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Limit Theorems for Some Critical Superprocesses

Yan-Xia Ren∗ Renming Song† and Rui Zhang‡

Abstract

In this paper we establish some conditional limit theorems for some critical superprocesses
X = {Xt, t ≥ 0}. First we identify the rate of non-extinction. Then we show that, for a large
class of functions f , conditioned on non-extinction at time t, the limit, as t→ ∞, of t−1〈f,Xt〉
exists in distribution and we identify this limit. Finally, we also establish, under some conditions,
a central limit theorem for 〈f,Xt〉 conditioned on non-extinction at time t.

AMS Subject Classifications (2000): Primary 60F05; 60J80; Secondary 60J25, 60J35
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1 Introduction

1.1 Motivation

In 1966, Kesten, Ney and Spitzer [12] proved that if {Zn, n ≥ 0} is a critical branching process

with finite second moment, then

lim
n→∞

nP (Zn > 0) =
1

σ2
(1.1)

and

lim
n→∞

P

(
1

n
Z(n) >

σ2

2
x|Z(n) > 0

)
= e−x, x ≥ 0, (1.2)

where σ2 is the variance of the offspring distribution. The first result says that the non-extinction

rate is of order 1/n as n→ ∞, and the second result says that, conditioned on non-extinction at time

n, the total population size in generation n grows like n. For probabilistic proofs of these results,

see Lyons, Pemantle and Peres [17]. For continuous time critical branching processes {Zt, t ≥ 0},

Athreya and Ney [4, Theorem 3 and Lemma 2 on page 113] proved the following limit theorem:

lim
t→∞

P

(
1

t
Z(t) >

σ2

2
x|Z(t) > 0

)
= e−x, x ≥ 0, (1.3)

where σ2 is a positive constant determined by the branching rate and the variance of the offspring

distribution.
∗The research of this author is supported by NSFC (Grant No. 11271030 and 11128101) and Specialized Research

Fund for the Doctoral Program of Higher Education.
†Research supported in part by a grant from the Simons Foundation (208236).
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For discrete time multi-type critical branching processes {Z(n), n ≥ 0}, Athreya and Ney [4]

gave two limit theorems under the finite second moment condition, see [4, Section V.5]. Let v

be a positive left eigenvector of the mean matrix associated with the eigenvalue 1. The first limit

theorem says that if w · v > 0, then

lim
n→∞

P

(
Z(n) ·w

n
> x|Z(n) > 0

)
=

∫ ∞

x
f(y)dy, x ≥ 0, (1.4)

where

f(y) =
1

γ1
e−y/γ1 , y ≥ 0,

and γ1 is a positive constant. The second limit theorem says that if w · v = 0, then

lim
n→∞

P

(
Z(n) ·w√

n
> x|Z(n) > 0

)
=

∫ ∞

x
f2(y)dy, x ∈ R, (1.5)

where

f2(y) =
1

2γ2
e−|y|/γ2 , y ∈ R,

and γ2 is a positive constant. The limit result (1.4) is a generalization of (1.2) from the single type

case to the multi-type case, and was first proved by Joffe and Spitzer [11]. The limit result (1.5)

was first proved in Ney [19].

For continuous time multi-type critical branching processes, Athreya and Ney [5] proved two

limit theorems, similar to results (1.4) and (1.5) respectively, under the finite second moment

condition, see [5, Theorems 1 and 2].

Asmussen and Hering [3] discussed similar questions for critical branching Markov processes

{Yt, t ≥ 0}. In [3, Proposition 3.3 on page 201], Asmussen and Hering discussed the finite time

extinction property of branching Markov processes. Under some conditions (see [3] for details), [3,

Theorem 3.4 on page 202] provided the rate of non-extinction, more precisely, it was shown that

lim
t→∞

tPν(‖Yt‖ 6= 0) = µ−1φ0(x)

uniformly in ν with ν satisfying supp(ν) = n for any integer n, where µ is a positive constant and

φ0 is the first eigenfunction of the mean semigroup of {Yt, t ≥ 0}.

In [3, Theorem 3.8 on page 204], Asmussen and Hering gave a result similar to (1.4), under

some condition which is satisfied by some critical multi-group branching diffusions. In [3, Theorem

3.3 on page 297], Asmussen and Hering gave a result similar to (1.5) for critical branching Markov

processes under some condition of the mean matrix M at time t = 1 (see [3, (2.1) on page 293]).

We also would like to mention that the conditions for the results of [3] mentioned in this paragraph

are not very easy to check.

The main purpose of this paper is to consider similar types of limit theorems for critical super-

processes, under very general but easy to check conditions.

In our recent papers [20, 22], we established some spatial central limit theorems for supercritical

superprocesses. See also [1, 18, 21] for related results. Our original motivation for the present paper
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is to establish spatial central limit theorems for critical superprocesses. In contrast with the papers

mentioned above, the spatial process needs not be symmetric in this paper.

1.2 Superprocesses and assumptions

In this subsection, we describe the superprocesses we are going to work with and spell out our

assumptions.

Suppose that E is a locally compact separable metric space and that m is a σ-finite Borel

measure on E with full support. Suppose that ∂ is a separate point not contained in E. ∂ will

be interpreted as the cemetery point. We will use E∂ to denote E ∪ {∂}. Every function f on

E is automatically extended to E∂ by setting f(∂) = 0. We will assume that ξ = {ξt,Πx} is a

Hunt process on E and ζ := inf{t > 0 : ξt = ∂} is the lifetime of ξ. We will use {Pt : t ≥ 0} to

denote the semigroup of ξ. We will use Bb(E) (B+
b (E)) to denote the set of (positive) bounded

Borel measurable functions on E.

The superprocessX = {Xt : t ≥ 0} we are going to work with is determined by three parameters:

a spatial motion ξ = {ξt,Πx} on E which is a Hunt process, a branching rate function β(x) on E

which is a non-negative bounded measurable function and a branching mechanism ϕ of the form

ϕ(x, z) = −a(x)z + b(x)z2 +

∫

(0,+∞)
(e−zy − 1 + zy)n(x, dy), x ∈ E, z > 0, (1.6)

where a ∈ Bb(E), b ∈ B+
b (E) and n is a kernel from E to (0,∞) satisfying

sup
x∈E

∫

(0,+∞)
y2n(x, dy) <∞. (1.7)

In our paper, we will not consider the special case that b(·) + n(·, (0,∞)) = 0, a.e.-m.

The superprocess X is a Markov process taking values in MF (E), the space of finite measures

on E. The existence of such superprocesses is well-known, see, for instance, [6], [8] or [15]. For

any µ ∈ MF (E), we denote the law of X with initial configuration µ by Pµ. As usual, 〈f, µ〉 :=
∫
E f(x)µ(dx) and ‖µ‖ := 〈1, µ〉. Then for every f ∈ B+

b (E) and µ ∈ MF (E),

− log Pµ

(
e−〈f,Xt〉

)
= 〈uf (t, ·), µ〉, (1.8)

where uf (t, x) is the unique positive solution to the equation

uf (t, x) + Πx

∫ t

0
Ψ(ξs, uf (t− s, ξs))ds = Πxf(ξt), (1.9)

where Ψ(x, z) = β(x)ϕ(x, z), x ∈ E and z > 0, while Ψ(∂, z) = 0, z > 0. Define

α(x) := β(x)a(x) and A(x) := β(x)

(
2b(x) +

∫ ∞

0
y2n(x, dy)

)
. (1.10)

Then, by our assumptions, α(x) ∈ Bb(E) and A(x) ∈ B+
b (E). Thus there exists K > 0 such that

sup
x∈E

(|α(x)| +A(x)) ≤ K. (1.11)
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For any f ∈ Bb(E) and (t, x) ∈ (0,∞) × E, define

Ttf(x) := Πx

[
e
∫ t
0
α(ξs) dsf(ξt)

]
. (1.12)

It is well-known that Ttf(x) = Pδx〈f,Xt〉 for every x ∈ E.

Our standing assumption on ξ is that there exists a family of continuous strictly positive func-

tions {p(t, x, y) : t > 0} on E × E such that, for any t > 0 and nonnegative function f on E,

Ptf(x) =

∫

E
p(t, x, y)f(y)m(dy).

Define

at(x) :=

∫

E
p(t, x, y)2m(dy), ât(x) :=

∫

E
p(t, y, x)2m(dy).

In this paper, we assume that

Assumption 1.1 (i) For any t > 0,
∫
E p(t, x, y)m(dx) ≤ 1.

(ii) For any t > 0, we have

et :=

∫

E
at(x)m(dx) =

∫

E
ât(x)m(dx) =

∫

E

∫

E
p(t, x, y)2m(dy)m(dx) <∞. (1.13)

Moreover, the functions x→ at(x) and x→ ât(x) are continuous on E .

