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Abstract

In this paper, we establish a central limit theorem for a large class of general supercritical
superprocesses with spatially dependent branching mechanisms satisfying a second moment
condition. This central limit theorem generalizes and unifies all the central limit theorems
obtained recently in [18, 19] for supercritical super Ornstein-Uhlenbeck processes. The advantage
of this central limit theorem is that it allows us to characterize the limit Gaussian field. In the
case of supercritical super Ornstein-Uhlenbeck processes with non-spatially dependent branching
mechanisms, our central limit theorem reveals more independent structures of the limit Gaussian
field.
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1 Introduction

Central limit theorems for supercritical branching processes were initiated by [13, 14]. In these two

papers, Kesten and Stigum established central limit theorems for supercritical multi-type Galton-

Watson processes by using the Jordan canonical form of the expectation matrix M . Then in [4, 5, 6],

Athreya proved central limit theorems for supercritical multi-type continuous time branching pro-

cesses, using the Jordan canonical form and the eigenvectors of the matrix Mt, the mean matrix

at time t. Asmussen and Keiding [3] used martingale central limit theorems to prove central limit

theorems for supercritical multitype branching processes. In [2], Asmussen and Hering established

spatial central limit theorems for general supercritical branching Markov processes under a certain

condition. However, the condition in [2] is not easy to check and essentially the only examples given

in [2] of branching Markov processes satisfying this condition are branching diffusions in bounded

smooth domains. In [1], Adamczak and Milos proved some central limit theorems for supercritical
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branching Ornstein-Uhlenbeck processes with binary branching mechanism. We note that branch-

ing Ornstein-Uhlenbeck processes do not satisfy the condition in [2]. In [18], Milos proved some

central limit theorems for supercritical super Ornstein-Uhlenbeck processes with branching mech-

anisms satisfying a fourth moment condition. In [19], we established central limit theorems for

supercritical super Ornstein-Uhlenbeck processes with (non-spatially dependent) branching mech-

anisms satisfying only a second moment condition. More importantly, the central limit theorems in

[19] are more satisfactory since our limit normal random variables are non-degenerate. In the recent

paper [20], we obtained central limit theorems for a large class of general supercritical branching

Markov processes with spatially dependent branching mechanisms satisfying only a second moment

condition. It is a natural next step to try to establish central limit theorems for general supercritical

superprocesses with spatially dependent branching mechanisms satisfying only a second moment

condition.

The purpose of this paper is to take this next step and go even further. We will prove one

central limit theorem which generalizes and unifies all the central limit theorems of [18, 19]. The

advantage of this central limit theorem is that it allows us to characterize the limit Gaussian

field. In the case of supercritical super Ornstein-Uhlenbeck processes with non-spatially dependent

branching mechanisms satisfying a second moment condition, our central limit theorem reveals

more independent structures of the limit Gaussian field, see Corollaries 1.5, 1.6 and 1.7.

The main tool of this paper is the excursion measures of the superprocess, instead of the back-

bone decomposition used in [18, 19]. One could combine the ideas of [19] with that of [20] to

use the backbone decomposition to prove central limit theorems for general supercritical superpro-

cesses with spatial dependent branching mechanisms satisfying only a second moment condition,

provided that the backbone decomposition is known. However, up to now, the backbone decompo-

sition has only been established for supercritical superdiffusions with spatial dependent branching

mechanisms.

1.1 Spatial process

Our assumptions on the underlying spatial process are the same as in [20]. In this subsection, we

recall the assumptions on the spatial process.

E is a locally compact separable metric space and m is a σ-finite Borel measure on E with full

support. ∂ is a point not contained in E and will be interpreted as the cemetery point. Every

function f on E is automatically extended to E∂ := E ∪ {∂} by setting f(∂) = 0. We will assume

that ξ = {ξt,Πx} is an m-symmetric Hunt process on E and ζ := inf{t > 0 : ξt = ∂} is the lifetime

of ξ. The semigroup of ξ will be denoted by {Pt : t ≥ 0}. We will always assume that there exists

2



a family of continuous strictly positive symmetric functions {pt(x, y) : t > 0} on E × E such that

Ptf(x) =

∫
E
pt(x, y)f(y)m(dy).

It is well-known that for p ≥ 1, {Pt : t ≥ 0} is a strongly continuous contraction semigroup on

Lp(E,m).

Define ãt(x) := pt(x, x). We will always assume that ãt(x) satisfies the following two conditions:

(a) For any t > 0, we have ∫
E
ãt(x)m(dx) <∞.

(b) There exists t0 > 0 such that ãt0(x) ∈ L2(E, m).

It is easy to check (see [20]) that condition (b) above is equivalent to

(b′) There exists t0 > 0 such that for all t ≥ t0, ãt(x) ∈ L2(E,m).

These two conditions are satisfied by a lot of Markov processes. In [20], we gave several classes

of examples of Markov processes, including Ornstein-Uhlenbeck processes, satisfying these two

conditions.

1.2 Superprocesses

In this subsection, we will spell out our assumptions on the superprocess we are going to work with.

Let Bb(E) (B+
b (E)) be the set of (positive) bounded Borel measurable functions on E.

The superprocess X = {Xt : t ≥ 0} we are going to work with is determined by three param-

eters: a spatial motion ξ = {ξt,Πx} on E satisfying the assumptions of the previous subsection,

a branching rate function β(x) on E which is a non-negative bounded measurable function and a

branching mechanism ψ of the form

ψ(x, λ) = −a(x)λ+ b(x)λ2 +

∫
(0,+∞)

(e−λy − 1 + λy)n(x, dy), x ∈ E, λ > 0, (1.1)

where a ∈ Bb(E), b ∈ B+
b (E) and n is a kernel from E to (0,∞) satisfying

sup
x∈E

∫ ∞

0
y2n(x, dy) <∞. (1.2)

Let MF (E) be the space of finite measures on E. The existence of such superprocesses is

well-known, see, for instance, [10] or [17]. X is a Markov process taking values in MF (E). For

any µ ∈ MF (E), we denote the law of X with initial configuration µ by Pµ. As usual, ⟨f, µ⟩ :=∫
f(x)µ(dx) and ∥µ∥ := ⟨1, µ⟩. Then for every f ∈ B+

b (E) and µ ∈ MF (E),

− logPµ

(
e−⟨f,Xt⟩

)
= ⟨uf (·, t), µ⟩, (1.3)
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where uf (x, t) is the unique positive solution to the equation

uf (x, t) + Πx

∫ t

0
ψ(ξs, uf (ξs, t− s))β(ξs)ds = Πxf(ξt), (1.4)

where ψ(∂, λ) = 0, λ > 0. Define

α(x) := β(x)a(x) and A(x) := β(x)

(
2b(x) +

∫ ∞

0
y2n(x, dy)

)
. (1.5)

Then, by our assumptions, α(x) ∈ Bb(E) and A(x) ∈ Bb(E). Thus there exists M > 0 such that

sup
x∈E

(|α(x)| +A(x)) ≤M. (1.6)

For any f ∈ Bb(E) and (t, x) ∈ (0,∞) × E, define

Ttf(x) := Πx

[
e
∫ t
0 α(ξs) dsf(ξt)

]
. (1.7)

It is well-known that Ttf(x) = Pδx⟨f,Xt⟩ for every x ∈ E.

It is shown in [20] that there exist a family of continuous strictly positive symmetric functions

{qt(x, y), t > 0} on E ×E such that qt(x, y) ≤ eMtpt(x, y) and for any f ∈ Bb(E),

Ttf(x) =

∫
E
qt(x, y)f(y)m(dy).

It follows immediately that, for any p ≥ 1, {Tt : t ≥ 0} is a strongly continuous semigroup on

Lp(E,m) and

∥Ttf∥pp ≤ epMt∥f∥pp. (1.8)

Define at(x) := qt(x, x). It follows from the assumptions (a) and (b) in the previous subsection

that at enjoys the following properties:

(i) For any t > 0, we have ∫
E
at(x)m(dx) <∞.

(ii) There exists t0 > 0 such that for all t ≥ t0, at(x) ∈ L2(E,m).

It follows from (i) above that, for any t > 0, Tt is a compact operator. The infinitesimal generator

L {Tt : t ≥ 0} in L2(E,m) has purely discrete spectrum with eigenvalues −λ1 > −λ2 > −λ3 > · · · .
The first eigenvalue −λ1 is simple and the eigenfunction ϕ1 associated with −λ1 can be chosen to

be strictly positive everywhere and continuous. We will assume that ∥ϕ1∥2 = 1. ϕ1 is sometimes

denoted as ϕ
(1)
1 . For k > 1, let {ϕ(k)j , j = 1, 2, · · ·nk} be an orthonormal basis of the eigenspace

(which is finite dimensional) associated with −λk. It is well-known that {ϕ(k)j , j = 1, 2, · · ·nk; k =
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1, 2, . . . } forms a complete orthonormal basis of L2(E,m) and all the eigenfunctions are continuous.

For any k ≥ 1, j = 1, . . . , nk and t > 0, we have Ttϕ
(k)
j (x) = e−λktϕ

(k)
j (x) and

e−λkt/2|ϕ(k)j |(x) ≤ at(x)1/2, x ∈ E. (1.9)

It follows from the relation above that all the eigenfunctions ϕ
(k)
j belong to L4(E,m). For any

x, y ∈ E and t > 0, we have

qt(x, y) =

∞∑
k=1

e−λkt
nk∑
j=1

ϕ
(k)
j (x)ϕ

(k)
j (y), (1.10)

where the series is locally uniformly convergent on E×E. The basic facts recalled in this paragraph

are well-known, for instance, one can refer to [7, Section 2].

In this paper, we always assume that the superprocess X is supercritical, that is, λ1 < 0.

