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Abstract

In this paper, we establish a central limit theorem for a large class of general supercritical
superprocesses with spatially dependent branching mechanisms satisfying a second moment
condition. This central limit theorem generalizes and unifies all the central limit theorems
obtained recently in [18, 19] for supercritical super Ornstein-Uhlenbeck processes. The advantage
of this central limit theorem is that it allows us to characterize the limit Gaussian field. In the
case of supercritical super Ornstein-Uhlenbeck processes with non-spatially dependent branching
mechanisms, our central limit theorem reveals more independent structures of the limit Gaussian

field.
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1 Introduction

Central limit theorems for supercritical branching processes were initiated by [13, 14]. In these two
papers, Kesten and Stigum established central limit theorems for supercritical multi-type Galton-
Watson processes by using the Jordan canonical form of the expectation matrix M. Then in [4, 5, 6],
Athreya proved central limit theorems for supercritical multi-type continuous time branching pro-
cesses, using the Jordan canonical form and the eigenvectors of the matrix My, the mean matrix
at time ¢t. Asmussen and Keiding [3] used martingale central limit theorems to prove central limit
theorems for supercritical multitype branching processes. In [2], Asmussen and Hering established
spatial central limit theorems for general supercritical branching Markov processes under a certain
condition. However, the condition in [2] is not easy to check and essentially the only examples given
in [2] of branching Markov processes satisfying this condition are branching diffusions in bounded

smooth domains. In [1], Adamczak and Milos proved some central limit theorems for supercritical
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branching Ornstein-Uhlenbeck processes with binary branching mechanism. We note that branch-
ing Ornstein-Uhlenbeck processes do not satisfy the condition in [2]. In [18], Milos proved some
central limit theorems for supercritical super Ornstein-Uhlenbeck processes with branching mech-
anisms satisfying a fourth moment condition. In [19], we established central limit theorems for
supercritical super Ornstein-Uhlenbeck processes with (non-spatially dependent) branching mech-
anisms satisfying only a second moment condition. More importantly, the central limit theorems in
[19] are more satisfactory since our limit normal random variables are non-degenerate. In the recent
paper [20], we obtained central limit theorems for a large class of general supercritical branching
Markov processes with spatially dependent branching mechanisms satisfying only a second moment
condition. It is a natural next step to try to establish central limit theorems for general supercritical
superprocesses with spatially dependent branching mechanisms satisfying only a second moment
condition.

The purpose of this paper is to take this next step and go even further. We will prove one
central limit theorem which generalizes and unifies all the central limit theorems of [18, 19]. The
advantage of this central limit theorem is that it allows us to characterize the limit Gaussian
field. In the case of supercritical super Ornstein-Uhlenbeck processes with non-spatially dependent
branching mechanisms satisfying a second moment condition, our central limit theorem reveals
more independent structures of the limit Gaussian field, see Corollaries 1.5, 1.6 and 1.7.

The main tool of this paper is the excursion measures of the superprocess, instead of the back-
bone decomposition used in [18, 19]. One could combine the ideas of [19] with that of [20] to
use the backbone decomposition to prove central limit theorems for general supercritical superpro-
cesses with spatial dependent branching mechanisms satisfying only a second moment condition,
provided that the backbone decomposition is known. However, up to now, the backbone decompo-
sition has only been established for supercritical superdiffusions with spatial dependent branching

mechanisms.

1.1 Spatial process

Our assumptions on the underlying spatial process are the same as in [20]. In this subsection, we
recall the assumptions on the spatial process.

F is a locally compact separable metric space and m is a o-finite Borel measure on E with full
support. 0 is a point not contained in F and will be interpreted as the cemetery point. Every
function f on E is automatically extended to Ey := E'U {9} by setting f(9) = 0. We will assume
that £ = {&, 11, } is an m-symmetric Hunt process on E and ¢ := inf{t > 0: £ = 0} is the lifetime
of £&. The semigroup of ¢ will be denoted by {P; : t > 0}. We will always assume that there exists



a family of continuous strictly positive symmetric functions {p¢(x,y) : ¢ > 0} on E x E such that

Puf(x) = /E pil, ) £ () m(dy).

