100.0

regardless of the classification method. The relative improvement margin could be as high

as 87.2%-51.1%=36.1% for SVM. Such an outstanding performance can be further improved

by including about 22.3 interaction effects. The maximum improvement margin is 78.0%-

67.6%=10.4% for RF.

4.2. Labor Supply Dataset

We next consider a dataset about labor supply. This is an important dataset generously

donated by Mroz (1987) and was discussed by Wooldridge (2002). It contains a total of 753

married white women aged between 30 to 60 in the year of 1975. For illustration purpose,
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Table 6: Detailed Results for Search Engine Marketing Dataset

Model Main Interaction Forecasting Accuracy%
Method Size Effect Effect kNN SVM RF

SF 341.00 341.00 0.00 76.89 51.13 60.57

Ŝ 14.60 14.60 0.00 85.20 87.19 67.55

Ŝ + Î 36.85 14.60 22.25 86.96 88.66 78.01

we take a binary variable Yi ∈ {0, 1} as the response of interest, which indicates whether

the woman participated to the labor market or not. The dataset contains a total of 77

predictive variables with interaction terms included. These variables were observed for both

participated and non-participated women. They are recorded by Xi. Understanding the

regression relationship between Xi and Yi is useful for calculating the propensity score for

a woman’s employment decision (Rosenbaum and Rubin , 1983). However, due to its high

dimensionality, directly using all the predictors for propensity score estimation is suboptimal.

Thus, we are motivated to apply our method for variable screening.

Following similar strategy, we randomly split the dataset into two parts with equal sizes.

One part is used for training and the other for testing. We then apply PC-SIS method to the

training dataset. Because this dataset involves both continuous and categorical predictors,

the method of discretization (as given in simulation Example 3) is used. We then apply PC-

SIS to the discretized dataset, which leads to estimated model Ŝ. Because the interaction

terms with good economical meanings are already included in Xi (Mroz , 1987), we did not

further pursue the interaction model Î. An usual logistic regression model is then estimated

based on the training dataset, and the resulting model’s forecasting accuracy is evaluated

on the testing data in terms of AUC, which is area under the ROC curve (Wang, 2007).

The definition is given as follows. Let β̂ be the maximum likelihood estimator, which is

obtained by conducting a logistic regression model for Yi and Xi but based on the training

data. Denote the testing dataset, which can be further decomposed as T = T0

∪
T1 with

T0 = {i ∈ T : Yi = 0} and T1 = {i ∈ T : Yi = 1}. Simply speaking, T0 and T1 collect indices
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of those testing samples with response being 0 and 1, respectively. Then, AUC in Wang

(2007) is defined as

AUC =
1

n0n1

∑
{i1∈T1}

∑
{i2∈T0}

I(X⊤
i1
β̂ > X⊤

i2
β̂), (4.1)

where n0 and n1 are the sample sizes of T0 and T1, respectively.

For comparison purpose, the full model SF is also evaluated. For a reliable evaluation,

the experiment is randomly replicated 200 times. We find that a total of 10.20 features are

selected on average with AUC=98.03%, which is extremely comparable to that of the full

model (i.e., AUC=98.00%) but with substantially reduced features. Lastly, we apply our

method to the whole dataset, with 10 important main effects identified and no interaction is

included. The 10 selected main effects are, respectively, family income, after tax full income,

wife’s weeks worked last year, wife’s usual hours of work per week last year, actual wife

experience, salary, hourly wage, overtime wage, hourly wage from the previous year, and a

variable indicating whose hourly wage from the previous year is not 0.

Remark 2. One can also evaluate AUC according to (4.1) but based on the whole sample

and then optimize it with respect to an arbitrary regression coefficient β. This leads to the

Maximum Rank Correlation (MRC) estimator, which has been well studied by Han (1987),

Sherman (1993), and Baker (2003).

5. CONCLUDING REMARKS

To conclude this article, we discuss here two interesting topics for future study. First, as

we discussed before, the proposed method and theory can be readily extended to the situation

with general categorical predictors. Second, we assume here the number of response classes

(i.e., K) is finite. How to conduct variable selection and screening with a diverging K is

theoretically challenging.

To conclude this article, we discuss here two interesting topics for future study. First, as

we discussed before, the proposed method and theory can be readily extended to the situation
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with general categorical predictors. Second, we assume here the number of response classes

(i.e., K) is finite. How to conduct variable selection and screening with a diverging K is

theoretically challenging.