We will use {Ft : t ≥ 0} to denote the filtration of X, that is Ft = σ(Xs : s ∈ [0, t]). Using

the expectation formula of ⟨ϕ1, Xt⟩ and the Markov property of X, it is easy to show that (see

Lemma 1.1), for any nonzero µ ∈ MF (E), under Pµ, the process Wt := eλ1t⟨ϕ1, Xt⟩ is a positive

martingale. Therefore it converges:

Wt →W∞, Pµ-a.s. as t→ ∞.

Using the assumption (1.2) we can show that, as t → ∞, Wt also converges in L2(Pµ), so W∞

is non-degenerate and the second moment is finite. Moreover, we have Pµ(W∞) = ⟨ϕ1, µ⟩. Put

E = {W∞ = 0}, then Pµ(E) < 1. It is clear that Ec ⊂ {Xt(E) > 0,∀t ≥ 0}.

In this paper, we also assume that, for any t > 0 and x ∈ E,

Pδx{∥Xt∥ = 0} ∈ (0, 1). (1.11)

Let Φ(λ) = infx∈E ψ(x, λ). If Φ(λ) satisfy the following condition:∫ ∞ 1

Φ(λ)
dλ <∞, (1.12)

then (1.11) holds. For the last claim, see, for instance, [8, Lemma 11.5.1].

1.3 Main result

We will use ⟨·, ·⟩m to denote inner product in L2(E,m). Any f ∈ L2(E,m) admits the following

expansion:

f(x) =

∞∑
k=1

nk∑
j=1

akjϕ
(k)
j (x), (1.13)
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where akj = ⟨f, ϕ(k)j ⟩m and the series converges in L2(E,m). a11 will sometimes be written as a1.

For f ∈ L2(E,m), define

γ(f) := inf{k ≥ 1 : there exists j with 1 ≤ j ≤ nk such that akj ̸= 0},

where we use the usual convention inf ∅ = ∞. We note that if f ∈ L2(E,m) is nonnegative and

m(x : f(x) > 0) > 0, then ⟨f, ϕ1⟩m > 0 which implies γ(f) = 1. For any f ∈ L2(E,m), we define

f∗(x) :=

nγ(f)∑
j=1

a
γ(f)
j ϕ

(γ(f))
j (x) and f̃(x) := f(x) − f∗(x).

The following three subsets of L2(E,µ) will be needed in the statement of the main result:

Cl :=

g(x) =
∑

k:λ1>2λk

nk∑
j=1

bkjϕ
(k)
j (x) : bkj ∈ R

 ,

Cc :=

g(x) =

nk∑
j=1

bkjϕ
(k)
j (x) : 2λk = 2λ1, b

k
j ∈ R


and

Cs :=

g(x) =
∑

k:λ1<2λk

nk∑
j=1

bkjϕ
(k)
j (x) : bkj ∈ R with

∑
k:λ1<2λk

nk∑
j=1

(bkj )2 <∞

 .

In this subsection we give the main result of this paper. The proof will be given in Section 3.

In the remainder of this paper, whenever we deal with an initial configuration µ ∈ MF (E), we are

implicitly assuming that it has compact support.

1.3.1 Some basic convergence results

Define

Hk,j
t := eλkt⟨ϕ(k)j , Xt⟩, t ≥ 0.

Using the same argument as in the proof of [20, Lemma 3.1], we can show that

Lemma 1.1 Hk,j
t is a martingale under Pµ. Moreover, if λ1 > 2λk, supt>3t0 Pµ(Hk,j

t )2 <∞. Thus

the limit

Hk,j
∞ := lim

t→∞
Hk.j

t

exists Pµ-a.s. and in L2(Pµ).

Theorem 1.2 If f ∈ L2(E,m) ∩ L4(E,m) with λ1 > 2λγ(f), then, as t→ ∞,

eλγ(f)t⟨f,Xt⟩ →
nγ(f)∑
j=1

a
γ(f)
j Hγ(f),j

∞ , in L2(Pµ).
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Proof: The proof is similar to that of [20, Theorem 1.6]. We omit the details here. 2

Remark 1.3 When γ(f) = 1, H1,1
t reduces toWt, and thus H1,1

∞ = W∞. Therefore by Theorem 1.2

and the fact that a1 = ⟨f, ϕ1⟩m, we get that, as t→ ∞,

eλ1t⟨f,Xt⟩ → ⟨f, ϕ1⟩mW∞, in L2(Pµ).

In particular, the convergence also holds in Pµ-probability.

1.3.2 Main Result

For f ∈ Cs and h ∈ Cc, we define

σ2f :=

∫ ∞

0
eλ1s⟨A(Tsf)2, ϕ1⟩m ds (1.14)

and

ρ2h :=
⟨
Ah2, ϕ1

⟩
m
. (1.15)

For g(x) =
∑

k:2λk<λ1

∑nk
j=1 b

k
jϕ

(k)
j (x) ∈ Cl, we define

Isg(x) :=
∑

k:2λk<λ1

nk∑
j=1

eλksbkjϕ
(k)
j (x) and β2g :=

∫ ∞

0
e−λ1s

⟨
A(Isg)2, ϕ1

⟩
m
ds. (1.16)

Theorem 1.4 If f ∈ Cs, h ∈ Cc and g(x) =
∑

k:2λk<λ1

∑nk
j=1 b

k
jϕ

(k)
j (x) ∈ Cl, then σ2f <∞, ρ2h <∞

and β2g <∞. Furthermore, it holds that, under Pµ(· | Ec), as t→ ∞,(
eλ1t⟨ϕ1, , Xt⟩,

⟨g,Xt⟩ −
∑

k:2λk<λ1
e−λkt

∑nk
j=1 b

k
jH

k,j
∞√

⟨ϕ1, Xt⟩
,

⟨h,Xt⟩√
t⟨ϕ1, Xt⟩

,
⟨f,Xt⟩√
⟨ϕ1, Xt⟩

)
d→ (W ∗, G3(g), G2(h), G1(f)), (1.17)

where W ∗ has the same distribution as W∞ conditioned on Ec, G3(g) ∼ N (0, β2g), G2(h) ∼ N (0, ρ2h)

and G1(f) ∼ N (0, σ2f ). Moreover, W ∗, G3(g), G2(h) and G1(f) are independent.

For f1, f2 ∈ Cs, define

σ(f1, f2) =

∫ ∞

0
eλ1s⟨A(Tsf1)(Tsf2), ϕ1⟩m ds.

Corollary 1.5 If f1, f2 ∈ Cs, then, under Pµ(· | Ec),(
⟨f1, Xt⟩√
⟨ϕ1, Xt⟩

,
⟨f2, Xt⟩√
⟨ϕ1, Xt⟩

)
d→ (G1(f1), G1(f2)), t→ ∞,
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where (G1(f1), G1(f2)) is a bivariate normal random variable with covariance

Cov(G1(f1), G1(f2)) = σ(f1, f2). (1.18)

Consider the special situation when both the branching mechanism and the branching rate function

are non-spatial dependent and ϕ1 is a constant function (this is the case of Ornstein-Uhlenbeck

processes). If f1 = ϕ
(k)
j and f2 = ϕ

(k′)
j′ are distinct eigenfunctions satisfying λ1 < 2λk and λ1 < 2λk′,

then G1(f1) and G1(f2) are independent.

Proof: Using the convergence of the fourth component in Theorem 1.4, we get

Pµ

(
exp

{
iθ1

⟨f1, Xt⟩√
⟨ϕ1, Xt⟩

+ iθ2
⟨f2, Xt⟩√
⟨ϕ1, Xt⟩

}
| Ec

)

= Pµ

(
exp

{
i
⟨θ1f1 + θ2f2, Xt⟩√

⟨ϕ1, Xt⟩

}
| Ec

)

→ exp

{
−1

2
σ2(θ1f1+θ2f2)

}
, as t→ ∞,

where

σ2(θ1f1+θ2f2)
=

∫ ∞

0
eλ1s⟨A(Ts(θ1f1 + θ2f2))

2, ϕ1⟩m ds

= θ21σ
2
f1 + 2θ1θ2σ(f1, f2) + θ2σ

2
f2 .

Now (1.18) follows immediately. 2

For h1, h2 ∈ Cc, define

ρ(h1, h2) = ⟨Ah1h2, ϕ1⟩m.

Using the convergence of the third component in Theorem 1.4 and an argument similar to that in

the proof of Corollary 1.5, we get

Corollary 1.6 If h1, h2 ∈ Cc, then we have, under Pµ(· | Ec),(
⟨h1, Xt⟩√
t⟨ϕ1, Xt⟩

,
⟨h2, Xt⟩√
t⟨ϕ1, Xt⟩

)
d→ (G2(h1), G2(h2)), t→ ∞,

where (G2(h1), G2(h2)) is a bivariate normal random variable with covariance

Cov(G2(h1), G2(h2)) = ρ(h1, h2).

Consider the special situation when both the branching mechanism and the branching rate function

are non-spatial dependent and ϕ1 is a constant function. If h1 = ϕ
(k)
j and h2 = ϕ

(k)
j′ are distinct

eigenfunctions satisfying λ1 = 2λk, then G2(h1) and G2(h2) are independent.
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For g1(x) =
∑

k:2λk<λ1

∑nk
j=1 b

k
jϕ

(k)
j (x) and g2(x) =

∑
k:2λk<λ1

∑nk
j=1 c

k
jϕ

(k)
j (x), define

β(g1, g2) =

∫ ∞

0
e−λ1s⟨A(Isg1)(Isg2), ϕ1⟩m ds.