It is well-known that for p > 1, {FP; : t > 0} is a strongly continuous contraction semigroup on
LP(E,m).

Define a¢(x) := pi(z, z). We will always assume that a.(z) satisfies the following two conditions:

(a) For any ¢t > 0, we have

/ a¢(x) m(dx) < oo.

E

(b) There exists to > 0 such that a;,(x) € L2(E, m).

It is easy to check (see [20]) that condition (b) above is equivalent to
(b’) There exists tg > 0 such that for all ¢ > tg, a;(z) € L?>(E, m).

These two conditions are satisfied by a lot of Markov processes. In [20], we gave several classes
of examples of Markov processes, including Ornstein-Uhlenbeck processes, satisfying these two

conditions.

1.2 Superprocesses

In this subsection, we will spell out our assumptions on the superprocess we are going to work with.
Let By(E) (B; (E)) be the set of (positive) bounded Borel measurable functions on E.

The superprocess X = {X; : t > 0} we are going to work with is determined by three param-
eters: a spatial motion § = {&,II,} on E satisfying the assumptions of the previous subsection,
a branching rate function S(x) on E which is a non-negative bounded measurable function and a
branching mechanism v of the form

Y, ) = —a(z)\ + b(z)\* + /(0+ )(e”‘y — 1+ My)n(z,dy), z€E, I>0, (1.1)

where a € By(E), b € B (E) and n is a kernel from E to (0,00) satisfying
sup/ y>n(z,dy) < oo. (1.2)
zeE JO

Let Mp(FE) be the space of finite measures on E. The existence of such superprocesses is
well-known, see, for instance, [10] or [17]. X is a Markov process taking values in Mp(FE). For
any p € Mp(E), we denote the law of X with initial configuration p by P,. As usual, (f,u) :=
[ f(@)p(dz) and [|p| == (1, u). Then for every f € By (E) and u € Mp(E),

~1og P, (7 FX0) = (ug (1), ), (1.3)
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where u¢(z,t) is the unique positive solution to the equation

w@ﬁ+ﬂgﬁ¢@wﬂgrﬂmmwwznd@x (1.4)

where ¥(9,\) = 0, A > 0. Define

a(z) = B(z)a(z) and A(z) := S(x) <2b(x) —|—/ ygn(x,dy)) . (1.5)
0
Then, by our assumptions, a(z) € By(E) and A(z) € By(E). Thus there exists M > 0 such that

igg(la(fﬁ)! + A(z)) < M. (1.6)

For any f € By(E) and (t,x) € (0,00) x E, define
Tif(w) =TI, el @) f(g,)] (1.7)

It is well-known that T} f(x) = Ps_(f, X;) for every z € E.
It is shown in [20] that there exist a family of continuous strictly positive symmetric functions
{q:(z,y),t > 0} on E x E such that ¢(x,y) < eM'pi(z,y) and for any f € By(E),

nﬂ@=é%mwﬂmMW)

It follows immediately that, for any p > 1, {T; : ¢ > 0} is a strongly continuous semigroup on
LP(E,m) and
ITef 115 < ML FD- (1.8)

Define a;(z) := q:(z, z). It follows from the assumptions (a) and (b) in the previous subsection

that a; enjoys the following properties:

(i) For any t > 0, we have

/ ar(z) m(dx) < oo.
E
(ii) There exists tp > 0 such that for all t > to, a¢(z) € L*(E, m).

It follows from (i) above that, for any ¢ > 0, T} is a compact operator. The infinitesimal generator
L {T; :t >0} in L?(E, m) has purely discrete spectrum with eigenvalues —A; > —XAg > —A3 > -+ .
The first eigenvalue —\; is simple and the eigenfunction ¢; associated with —X; can be chosen to
be strictly positive everywhere and continuous. We will assume that |[¢1]2 = 1. ¢1 is sometimes
denoted as gbgl). For k > 1, let {¢§k),j = 1,2,---ng} be an orthonormal basis of the eigenspace
(which is finite dimensional) associated with —\g. It is well-known that {¢§k), =12, np k=