It is easy to see that

p(t + s, x, y) =

∫

E
p(t, x, z)p(s, z, y)m(dz) ≤ (at(x))1/2(âs(y))1/2, (1.14)

which implies

at+s(x) ≤
∫

E
âs(y)m(dy)at(x) and ât+s(x) ≤

∫

E
as(y)m(dy)ât(x). (1.15)

It is well known and easy to check that, {Pt : t ≥ 0} is a strongly continuous semigroup on

L2(E,m). We claim that the function t →
∫
E at(x)m(dx) is decreasing. In fact, by Fubini’s

theorem and Hölder’s inequality, we get

at+s(x) =

∫

E
p(t+ s, x, y)

∫

E
p(t, x, z)p(s, z, y)m(dz)m(dy)

=

∫

E
p(t, x, z)

∫

E
p(t + s, x, y)p(s, z, y)m(dy)m(dz)

≤ at+s(x)1/2
∫

E
p(t, x, z)as(z)

1/2m(dz)

which implies

at+s(x) ≤
(∫

E
p(t, x, z)as(z)

1/2m(dz)

)2

≤
∫

E
p(t, x, z)as(z)m(dz). (1.16)
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Thus, by Fubini’s theorem and Assumption 1.1(i), we get
∫

E
at+s(x)m(dx) ≤

∫

E
as(z)

∫

E
p(t, x, z)m(dx)m(dz) ≤

∫

E
as(z)m(dz). (1.17)

Therefore, the function t→
∫
E at(x)m(dx) is decreasing.

We claim that (see Lemma 2.1 below) there exists a function q(t, x, y) on (0,∞)×E ×E which

is continuous in (x, y) for each t > 0 such that

e−Ktp(t, x, y) ≤ q(t, x, y) ≤ eKtp(t, x, y), (t, x, y) ∈ (0,∞) × E × E (1.18)

and that for any bounded Borel function f and any (t, x) ∈ (0,∞) × E,

Ttf(x) =

∫

E
q(t, x, y)f(y)m(dy).

It follows immediately that {Tt : t ≥ 0} is a strongly continuous semigroup on L2(E,m) and

‖Ttf‖22 ≤ e2Kt‖f‖22. (1.19)

Let {T̂t, t > 0} be the adjoint operators on L2(E,m) of {Tt, t > 0} , that is, for f, g ∈ L2(E,m),
∫

E
f(x)Ttg(x)m(dx) =

∫

E
g(x)T̂tf(x)m(dx)

and

T̂tf(x) =

∫

E
q(t, y, x)f(y)m(dy).

It is well known that {T̂t : t ≥ 0} is a strongly continuous semigroup on L2(E,m). For all t > 0

and f ∈ L2(E,m), Ttf and T̂tf are continuous. In fact, since q(t, x, y) is continuous in (x, y), by

(1.14), (1.18) and Assumption 1.1(ii), using the dominated convergence theorem, we get that, for

any f ∈ L2(E,m), Ttf and T̂tf are continuous.

Let L and L̂ be the infinitesimal generators of the semigroups {Tt} and {T̂t} in L2(E,m)

respectively. Define λ0 := supℜ(σ(L)) = supℜ(σ(L̂)). By Jentzsch’s theorem (Theorem V.6.6 on

page 337 of [23]), λ0 is an eigenvalue of multiplicity 1 for both L and L̂. Assume that φ0 and ψ0

are the eigenfunctions of L and L̂ respectively associated with λ0. ψ0 and φ0 can be chosen to be

continuous and strictly positive satisfying ‖φ0‖2 = 1 and 〈φ0, ψ0〉m = 1.

The main interest of this paper is critical superprocesses, so we assume that

Assumption 1.2 λ0 = 0.

We also assume that

Assumption 1.3 (i) φ0 is bounded.

(ii) The semigroup {Tt, t > 0} is intrinsically ultracontractive, that is, there exists ct > 0 such that

q(t, x, y) ≤ ctφ0(x)ψ0(y). (1.20)
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It is easy to get that, for any t > 0 and x ∈ E,

at(x) ≤ e2Kt

∫

E
q(t, x, y)2m(dy) ≤ c2t e

2Kt

∫

E
ψ0(y)2m(dy)φ0(x)2. (1.21)

On the other hand, we have

φ0(x) = Tt(φ0)(x) ≤ eKt(et/2)1/2at/2(x)1/2. (1.22)

In [21] and [22], many examples of Markov processes satisfying the above Assumption 1.1 were

given. In [16], quite a few examples of Hunt processes satisfying Assumptions 1.1 and 1.3 were

given. If E consists of finitely many points, and ξ = {ξt : t ≥ 0} is a conservative irreducible

Markov process on E, then ξ satisfies the Assumptions 1.1 and 1.3 for some finite measure m on

E with full support. So, as special cases, our results give the analogs of the results of Athreya and

Ney [5] for critical super-Markov chains.

Define qt(x) := Pδx(‖Xt‖ = 0). Note that, since Pδx‖Xt‖ = Tt1(x) > 0, we have Pδx(‖Xt‖ =

0) < 1. In this paper, we also assume that

Assumption 1.4 There exists t0 > 0 such that,

inf
x∈E

qt0(x) > 0. (1.23)

In Subsection 2.2, we will give sufficient conditions for Assumption 1.4. In Lemma 3.3, we will

show that, under our assumptions, limt→∞ qt(x) = 1, uniformly in x ∈ E.

1.3 Main results

In this subsection, we will state our main results. In the following, we use the notation

Pt,µ(·) := Pµ (· | ‖Xt‖ 6= 0) .

Let (Ω,G) be the measurable space on which the process X is defined. Assume that Yt, t > 0, and

Y are random variables on (Ω,G). We write

Yt|Pt,µ→Y in probability,

if, for any ǫ > 0,

lim
t→∞

Pt,µ(|Yt − Y | ≥ ǫ) = 0.

Suppose that Z is a random variable on a probability space (Ω̃, G̃, P ), we write

Yt|Pt,µ

d→ Z,

if, for all a ∈ R with P (Z = a) = 0,

lim
t→∞

Pt,µ(Yt ≤ a) = P (Z ≤ a).
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Define

ν :=
1

2
〈A(φ0)2, ψ0〉m. (1.24)

It is easy to see that 0 < ν <∞. Define

Cp := {f ∈ B(E) : 〈|f |p, ψ0〉m <∞}

and C+
p := Cp ∩ B+(E). By Assumption 1.2(ii) and the fact that q(t, x, y) is continuous, using the

dominated convergence theorem, we get, for f ∈ C1, Ttf(x) is continuous.

Theorem 1.5 For any non-zero µ ∈ MF (E),

lim
t→∞

tPµ (‖Xt‖ 6= 0) = ν−1〈φ0, µ〉. (1.25)

Theorem 1.6 If f ∈ C2 then, for any non-zero µ ∈ MF (E), we have

t−1〈f,Xt〉|Pt,µ

d→ 〈f, ψ0〉mW, (1.26)

where W is an exponential random variable with parameter 1/ν. In particular, we have

t−1〈φ0,Xt〉|Pt,µ

d→W. (1.27)

Remark 1.7 Our assumptions imply that 1 ∈ C2, see Remark 2.6 below. Thus the limit result

above implies that

t−1〈1,Xt〉|Pt,µ

d→ 〈1, ψ0〉mW,

which says that, conditioned on no-extinction at time t, the growth rate of the total mass 〈1,Xt〉 is
t as t→ ∞.

Note that, when 〈f, ψ0〉m = 0, t−1〈f,Xt〉|Pt,µ → 0 in probability. Therefore it is natural to

consider central limit type theorems for 〈f,Xt〉.
Define

σ2f =

∫ ∞

0
〈A(Tsf)2, ψ0〉m ds. (1.28)

Theorem 1.8 Suppose that f ∈ C2 and 〈f, ψ0〉m = 0, then we have, σ2f <∞ and for any non-zero

µ ∈ MF (E), (
t−1〈φ0,Xt〉, t−1/2〈f,Xt〉

)
|Pt,µ

d→
(
W,G(f)

√
W
)
, (1.29)

where G(f) ∼ N (0, σ2f ) is a normal random variable and W is the random variable defined in

Theorem 1.6. Moreover, W and G(f) are independent.

It follows from Theorem 1.6 that, when σ2f > 0, the density of G(f)
√
W is

d(x) =
1√

2νσ2f

exp



− 2|x|√

2νσ2f



 , x ∈ R.

As a consequence of Theorem 1.8, we immediately get the following central limit theorem.
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Corollary 1.9 Suppose that f ∈ C2 and 〈f, ψ0〉m = 0, then we have, σ2f <∞ and for any non-zero

µ ∈ MF (E), (
t−1〈φ0,Xt〉,

〈f,Xt〉√
〈φ0,Xt〉

)
|Pt,µ

d→ (W,G(f)) , (1.30)

where G(f) ∼ N (0, σ2f ) is a normal random variable and W is the random variable defined in

Theorem 1.6. Moreover, W and G(f) are independent.

2 Preliminaries

2.1 Density of {Tt : t ≥ 0}

In this subsection, we show that, under Assumption 1.1, the semigroup {Tt : t ≥ 0} has a nice

density q(t, x, y).

Lemma 2.1 Suppose that Assumption 1.1 holds. The semigroup {Tt : t ≥ 0} has a density q(t, x, y)

such that

e−Ktp(t, x, y) ≤ q(t, x, y) ≤ eKtp(t, x, y), (t, x, y) ∈ (0,∞) × E × E. (2.1)

Furthermore, for any t > 0, q(t, x, y) is a continuous function of (x, y) on E × E.