Using the convergence of the second component in Theorem 1.4 and an argument similar to that

in the proof of Corollary 1.5, we get

Corollary 1.7 If g1(x) =
∑

k:2λk<λ1

∑nk
j=1 b

k
jϕ

(k)
j (x) and g2(x) =

∑
k:2λk<λ1

∑nk
j=1 c

k
jϕ

(k)
j (x), then

we have, under Pµ(· | Ec),(
⟨g1, Xt⟩ −

∑
k:2λk<λ1

e−λkt
∑nk

j=1 b
k
jH

k,j
∞√

⟨ϕ1, Xt⟩
,
⟨g2, Xt⟩ −

∑
k:2λk<λ1

e−λkt
∑nk

j=1 c
k
jH

k,j
∞√

⟨ϕ1, Xt⟩

)
d→ (G3(g1), G3(g2)),

where (G3(g1), G3(g2)) is a bivariate normal random variable with covariance

Cov(G3(g1), G3(g2)) = β(g1, g2).

Consider the special situation when both the branching mechanism and the branching rate function

are non-spatial dependent and ϕ1 is a constant function. If g1 = ϕ
(k)
j and g2 = ϕ

(k′)
j′ are distinct

eigenfunctions satisfying λ1 > 2λk and λ1 > 2λk′, then G3(g1) and G3(g2) are independent.

Remark 1.8 If 2λk < λ1, then, it holds under Pµ(· | Ec) that, as t→ ∞,eλ1t⟨ϕ1, Xt⟩,

(
⟨ϕ(k)j , Xt⟩ − e−λktHk,j

∞
)

⟨ϕ1, Xt⟩1/2

 d→ (W ∗, G3),

where G3 ∼ N
(

0, 1
λ1−2λk

⟨A(ϕ
(k)
j )2, ϕ1⟩m

)
. In particular, for ϕ1, we have(

eλ1t⟨ϕ1, Xt⟩,
(
⟨ϕ1, Xt⟩ − e−λ1tW∞

)
⟨ϕ1, Xt⟩1/2

)
d→ (W ∗, G3), t→ ∞,

where G3 ∼ N
(

0,− 1
λ1

∫
E A(x)(ϕ1(x))3m(dx)

)
.

All the central limit theorems in [19] are consequences of Theorem 1.4. To see this, we recall

the following notation from [19]. For f ∈ L2(E,m), define

f(s)(x) :=
∑

k:2λk<λ1

nk∑
j=1

akjϕ
(k)
j (x),

f(l)(x) =
∑

k:2λk>λ1

nk∑
j=1

akjϕ
(k)
j (x),
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f(c)(x) := f(x) − f(s)(x) − f(l)(x).

Then f(s) ∈ Cl, f(c) ∈ Cc and f(l) ∈ Cs. Obviously, [19, Theorem 1.4] is an immediate consequence of

the convergence of the first and fourth components in Theorem 1.4. Now we explain that Theorems

1.6, 1.10 and 1.13 of [19] also follow easily from Theorem 1.4.

Remark 1.9 If f ∈ L2(E,m) ∩ L4(E,m) with λ1 = 2λγ(f), then f = f(c) + f(l). Using the

convergence of the fourth component in Theorem 1.4 for f(l), it holds under Pµ(· | Ec) that

⟨f(l), Xt⟩√
t⟨ϕ1, Xt⟩

d→ 0, t→ ∞.

Thus using the convergence of the first and third components in Theorem 1.4, we get, under Pµ(· |
Ec), (

eλ1t⟨ϕ1, Xt⟩,
⟨f,Xt⟩√
t⟨ϕ1, Xt⟩

)
d→ (W ∗, G2(f(c))), t→ ∞,

whereW ∗ has the same distribution asW∞ conditioned on Ec and G2(f(c)) ∼ N (0, ρ2f(c)). Moreover,

W ∗ and G2(f(c)) are independent. Thus [19, Theorem 1.6] is a consequence of Theorem 1.4.

Remark 1.10 Assume f ∈ L2(E,m) ∩ L4(E,m) satisfies λ1 > 2λγ(f).

If f(c) = 0, then f = f(l)+f(s). Using the convergence of the first, second and fourth components

in Theorem 1.4, we get for any nonzero µ ∈ MF (E), it holds under Pµ(· | Ec) that, as t→ ∞,eλ1t⟨ϕ1, Xt⟩,

(
⟨f,Xt⟩ −

∑
2λk<λ1

e−λkt
∑nk

j=1 a
k
jH

k,j
∞
)

⟨ϕ1, Xt⟩1/2

 d→ (W ∗, G1(f(l)) +G3(f(s))),

where W ∗, G3(f(s)) and G1(f(l)) are the same as those in Theorem 1.4. Since G3(f(s)) and G1(f(l))

are independent, G1(f(l)) + G3(f(s)) ∼ N
(

0, σ2f(l) + β2f(s)

)
. Thus [19, Theorem 1.10] is a conse-

quence of Theorem 1.4.

If f(c) ̸= 0, then as t→ ∞,(
⟨f(l) + f(s), Xt⟩ −

∑
2λk<λ1

e−λkt
∑nk

j=1 a
k
jH

k,j
∞
)

√
t⟨ϕ1, Xt⟩

d→ 0.

Then using the convergence of the first and third components in Theorem 1.4, we geteλ1t⟨ϕ1, Xt⟩,

(
⟨f,Xt⟩ −

∑
2λk<λ1

e−λkt
∑nk

j=1 a
k
jH

k,j
∞
)

√
t⟨ϕ1, Xt⟩

 d→ (W ∗, G2(f(c))),

where W ∗ and G2(f(c)) are the same as those in Remark 1.9. Thus [19, Theorem 1.13] is a

consequence of Theorem 1.4.
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2 Preliminaries

2.1 Excursion measures of {Xt, t ≥ 0}

We use D to denote the space of MF (E)-valued cadlag functions on [0,∞). We use F to denote

the σ-field generated by the sets {ω ∈ D : ωt(B) ≤ c}, where B ∈ B(E) and c ∈ R. We assume

{X,P} is canonical, that is, X is the coordinate map Xt(ω) = ωt on the measurable space (D,F).

It is known (see [17, Chapter 8]) that one can associate with {Pδx : x ∈ E} a family of measures

{Nx : x ∈ E}, defined on the same measurable space as the probabilities {Pδx : x ∈ E}, such that

Nx(1 − e−⟨f,Xt⟩) = − logPδx(e−⟨f,Xt⟩), f ∈ B+
b (E), t ≥ 0. (2.1)

For earlier work on excursion measures of superprocesses, see [12, 16, 11].

Given Xt, let Nt(dω, dx) =
∑K

i=1Nxi(dω) be a Poisson random measure on the space D × E

with intensity Nx(dω)Xt(dx). Define

Λt
s :=

∫
E

∫
D
ωsNt(dω, dx).

Then, given Xt, the process {Λt
s, s ≥ 0} has the same law as {Xt+s, s ≥ 0}. In fact, by (2.1) and

the Markov property, we have, for f ∈ B+
b (E),

Pµ [exp{⟨−f,Xt+s⟩}|Xt] = PXt [exp{⟨−f,Xs⟩}]

= exp{⟨logPδ· exp{⟨−f,Xs⟩}, Xt⟩}

= exp

(∫
E

∫
D

(e−⟨f,ωs⟩ − 1)Nx(dω)Xt(dx)

)
= P

[
exp

{
−
∫
E

∫
D
⟨f, ωs⟩Nt(dx, dω)

}
|Xt

]
= P

[
exp

(
−⟨f,Λt

s⟩)
)
|Xt

]
. (2.2)

Thus, we have

Pµ [exp {iθ⟨f,Xt+s⟩} |Xt] = exp

{∫
E

∫
D

(eiθ⟨f,ωs⟩ − 1)Nx(dω)Xt(dx)

}
. (2.3)

Now we list some properties of Nx. The proofs are similar to those in [11, Corollary 1.2,

Proposition 1.1].

Proposition 2.1 If Pδx |⟨f,Xt⟩| <∞, then

Nx⟨f,Xt⟩ = Pδx⟨f,Xt⟩. (2.4)

If Pδx⟨f,Xt⟩2 <∞, then

Nx⟨f,Xt⟩2 = Varδx⟨f,Xt⟩. (2.5)
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Proposition 2.2

Nx(∥Xt∥ ̸= 0) = − logPδx(∥Xt∥ = 0). (2.6)

Remark 2.3 By (1.11) and Proposition 2.2, for each t > 0 and x ∈ E, we have

0 < Nx(∥Xt∥ ̸= 0) <∞.

Thus, we can define another probability measure Ñx on D as follows:

Ñx(B) =
Nx (B ∩ {∥X1∥ ̸= 0})

Nx(∥X1∥ ̸= 0)
. (2.7)

2.2 Estimates on the moments of X

In the remainder of this paper we will use the following notation: for two positive functions f and

g on E, f(x) . g(x) means that there exists a constant c > 0 such that f(x) ≤ cg(x) for all x ∈ E.

First, we recall some results about the semigroup (Tt), the proofs of which can be found in [20].

Lemma 2.4 For any f ∈ L2(E,m), x ∈ E and t > 0, we have

Ttf(x) =

∞∑
k=γ(f)

e−λkt
nk∑
j=1

akjϕ
(k)
j (x) (2.8)

and

lim
t→∞

eλγ(f)tTtf(x) =

nγ(f)∑
j=1

a
γ(f)
j ϕ

(γ(f))
j (x), (2.9)

where the series in (2.8) converges absolutely and uniformly in any compact subset of E. Moreover,

for any t1 > 0,

sup
t>t1

eλγ(f)t|Ttf(x)| ≤ eλγ(f)t1∥f∥2
(∫

E
at1/2(x)m(dx)

)
at1(x)1/2, (2.10)

sup
t>t1

e(λγ(f)+1−λγ(f))t
∣∣∣eλγ(f)tTtf(x) − f∗(x)

∣∣∣ ≤ eλγ(f)+1t1∥f∥2
(∫

E
at1/2(x)m(dx)

)
(at1(x))1/2.