1,2,...} forms a complete orthonormal basis of L?(E, m) and all the eigenfunctions are continuous.
Forany k> 1,j=1,...,n; and ¢t > 0, we have thbg.k) (z) = e_)‘ktqbg.k) (z) and

e M| (2) < ay(2)1?, zeE. (1.9)

It follows from the relation above that all the eigenfunctions ¢§-k) belong to L*(E,m). For any
z,y € F and t > 0, we have

S AIBrL (1.10)

k=1 j=1
where the series is locally uniformly convergent on E x E. The basic facts recalled in this paragraph
are well-known, for instance, one can refer to [7, Section 2].
In this paper, we always assume that the superprocess X is supercritical, that is, Ay < 0.
We will use {F; : ¢ > 0} to denote the filtration of X, that is ; = (X, : s € [0,¢]). Using
the expectation formula of (¢, X;) and the Markov property of X, it is easy to show that (see
Lemma 1.1), for any nonzero u € Mp(E), under P, the process W; := e*!(¢1, X;) is a positive

martingale. Therefore it converges:
Wi = Wy, Pyas. ast— oo.

Using the assumption (1.2) we can show that, as t — oo, W; also converges in L*(P,), so Wy
is non-degenerate and the second moment is finite. Moreover, we have P,(Ws) = (¢1, ). Put
& = {Wy =0}, then P, (£) < 1. It is clear that £¢ C {X(E) > 0,Vt > 0}.

In this paper, we also assume that, for any t > 0 and x € F,

Ps, {[[X¢ll = 0} € (0,1). (1.11)
Let ®(\) = infyeg ¢ (z, A). If ®(\) satisfy the following condition:

/OO q)(l)\)d)\ < o0, (1.12)

then (1.11) holds. For the last claim, see, for instance, [8, Lemma 11.5.1].

1.3 Main result

We will use (-, ), to denote inner product in L?(E,m). Any f € L?(E, m) admits the following

expansion:
oo Nk

=5 ak ol (a), (1.13)



where a? = (f, ¢§k))m and the series converges in L?(E,m). al will sometimes be written as a;.

For f € L?(E,m), define
v(f) :=inf{k > 1: there exists j with 1 < j < ny such that aﬁ? # 0},

where we use the usual convention inf @ = co. We note that if f € L2(E,m) is nonnegative and
m(x : f(x) > 0) > 0, then (f, $1)m > 0 which implies y(f) = 1. For any f € L?(E,m), we define

i)=Y aVe" @) and f(z):= f(z) - f*(@).

The following three subsets of L?(E, i) will be needed in the statement of the main result:

C:=<g(x) = Z be(;ﬁgk)(m) : b? eER,

k:A1>2); j=1

ng
Coi={ g(z) = > bFoP (@) 20 =20, b e R
j=1

and
Nk Nk
k .
Cs =< g(x) = Z Zb?gbg )(x) : bf € R with Z Z(bf)z < 00
k:A1<2Xg j=1 k:A1<2Xg j=1
In this subsection we give the main result of this paper. The proof will be given in Section 3.
In the remainder of this paper, whenever we deal with an initial configuration u € Mp(FE), we are

implicitly assuming that it has compact support.

1.3.1 Some basic convergence results

Define
HY =M™ Xy, >0,

Using the same argument as in the proof of [20, Lemma 3.1], we can show that

Lemma 1.1 Hf’j is a martingale under P,. Moreover, if Ay > 2\g, Sup;~sy, ]P’,,J(Htk’j)2 < 0o0. Thus

the limit

Hk9 = lim HY
o0 t—o00 ¢

exists Py-a.s. and in L*(P,,).

Theorem 1.2 If f € L*(E,m) N L*(E,m) with A\, > 2X(f), then, ast — oo,

Ty (f)
€>\7<f)t<f, Xt> — Z a;/(f)I{go(f)J7 in LQ(]P)M)
7=1



Proof: The proof is similar to that of [20, Theorem 1.6]. We omit the details here. a

Remark 1.3 Wheny(f) =1, Htl’1 reduces to Wy, and thus HY = We. Therefore by Theorem 1.2
and the fact that a1 = (f, $1)m, we get that, as t — oo,

6A1t<f’ Xt) — <f7 ¢1>mW<>07 m L2(]P>#)-
In particular, the convergence also holds in IP,-probability.