Proof: For any (t, x, y) ∈ (0,∞) × E × E, define

I0(t, x, y) := p(t, x, y),

In(t, x, y) :=

∫ t

0

∫

E
p(s, x, z)In−1(t− s, z, y)α(z)m(dz)ds, n ≥ 1.

Using arguments similar to those in Section 1.2 of [21], we easily get that the function

q(t, x, y) :=
∞∑

n=0

In(t, x, y), (t, x, y) ∈ (0,∞) × E × E (2.2)

is well defined and q(t, x, y) is the transition density function of Tt satisfying (2.1). We omit the

details.

We now prove the continuity of q(t, x, y) in (x, y) ∈ E × E for each fixed t > 0. As in Section

1.2 of [21], it suffices to show that, for any 0 < ǫ < t/2,

∫ t−ǫ

ǫ

∫

E
p(s, x, z)p(t − s, z, y)α(z)m(dz)ds

is continuous on E × E. By (1.14), we get that

p(s, x, z)p(t− s, z, y)|α(z)| ≤ Kaǫ/2(x)1/2âǫ/2(y)1/2âs−ǫ/2(z)
1/2at−s−ǫ/2(z)

1/2.

By Hölder’s inequality and (1.17), we get that

∫ t−ǫ

ǫ

∫

E
âs−ǫ/2(z)

1/2at−s−ǫ/2(z)1/2m(dz) ds

8



≤
∫ t−ǫ

ǫ

(∫

E
âs−ǫ/2(z)m(dz)

)1/2 (∫

E
at−s−ǫ/2(z)m(dz)

)1/2

ds

≤
∫ t−ǫ

ǫ

(∫

E
as−ǫ/2(z)m(dz)

)1/2 (∫

E
at−s−ǫ/2(z)m(dz)

)1/2

ds ≤ t

∫

E
aǫ/2(z)m(dz).

The second inequality above follows from the fact
∫
E ât(z)m(dz) =

∫
E at(z)m(dz) and the last

inequality above is a consequence of the fact that t →
∫
E at(x)m(dx) is decreasing in t. Thus,

by Assumption 1.1(ii) and the dominated convergence theorem, we get that
∫ t−ǫ
ǫ

∫
E p(s, x, z)p(t−

s, z, y)α(z)m(dz)ds is continuous. ✷

2.2 Extinction and non-extinction of {Xt, t ≥ 0}

In this subsection, we will give some sufficient conditions for Assumption 1.4, see Lemma 2.3 below.

In the case when the function a(x) in (1.6) is identically zero, this lemma follows from [6, Lemma

11.5.1]. Here we provide a proof for completeness.

Let Ψ̃(x, z) be a function on E∂ × (0,∞) with the form:

Ψ̃(x, z) = −ã(x)z + b̃(x)z2 +

∫

(0,+∞)
(e−zy − 1 + zy)ñ(x, dy), x ∈ E∂ , z > 0, (2.3)

where ã ∈ Bb(E∂), b̃ ∈ B+
b (E∂) and ñ is a kernel from E∂ to (0,∞) satisfying

∫

(0,+∞)
y ∧ y2ñ(x, dy) <∞. (2.4)

The following Lemma 2.2 is similar to [15, Corollary 5.18 ]. The proof of [15, Corollary 5.18 ]

was based on the Laplace functional of the weighted occupation time of superprocesses. Below we

give a proof without using the concept of the weighted occupation time.

Recall that, unless explicitly mentioned otherwise, every function f on E is automatically

extended to E∂ by setting f(∂) = 0. The function g in the lemma below may not satisfy g(∂) = 0.

Lemma 2.2 Suppose that Ψ(x, z) ≥ Ψ̃(x, z) for all x ∈ E and z > 0. If f and g are bounded

nonnegative measurable functions on E∂ such that f(∂) = 0 and f(x) ≤ g(x) for all x ∈ E∂. If

vg(t, x) is the solution to the equation

vg(t, x) = −Πx

∫ t

0
Ψ̃(ξs, vg(t− s, ξs))ds + Πxg(ξt), x ∈ E∂ , t > 0,

then vg(t, x) ≥ uf (t, x) for all t > 0 and x ∈ E.

Proof: It is well known that uf satisfies uf (t, ∂) = 0 and

uf (t, x) = −Πx

∫ t

0
Ψ(ξs, uf (t− s, ξs))ds+ Πxf(ξt), x ∈ E∂ .
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Fix T > 0 and, for any r ∈ [0, T ] and x ∈ E∂ , define G1(r, x) = uf (T − r, x) and G2(r, x) =

vg(T − r, x). For any r ≥ 0 and x ∈ E, we will use Πr,x to denote the law of ξ with birth time r

and starting point x. Then

G1(r, x) = −Πr,x

∫ T

r
Ψ(ξs, G1(s, ξs))ds + Πr,xf(ξT ), x ∈ E∂ . (2.5)

and

G2(r, x) = −Πr,x

∫ T

r
Ψ̃(ξs, G2(s, ξs))ds + Πr,xg(ξT ), x ∈ E∂ . (2.6)

Put G(r, x) := G2(r, x) − G1(r, x), r ∈ [0, T ], x ∈ E∂ . It follows from [15, Proposition 2.14] that

G1(r, x) and G2(r, x) are bounded, thus G is also bounded. For s ∈ [0, T ] and x ∈ E∂ , define

w(s, x) := Ψ(x,G1(s, x)) − Ψ̃(x,G1(s, x)) and

ρ(s, x) :=

{
Ψ̃(x,G2(s,x))−Ψ̃(x,G1(s,x))

G(s,x) if G(s, x) 6= 0;

0, otherwise.

Since G1, G2 are bounded, we can easily see that w is also bounded on [0, T ] × E∂ . Since ∂Ψ̃(x,z)
∂z

is bounded on E × [0, S] for any S > 0, we know that ρ is also bounded on [0, T ] × E∂ . It follows

from (2.5) and (2.6) that

G(r, x) = Πr,x

∫ T

r
Ψ(ξs, G1(s, ξs)) − Ψ̃(ξs, G2(s, ξs))ds + Πr,x(g(ξT ) − f(ξT ))

= Πr,x

∫ T

r
Ψ(ξs, G1(s, ξs)) − Ψ̃(ξs, G1(s, ξs))ds

−Πr,x

∫ T

r

Ψ̃(ξs, G2(s, ξs)) − Ψ̃(ξs, G1(s, ξs))

G(s, ξs)
G(s, ξs)ds+ Πr,x(g(ξT ) − f(ξT ))

= Πr,x

∫ T

r
w(s, ξs) ds− Πr,x

∫ T

r
ρ(s, ξs)G(s, ξs) ds+ Πr,x(g(ξT ) − f(ξT )).

Applying [8, Lemma 1.5 in Appendix to Part I], we get that

G(r, x) = Πr,x

∫ T

r
exp

{
−
∫ s

r
ρ(q, ξq) dq

}
w(s, ξs) ds+Πr,x

(
exp

{
−
∫ T

r
ρ(q, ξq) dq

}
(g(ξT ) − f(ξT ))

)
.

Since G1(r, ∂) = 0, w(r, ∂) = Ψ(∂, 0)− Ψ̃(∂, 0) = 0. Then, it follows from our assumptions that, for

r ∈ [0, T ] and x ∈ E∂ , w ≥ 0 and g−f ≥ 0, which implies G(r, x) ≥ 0, r ∈ [0, T ], x ∈ E. Therefore,

vg(t, x) ≥ uf (t, x) for all t > 0 and x ∈ E. ✷

Lemma 2.3 Suppose that Ψ̃(z) = infx∈E Ψ(x, z) can be written in the form

Ψ̃(z) = ãz + b̃z2 +

∫ ∞

0
(e−zy − 1 + zy)ñ(dy)

with ã ∈ R, b̃ ≥ 0 and ñ is a measure on (0,∞) satisfying
∫∞
0 (y∧y2)ñ(dy) <∞. If b̃+ ñ(0,∞) > 0

and Ψ̃(z) satisfies ∫ ∞ 1

Ψ̃(z)
dz <∞, (2.7)

then, for t > 0, ‖ − log qt‖∞ <∞.
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Proof: Let X̃ be a continuous state branching processes with branching mechanism Ψ̃. Let P̃

be the law of X̃ with X̃0 = 1. Define

uθ(t, x) = − logPδxe
−θ‖Xt‖, vθ(t) = − log P̃e−θX̃t .

It is easy to see that uθ(t, ∂) = 0 and, for x ∈ E and t > 0,

uθ(t, x) = −Πx

∫ t

0
Ψ(ξs, uf (t− s, ξs))ds + θΠx(t < ζ)

and

vθ(t) = −
∫ t

0
Ψ̃(vθ(s))ds + θ.