(2.11)

Lemma 2.5 Suppose that {ft(x) : t > 0} is a family of functions in L2(E,m). If limt→∞ ∥ft∥2 = 0,

then for any x ∈ E,

lim
t→∞

eλ1tTtft(x) = 0.

Recall the second moments of the superprocess {Xt : t ≥ 0} (see, for example, [17, Corollary

2.39]): for f ∈ Bb(E), we have for any t > 0,

Pµ⟨f,Xt⟩2 = (Pµ⟨f,Xt⟩)2 +

∫
E

∫ t

0
Ts[A(Tt−sf)2](x) dsµ(dx). (2.12)

12



Thus,

Varµ⟨f,Xt⟩ = ⟨Varδ·⟨f,Xt⟩, µ⟩ =

∫
E

∫ t

0
Ts[A(Tt−sf)2](x) dsµ(dx), (2.13)

where Varµ stands for the variance under Pµ. For any f ∈ L2(E,m) ∩ L4(E,m) and x ∈ E, since

(Tt−sf)2(x) ≤ eM(t−s)Tt−s(f
2)(x), we have∫ t

0
Ts[A(Tt−sf)2](x) ds ≤MeM(t−s)tTt(f

2)(x) <∞.

Thus, using a routine limit argument, one can easily check that (2.12) and (2.13) also hold for

f ∈ L2(E,m) ∩ L4(E,m).

Lemma 2.6 Assume that f ∈ L2(E,m) ∩ L4(E,m).

(1) If λ1 < 2λγ(f), then for any x ∈ E,

lim
t→∞

eλ1t/2Pδx⟨f,Xt⟩ = 0, (2.14)

lim
t→∞

eλ1tVarδx⟨f,Xt⟩ = σ2fϕ1(x), (2.15)

where σ2(f) is defined by (1.14). Moreover, for (t, x) ∈ (3t0,∞) × E, we have

eλ1tVarδx⟨f,Xt⟩ . at0(x)1/2. (2.16)

(2) If λ1 = 2λγ(f), then for any (t, x) ∈ (3t0,∞) × E,∣∣∣t−1eλ1tVarδx⟨f,Xt⟩ − ρ2f∗ϕ1(x)
∣∣∣ . t−1at0(x)1/2, (2.17)

where ρ2f∗ is defined by (1.15).

(3) If λ1 > 2λγ(f), then for any x ∈ E,

lim
t→∞

e2λγ(f)tVarδx⟨f,Xt⟩ = η2f (x), (2.18)

where

η2f (x) :=

∫ ∞

0
e2λγ(f)sTs(A(f∗)2)(x) ds.

Moreover, for any (t, x) ∈ (3t0,∞) × E,

e2λγ(f)tPδx⟨f,Xt⟩2 . at0(x)1/2. (2.19)

Lemma 2.7 Assume that f ∈ L2(E,m)∩L4(E,m). If λ1 < 2λγ(f), then for any (t, x) ∈ (3t0,∞)×
E, ∣∣∣eλ1tVarδx⟨f,Xt⟩ − σ2fϕ1(x)

∣∣∣ . (e(λ1−2λγ(f))t + e(λ1−λ2)t
)
at0(x)1/2. (2.20)
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Proof: By (2.13), we get, for t > 3t0,∣∣∣∣eλ1tVarδx⟨f,Xt⟩ −
∫ ∞

0
eλ1s⟨A(Tsf)2, ϕ1⟩m dsϕ1(x)

∣∣∣∣
=

∣∣∣∣eλ1t

∫ t

0
Tt−s[A(Tsf)2](x) ds−

∫ ∞

0
eλ1s⟨A(Tsf)2, ϕ1⟩m dsϕ1(x)

∣∣∣∣
≤ eλ1t

∫ t−t0

0

∣∣∣Tt−s[A(Tsf)2](x) − e−λ1(t−s)⟨A(Tsf)2, ϕ1⟩mϕ1(x)
∣∣∣ ds

+eλ1t

∫ t

t−t0

Tt−s[A(Tsf)2](x) ds+

∫ ∞

t−t0

eλ1s⟨A(Tsf)2, ϕ1⟩m dsϕ1(x)

=: V1(t, x) + V2(t, x) + V3(t, x). (2.21)

For V2(t, x), by [20, (2.26)], we have

V2(t, x) . e(λ1−2λγ(f))tat0(x)1/2. (2.22)

For V3(t, x), by (2.10), for s > t − t0 > t0, |Tsf(x)| . e−λγ(f)sat0(x)1/2. By (1.9), ϕ1(x) ≤
eλ1t0/2at0(x)1/2. Thus, we get

V3(t, x) .
∫ ∞

t−t0

e(λ1−2λγ(f))s ds⟨at0 , ϕ1⟩mϕ1(x)

. e(λ1−2λγ(f))tat0(x)1/2. (2.23)

Finally, we consider V1(t, x). By (2.11), for t− s > t0, we have∣∣∣Tt−s[A(Tsf)2](x) − e−λ1(t−s)⟨A(Tsf)2, ϕ1⟩mϕ1(x)
∣∣∣ . e−λ2(t−s)∥A(Tsf)2∥2at0(x)1/2.

For s > t0, by (2.10), |Tsf(x)| . e−λγ(f)sat0(x)1/2. Thus,

∥A(Tsf)2∥2 . e−2λγ(f)s∥at0∥2.

For s ≤ t0, by (1.8), it is easy to get

∥A(Tsf)2∥2 ≤M∥Tsf∥24 ≤Me2Ms∥f∥24.

Therefore, we have

V1(t, x) . eλ1t

∫ t−t0

t0

e−λ2(t−s)e−2λγ(f)s ds at0(x)1/2 + eλ1t

∫ t0

0
e−λ2(t−s) ds at0(x)1/2

.
(
e(λ1−2λγ(f))t + e(λ1−λ2)t

)
at0(x)1/2. (2.24)

Now (2.20) follows immediately from (2.22), (2.23) and (2.24). 2
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Lemma 2.8 Assume that f ∈ L2(E,m)∩L4(E,m) with λ1 < 2λγ(f) and h ∈ L2(E,m)∩L4(E,m)

with λ1 = 2λγ(h). Then, for any (t, x) ∈ (3t0,∞) ×E,

Covδx(eλ1t/2⟨f,Xt⟩, t−1/2eλ1t/2⟨h,Xt⟩) . t−1/2(at0(x))1/2, (2.25)

where Covδx is the covariance under Pδx.

Proof: By (2.13), we have∣∣∣Covδx(eλ1t/2⟨f,Xt⟩, t−1/2eλ1t/2⟨h,Xt⟩)
∣∣∣

= t−1/2eλ1t 1

4
|(Varδx⟨(f + h), Xt⟩ − Varδx⟨(f − h), Xt⟩)|

= t−1/2eλ1t

∣∣∣∣∫ t

0
Tt−s [A(Tsf)(Tsh)] (x) ds

∣∣∣∣
≤ t−1/2eλ1t

(∫ t−t0

0
Tt−s[A |(Tsf)(Tsh)|](x) ds+

∫ t

t−t0

Tt−s[A |(Tsf)(Tsh)|](x) ds

)
=: V4(t, x) + V5(t, x).

First, we deal with V4(t, x). By (2.10), for t− s > t0,

Tt−s[A |(Tsf)(Tsh)|](x) . e−λ1(t−s)∥A(Tsf)(Tsh)∥2(at0(x))1/2.

If s > t0, then by (2.10), we get

∥A(Tsf)(Tsh)∥2 . e−(λ1/2+λγ(f))s∥at0∥2.

If s ≤ t0, by (1.8), it is easy to get

∥A(Tsf)(Tsh)∥2 ≤M∥Tsf∥4∥Tsh∥4 ≤Me2Ms∥f∥4∥h∥4.

Therefore, we have

V4(t, x) . t−1/2eλ1t

(∫ t−t0

t0

e−λ1(t−s)e−(λ1/2+λγ(f))s ds+

∫ t0

0
e−λ1(t−s) ds

)
at0(x)1/2

= t−1/2

(∫ t−t0

t0

e(λ1/2−λγ(f))s ds+

∫ t0

0
eλ1s ds

)
at0(x)1/2

. t−1/2at0(x)1/2. (2.26)

For V5(t, x), if s > t− t0 ≥ 2t0, then by(2.10), we get

V5(t, x) . t−1/2eλ1t

∫ t

t−t0

e−(λ1/2+λγ(f))sTt−s(a2t0)(x) ds

= t−1/2e(λ1/2−λγ(f))t

∫ t0

0
e(λ1/2+λγ(f))sTs(a2t0)(x) ds
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. t−1/2e(λ1/2−λγ(f))t

∫ t0

0
Ts(a2t0)(x) ds

. t−1/2(at0(x))1/2. (2.27)

The last inequality follows from the fact that∫ t0

0
Ts(a2t0)(x) ds . at0(x)1/2, (2.28)

which is [20, (2.25)]. Therefore, by (2.26) and (2.27), we get (2.25) immediately. 2

3 Proof of the main theorem

In this section, we will prove the main result of this paper. We first recall some facts about weak

convergence which will be used later. For f : Rd → R, let ∥f∥L := supx̸=y |f(x) − f(y)|/∥x − y∥
and ∥f∥BL := ∥f∥∞ + ∥f∥L. For any distributions ν1 and ν2 on Rd, define

β(ν1, ν2) := sup

{∣∣∣∣∫ f dν1 −
∫
f dν2

∣∣∣∣ : ∥f∥BL ≤ 1

}
.