1.3.2 Main Result

For f € Cs and h € C., we define

o2 = /0 NS AT, )2, 1) ds (1.14)
and
pi = (Ah? ¢1) . (1.15)
For g(2) = Y pon,<a; 2ot bfd)g.k) () € C;, we define

Iig(z) == Z Zke)‘ksb?(ﬁg-k)(x) and 63 = /Oo e M <A(Isg)2,q$1>m ds. (1.16)

k22, <A1 j=1 0

Theorem 1.4 If f € Cs, h € Cc and g(z) = 3 _j0x, <x, Z?il bfqb;k)(x) € Cy, then UJ% < 00, pF < 00
and 63 < 00. Furthermore, it holds that, under P,(- | £°), as t — oo,

(9, Xt) = Dponpen, € 205 bé?Hgéj (h, X¢) (f, Xt) )
(61, X1) L Ve, X)) V{61, X0
& (W, Ga(9), Ga(h), Gi(f)), (1.17)

(6)\1t<¢17 ) Xt>7

where W* has the same distribution as W conditioned on ¢, G3(g) ~ N'(0, 83), G2(h) ~ N(0, p3})
and G1(f) ~ /\/'(O,JJ%). Moreover, W*, G3(g), Ga(h) and G1(f) are independent.

For f1, fo € Cs, define
a(f1, f2) :/0 MHA(T 1) (Ts f2), 1) m ds.

Corollary 1.5 If fi, fo € C, then, under P, (- | £°),

( (f.Xe)  (f2, Xe)

Ve Xe) V(e Xt)) L (GLf),Gif2), = oo,



where (G1(f1), G1(f2)) is a bivariate normal random variable with covariance

Cov(G1(f1), G1(f2)) = o(f1, fo)- (1.18)

Consider the special situation when both the branching mechanism and the branching rate function
are non-spatial dependent and ¢1 is a constant function (this is the case of Ornstein-Uhlenbeck
processes). If f1 = ¢§-k) and fo = ¢§{g/) are distinct eigenfunctions satisfying A\1 < 2 and Ay < 2\,
then G1(f1) and G1(f2) are independent.

Proof: Using the convergence of the fourth component in Theorem 1.4, we get

ox i <f17Xt> i <f27Xt> c
i ( p{ 91v<¢1,Xt> i 92v(¢1,Xt>} ¢ )

— P, (exp i<91f1+92f2,Xt> &
<¢17Xt>

L,
— exp{—2a(91f1+92f2)}, as ¢ — oo,

where

0(291f1+02f2) = /0 €A15<A(TS(01f1 +92f2))2;¢1>m ds

= 070}, +201020(f1, f2) + 6207,

Now (1.18) follows immediately. O
For h1, hy € C., define
p(h1, ha) = (Ahihg, $1)m.

Using the convergence of the third component in Theorem 1.4 and an argument similar to that in

the proof of Corollary 1.5, we get
Corollary 1.6 If hy, hy € C., then we have, under P,(- | £°),

( (hi, X)) (h2, X))
Vo, Xe) V{61, X0

where (G2(h1),Ga2(h2)) is a bivariate normal random variable with covariance

)i@mm@wmt%w

COV(GQ(hl), GQ(hQ)) = p(hl, hQ).

Consider the special situation when both the branching mechanism and the branching rate function
are non-spatial dependent and ¢1 is a constant function. If hy = ¢§k> and hy = ¢§I/€) are distinct

eigenfunctions satisfying A1 = 2\, then Ga(h1) and Ga(hz2) are independent.



n (k n k
For gi(z) = 3. 22 <A1 Z i bk¢' )(33) and g2(7) = Zkﬂ)\k<)\1 2321 C? § )(95)7 define

Blg1. gn) = /0 N ALgr) (Ing2), 1)

Using the convergence of the second component in Theorem 1.4 and an argument similar to that

in the proof of Corollary 1.5, we get

Corollary 1.7 If g1(z) = Yy, <x, orty 0561 () and ga(z) = Ypan, cn, Trky i\ (@), then
we have, under P, (- | £°),