Applying Lemma 2.2 with Ψ̃(x, z) = Ψ̃(z), x ∈ E∂ , z > 0 and g(x) = θ, x ∈ E∂ . we get that,

for all t > 0, x ∈ E and θ > 0, uθ(t, x) ≤ vθ(t). Letting θ → ∞, we get − log Pδx(‖Xt‖ = 0) ≤
− log P̃(X̃t = 0). It is well known that, under the conditions of this lemma, P̃(X̃t = 0) > 0. Thus

‖ − log qt‖∞ = ‖ − log Pδ·(‖Xt‖ = 0)‖∞ <∞. ✷

Note that, when Ψ does not depend on the spatial variable x and satisfies the integral condition

of
∫∞ 1

Ψ(λ)dλ <∞, Assumption 1.4 is a consequence of Assumption 1.2.

2.3 Excursion measures of {Xt, t ≥ 0}

We use D to denote the space of MF (E)-valued cadlag functions on [0,∞). We use F to denote

the σ-field generated by the sets {ω ∈ D : ωt(B) ≤ c}, where B ∈ B(E) and c ∈ R. We assume X

is canonical, that is, X is the coordinate map Xt(ω) = ωt on the measurable space (D,F).

It is known (see [15, Chapter 8]) that one can associate with {Pδx : x ∈ E} a family of measures

{Nx : x ∈ E}, defined on the same measurable space as the probabilities {Pδx : x ∈ E}, such that

Nx(1 − e−〈f,Xt〉) = − log Pδx(e−〈f,Xt〉), f ∈ B+
b (E), t ≥ 0. (2.8)

For earlier work on excursion measures of superprocesses, see [9, 10, 14].

Given Xt, let Nt(dω, dx) be a Poisson random measure on D×E with intensity Nx(dω)Xt(dx),

in a probability space (Ω̃, F̃ , P ). Define

Λt
s :=

∫

E

∫

D

ωsNt(dω, dx).

Then, given Xt, the process {Λt
s, s ≥ 0} has the same law as {Xt+s, s ≥ 0}. In fact, by (2.8) and

the Markov property, we have, for f ∈ B+
b (E),

Pµ [exp{−〈f,Xt+s〉}|Xt] = PXt [exp{−〈f,Xs〉}]

= exp (〈log Pδ· exp{−〈f,Xs〉},Xt〉)

= exp

{∫

E

∫

D

(e−〈f,ωs〉 − 1)Nx(dω)Xt(dx)

}
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= P

[
exp

{
−
∫

E

∫

D

〈f, ωs〉Nt(dx, dω)

}]

= P
[
exp

{
−〈f,Λt

s〉
}]
. (2.9)

Now we list some properties of Nx. The proofs are similar to those of [9, Corollary 1.2, Propo-

sition 1.1].

Proposition 2.4 If Pδx |〈f,Xt〉| <∞, then

Nx〈f,Xt〉 = Pδx〈f,Xt〉. (2.10)

If Pδx〈f,Xt〉2 <∞, then

Nx〈f,Xt〉2 = Varδx〈f,Xt〉. (2.11)

2.4 Estimates for moments

In the remainder of this paper we will use the following notation: for two positive functions f and

g on E, f(x) . g(x) for x ∈ E means that there exists a constant c > 0 such that f(x) ≤ cg(x) for

all x ∈ E. Throughout this paper, c is a constant whose value may varies from line to line.

In the following we will give an important lemma. The proof can be found in [13, Thorem 2.7].

Lemma 2.5 There exist constants γ > 0 and c > 0 such that, for any (t, x, y) ∈ (1,∞) × E × E,

we have

|q(t, x, y) − φ0(x)ψ0(y)| ≤ ce−γtφ0(x)ψ0(y). (2.12)

It follows that, if f ∈ C1, we have, for (t, x) ∈ (1,∞) × E,

|Ttf(x) − 〈f, ψ0〉mφ0(x)| ≤ ce−γt〈|f |, ψ0〉mφ0(x) (2.13)

and

|Ttf(x)| ≤ (1 + c)〈|f |, ψ0〉mφ0(x). (2.14)

Hence, for f ∈ C1, Ttf is bounded and in C1. It follows from Proposition 2.4 that, for any f ∈ C1,
∫

E

∫

D
〈|f |, ωs〉Nx(dω)Xt(dx) <∞, Pµ-a.s.

Now applying (2.9), we get that for any f ∈ C1,

Pµ [exp {iθ〈f,Xt+s〉} |Xt] = exp

{∫

E

∫

D

(eiθ〈f,ωs〉 − 1)Nx(dω)Xt(dx)

}
. (2.15)

Remark 2.6 By Lemma 2.5, we get that

q(t, x, y) ≥ (1 − ce−γt)φ0(x)ψ0(y).

Since q(t, x, ·) ∈ L1(E,m), we have ψ0 ∈ L1(E,m). Thus Bb(E) ⊂ Cp. Moreover, by Hölder’s

inequality, we get C2 ⊂ C1. ✷

12



Recall the second moments of the superprocess {Xt : t ≥ 0} (see, for example, [15, Corollary

2.39]): for f ∈ Bb(E), we have for any t > 0,

Pµ〈f,Xt〉2 = (Pµ〈f,Xt〉)2 +

∫

E

∫ t

0
Ts[A(Tt−sf)2](x) dsµ(dx). (2.16)

Thus,

Varµ〈f,Xt〉 = 〈Varδ·〈f,Xt〉, µ〉 =

∫

E

∫ t

0
Ts[A(Tt−sf)2](x) dsµ(dx), (2.17)

where Varµ stands for the variance under Pµ. For any f ∈ C2 and x ∈ E, applying the Cauchy-

Schwarz inequality, we have (Tt−sf)2(x) ≤ eK(t−s)Tt−s(f
2)(x), which implies that

∫ t

0
Ts[A(Tt−sf)2](x) ds ≤ eKtTt(f

2)(x) <∞. (2.18)

Thus, using a routine limit argument, one can easily check that (2.16) and (2.17) also hold for

f ∈ C2.

Lemma 2.7 Assume that f ∈ C2. If 〈f, ψ0〉m = 0, then, for (t, x) ∈ (2,∞) × E, we have

∣∣Varδx〈f,Xt〉 − σ2fφ0(x)
∣∣ . e−γtφ0(x), (2.19)

where σ2f is defined in (1.28). Therefore, for (t, x) ∈ (2,∞) × E, we have

Varδx〈f,Xt〉 . φ0(x). (2.20)

Proof: First, we show that σ2f <∞. For s ≤ 1, |Tsf(x)|2 ≤ eKsTs(f
2)(x). Hence, for s ≤ 1,

〈A(Tsf)2, ψ0〉 ≤ KesK〈Ts(f2), ψ0〉 = KesK〈f2, ψ0〉. (2.21)

For s > 1, by (2.13), |Tsf(x)| . e−γs〈|f |, ψ0〉mφ0(x). Hence, for s > 1,

〈A(Tsf)2, ψ0〉 . e−2γs. (2.22)

Therefore,

σ2f =

∫ ∞

0
〈A(Tsf)2, ψ0〉m ds .

∫ 1

0
esK ds+

∫ ∞

1
e−2γs ds <∞.

By (2.17), for t > 2, we have

∣∣Varδx〈f,Xt〉 − σ2fφ0(x)
∣∣

≤
∫ t−1

0

∣∣Tt−s[A(Tsf)2](x) − 〈A(Tsf)2, ψ0〉mφ0(x)
∣∣ ds

+

∫ t

t−1
Tt−s[A(Tsf)2](x) ds +

∫ ∞

t−1
〈A(Tsf)2, ψ0〉m dsφ0(x)

=: V1(t, x) + V2(t, x) + V3(t, x). (2.23)
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First, we consider V1(t, x). By (2.13), for t− s > 1, we have

∣∣Tt−s[A(Tsf)2](x) − 〈A(Tsf)2, ψ0〉mφ0(x)
∣∣ . e−γ(t−s)〈A(Tsf)2, ψ0〉mφ0(x).

Therefore, by (2.21) and (2.22), we have, for (t, x) ∈ (2,∞) × E,

V1(t, x) .

∫ t

1
e−γ(t+s) ds φ0(x) +

∫ 1

0
e−γ(t−s) ds φ0(x) . e−γtφ0(x). (2.24)

For V2(t, x), by (2.13), for s > t− 1 > 1, |Tsf(x)| . e−γsφ0(x). Thus,

V2(t, x) .

∫ t

t−1
e−2γsTt−s[φ

2
0](x) ds = e−2γt

∫ 1

0
e2γsTs[φ

2
0](x) ds. (2.25)

By Hölder’s inequality, we have

φ20(x) = (T1φ0(x))2 ≤ eKT1(φ
2
0)(x).

Thus by (2.25) and (2.14), for (t, x) ∈ (2,∞) × E, we have

V2(t, x) . e−2γt

∫ 1

0
Ts+1(φ

2
0)(x) ds . e−2γtφ0(x). (2.26)

For V3(t, x), by (2.13), for s > t− 1 > 1, |Tsf(x)| . e−γsφ0(x). Thus,

V3(t, x) .

∫ ∞

t−1
e−2γs ds〈φ20, ψ0〉mφ0(x) . e−2γtφ0(x). (2.27)

It follows from (2.24), (2.26) and (2.27) that, for (t, x) ∈ (2,∞) × E,

∣∣Varδx〈f,Xt〉 − σ2fφ0(x)
∣∣ . e−γtφ0(x).