Then β is a metric. It follows from [9, Theorem 11.3.3] that the topology generated by β is

equivalent to the weak convergence topology. From the definition, we can easily see that, if ν1 and

ν2 are the distributions of two Rd-valued random variables X and Y respectively, then

β(ν1, ν2) ≤ E∥X − Y ∥ ≤
√
E∥X − Y ∥2. (3.1)

The following simple fact will be used several times later in this section:∣∣∣∣∣eix −
n∑

m=0

(ix)m

m!

∣∣∣∣∣ ≤ min

(
|x|n+1

(n+ 1)!
,
2|x|n

n!

)
. (3.2)

Before we prove Theorem 1.4, we prove several lemmas first. The first lemma below says that

the result in Lemma 1.1 also holds under Nx. Recall the probability measure Ñx defined in (2.7)

and that

Hk,j
t = eλkt⟨ϕ(k)j , Xt⟩, t ≥ 0.

Lemma 3.1 For x ∈ E, the limit

Hk,j
∞ := lim

t→∞
Hk,j

t

exists Nx-a.e., in L
1(Nx) and in L2(Nx).

Proof: On the set {∥X1∥ = 0}, we have Hk,j
∞ = 0. Thus, we only need to show Hk,j

∞ exists

Ñx-a.s. and in L2(Ñx).
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For t > s ≥ 1, since {∥X1∥ = 0} ⊂ {∥Xs∥ = 0} ⊂ {∥Xt∥ = 0}, we have

Nx(⟨ϕ(k)j , Xt⟩; ∥X1∥ ̸= 0|Fs) = Nx(⟨ϕ(k)j , Xt⟩|Fs) = Pδx(⟨ϕ(k)j , Xt⟩|Fs) = e−λk(t−s)⟨ϕ(k)j , Xs⟩,

which implies {Hk,j
t , t ≥ 1} is a martingale under Ñx. By (2.5), we have

Nx(⟨ϕ(k)j , Xt⟩2; ∥X1∥ ̸= 0) = Nx(⟨ϕ(k)j , Xt⟩2) = Varδx⟨ϕ
(k)
j , Xt⟩.

Then by Lemma 1.1, we easily get lim supt→∞ Ñx(Hk,j
t )2 < ∞, which implies Hk,j

∞ exists Ñx-a.s.

and in L2(Ñx). 2

Lemma 3.2 If f ∈ Cs, then σ2f <∞ and, for any nonzero µ ∈ MF (E), it holds under Pµ that(
eλ1t⟨ϕ1, Xt⟩, eλ1t/2⟨f,Xt⟩

)
d→
(
W∞, G1(f)

√
W∞

)
, t→ ∞,

where G1(f) ∼ N (0, σ2f ). Moreover, W∞ and G1(f) are independent.

Proof: We define an R2-valued random variable U1(t) by

U1(t) :=
(
eλ1t⟨ϕ1, Xt⟩, eλ1t/2⟨f,Xt⟩

)
. (3.3)

Let s, t > 3t0 and write

U1(s+ t) =
(
eλ1(s+t)⟨ϕ1, Xt+s⟩, eλ1(s+t)/2⟨f,Xs+t⟩

)
.

First, we consider another R2-valued random variable U2(s, t) defined by

U2(s, t) :=
(
eλ1t⟨ϕ1, Xt⟩, eλ1(t+s)/2⟨f,Xt+s⟩ − eλ1(t+s)/2⟨Tsf,Xt⟩

)
.

Recall that, given Xt, Xt+s has the same law as
∫
E

∫
D ωsNt(dx, dω). We claim that, under Pµ,

U2(s, t)
d→
(
W∞,

√
W∞G1(s)

)
, as t→ ∞, (3.4)

where G1(s) ∼ N (0, σ2f (s)) with σ2f (s) to be given later. In fact, denote the characteristic function

of U2(s, t) under Pµ by κ(θ1, θ2, s, t):

κ(θ1, θ2, s, t)

= Pµ

(
exp

{
iθ1e

λ1t⟨ϕ1, Xt⟩ + iθ2e
λ1(t+s)/2⟨f,Xt+s⟩ − iθ2e

λ1(t+s)/2⟨Tsf,Xt⟩
})

= Pµ

(
exp

{
iθ1e

λ1t⟨ϕ1, Xt⟩

+

∫
E

∫
D

(exp
{
iθ2e

λ1(t+s)/2⟨f, ωs⟩
}
− 1 − iθ2e

λ1(t+s)/2⟨f, ωs⟩)Nx(dω)Xt(dx)

})
, (3.5)
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where in the last equality we used the Markov property of X, (2.3) and (2.4). Define

Rs(θ, x) =

∫
D

(
exp{⟨iθf, ωs⟩} − 1 − iθ⟨f, ωs⟩ +

1

2
θ2⟨f, ωs⟩2

)
Nx(dω).

Then, by (2.5), we get

κ(θ1, θ2, s, t)

= Pµ

(
exp

{
iθ1e

λ1t⟨ϕ1, Xt⟩

+

∫
E

∫
D

(
−1

2
eλ1(t+s)θ22⟨f, ωs⟩2

)
Nx(dω)Xt(dx) + ⟨Rs(e

λ1(t+s)/2θ2, ·), Xt⟩
})

= Pµ

(
exp

{
iθ1e

λ1t⟨ϕ1, Xt⟩ −
1

2
θ22e

λ1t⟨Vs, Xt⟩ + ⟨Rs(e
λ1(t+s)/2θ2, ·), Xt⟩

})
, (3.6)

where Vs(x) := eλ1sVarδx⟨f,Xs⟩. By (3.2), we have

∣∣∣Rs(e
λ1(t+s)/2θ2, x)

∣∣∣ ≤ θ22e
λ1(t+s)Nx

(
⟨f, ωs⟩2

(
eλ1(t+s)/2θ2⟨f, ωs⟩

6
∧ 1

))

= θ22e
λ1tNx

(
Y 2
s

(
θ2e

λ1t/2Ys
6

∧ 1

))
, (3.7)

where Ys := eλ1s/2⟨f, ωs⟩. Let

h(x, s, t) := Nx

(
Y 2
s

(
θ2e

λ1t/2Ys
6

∧ 1

))
.

We note that h(x, s, t) ↓ 0 as t ↑ ∞ and by (2.16), we get

h(x, s, t) ≤ Nx(Y 2
s ) = Varδx(Y 2

s ) . at0(x)1/2 ∈ L2(E,m).

Thus, by (2.9), we have, for any u < t,

lim sup
t→∞

eλ1tTt(h(·, s, t)) ≤ lim sup
t→∞

eλ1tTt(h(·, s, u)) = ⟨h(·, s, u), ϕ1⟩mϕ1(x).

Letting u→ ∞, we get limt→∞ eλ1tTt(h(·, s, t)) = 0. Therefore we have

Pµ

∣∣∣⟨Rs(e
λ1(t+s)/2θ2, ·), Xt⟩

∣∣∣ ≤ θ22e
λ1tTt(h(·, s, t)) → 0, as t→ ∞,

which implies

lim
t→∞

⟨Rs(e
λ1(t+s)/2θ2, ·), Xt⟩ = 0, in probability.

Furthermore, by Remark 1.3 and the fact Vs(x) . at0(x)1/2 ∈ L2(E,m) ∩ L4(E,m), we have

lim
t→∞

eλ1t⟨Vs, Xt⟩ = σ2f (s)W∞, in probability,
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where σ2f (s) := ⟨Vs, ϕ1⟩m. Hence by the dominated convergence theorem, we get

lim
t→∞

κ(θ1, θ2, s, t) = Pµ

(
exp {iθ1W∞} exp

{
−1

2
θ22σ

2
f (s)W∞

})
, (3.8)

which implies our claim (3.4).

Since eλ1(t+s)⟨ϕ1, Xt+s⟩ − eλ1t⟨ϕ1, Xt⟩ → 0 in probability, as t → ∞, we easily get that under

Pµ,

U3(s, t) :=
(
eλ1(t+s)⟨ϕ1, Xt+s⟩, eλ1(t+s)/2(⟨f,Xt+s⟩ − ⟨Tsf,Xt⟩)

)
d→ (W∞,

√
W∞G1(s)),

as t→ ∞. By (2.15), we have lims→∞ Vs(x) = σ2fϕ1(x), thus lims→∞ σ2f (s) = σ2f . So

lim
s→∞

β(G1(s), G1(f)) = 0. (3.9)

Let D(s + t) and D̃(s, t) be the distributions of U1(s + t) and U3(s, t) respectively, and let D(s)

and D be the distributions of (W∞,
√
W∞G1(s)) and (W∞,

√
W∞G1(f)) respectively. Then, using

(3.1), we have

lim sup
t→∞

β(D(s+ t),D) ≤ lim sup
t→∞

[β(D(s+ t), D̃(s, t)) + β(D̃(s, t),D(s)) + β(D(s),D)]

≤ lim sup
t→∞

(Pµ(eλ1(t+s)/2⟨Tsf,Xt⟩)2)1/2 + 0 + β(D(s),D). (3.10)

Using this and the definition of lim supt→∞, we easily get that

lim sup
t→∞

β(D(t),D) = lim sup
t→∞

β(D(s+ t),D) ≤ lim sup
t→∞

(Pµ(eλ1(t+s)/2⟨Tsf,Xt⟩)2)1/2 + β(D(s),D).

Letting s→ ∞, we get

lim sup
t→∞

β(D(t),D) ≤ lim sup
s→∞

lim sup
t→∞

(Pµ(eλ1(t+s)/2⟨Tsf,Xt⟩)2)1/2.