<91;33>—'E:kaxk<xlegkktEZ?klbff{&] (92: Xt) = D pan<n AAktEDJ 1 ?ffh]
(1, X1) ’ (61, X)
d
— (G3(91),G3(92)),

where (G3(g1),Gs(g2)) is a bivariate normal random variable with covariance

COV(Gg(g1), G3(92)) = 5(91a g2)-

Consider the special situation when both the branching mechanism and the branching rate function
are non-spatial dependent and ¢1 is a constant function. If g1 = gzbg-k) and g = <Z>§.’fl) are distinct

eigenfunctions satisfying A1 > 2\, and A\ > 2\, then Gs(g1) and G3(g2) are independent.
Remark 1.8 If 2)\; < A1, then, it holds under P, (- | £°) that, ast — oo,

<<¢§.’“),Xt> _ 6—>\ktH§éj)
<¢17 Xt>1/2

e>\1t<¢laXt>a i) (W*a G3)7

where Gg ~ j\[( 7m( (¢§k))2’¢1>m>. In particular, for ¢1, we have

Xp) — e MWy
<6A1t<¢1>Xt>7 (<¢17 <in X;l/? )> i) (W*7 G3)7 1 — 00,

where G ~ N (0, fE z))? (d:c))

All the central limit theorems in [19] are consequences of Theorem 1.4. To see this, we recall
the following notation from [19]. For f € L?(E,m), define

fol@) = Y S de ()

k2 <A1 =1

fo@ = Y Y ds ()

k20> M j=1
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fo@) = f(x)— fo(x) = foy(2).

Then f(4) € C, f) € Cc and f(;) € Cs. Obviously, [19, Theorem 1.4] is an immediate consequence of
the convergence of the first and fourth components in Theorem 1.4. Now we explain that Theorems
1.6, 1.10 and 1.13 of [19] also follow easily from Theorem 1.4.

Remark 1.9 If f € L*(E,m) N L*(E,m) with \ = 2My(p), then f = fio) + fa)- Using the
convergence of the fourth component in Theorem 1.4 for f(, it holds under P, (- | £) that
(fa, Xt)  «q
— _)
t<¢17Xt>

Thus using the convergence of the first and third components in Theorem 1.4, we get, under P, (- |

&),

0, t— oo.

<€)\1t<¢1,Xt>, %) i} (W*, GQ(f(c))), t — 00,

where W* has the same distribution as Woo conditioned on £¢ and Ga(f(.)) ~ N (0, pfc(c)). Moreover,
W* and Ga(f(c)) are independent. Thus [19, Theorem 1.6] is a consequence of Theorem 1.4.

Remark 1.10 Assume f € L>(E,m) N L*(E, m) satisfies A1 > 2\().
If fey =0, then f = fay+ f(s)- Using the convergence of the first, second and fourth components
in Theorem 1.4, we get for any nonzero p € Mp(E), it holds under P, (- | £°) that, as t — oo,

(F. X0) = Casan, € W 008 af HE
o, L X 1) 5w g e

where W*, G3(f(s)) and G1(f()) are the same as those in Theorem 1.4. Since G3(f(s)) and G1(fq))
are independent, G1(fq)) + G3(f5)) ~ N (O’GJ%(Z) —I—Bff(s)). Thus [19, Theorem 1.10] is a conse-
quence of Theorem 1.4.

If fiey # 0, then as t — oo,

— n k.j
<<f(l) + Fisys Xty = Yonpen, € D0 afHooj> 4,
{1, X¢)

Then using the convergence of the first and third components in Theorem 1.4, we get

(<f’ Xe) = Yonpen, € Q;CH&J)
t<¢17Xt>

€>\1t<¢1,Xt>7 i> (W*a G2(f(c)))7

where W* and Ga(f(.)) are the same as those in Remark 1.9. Thus [19, Theorem 1.13] is a

consequence of Theorem 1.4.
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2 Preliminaries
2.1 Excursion measures of {X;,t > 0}

We use D to denote the space of Mp(E)-valued cadlag functions on [0,00). We use F to denote
the o-field generated by the sets {w € D : wy(B) < ¢}, where B € B(E) and ¢ € R. We assume
{X,P} is canonical, that is, X is the coordinate map X;(w) = w; on the measurable space (D, F).