Now (2.20) follows immediately. ✷

3 Proofs of Main Results

In this section, we will prove our main theorems.

3.1 Proof of Theorem 1.6

For x ∈ E and z > 0, define

r(x, z) = Ψ(x, z) + α(x)z (3.1)

and

r(2)(x, z) = Ψ(x, z) + α(x)z − 1

2
A(x)z2. (3.2)

14



Lemma 3.1 For any x ∈ E and z > 0,

0 ≤ r(x, z) ≤ Kz2/2 (3.3)

and

|r(2)(x, z)| ≤ e(x, z)z2, (3.4)

where

e(x, z) = β(x)

∫ ∞

0
y2
(

1 ∧ 1

6
yz

)
n(x, dy). (3.5)

Proof: It is easy to see that

r(x, z) = β(x)

(
b(x)z2 +

∫ ∞

0
(e−zy − 1 + zy)n(x, dy)

)
(3.6)

and

r(2)(x, z) = β(x)

∫ ∞

0

(
e−zy − 1 + zy − 1

2
y2z2

)
n(x, dy).

It follows easily from Taylor’s expansion that, for θ > 0,

0 < e−θ − 1 + θ ≤ 1

2
θ2 (3.7)

and ∣∣∣∣e
−θ − 1 + θ − 1

2
θ2
∣∣∣∣ ≤

1

6
θ3. (3.8)

By (3.7), we also have
∣∣e−θ − 1 + θ − 1

2θ
2
∣∣ ≤ θ2. Thus, we have

∣∣∣∣e
−θ − 1 + θ − 1

2
θ2
∣∣∣∣ ≤ θ2

(
1 ∧ 1

6
θ

)
. (3.9)

Therefore, by (3.7) and (3.9), we have

0 < r(x, z) ≤ β(x)

(
b(x) +

1

2

∫ ∞

0
y2 n(x, dy)

)
z2 ≤ Kz2/2

and

r(2)(x, z) ≤ β(x)

∫ ∞

0
y2
(

1 ∧ 1

6
yz

)
n(x, dy)z2.

The proof is now complete. ✷

Recall that

uf (t, x) := − logPδxe
−〈f,Xt〉.

Lemma 3.2 If f ∈ C+
1 , then 0 ≤ uf (t, x) <∞ for all t ≥ 0, x ∈ E, and the function Rf defined by

Rf (t, x) := Ttf(x) − uf (t, x) (3.10)

satisfies

Rf (t, x) =

∫ t

0
Ts [r(·, uf (t− s, ·)] (x) ds, t ≥ 0, x ∈ E. (3.11)

Moreover,

0 ≤ Rf (t, x) ≤ eKtTt(f
2)(x), t ≥ 0, x ∈ E. (3.12)
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Proof: First, we assume that f ∈ B+
b . Recall that uf (t, x) = − log Pδxe

−〈f,Xt〉 satisfies

uf (t, x) + Πx

∫ t

0
Ψ(ξs, uf (t− s, ξs)) ds = Πx(f(ξt)), t ≥ 0, x ∈ E. (3.13)

It follows from the proof of [15, Theorem 2.23] that uf (t, x) also satisfies

uf (t, x) = −
∫ t

0
Ts [r(·, uf (t− s, ·))] (x) ds + Ttf(x), t ≥ 0, x ∈ E. (3.14)

Thus,

Rf (t, x) =

∫ t

0
Ts [r(·, uf (t− s, ·))] (x) ds, t ≥ 0, x ∈ E. (3.15)

For general f ∈ C+
1 , we have Ttf(x) < ∞. Let fn(x) = f(x) ∧ n ∈ B+

b . Since (3.15) holds for

fn, applying the monotone convergence theorem, we get that (3.15) also holds for f . Therefore,

by (3.3), Rf (t, x) ≥ 0, which means uf (t, x) ≤ Ttf(x) < ∞. Recall that, as a consequence of the

Cauchy-Schwarz inequality, we have (Tt−sf)2(y) ≤ eK(t−s)Tt−s(f
2)(y). Combining this with (3.3),

we get

0 ≤ Rf (t, x) ≤ K

2

∫ t

0
Ts[(uf (t− s))2](x) ds ≤ K

2

∫ t

0
Ts[(Tt−sf)2](x)ds ≤ eKtTt(f

2)(x). (3.16)

✷

Recall that qt(x) = Pδx(‖Xt‖ = 0).

Lemma 3.3

lim
t→∞

‖ − log qt‖∞ = 0. (3.17)

Proof: For θ > 0, let

uθ(t, x) := − logPδxe
−〈θ,Xt〉.

By the Markov property of X,

qt+s(x) = lim
θ→∞

Pδx

(
e−θ‖Xt+s‖

)
= lim

θ→∞
Pδx

(
e−〈uθ(s)),Xt〉

)
= Pδx

(
e−〈− log qs,Xt〉

)
. (3.18)

Since qt(x) is increasing in t, q(x) := limt→∞ qt(x) exists. Put w(x) = − log q(x). Letting s → ∞
in (3.18), we get q(x) = Pδx

(
e−〈w,Xt〉

)
, which implies, for t > 0,

w(x) = uw(t, x) x ∈ E.

By Assumption 1.4, for s > t0,

‖w‖∞ ≤ ‖ − log qs‖∞ ≤ ‖ − log qt0‖∞ = − log

(
inf
x∈E

qt0(x)

)
<∞,

which implies w ∈ C+
1 , and − log qs ∈ C+

1 . Thus, by Lemma 3.2, we have

w(x) = Tt(w)(x) −
∫ t

0
Ts(r(·, w(·)))(x) ds, x ∈ E. (3.19)
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By (2.13), we have limt→∞ Tt(w)(x) = 〈w,ψ0〉mφ0(x).

If 〈r(·, w(·)), ψ0〉m > 0, then

lim
t→∞

Tt(r(·, w))(x) = 〈r(·, w(·)), ψ0〉mφ0(x) > 0, for any x ∈ E,

which implies

lim
t→∞

∫ t

0
Ts [r(·, w(·))] (x) ds = ∞, for any x ∈ E.

Thus, by (3.19), we get

0 ≤ w(x) = lim
t→∞

(
Tt(w))(x) −

∫ t

0
Ts [r(·, w(·))] (x) ds

)
= −∞,

which is a contradiction. Therefore r(x,w(x)) = 0, a.e.-m. Then, by (3.19), we get, for all x ∈ E,

w(x) = 〈w,ψ0〉mφ0(x), (3.20)

which implies that w ≡ 0 on E or w(x) > 0 for any x ∈ E. Since r(x,w(x)) = 0, a.e.-m., by (3.6),

we obtain w ≡ 0 on E. For s > t0, by (3.18) and Lemma 3.2, we get

− log q2+s(x) = u− log qs(2, x) ≤ T2(− log qs)(x) ≤ (1 + c)〈− log qs, ψ0〉m‖φ0‖∞,

where in the last inequality we used (2.13). Since − log qs(x) → 0, by the dominated convergence

theorem, we get

lim
s→∞

〈− log qs, ψ0〉m = 0.

Now (3.17) follows immediately. ✷

Lemma 3.4 For any f ∈ C+
1 , there exists a function hf (t, x) such that

uf (t, x) = (1 + hf (t, x))〈uf (t, ·), ψ0〉mφ0(x). (3.21)

Furthermore,

lim
t→∞

‖hf (t)‖∞ = 0 uniformly in f ∈ C+
1 . (3.22)

Proof: For any f ∈ C+
1 , we have uf (t, x) ≤ Ttf(x) < ∞ and 〈uf (t, ·), ψ0〉m ≤ 〈Ttf, ψ0〉m =

〈f, ψ0〉m < ∞. So uf (t, x) ∈ C+
1 . If m(f > 0) = 0, then Ttf(x) = 0 for all t > 0 and x ∈ E, which

implies uf (t, x) = 0 and 〈uf (t, ·), ψ0〉m = 0. In this case, we define hf (t, x) = 0. If m(f > 0) > 0,

then Ttf(x) > 0 for all t > 0 and x ∈ E, which implies Pδx (〈f,Xt〉 = 0) < 1. Thus we have

uf (t, x) > 0 and 〈uf (t, ·), ψ0〉m > 0. Define

hf (t, x) =
uf (t, x) − 〈uf (t, ·), ψ0〉mφ0(x)

〈uf (t, ·), ψ0〉mφ0(x)
.

We only need to prove that ‖hf (t, ·)‖∞ → 0 uniformly in f ∈ C+
1 \ {0} as t → ∞. It is easy to see

that

uf (t, x) ≤ − log (Pδx(‖Xt‖ = 0)) = − log qt(x),
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which implies that

‖uf (t, ·)‖∞ ≤ ‖ − log qt‖∞ → 0 as t→ ∞. (3.23)

By the Markov property of X we have

uf (t, x) = − logPδxe
−〈uf (t−s,·),Xs〉 = uuf (t−s)(s, x), t ≥ s > 0, x ∈ E, (3.24)

where in the subscript on the right-hand side, uf (t − s) stands for the function x → uf (t − s, x).