APPENDIX: Proof of Theorem 1

The proof of Theorem 1 consists of five steps. First, we show that there exists a lower

bound on ∆j for every j ∈ ST . Second, we establish ∆̂j as a uniformly consistent estimator

of ∆j which is over 1 ≤ j ≤ p. Last, we argue that there exists a positive constant c such

that Ŝ = ST with probability tending to 1.

Step 1. By definition, we have ωk1k2
j = πyj,k1k2 − πyk1πjk2 . Then for every j ∈ ST ,

by Condition (C1), πyk and πjk are both upper bounded by πmax. We then have ∆j =∑
k1k2

{(ωk1k2)2(πyk1πjk2)
−1} ≥ π−2

max

∑
k1k2

(ωk1k2
j )2. Next, by Condition (C2), if j ∈ ST ,∑

k1k2
(ωk1k2

j )2 ≥ maxk1k2(ω
2
k1k2

) ≥ ωmin. These results together make ∆j lower bounded by

ωminπ
−2
max. We can then define ∆min = 0.5ωminπ

−2
max , which is a positive constant resulting in

minj∈ST
∆j > ∆min.

Step 2. The proof of uniform consistency for π̂jk and π̂yj,k1k2 are similar. As a result,

we omit the details of π̂yj,k1k2 . Also, based on the uniform consistency of π̂jk and π̂yj,k1k2 ,

the uniform consistency of ∆̂j needs only some standard argument using Taylor’s expansion.

The technical details of ∆̂j’s uniform consistency is also omitted. We focus on π̂jk only.

To this end, we define Zi,jk = I(Xij = k) − πjk. By that we know EZij,k = 0,

EZ2
ij,k = πjk − π2

jk, and |Zij,k| ≤ M with M = 1. Also, for a fixed pair of (j, k), we

know that Zij,k are independent for i. All those conditions remind us of Bernstein’s inequal-

ity, by which we have,

P
(∑

i

Zij,k > ε
)
≤ exp

{
−3ε2

2Mε+ 6n(πjk − π2
jk)

}
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where ε > 0 is an arbitrary positive constant. Since M = 1 and πjk − π2
jk ≤ 1/4, the

right-hand side of the inequality can further bounded above by exp{−6ε2/(4ε+3n)}, Thus,

P
(∣∣∣ 1

n

∑
i

Zij,k

∣∣∣ > ε
)
≤ 2 exp

{
−6n2ε2

4nε+ 3n

}
= 2 exp

{
−6nε2

4ε+ 3

}
.

With π̂k,j − πk,j = n−1
∑

i Zij,k, we have

P
(
max

k
max
1≤j≤p

|π̂k,j − πk,j| > ε
)

= P
(
max

k
max
1≤j≤p

∣∣∣ 1
n

∑
i

Zij,k

∣∣∣ > ε
)

≤
∑
jk

P
( 1
n

∣∣∣∑
i

Zij,k

∣∣∣ > ε
)

≤ 2K exp

{
log p+

−6nε2

4ε+ 3

}
→ 0, (A.1)

where the first inequality is due to Bonferonni’s inequality. By Condition (C3), the right-

hand side of the final inequality goes to 0 as n → ∞. Then we have, under Condition (C1)

– (C3), maxk max1≤j≤p |π̂jk − πjk| = op(1).

Step 3. Recall that ∆min = 0.5ωminπ
−2
max. Define c = (2/3)∆min and we should have

Ŝ ⊃ ST . Otherwise, there must exist a j∗ ∈ ST but j∗ ̸∈ Ŝ. Accordingly, we must have

∆̂j∗ ≤ (2/3)∆min and ∆j∗ > ∆min. Thus |∆̂j∗ −∆j∗ | > (1/3)∆min, which implies, if Ŝ ̸⊃ ST

then max |∆̂j −∆j| > (1/3)∆min. On the other hand, we know by ∆̂j’s uniform consistency,

with ε = (1/3)∆min, P (Ŝ ̸⊃ ST ) ≤ P (max |∆̂j −∆j| > (1/3)∆min) → 0, as n → ∞.

Similarly, we have ST ⊃ Ŝ. Or else there should be a j∗ ∈ Ŝ but j∗ ̸∈ ST . Thus

∆̂j∗ ≥ (2/3)∆min and ∆j∗ = 0. We should have |∆̂j∗ −∆j∗ | > (2/3)∆min. Let ε = (2/3)∆min,

and by uniform consistency again, we have P (ST ̸⊃ Ŝ) ≤ P (max |∆̂j−∆j| > (2/3)∆min) → 0,

as n → ∞. As a result, we know that P (Ŝ = ST ) → 1 with c = (2/3)∆min, as n → ∞ . This

completes the proof.
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