Therefore, we are left to prove that

lim sup
s→∞

lim sup
t→∞

eλ1(t+s)Pµ(⟨Tsf,Xt⟩)2 = 0. (3.11)

By (2.13) and (2.10), we have for any x ∈ E,

eλ1(t+s)Varδx⟨Tsf,Xt⟩ = eλ1(s+t)

∫ t

0
Tt−u[A(Ts+uf)2](x) du

= e(λ1−2λγ(f))s

∫ t

0
e(λ1−2λγ(f))ueλ1(t−u)Tt−u[A(eλγ(f)(s+u)Ts+uf)2](x) du

. e(λ1−2λγ(f))s

(∫ t

0
e(λ1−2λγ(f))ueλ1(t−u)Tt−u[a2t0 ](x) du

)
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and ∫ t

0
e(λ1−2λγ(f))ueλ1(t−u)Tt−u(a2t0)(x) du

=

(∫ t−t0

0
+

∫ t

t−t0

)
e(λ1−2λγ(f))ueλ1(t−u)Tt−u(a2t0)(x) du

.
∫ t−t0

0
e(λ1−2λγ(f))u duat0(x)1/2 +

∫ t0

0
e(λ1−2λγ(f))(t−u)eλ1uTu(a2t0)(x) du

. at0(x)1/2 +

∫ t0

0
Tu(a2t0)(x) du . at0(x)1/2.

The last inequality follows from (2.28). Thus,

lim sup
t→∞

eλ1(t+s)Varµ⟨Tsf,Xt⟩ = lim sup
t→∞

eλ1(t+s)⟨Varδ·⟨Tsf,Xt⟩, µ⟩

. e(λ1−2λγ(f))s⟨at0(x)1/2, µ⟩. (3.12)

By (2.14), we get

lim
t→∞

eλ1(t+s)/2Pµ⟨Tsf,Xt⟩ = lim
t→∞

eλ1(t+s)/2⟨T(t+s)f, µ⟩ = 0. (3.13)

Now (3.11) follows easily from (3.12) and (3.13). The proof is now complete. 2

Lemma 3.3 Assume that f ∈ Cs and h ∈ Cc. Define

Y1(t) := t−1/2eλ1t/2⟨h,Xt⟩, Y2(t) := eλ1t/2⟨f,Xt⟩, t > 0,

and

Yt := Y1(t) + Y2(t).

Then for any c > 0, δ > 0 and x ∈ E, we have

lim
t→∞

Pδx

(
|Yt|2; |Yt| > ceδt

)
= 0. (3.14)

Proof: For any ϵ > 0 and η > 0, we have

Pδx

(
|Yt|2; |Yt| > ceδt

)
≤ 2Pδx

(
|Y1(t)|2; |Yt| > ceδt

)
+ 2Pδx

(
|Y2(t)|2; |Yt| > ceδt

)
≤ 2Pδx

(
|Y1(t)|2; |Y1(t)| > ϵeδt

)
+ 2ϵ2e2δtPδx

(
|Yt| > ceδt

)
+2Pδx

(
|Y2(t)|2; |Y2(t)|2 > η

)
+ 2ηPδx

(
|Yt| > ceδt

)
=: J1(t, ϵ) + J2(t, ϵ) + J3(t, η) + J4(t, η).

Repeating the proof of [20, Lemma 3.2] (with the Stf there replaced by Y1(t)), we can get

lim
t→∞

J1(t, ϵ) = 2 lim
t→∞

Pδx

(
|Y1(t)|2; |Y1(t)| > ϵeδt

)
= 0. (3.15)
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By (2.14) and (2.15), we easily get

lim
t→∞

Pδx(|Y2(t)|2) = σ2fϕ1(x). (3.16)

By (2.17) and the fact Pδx(Y1(t)) = t−1/2h(x), we get

lim
t→∞

Pδx(|Y1(t)|2) = lim
t→∞

(
Varδx(Y1(t)) + t−1h2(x)

)
= ρ2hϕ1(x).

Thus,

lim sup
t→∞

Pδx(|Yt|2) ≤ 2 lim
t→∞

Pδx(|Y1(t)|2 + |Y2(t)|2) = 2(σ2f + ρ2h)ϕ1(x). (3.17)

Thus by Chebyshev’s inequality, we have

lim
ϵ→0

lim sup
t→∞

J2(t, ϵ) ≤ 2 lim
ϵ→0

ϵ2c−2 lim sup
t→∞

Pδx(|Yt|2) = 0. (3.18)

For J3(t, η), by Lemma 3.2, Y2(t)
d→ G1(f)

√
W∞. Let Ψη(r) = r on [0, η − 1], Ψη(r) = 0 on

[η,∞], and let Ψη be linear on [η − 1, η]. Then, by (3.16),

lim sup
t→∞

Pδx

(
|Y2(t)|2; |Y2(t)|2 > η

)
= lim sup

t→∞

(
Pδx

(
|Y2(t)|2

)
− Pδx

(
|Y2(t)|2; |Y2(t)|2 ≤ η

))
≤ lim sup

t→∞

(
Pδx

(
|Y2(t)|2

)
− Pδx

(
Ψη(|Y2(t)|2)

))
= σ2fϕ1(x) − Pδx

(
Ψη(G1(f)2W∞)

)
.

By the monotone convergence theorem and the fact that G1(f) and W∞ are independent, we have

lim
η→∞

Pδx

(
Ψη(G1(f)2W∞)

)
= Pδx

(
G1(f)2W∞

)
= Pδx

(
G1(f)2

)
PδxW∞ = σ2fϕ1(x).

Thus,

lim
η→∞

lim sup
t→∞

J3(t, η) = 0. (3.19)

By Chebyshev’s inequality and (3.17),

lim sup
t→∞

J4(t, η) ≤ 2ηc−2 lim sup
t→∞

e−2δtPδx(|Yt|2) = 0. (3.20)

Thus, (3.14) follows easily from (3.15), (3.18), (3.19) and (3.20). 2

Lemma 3.4 Let h, f and Yt be the same as in Lemma 3.3. For any c > 0 and δ > 0, we have

lim
t→∞

Nx

(
|Yt|2; |Yt| > ceδt

)
= 0. (3.21)
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Proof: For t > 1,

Nx

(
|Yt|2; |Yt| > ceδt

)
= Nx

(
|Yt|2; |Yt| > ceδt, ∥X1∥ ̸= 0

)
.

Thus, we only need to prove

lim
t→∞

Ñx

(
|Yt|2; |Yt| > ceδt

)
= 0.

Recall that, given X0 = δx, N0(dω, dy) is a Poisson random measure with intensity Ny(dω)δx(dy)

and

Λ0
t =

∫
E

∫
D
ωtN0(dω, dy).

We know that {Λ0
t , t ≥ 0} has the same law as {Xt, t ≥ 0} under Pδx . Define

Λ̃0
t :=

∫
E

∫
D̃
ωtN0(dω, dy) and Ỹt := t−1/2eλ1t/2⟨h, Λ̃0

t ⟩ + eλ1t/2⟨f, Λ̃0
t ⟩,

where D̃ := {ω : ∥ω1∥ ̸= 0}. It is clear that for t > 1, Λ̃0
t = Λ0

t . Since Nx(D̃) <∞, Λ̃0
t is a compound

Poisson process and can be written as

Λ̃0
t =

K∑
j=1

X̃j
t ,

where X̃j
t , j = 1, 2, . . . are i.i.d. with the same law as Xt under Ñx and K is a Poisson random

variable with parameter Nx(D̃) which is independent of X̃j
t , j = 1, 2, . . . . Let

Ỹ j
t := t−1/2eλ1t/2⟨h, X̃j

t ⟩ + eλ1t/2⟨f, X̃j
t ⟩.

Then, Ỹ j
t is independent of K and has the same law as Yt under Ñx. Therefore, for t > 1,

Pδx(|Yt|2; |Yt| > ceδt) = P (|Ỹt|2; |Ỹt| > ceδt|X0 = δx)

≥ P (|Ỹ 1
t |2; |Ỹ 1

t | > ceδt,K = 1|X0 = δx)

= P (K = 1|X0 = δx)P (|Ỹ 1
t |2; |Ỹ 1

t | > ceδt|X0 = δx)

= Nx(D̃)e−Nx(D̃)Ñx(|Yt|2; |Yt| > ceδt).

Now (3.21) follows easily from Lemma 3.3. 2

Lemma 3.5 Assume that f ∈ Cs and h ∈ Cc. Then(
eλ1t⟨ϕ1, Xt⟩, t−1/2eλ1t/2⟨h,Xt⟩, eλ1t/2⟨f,Xt⟩

)
d→
(
W∞,

√
W∞G2(h),

√
W∞G1(f)

)
, (3.22)

where G2(h) ∼ N (0, ρ2h) and G1(f) ∼ N (0, σ2f ). Moreover, W∞, G2(h) and G1(f) are independent.
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Proof: In the proof, we always assume t > 3t0. We define an R3-valued random variable by

U1(t) :=
(
eλ1t⟨ϕ1, Xt⟩, t−1/2eλ1t/2⟨h,Xt⟩, eλ1t/2⟨f,Xt⟩

)
.

Let n > 2 and write

U1(nt) =
(
eλ1nt⟨ϕ1, Xnt⟩, (nt)−1/2eλ1nt/2⟨h,Xnt⟩, eλ1nt/2⟨f,Xnt⟩

)
.

Now we define another R3-valued random variable U2(n, t) by

U2(n, t)

:=

(
eλ1t⟨ϕ1, Xt⟩,

eλ1nt/2(⟨h,Xnt⟩ − ⟨T(n−1)th,Xt⟩)
((n− 1)t)1/2

, eλ1nt/2(⟨f,Xnt⟩ − ⟨T(n−1)tf,Xt⟩)

)
.