It is known (see [17, Chapter 8]) that one can associate with {Ps, : x € E'} a family of measures

{N, : x € E'}, defined on the same measurable space as the probabilities {Ps_ : z € E}, such that
Ny (1 — e~ Xy = logPs (e~ X)) fe BF(E), t > 0. (2.1)

For earlier work on excursion measures of superprocesses, see [12, 16, 11].

Given Xy, let Ni(dw,dz) = Zfil Ny, (dw) be a Poisson random measure on the space D x E
with intensity N, (dw)X;(dz). Define
= / /wsNt(dw,d:U).
EJD

Then, given X3, the process {A%, s > 0} has the same law as {X¢ys,s > 0}. In fact, by (2.1) and
the Markov property, we have, for f € B;r (E),

Py [exp{(—f, Xi+s) HXt] = Px, [exp{(—f, Xs)}]
= exp{(logPs exp{(—f, Xs)}, X1)}

= o ([ [l - i) xifan)
= P[eXP{—[E/DUMQNt(d%dW)}\Xt]

= Plexp (—(f,A9)) 1Xi] - (2.2)
Thus, we have
B, [exp {i0(f, X1.0)} | X] = exp { /E /D (et ) _ 1)Nm(dw)Xt(dm)} . (2.3)

Now we list some properties of N,. The proofs are similar to those in [11, Corollary 1.2,

Proposition 1.1].

Proposition 2.1 If Ps_|(f, X;)| < oo, then

N$<f7 Xt> = P(Sz <f7 Xt) (24)

If Ps_(f, X;)? < oo, then
N (f, X¢)? = Vars, (f, X¢). (2.5)

11



Proposition 2.2
Nz ([[X¢l| # 0) = —log Ps, (|| X = 0). (2.6)

Remark 2.3 By (1.11) and Proposition 2.2, for each t > 0 and x € E, we have
0 < N (|| X¢|| #0) < oc.

Thus, we can define another probability measure Iglx on D as follows:

 N(BA{IX] #£0))
NB) = R £0)

2.7)

2.2 Estimates on the moments of X

In the remainder of this paper we will use the following notation: for two positive functions f and
gon E, f(x) < g(x) means that there exists a constant ¢ > 0 such that f(x) < cg(z) for all x € E.

First, we recall some results about the semigroup (7}), the proofs of which can be found in [20].

Lemma 2.4 For any f € L*(E,m), x € E and t > 0, we have

o0 ng
Tif(x)= Y e ™3 doM(2) (2.8)
E=~(f) J=1
and
& a0
lim MO, f(x) = Zla} ¢ (), (2.9)
J:

where the series in (2.8) converges absolutely and uniformly in any compact subset of E. Moreover,

for any t; > 0,

sup e)w(f)t‘th(x” < 6A~,<f>t1‘|f||2 (/ at1/2(m)m(da:)> ag, ($)1/27 (2.10)
t>t1 E

sup ePv(p+1= Ayt e/\wf)tth(w) _ f*(m)‘ < e>"y(f)+1t1||f||2 (/ at1/2(x) m(d:ﬂ)) (at, (x))l/Q.
t>11 E

(2.11)

Lemma 2.5 Suppose that {f;(x) : t > 0} is a family of functions in L*>(E,m). Iflim; s | fill2 =0,
then for any x € E,
. At _
Jin M) =

Recall the second moments of the superprocess {X; : t > 0} (see, for example, [17, Corollary
2.39]): for f € By(E), we have for any ¢t > 0,

PLF, X0 = @l X))+ [ / A(Tieof)?) () dsp(de). (2.12)

12



Thus,
Var,(f, X;) = (Vars (f, X), / / A(Ti—s f)?)(2) dsp(dz), (2.13)

where Var,, stands for the variance under P,. For any f € L*(E,m) N L*(E,m) and z € E, since
(Tr-sf)*(x) < eMETIT,_(f?)(2), we have

/Ot TJA(T;_sf)*](z) ds < MeM(t*S)tTt(fQ)(x) < 00.