In the remainder of this proof, we keep this convention. By (3.10), we have

uf (t, x) = Ts(uf (t− s, ·))(x) −Ruf (t−s)(s, x). (3.25)

Thus,

〈uf (t, ·), ψ0〉m = 〈uf (t− s, ·), ψ0〉m − 〈Ruf (t−s)(s, ·), ψ0〉m. (3.26)

Therefore, by (2.13) and (3.12), we have, for 1 < s < t and x ∈ E,

|uf (t, x) − 〈uf (t, ·), ψ0〉mφ0(x)|
≤ |Ts(uf (t− s, ·))(x) − 〈uf (t− s, ·), ψ0〉mφ0(x)| +

∣∣∣Ruf (t−s)(s, x)
∣∣∣+
∣∣∣〈Ruf (t−s)(s, ·), ψ0〉mφ0(x)

∣∣∣

. e−γs〈uf (t− s, ·), ψ0〉mφ0(x) + eKsTs(uf (t− s, ·)2)(x) + eKs〈uf (t− s, ·)2, ψ0〉mφ0(x)

. e−γs〈uf (t− s, ·), ψ0〉mφ0(x) + eKs〈uf (t− s, ·)2, ψ0〉mφ0(x)

≤
[
e−γs + eKs‖ − log qt−s‖∞

]
〈uf (t− s, ·), ψ0〉mφ0(x),

where in the last inequality we used (3.23).

By Lemma 3.2 and (3.25), we get

Ts(uf (t− s, ·))(x) ≥ uf (t, x) ≥ Ts(uf (t− s, ·))(x) − eKsTs(uf (t− s, ·)2)(x)

≥ Ts(uf (t− s, ·))(x) − eKs‖ − log qt−s‖∞Ts(uf (t− s, ·))(x). (3.27)

Thus, we have

〈uf (t− s, ·), ψ0〉m ≥ 〈uf (t, ·), ψ0〉m ≥ (1 − eKs‖ − log qt−s‖∞)〈uf (t− s, ·), ψ0〉m. (3.28)

For any s > 1, (1 − eKs‖ − log qt−s‖∞) > 0 when t is large enough. Therefore, as t→ ∞,

‖hf (t, ·)‖∞ .
e−γs + eKs‖ − log qt−s‖∞

1 − eKs‖ − log qt−s‖∞
→ e−γs. (3.29)

Now, letting s→ ∞, we get ‖hf (t, ·)‖∞ → 0 uniformly in f ∈ C+
1 \ {0} as t→ ∞. ✷

Lemma 3.5 For any δ > 0,

lim
n→∞

1

nδ

(
1

〈uf (nδ), ψ0〉m
− 1

〈f, ψ0〉m

)
= ν (3.30)

uniformly in f ∈ C+
1 \ {0}. Here ν is defined in (1.24).
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Proof: We write uf (t, x) as ut(x), x ∈ E. Since f is non-negative and m(f > 0) > 0, we have

uf (t, x) > 0 for all t > 0 and x ∈ E. Consequently, we have 〈uf (t, ·), ψ0〉m > 0. It is clear that

u0 = f . First note that

1

nδ

(
1

〈unδ, ψ0〉m
− 1

〈f, ψ0〉m

)

=
1

nδ

n−1∑

k=0

(
1

〈u(k+1)δ , ψ0〉m
− 1

〈ukδ, ψ0〉m

)

=
1

nδ

n−1∑

k=0

(〈ukδ, ψ0〉m − 〈u(k+1)δ , ψ0〉m
〈u(k+1)δ , ψ0〉m〈ukδ, ψ0〉m

)
.

Recall the identity (3.24) and the definition of r(2)(x, z) given in (3.2). Using (3.26) with t = (k+1)δ

and s = δ, we get

〈ukδ, ψ0〉m − 〈u(k+1)δ , ψ0〉m = 〈Rukδ
(δ, ·), ψ0〉m

=

∫ δ

0
〈r(·, uf (kδ + s, ·)), ψ0〉m ds

=
1

2

∫ δ

0
〈A(ukδ+s)

2, ψ0〉m ds+

∫ δ

0
〈r(2)(·, ukδ+s(·)), ψ0〉m ds

=: I1 + I2.

By (3.21) and (3.28), we have, for s ∈ [0, δ],

|ut+s(x) − 〈ut, ψ0〉mφ0(x)| ≤ |ut+s(x) − 〈ut+s, ψ0〉mφ0(x)| + |〈ut, ψ0〉m − 〈ut+s, ψ0〉m|φ0(x)

≤ ‖hf (t + s)‖∞〈ut+s, ψ0〉mφ0(x) + eKs‖ − log qt‖∞〈ut, ψ0〉mφ0(x)

≤
(
‖hf (t+ s)‖∞ + eKs‖ − qt(x)‖∞

)
〈ut, ψ0〉mφ0(x)

≤ cf (t)〈ut, ψ0〉mφ0(x), (3.31)

where cf (t) = sup0≤s≤δ

(
‖hf (t + s)‖∞ + eKs‖ − qt(x)‖∞

)
. It is easy to see that cf (t) → 0, as

t→ ∞, uniformly in f ∈ C+
1 . Thus, by (3.21) we have for s ∈ [0, δ],

|ut+s(x)2 − 〈ut, ψ0〉2m(φ0(x))2|
〈ut, ψ0〉2m

≤ (2 + cf (t)) cf (t)(φ0(x))2. (3.32)

Therefore, we have,

∣∣∣∣
I1

〈ukδ, ψ0〉2m
− δν

∣∣∣∣ =

∣∣∣
∫ δ
0 〈A

(
(ukδ+s)

2 − 〈ukδ, ψ0〉2mφ20
)
, ψ0〉m ds

∣∣∣
2〈ukδ, ψ0〉2m

≤ 1

2
〈Aφ20, ψ0〉mδ (2 + cf (kδ)) cf (kδ) → 0, as k → ∞,

uniformly in f ∈ C+
1 \ {0}. By (3.28), we have

0 ≤ 1 −
〈u(k+1)δ , ψ0〉m
〈ukδ, ψ0〉m

≤ eKδ‖ − log qkδ‖∞, (3.33)
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which implies that
〈ukδ, ψ0〉m

〈u(k+1)δ , ψ0〉m
→ 1, as k → ∞, (3.34)

uniformly in f ∈ C+
1 \ {0}. It follows that

lim
k→∞

I1
〈ukδ, ψ0〉m〈u(k+1)δ, ψ0〉m

= δν (3.35)

uniformly in f ∈ C+
1 \ {0}.

For I2, by (3.4) and (3.31), we have

〈r(2)(·, ukδ+s(·)), ψ0〉m
〈ukδ, ψ0〉2m

≤ 〈e(·, ukδ+s(·))u2kδ+u, ψ0〉m
〈ukδ, ψ0〉2m

≤ (1 + cf (kδ))2〈e(·, ukδ+s(·))φ20, ψ0〉m
≤ (1 + cf (kδ))2〈e(·, ‖ − log qkδ‖∞)φ20, ψ0〉m,

here the last inequality follows from ‖ukδ+u‖∞ ≤ ‖ − log qkδ+u‖∞ ≤ ‖ − log qkδ‖∞ and the fact

z → e(x, z) is increasing. It is easy to see that the function e(x, z) ↓ 0 as z ↓ 0. Thus, as k → ∞,

I2
〈ukδ, ψ0〉2m

≤ δ(1 + cf (kδ))2〈e(·, ‖ − log qkδ‖∞)φ20, ψ0〉m → 0

uniformly in f ∈ C+
1 \ {0}. By (3.34), we have

lim
k→∞

I2
〈ukδ, ψ0〉m〈u(k+1)δ , ψ0〉m

= 0 (3.36)

uniformly in f ∈ C+
1 \ {0}. Using (3.35) and (3.36), we get,

lim
k→∞

〈ukδ, ψ0〉m − 〈u(k+1)δ, ψ0〉m
〈u(k+1)δ , ψ0〉m〈ukδ, ψ0〉m

= δν

uniformly in f ∈ C+
1 \ {0}. Now, (3.30) follows immediately. ✷

Proof of Theorem 1.5: For t > 0, we have

Pµ (‖Xt‖ 6= 0) = lim
θ→∞

1 − exp{−〈uθ(t), µ〉}. (3.37)

By Lemma 3.5, we have

lim
n→∞

1

nδ

(
1

〈uθ(nδ), ψ0〉m
− 1

θ〈1, ψ0〉m

)
= ν (3.38)

uniformly in θ > 0. For θ > 1, it holds that

1

nδ

1

θ〈1, ψ0〉m
≤ 1

nδ

1

〈1, ψ0〉m
→ 0, as n→ ∞, (3.39)

uniformly in θ > 1. It follows from (3.38) and (3.39) that

lim
n→∞

nδ〈uθ(nδ), ψ0〉m = ν−1 (3.40)
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uniformly in θ > 1. By (3.21) and (3.22), we have, as n→ ∞,

(nδ)|uθ(nδ, x) − 〈uθ(nδ), ψ0〉mφ0(x)| ≤ ‖hθ(nδ)‖∞ (nδ) 〈uθ(nδ), ψ0〉m‖φ0‖∞ → 0

uniformly in θ > 1 and x ∈ E. Thus, for any µ ∈ MF (E),

lim
n→∞

(nδ)〈uθ(nδ), µ〉 = ν−1〈φ0, µ〉 uniformly in θ > 1. (3.41)

By (3.23), we have 〈uθ(nδ), µ〉 ≤ 〈− log qnδ, µ〉 ≤ ‖ − log qnδ‖∞‖µ‖ → 0, as n → ∞, uniformly in

θ > 0. Thus,

lim
n→∞

1 − exp{−〈uθ(nδ), µ〉}
〈uθ(nδ), µ〉 = 1

uniformly in θ > 0. Therefore, it follows from (3.41) that

lim
n→∞

nδ (1 − exp{−〈uθ(nδ), µ〉}) = ν−1〈φ0, µ〉 uniformly in θ > 1.