We claim that

U2(n, t)
d→
(
W∞,

√
W∞G2(h),

√
W∞G1(f)

)
, as t→ ∞. (3.23)

Denote the characteristic function of U2(n, t) under Pµ by κ2(θ1, θ2, θ3, n, t). Define

Y1(t, θ2) := θ2t
−1/2eλ1t/2⟨h,Xt⟩, Y2(t, θ3) := θ3e

λ1t/2⟨f,Xt⟩, t > 0,

and

Yt(θ2, θ3) = Y1(t, θ2) + Y2(t, θ3).

Using an argument similar to that leading to (3.5), we get

κ2(θ1, θ2, θ3, n, t) = Pµ

(
exp

{
iθ1e

λ1t⟨ϕ1, Xt⟩ +

∫
E

∫
D

(
exp

{
ieλ1t/2Y(n−1)t(θ2, θ3)(ω)

}
−1 − ieλ1t/2Y(n−1)t(θ2, θ3)(ω)

)
Nx(dω)Xt(dx)

})
.

Define

R′
t(x, θ) :=

∫
D

(
exp{iθYt(θ2, θ3)(ω)} − 1 − iθYt(θ2, θ3)(ω) +

1

2
θ2(Yt(θ2, θ3)(ω))2

)
Nx(dω)

and

J(n, t, x) :=

∫
D

(
exp{ieλ1t/2Y(n−1)t(θ2, θ3)(ω)} − 1 − ieλ1t/2Y(n−1)t(θ2, θ3)(ω)

)
Nx(dω).

Then

J(n, t, x) = −1

2
eλ1tNx(Y(n−1)t(θ2, θ3))

2 +R′
(n−1)t(x, e

λ1t/2),

and

κ2(θ1, θ2, θ3, n, t) = Pµ

(
exp

{
iθ1e

λ1t⟨ϕ1, Xt⟩ + ⟨J(n, t, ·), Xt⟩
})

.
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Let V n
t (x) := Nx(Y(n−1)t(θ2, θ3))

2. Then

⟨J(n, t, ·), Xt⟩ = −1

2
eλ1t⟨V n

t , Xt⟩ + ⟨R′
(n−1)t(·, e

λ1t/2), Xt⟩

:= J1(n, t) + J2(n, t).

We first consider J1(n, t). By (2.5),

V n
t (x) = Varδx(Y(n−1)t(θ2, θ3))

= Varδx(Y1((n− 1)t, θ2)) + Varδx(Y2((n− 1)t, θ3)) + Covδx(Y1((n− 1)t, θ2), Y2((n− 1)t, θ3)).

So by (2.17), (2.20) and (2.25), we have, for t > 3t0,∣∣V n
t (x) − (θ22ρ

2
h + θ23σ

2
f )ϕ1(x)

∣∣
≤

∣∣Varδx(Y1((n− 1)t, θ2)) − θ22ρ
2
hϕ1(x)

∣∣+
∣∣Varδx(Y2((n− 1)t, θ3)) − θ23σ

2
fϕ1(x)

∣∣
+ |Covδx(Y1((n− 1)t, θ2), Y2((n− 1)t, θ3))|

.
(
e(λ1−2λγ(f))(n−1)t + e(λ1−λ2)(n−1)t + ((n− 1)t)−1/2 + ((n− 1)t)−1

)
at0(x)1/2. (3.24)

Thus, we have that as t→ ∞,

eλ1t⟨
∣∣V n

t (x) − (θ22ρ
2
h + θ23σ

2
f )ϕ1(x)

∣∣ , Xt⟩

.
(
e(λ1−2λγ(f))(n−1)t + e(λ1−λ2)(n−1)t + ((n− 1)t)−1/2 + ((n− 1)t)−1

)
eλ1t⟨(at0)1/2, Xt⟩ → 0,

in probability. It follows that

lim
t→∞

J1(n, t) = lim
t→∞

−1

2
eλ1t(θ22ρ

2
h + θ23σ

2
f )⟨ϕ1, Xt⟩ = −1

2
(θ22ρ

2
h + θ23σ

2
f )W∞ in probability. (3.25)

For J2(n, t), by (3.2), we have, for any ϵ > 0,

|R′
(n−1)t(x, e

λ1t/2)| ≤ 1

6
e

3
2
λ1tNx

(
|Y(n−1)t(θ2, θ3)|3; |Y(n−1)t(θ2, θ3)| < ϵe−λ1t/2

)
+eλ1tNx

(
|Y(n−1)t(θ2, θ3)|2; |Y(n−1)t(θ2, θ3)| ≥ ϵe−λ1t/2

)
≤ ϵ

6
eλ1tNx

(
|Y(n−1)t(θ2, θ3)|2

)
+eλ1tNx

(
|Y(n−1)t(θ2, θ3)|2; |Y(n−1)t(θ2, θ3)| ≥ ϵe−λ1t/2

)
=

ϵ

6
eλ1tV n

t (x) + eλ1tFn
t (x),

where Fn
t (x) = Nx

(
|Y(n−1)t(θ2, θ3)|2; |Y(n−1)t(θ2, θ3)| ≥ ϵe−λ1t/2

)
. Note that

eλ1tPµ⟨Fn
t (x), Xt⟩ = eλ1t⟨Tt(Fn

t ), µ⟩. (3.26)

It follows from Lemma 3.4 that limt→∞ Fn
t (x) = 0. By (3.24), we also have

Fn
t (x) ≤ V n

t (x) . at0(x)1/2,

24



which implies that ∥Fn
t ∥2 → 0 as t→ ∞. By Lemma (2.5),

lim
t→∞

eλ1tTt(F
n
t ) = 0.

Note that eλ1tTt(F
n
t ) . eλ1tTt(a

1/2
t0

) . a
1/2
t0

. Since µ has compact support and at0 is contin-

uous, we have ⟨at0 , µ⟩ < ∞. By (3.26) and the dominated convergence theorem, we obtain

limt→∞ eλ1tPµ⟨Fn
t (x), Xt⟩ = 0, which implies that eλ1t⟨Fn

t (x), Xt⟩ → 0 in probability. Further-

more, by (3.25), we have that as t→ ∞,

ϵ

6
eλ1t⟨V n

t , Xt⟩ →
ϵ

6
(θ22ρ

2
h + θ23σ

2
f )W∞ in probability.

Thus, letting ϵ→ 0, we get that as t→ ∞,

J2(n, t) → 0 in probability. (3.27)

Thus, when t→ ∞,

exp {⟨J(n, t, ·), Xt⟩} → exp

{
−1

2
(θ22ρ

2
h + θ23σ

2
f )W∞

}
(3.28)

in probability. Since the real part of J(n, t, x) is less than 0, which implies

| exp {⟨J(n, t, ·), Xt⟩} | ≤ 1.

So by the dominated convergence theorem, we get that

lim
t→∞

κ2(θ1, θ2, θ3, n, t) = Pµ

[
exp {iθ1W∞} exp

{
−1

2
(θ22ρ

2
h + θ23σ

2
f )W∞

}]
, (3.29)

which implies our claim (3.23).

By (3.23) and the fact eλ1nt⟨ϕ1, Xnt⟩ − eλ1t⟨ϕ1, Xt⟩ → 0, in probability, as t → ∞ , we easily

get

U3(n, t)

:=

(
eλ1nt⟨ϕ1, Xnt⟩,

eλ1nt/2(⟨h,Xnt⟩ − ⟨T(n−1)th,Xt⟩)
(nt)1/2

, eλ1nt/2(⟨f,Xnt⟩ − ⟨T(n−1)tf,Xt⟩)

)
d→

(
W∞,

√
n− 1

n

√
W∞G2(h),

√
W∞G1(f)

)
.

Using (2.17) and the fact Pµ⟨h,Xt⟩ = ⟨Tth, µ⟩ = e−λ1t/2⟨h, µ⟩, we can get

(nt)−1eλ1ntPµ⟨T(n−1)th,Xt⟩)2 = (nt)−1eλ1tVarµ⟨h,Xt⟩2 + (nt)−1eλ1t(Pµ⟨h,Xt⟩)2

. n−1(1 + t−1). (3.30)
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Using (3.12) with s = (n− 1)t, and then letting t→ ∞, by (2.14) we get

eλ1ntPµ⟨T(n−1)tf,Xt⟩)2 . e(λ1−2λγ(f))(n−1)t⟨at0(x)1/2, µ⟩ + eλ1nt⟨Tntf, µ⟩2 → 0. (3.31)

Let D(nt) and D̃n(t) be the distributions of U1(nt) and U3(n, t) respectively, and let Dn and D
be the distributions of

(
W∞,

√
n−1
n

√
W∞G2(h),

√
W∞G1(f)

)
and

(
W∞,

√
W∞G2(h),

√
W∞G1(f)

)
respectively. Then, using (3.1), we have

lim sup
t→∞

β(D(nt),D) ≤ lim sup
t→∞

[β(D(nt), D̃n(t)) + β(D̃n(t),Dn) + β(Dn,D)]

≤ lim sup
t→∞

(
(nt)−1eλ1ntPµ⟨T(n−1)th,Xt⟩2 + eλ1ntPµ⟨T(n−1)tf,Xt⟩2

)1/2
+ 0 + β(Dn,D).

(3.32)

Using the definition of lim supt→∞, (3.30) and (3.31), we easily get that

lim sup
t→∞

β(D(t),D) = lim sup
t→∞

β(D(nt),D) ≤ c/
√
n+ β(Dn,D),

where c is a constant. Letting n → ∞, we get lim supt→∞ β(D(t),D) = 0. The proof is now

complete. 2

Recall that

g(x) =
∑

k:2λk<λ1

nk∑
j=1

bkjϕ
(k)
j (x) and Iug(x) =

∑
k:2λk<λ1

nk∑
j=1

eλkubkjϕ
(k)
j (x).