Thus, using a routine limit argument, one can easily check that (2.12) and (2.13) also hold for
f e L*E,m)nLYE,m).

Lemma 2.6 Assume that f € L?>(E,m) N L*(E,m).

1) If M1 < 2X(py, then for any x € F,
v(f)

lim MY2Ps (f. X)) =0, (2.14)
—00
1tlim M Vars (f, X;) = ajchbl(a:), (2.15)

where o2(f) is defined by (1.14). Moreover, for (t,x) € (3to,00) X E, we have

MVars (f, X1) < ag(2)Y2. (2.16)

(2) If A1 = 2\ (5), then for any (t,x) € (3to,00) X E,
t~LeMVars, (f, X)) — pic*qﬁl ()| <t ay (2)"/?, (2.17)
where pfe* is defined by (1.15).
(3) If M1 > 2\ (y), then for any v € E,
lim e*Varg, (f, X;) = 77?‘($), (2.18)

t—o00

where -
(z) = /0 ePST(A(f*)2) (x) ds.

Moreover, for any (t,z) € (3tp,00) X E,
NPy, (f, X0 S agy ()2 (2.19)
Lemma 2.7 Assume that f € L*(E,m)NL*(E,m). If \i < 2\, then for any (t,z) € (3to, 00) X

E,
e)xltVaréz <f’ Xt> _ 0-120¢1 (l’)‘ 5 (e(Al—Q)\.Y(f))t + e()\1—>\2)t) a, (:L,)I/Q. (220)
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Proof: By (2.13), we get, for ¢t > 3ty,

M Vars, (f, X) — /0°° (AT f)?, 1) m dsgn (z)

1t ! _ ooe/\ls s (x
o /0 T AT )% () ds /0 (A(To /)2, 61)m dsir ()

t—to
S e)qt /
0
o

+€)\1t /tjt Tt—s[A(TSf)Q](x) ds + / 6A18<A(T8f)27 ¢1>m ds¢r (x)

t—to

= Vi(t,z) + Va(t,z) + Va(t, x). (2.21)

T [ A(T (@) — e M ENATS P, f)men (2)] ds

For Vi(t, z), by [20, (2.26)], we have
Va(t,z) < ePim2mnlta, ()2, (2.22)

For Vi(t,x), by (2.10), for s > t —tg > to, [Tof(z)] < e MW%ay ()2 By (1.9), ¢1(z) <

eMbo/2g, (x)V/2, Thus, we get

Va(t, z)

N

/ e()\1*2>‘w(f))5 d8<at0, ¢1>m¢1(x)
t—tg

< M2t (2)V2, (2.23)
Finally, we consider V;(¢t,x). By (2.11), for t — s > to, we have
Tis[A(Tof)?)(x) — e MO NATS), d)mdi (2)| S e 2O A(Tf)? aas ()12,
For s > tg, by (2.10), [T, f(z)| < e M3%az, (z)'/2. Thus,
IA(T: )22 < €707 ago |2-
For s < tg, by (1.8), it is easy to get
IA(Tf)? |2 < M|Tof 17 < M| £13.

Therefore, we have

t—to to
Vl(t, .’L') S 6)\175/ e—)\z(t—s)e—Q/\,Y<f)s ds a, (x)l/Z + e/\1t/ e—/\z(t—s) ds ag, ($)1/2

to 0
< (e(/\1—2/\w(f))t + e()‘l_AQ)t) ag (2)Y2. (2.24)
Now (2.20) follows immediately from (2.22), (2.23) and (2.24). O
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Lemma 2.8 Assume that f € L*(E,m)NL*(E, m) with \i < 2X\,(p) and h € L*(E,m)NL*(E, m)
with A1 = 2\y ). Then, for any (t,z) € (3tg, ) X E,

Covs, (eMY2(f, Xy), 712N (h, X)) S 7% (ayy ()2, (2.25)
where Covs, is the covariance under Ps, .
Proof: By (2.13), we have
[Covi, (M72(f, Xa), t™/2eM 2 (h, X))
AL (Vars, ((f + ), X0) — Vs, (] — ), X2)