Hence by (3.37), we have

lim
n→∞

(nδ)Pµ (‖Xnδ‖ 6= 0) = ν−1〈φ0, µ〉. (3.42)

Since Pµ (‖Xt‖ 6= 0) is decreasing in t, we have for nδ ≤ t < (n + 1)δ,

nδ Pµ

(
‖X(n+1)δ‖ 6= 0

)
≤ tPµ (‖Xt‖ 6= 0) ≤ (n + 1)δ Pµ (‖Xnδ‖ 6= 0) .

Now (1.25) follows easily. ✷

Now we are ready to prove Theorem 1.6.

Proof of Theorem 1.6: First, we consider the special case when f(x) = φ0(x). We only need

to show that, for any λ > 0,

Pµ

(
exp

{
−λt−1〈φ0,Xt〉

}
| ‖Xt‖ 6= 0

)
→ 1

λν + 1
, as t→ ∞. (3.43)

Note that

Pµ

(
exp

{
−λt−1〈φ0,Xt〉

}
| ‖Xt‖ 6= 0

)

=
Pµ

(
exp

{
−λt−1〈φ0,Xt〉

})
− Pµ(‖Xt‖ = 0)

Pµ(‖Xt‖ 6= 0)

= 1 − 1 − Pµ

(
exp

{
−λt−1〈φ0,Xt〉

})

Pµ(‖Xt‖ 6= 0)
.

By Lemma 1.5, to prove (3.43), it suffices to show that, as t→ ∞,

t
(
1 − Pµ

(
exp

{
−λt−1〈φ0,Xt〉

}))
= t

(
1 − exp

{
−〈uλt−1φ0

(t), µ〉
})

→ λ

λν + 1
〈φ0, µ〉. (3.44)

Since t → Pµ

(
exp

{
−λt−1〈φ0,Xt〉

})
is a right continuous function, by the Croft-Kingman lemma

(see, for example, [2, Section 6.5]), it suffices to show that, for every δ > 0, (3.44) holds for every

sequence nδ as n→ ∞. For this, it is enough to prove that for any δ > 0, as n→ ∞,

nδ 〈uλ(nδ)−1φ0
(nδ), µ〉 → λ

λν + 1
〈φ0, µ〉. (3.45)
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By Lemma 3.5, we have

lim
n→∞

1

(nδ)〈uλ(nδ)−1φ0
(nδ), ψ0〉m

= lim
n→∞

1

nδ

(
1

〈uλ(nδ)−1φ0
(nδ), ψ0〉m

− 1

〈λ(nδ)−1φ0, ψ0〉m

)
+

1

λ

= ν + λ−1,

which implies that

(nδ)〈uλ(nδ)−1φ0
(nδ), ψ0〉m → λ

λν + 1
, as n→ ∞. (3.46)

Using Lemma 3.4 and (3.46), we get that, as n→ ∞,

nδ
∣∣〈uλ(nδ)−1φ0

(nδ), µ〉 − 〈uλ(nδ)−1φ0
(nδ), ψ0〉m〈φ0, µ〉

∣∣

≤ nδ‖hλ(nδ)−1φ0
(nδ)‖∞〈uλ(nδ)−1φ0

(nδ), ψ0〉m〈φ0, µ〉 → 0. (3.47)

Now (3.45) follows easily from (3.46) and (3.47).

For a general f , let

f̃(x) = f(x) − 〈f, ψ0〉mφ0(x). (3.48)

Then, 〈f̃ , ψ0〉m = 0. It is clear that

Pµ

((
t−1〈f̃ ,Xt〉

)2
| ‖Xt‖ 6= 0

)
=

Pµ

(
〈f̃ ,Xt〉

)2

t2Pµ(‖Xt‖ 6= 0)
. (3.49)

By the branching property and (2.20), we have,

sup
t>2

Varµ〈f̃ ,Xt〉 = sup
t>2

〈Varδ·〈f̃ ,Xt〉, µ〉 <∞.

It follows from (2.14) that

sup
t>1

∣∣∣Pµ〈f̃ ,Xt〉
∣∣∣ = sup

t>1

∣∣∣〈Ttf̃ , µ〉
∣∣∣ <∞.

Combining the last two displays, we get that supt>2 Pµ

(
〈f̃ ,Xt〉

)2
<∞. Thus by (1.25) and (3.49),

we get that as t→ ∞,

Pµ

((
t−1〈f̃ ,Xt〉

)2
| ‖Xt‖ 6= 0

)
→ 0, as t→ ∞,

which implies that, as t→ ∞,

t−1〈f̃ ,Xt〉|Pt,µ → 0, in probability. (3.50)

Thus, by (3.48), we have

t−1〈f,Xt〉|Pt,µ

d→ 〈f, ψ0〉mW.

✷
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Corollary 3.6 For any f ∈ C2, it holds that, as t→ ∞,

〈f,Xt〉
〈φ0,Xt〉

|Pt,µ → 〈f, ψ0〉m in probability. (3.51)

Proof: Recall that f̃ was defined in (3.48). Thus

〈f,Xt〉
〈φ0,Xt〉

− 〈f, ψ0〉m =
〈f̃ ,Xt〉
〈φ0,Xt〉

.

For any ǫ > 0 and δ > 0, by (3.50) and (1.26), we have,

Pµ

(
|〈f̃ ,Xt〉|
〈φ0,Xt〉

> ǫ | ‖Xt‖ 6= 0

)

≤ Pµ

(
t−1|〈f̃ ,Xt〉| > δ | ‖Xt‖ 6= 0

)
+ Pµ

(
t−1〈φ0,Xt〉 < δ/ǫ | ‖Xt‖ 6= 0

)

→ 0 + P (W < δ/ǫ) , as t→ ∞.

Letting δ → 0, we get that

lim
t→∞

Pt,µ

(
|〈f̃ ,Xt〉|
〈φ0,Xt〉

> ǫ

)
= 0.

Now, (3.51) follows immediately. ✷

3.2 Proof of Theorem 1.8

In this subsection, we give the proof of Theorem 1.8. We prove a simple lemma first.

Lemma 3.7 Suppose that {Ft : t > 0} is a family of bounded random variables, that is, there is a

constant M such that |Ft| ≤M for all t > 0, then any s > 0,

lim
t→∞

|Pt+s,µ(Ft+s) − Pt,µ(Ft+s)| = 0. (3.52)

Proof: By Lemma 1.5, we have

lim
t→∞

Pµ(‖Xt‖ 6= 0)

Pµ(‖Xt+s‖ 6= 0)
= 1. (3.53)

By the definition of Pt,µ, we have

Pt+s,µ(Ft+s) = Pt,µ(Ft+s, ‖Xt+s‖ 6= 0)
Pµ(‖Xt‖ 6= 0)

Pµ(‖Xt+s‖ 6= 0)

= Pt,µ(Ft+s)
Pµ(‖Xt‖ 6= 0)

Pµ(‖Xt+s‖ 6= 0)
− Pt,µ(Ft+s, ‖Xt+s‖ = 0)

Pµ(‖Xt‖ 6= 0)

Pµ(‖Xt+s‖ 6= 0)
.

Thus, as t→ ∞,

|Pt+s,µ(Ft+s) − Pt,µ(Ft+s)| ≤ M

∣∣∣∣
Pµ(‖Xt‖ 6= 0)

Pµ(‖Xt+s‖ 6= 0)
− 1

∣∣∣∣+MPt,µ(‖Xt+s‖ = 0)
Pµ(‖Xt‖ 6= 0)

Pµ(‖Xt+s‖ 6= 0)
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= 2M

∣∣∣∣
Pµ(‖Xt‖ 6= 0)

Pµ(‖Xt+s‖ 6= 0)
− 1

∣∣∣∣→ 0.

✷

We now recall some facts about weak convergence which will be used later. For f : Rd → R, let

‖f‖L := supx 6=y |f(x)− f(y)|/‖x− y‖ and ‖f‖BL := ‖f‖∞ + ‖f‖L. For any distributions ν1 and ν2

on R
d, define

β(ν1, ν2) := sup

{∣∣∣∣
∫
f dν1 −

∫
f dν2

∣∣∣∣ : ‖f‖BL ≤ 1

}
.