Define

H∞ :=
∑

k:2λk<λ1

nk∑
j=1

bkjH
k,j
∞ .

By Lemma 3.1, we have, as u→ ∞

⟨Iug,Xu⟩ → H∞, Nx-a.e., in L1(Nx) and in L2(Nx).

Since Nx⟨Iug,Xu⟩ = Pδx⟨Iug,Xu⟩ = g(x), we get

Nx(H∞) = g(x). (3.33)

By (2.5) and (2.13), we have

Nx⟨Iug,Xu⟩2 = Varδx⟨Iug,Xu⟩ =

∫ u

0
Ts

A
 ∑

k:2λk<λ1

nk∑
j=1

eλksbkjϕ
k
j

2 (x) ds, (3.34)

which implies

Nx(H∞)2 =

∫ ∞

0
Ts

A
 ∑

k:2λk<λ1

nk∑
j=1

eλksbkjϕ
k
j

2 (x) ds. (3.35)
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By (1.9), we have that for any x ∈ E,

∑
k:2λk<λ1

nk∑
j=1

eλks|akj ||ϕkj (x)| . eλKsa2t0(x)1/2,

where K = sup{k : 2λk < λ1}. So by (3.35), (2.10) and (2.28), we have that for any x ∈ E,

Nx(H∞)2 .
∫ ∞

0
e(2λK−λ1)seλ1sTs(a2t0)(x) ds

=

(∫ t0

0
+

∫ ∞

t0

)
e(2λK−λ1)seλ1sTs(a2t0)(x) ds

.
∫ t0

0
Ts(a2t0)(x) ds+

∫ ∞

t0

e(2λK−λ1)s ds at0(x)1/2

. at0(x)1/2 ∈ L2(E,m) ∩ L4(E,m). (3.36)

Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4: Consider an R4-valued random variable U4(t) defined by:

U4(t)

:=

eλ1t⟨ϕ1, Xt⟩, eλ1t/2

⟨g,Xt⟩ −
∑

k:2λk<λ1

nk∑
j=1

e−λktbkjH
k,j
∞

 ,
eλ1t/2⟨h,Xt⟩

t1/2
, eλ1t/2⟨f,Xt⟩

 .

To get the conclusion of Theorem 1.4, it suffices to show that, under Pµ,

U4(t)
d→
(
W∞,

√
W∞G3(g),

√
W∞G2(h),

√
W∞G1(f)

)
, (3.37)

where W∞, G3(g), G2(h) and G1(f) are independent. Denote the characteristic function of U4(t)

under Pµ by κ1(θ1, θ2, θ3, θ4, t). Then, we only need to prove

lim
t→∞

κ1(θ1, θ2, θ3, θ4, t) = Pµ

(
exp{iθ1W∞} exp

{
−1

2
(θ22β

2
g + θ23ρ

2
h + θ24σ

2
f )W∞

})
. (3.38)

Note that, by Lemma 1.1,
∑

k:2λk<λ1

∑nk
j=1 e

−λktbkjH
k,j
∞ = limu→∞⟨Iug,Xt+u⟩, Pµ-a.s.. We have

κ1(θ1, θ2, θ3, θ4, t)

= lim
u→∞

Pµ

(
exp

{
iθ1e

λ1t⟨ϕ1, Xt⟩ + iθ2e
λ1t/2(⟨g,Xt⟩ − ⟨Iug,Xt+u⟩)

+iθ3t
−1/2eλ1t/2⟨h,Xt⟩ + iθ4e

λ1t/2⟨f,Xt⟩
})

= lim
u→∞

Pµ

(
exp

{
iθ1e

λ1t⟨ϕ1, Xt⟩ + iθ3t
−1/2eλ1t/2⟨h,Xt⟩ + iθ4e

λ1t/2⟨f,Xt⟩ + ⟨Ju(t, ·), Xt⟩
})

,

(3.39)
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where

Ju(t, x) =

∫
D

(
exp

{
−iθ2eλ1t/2⟨Iug, ωu⟩

}
− 1 + iθ2e

λ1t/2⟨Iug, ωu⟩
)
Nx(dω).

The last equality above follows from the Markov property of X, (2.3) and the fact∫
D
⟨Iug, ωu⟩Nx(dω) = Pδx⟨Iug,Xu⟩ = g(x).

We will show that

lim
u→∞

Ju(t, x) = Nx

(
exp

{
−iθ2eλ1t/2H∞

}
− 1 + iθ2e

λ1t/2H∞

)
=: J(t, x). (3.40)

For u > 1, |e−iθ2eλ1t/2⟨Iug,ωu⟩ − 1| ≤ 21{∥X1∦=0}(ω). It is clear that Nx(∥X1∥ ̸= 0) < ∞. Thus, by

Lemma 3.1 and the dominated convergence theorem, we get

lim
u→∞

∫
D

(
exp

{
−iθ2eλ1t/2⟨Iug, ωu⟩

}
− 1
)
Nx(dω) = Nx

(
exp

{
−iθ2eλ1t/2H∞

}
− 1
)
.

Since NxH∞ = Nx⟨Iug, ωu⟩, (3.40) follows immediately .

By (3.2), we get

sup
u≥0

|Ju(t, x)| ≤ 1

2
θ22e

λ1t sup
u≥0

Nx⟨Iug,Xu⟩2 <
1

2
θ22e

λ1tNxH
2
∞ <∞.

Note that, by (3.36),

Pµ⟨N·H
2
∞, Xt⟩ . Pµ⟨a1/2t0

, Xt⟩ = ⟨Tta1/2t0
, µ⟩ <∞,

which implies that ⟨N·H
2
∞, Xt⟩ <∞, Pµ-a.s. So, by the dominated convergence theorem, we get

lim
u→∞

⟨Ju(t, ·), Xt⟩ = ⟨J(t, ·), Xt⟩, Pµ-a.s.

Using the dominated convergence theorem again, we obtain

κ1(θ1, θ2, θ3, θ4, t) = Pµ

(
exp

{
iθ1e

λ1t⟨ϕ1, Xt⟩ + iθ3t
−1/2eλ1t/2⟨h,Xt⟩ + iθ4e

λ1t/2⟨f,Xt⟩ + ⟨J(t, ·), Xt⟩
})

.

Let

R(θ, x) := Nx

(
exp {iθH∞} − 1 − iθH∞ +

1

2
θ2H2

∞

)
.

Thus,

⟨J(t, ·), Xt⟩ = −1

2
θ22e

λ1t⟨V,Xt⟩ + ⟨R(−eλ1t/2θ2, ·), Xt⟩,

where V (x) := Nx(H∞)2. By (3.2), we have

|R(−eλ1t/2θ2, x)| ≤ eλ1tθ22Nx

(
|H∞|2

(
eλ1t/2θ2|H∞|

6
∧ 1

))
, (3.41)
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which implies that

Pµ

∣∣∣⟨R(−eλ1t/2θ2, ·), Xt⟩
∣∣∣ ≤ θ22 e

λ1t⟨ Tt(k(·, t)), µ ⟩,

where

k(x, t) := Nx

(
|H∞|2

(
eλ1t/2θ2|H∞|

6
∧ 1

))
.

It is clear that k(x, t) ↓ 0 as t ↑ ∞. Thus as t→ ∞, eλ1tTt(k(·, t))(x) → 0, which implies

lim
t→∞

⟨R(−eλ1t/2θ2, ·), Xt⟩ = 0 in probability. (3.42)

Since V ∈ L2(E,m) ∩ L4(E,m), by Remark 1.3, we have

lim
t→∞

eλ1t⟨V,Xt⟩ = ⟨V, ϕ1⟩mW∞ in probability. (3.43)

Therefore, combining (3.42) and (3.43), we get

lim
t→∞

exp {⟨J(t, ·), Xt⟩} = exp{−1

2
θ22⟨V, ϕ1⟩mW∞} in probability. (3.44)

Since the real part of J(t, x) is less than 0,

|exp {⟨J(t, ·), Xt⟩}| ≤ 1. (3.45)

Recall that limt→∞ eλ1t⟨ϕ1, Xt⟩ = W∞, Pµ-a.s. Thus by (3.44), (3.45) and the dominated conver-

gence theorem, we get that as t→ ∞,∣∣∣∣Pµ

(
exp

{(
iθ1 −

1

2
θ22⟨V, ϕ1⟩m

)
eλ1t⟨ϕ1, Xt⟩ + iθ3t

−1/2eλ1t/2⟨h,Xt⟩ + iθ4e
λ1t/2⟨f,Xt⟩

})
−κ1(θ1, θ2, θ3, θ4, t)|

≤ Pµ

∣∣∣∣exp {⟨J(t, ·), Xt⟩} − exp

{
−1

2
θ22⟨V, ϕ1⟩meλ1t⟨ϕ1, Xt⟩

}∣∣∣∣→ 0. (3.46)

By Lemma 3.5,

lim
t→∞

Pµ

(
exp

{(
iθ1 −

1

2
θ22⟨V, ϕ1⟩m

)
eλ1t⟨ϕ1, Xt⟩ + iθ3t

−1/2eλ1t/2⟨h,Xt⟩ + iθ4e
λ1t/2⟨f,Xt⟩

})
= Pµ

(
exp{iθ1W∞} exp

{
−1

2
(θ22⟨V, ϕ1⟩m + θ23ρ

2
f + θ24σ

2
f )W∞

})
. (3.47)

By (3.35), we get

⟨V, ϕ1⟩m =

∫ ∞

0
e−λ1s

⟨
A(Isg)2, ϕ1

⟩
m
ds.

The proof is now complete. 2
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