Then β is a metric. It follows from [7, Theorem 11.3.3] that the topology generated by β is

equivalent to the weak convergence topology. From the definition, we can easily see that, if ν1 and

ν2 are the distributions of two R
d-valued random variables X and Y respectively, then

β(ν1, ν2) ≤ E‖X − Y ‖ ≤
√
E‖X − Y ‖2. (3.54)

The following simple fact will be used several times later in this section:

∣∣∣∣∣e
ix −

n∑

m=0

(ix)m

m!

∣∣∣∣∣ ≤ min

( |x|n+1

(n+ 1)!
,

2|x|n
n!

)
. (3.55)

Now we are ready to prove Theorem 1.8.

Proof of Theorem 1.8: Define an R
2-valued random variable:

U1(t) :=
(
t−1〈φ0,Xt〉, t−1/2〈f,Xt〉

)
.

For s, t > 2 we have

U1(s+ t) =
(

(t+ s)−1〈φ0,Xt+s〉, (t + s)−1/2〈f,Xs+t〉
)
.

First, we consider another R
2−valued random variable U2(s, t) defined by

U2(s, t) =
(
t−1〈φ0,Xt〉, t−1/2 (〈f,Xs+t〉 − 〈Tsf,Xt〉)

)
.

We claim that,

U2(s, t)|Pt,µ

d→
(
W,

√
WG1(s)

)
, as t→ ∞, (3.56)

where G1(s) ∼ N (0, σ2f (s)) with σ2f (s) = 〈Varδ·〈f,Xs〉, ψ0〉m and W is the random variable defined

in Theorem 1.6. Denote the characteristic function of U2(s, t) under Pt,µ by κ1(θ1, θ2, s, t):

κ1(θ1, θ2, s, t)

= Pt,µ(exp{iθ1t−1〈φ0,Xt〉 + iθ2t
−1/2 (〈f,Xs+t〉 − 〈Tsf,Xt〉)}

= Pt,µ

(
exp

{
iθ1t

−1〈φ0,Xt〉

+

∫

E

∫

D

(
eiθ2t

−1/2〈f,ωs〉 − 1 − iθ2t
−1/2〈f, ωs〉

)
Nx(dω)Xt(dx)

})
, (3.57)

24



where in the last equality we used the Markov property of X, (2.15) and (2.10). Define

Js(θ, x) :=

∫

D

(exp{〈iθf, ωs〉} − 1 − iθ〈f, ωs〉)Nx(dω)

and

Is(θ, x) :=

∫

D

(
exp{〈iθf, ωs〉} − 1 − iθ〈f, ωs〉 +

1

2
θ2〈f, ωs〉2

)
Nx(dω).

Let Vs(x) = Varδx〈f,Xs〉 ∈ C+
2 . Then, by (2.11), we have

Js(θ, x) = −1

2
θ2Vs(x) + Is(θ, x)

= −1

2
θ2〈Vs, ψ0〉mφ0(x) − 1

2
θ2Ṽs(x) + Is(θ, x),

where Ṽs = Vs − 〈Vs, ψ0〉mφ0(x) ∈ C2. Thus, we have

iθ1t
−1〈φ0,Xt〉 + 〈Js(t−1/2θ2, ·),Xt〉

=

(
iθ1 −

1

2
θ22〈Vs, ψ0〉m

)
t−1〈φ0,Xt〉 −

1

2
θ22t

−1〈Ṽs,Xt〉 + 〈Is(t−1/2θ2, ·),Xt〉. (3.58)

By (3.50), we know that, as t→ ∞,

t−1〈Ṽs,Xt〉|Pt,µ → 0 in probability. (3.59)

By (3.55), we have

∣∣∣Is(t−1/2θ2, x)
∣∣∣ ≤ θ22t

−1
Nx

(
〈f, ωs〉2

(
t−1/2θ2〈f, ωs〉

6
∧ 1

))
. (3.60)

Let

h(x, s, t) = Nx

(
〈f, ωs〉2

(
t−1/2θ2〈f, ωs〉

6
∧ 1

))
.

We note that h(x, s, t) ↓ 0 as t ↑ ∞. By (2.20), we have

h(x, s, t) ≤ Nx(〈f,Xs〉2) = Varδx〈f,Xs〉 . φ0(x) ∈ C2.

Thus, by (1.25) and (2.13), we have, for any u < t,

t−1
Pt,µ〈h(·, s, t),Xt〉 ≤ t−1

Pt,µ〈h(·, s, u),Xt〉 =
Pµ〈h(·, s, u),Xt〉
tPµ(‖Xt‖ 6= 0)

→ ν〈h(·, s, u), ψ0〉m,

as t→ ∞. Letting u→ ∞, we get 〈h(·, s, u), ψ0〉m → 0. Thus, by (3.60), we get that

lim
t→∞

Pt,µ|〈Is(t−1/2θ2, ·),Xt〉| = 0,

which implies that, as t→ ∞,

〈Is(t−1/2θ2, ·),Xt〉|Pt,µ → 0 in probability. (3.61)
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Thus, by (3.59), (3.61) and (3.58), we get

iθ1t
−1〈φ0,Xt〉 + 〈Js(t−1/2θ2, ·),Xt〉|Pt,µ

d→
(
iθ1 −

1

2
θ22〈Vs, ψ0〉m

)
W.

Since the real part of Js(t
−1/2θ2, x) is non-positive, we have

| exp{iθ1t−1〈φ0,Xt〉 + 〈Js(t−1/2θ2, ·),Xt〉}| ≤ 1.

Therefore, by (3.57) and the dominated convergence theorem, we get

lim
t→∞

κ1(θ1, θ2, s, t) = P

(
exp

{(
iθ1 −

1

2
θ22〈Vs, ψ0〉m

)
W

})
,

which implies our claim (3.56).

By (3.56), we have

U3(s, t) :=
(

(t+ s)−1〈φ0,Xt〉, (t + s)−1/2 (〈f,Xs+t〉 − 〈Tsf,Xt〉)
)
|Pt,µ

d→
(
W,

√
WG1(s)

)
, (3.62)

as t→ ∞. It follows from (2.13) and (1.25) that, as t→ ∞,

(t+ s)−2
Pt,µ (〈φ0,Xt+s〉 − 〈φ0,Xt〉)2 =

Pµ (〈φ0,Xt+s〉 − 〈φ0,Xt〉)2
(t+ s)2Pµ(‖Xt‖ 6= 0)

=
Pµ (〈Varδ·〈φ0,Xs〉,Xt〉)
(t+ s)2Pµ(‖Xt‖ 6= 0)

→ 0.

Hence, as t→ ∞,

U4(s, t) :=
(

(t + s)−1〈φ0,Xt+s〉, (t + s)−1/2 (〈f,Xs+t〉 − 〈Tsf,Xt〉)
)
|Pt,µ

d→
(
W,

√
WG1(s)

)
.

(3.63)

By (3.52), we have

U4(s, t)|Pt+s,µ

d→
(
W,

√
WG1(s)

)
, as t→ ∞. (3.64)

Now, we deal with J2(t, s) := 〈Tsf,Xt〉

(t+s)1/2
. We claim that

lim
s→∞

lim
t→∞

Pt+s,δx

(
|J2(t, s)|2

)
= 0. (3.65)

By (2.13), we have that Pµ〈Tsf,Xt〉 = 〈Tt+sf, µ〉 → 0 as t→ ∞. Thus, by (3.52), (1.25) and (2.19),

we have

lim
t→∞

Pt+s,δx

(
|J2(t, s)|2

)
= lim

t→∞
Pt,δx

(
|J2(t, s)|2

)
= lim

t→∞

Pµ〈Tsf,Xt〉2
(t+ s)Pµ(‖Xt‖ 6= 0)

= νσ2(Tsf)
. (3.66)

It follows (1.28) that, as s→ ∞,

σ2(Tsf)
=

∫ ∞

s
〈A(Tuf)2, ψ0〉m du→ 0.

Now (3.65) follows immediately.
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By (2.19), we have lims→∞ Vs(x) = σ2fφ1(x), thus lims→∞ σ2f (s) = σ2f . Hence,

lim
s→∞

β(G1(s), G1(f)) = 0. (3.67)

Let D(s + t) and D̃(s, t) be the distributions of U1(s + t) and U4(s, t) under Pt+s,µ respectively,

and let D̂(s) and D be the distributions of (W,
√
WG1(s)) and (W,

√
WG1(f)) respectively. Then,

using (3.54), we have

lim sup
t→∞

β(D(s+ t),D) ≤ lim sup
t→∞

[β(D(s + t), D̃(s, t)) + β(D̃(s, t), D̂(s)) + β(D̂(s),D)]

≤ lim sup
t→∞

(
√

Pt+s,µ((t + s)−1〈Tsf,Xt〉2) + 0 + β(D̂(s),D). (3.68)

Using this and the definition of lim supt→∞, we easily get that

lim sup
t→∞

β(D(t),D) = lim sup
t→∞

β(D(s + t),D) ≤ lim
t→∞

(
√

Pt+s,µ(J2(s, t)2) + β(D̂(s),D).

Letting s→ ∞, by (3.65) and (3.67), we get

lim sup
t→∞

β(D(t),D) = 0.

The proof of Theorem 1.8 is now complete. ✷
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