— t—l/Qe)\lt

/ Ty [A(TL ) (T,h)] (2) ds

0

IN

12t ( [ naimn@mi@as+ [ A ds)

_tO

= Va(t,z) + V5(t, o).
First, we deal with Vi(¢,x). By (2.10), for t — s > o,
Ti—s[A[(Tof ) (Tuh)[(z) S e AT f ) (Toh) |2 (as, () 2.
If s > tg, then by (2.10), we get
JAT ) (T2 S e 2200 ayy 2.
If s < tg, by (1.8), it is easy to get
IAT ) (Tsh)ll2 < MITsflla| Tshlla < Me* |||l 4.

Therefore, we have

t—to to
Vi(t,z) < tH/2eMt </ e M (E=8) = (M/2H A s )s ds+/ e~ M=) ds> ag, (x)'/?

to 0
t—to to
412 </ e()\l/Q)‘w(f))sds—{—/ eA13d5> agy (x)"?
to 0
S t_l/Qato(x)l/Q' (220

For V5(t,x), if s >t — tyg > 2tg, then by(2.10), we get
t
Valti) £ RN [ ENOIT, () (a) ds
t—to

t
t_1/2€(>\1/2_/\7<f))t/ 0 €(>\1/2+/\7<f))STS(azto)(l') ds
0
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t
< t1/26(>\1/2)W(f))t/OTS(UQto)(x) ds
0

St P a (@) V2. (2.27)
The last inequality follows from the fact that
to
| L) @) ds S any o) (2.9
0

which is [20, (2.25)]. Therefore, by (2.26) and (2.27), we get (2.25) immediately. 0

3 Proof of the main theorem

In this section, we will prove the main result of this paper. We first recall some facts about weak
convergence which will be used later. For f : R? — R, let ||f||z := sup,, [ f(x) — fW)l/llz — vl
and ||fllsL := | flleo + || f||z- For any distributions v; and vy on R%, define

Blvr, 1) 1= sup{'/fdyl—/fdyg

Then ( is a metric. It follows from [9, Theorem 11.3.3] that the topology generated by f is

c I fllsL < 1}-

equivalent to the weak convergence topology. From the definition, we can easily see that, if 14 and

vy are the distributions of two R%valued random variables X and Y respectively, then

B, ve) S EIIX - Y| < VE[X =Y. (3.1)

The following simple fact will be used several times later in this section:

N A
2 S = G ) (3:2)

Before we prove Theorem 1.4, we prove several lemmas first. The first lemma below says that
the result in Lemma 1.1 also holds under N,. Recall the probability measure N, defined in (2.7)
and that

Y =Ml X)), t>o0.

Lemma 3.1 Forx € E, the limit
k,j : k,J
Ay = Am H, ’
exists Ny-a.e., in LY(N,) and in L*(N,).
Proof: On the set {||X1|| = 0}, we have H%/ = 0. Thus, we only need to show Hr exists

N,-a.s. and in L2(N,).
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For t > s > 1, since {|| X1|| = 0} C {||X;s]| = 0} C {||X¢]| = 0}, we have
Na (@7, Xas [ X1l # 01F) = Na({6"), Xo)|F) = P, (87, X3) | Fo) = e =061, X,
which implies {Hf Jt > 1} is a martingale under N,. By (2.5), we have

N (68, X% 11| # 0) = Na((6$"), X0)?) = Vars, (61, X,).

Then by Lemma 1.1, we easily get limsup,_, Ng;(]iﬁf”)2 < 00, which implies HY/ exists Ny-a.s.

and in L*(N,). O
Lemma 3.2 If f € Cs, then 0]% < 0o and, for any nonzero p € Mp(E), it holds under P, that
(M (o1, X0}, ML X)) S (Woew GUUAVIV) .t = o0,
where G1(f) ~ N(O,O'J%). Moreover, Wy, and G1(f) are independent.
Proof: We define an R%-valued random variable U (t) by
U1(t) = (M or, X0, M2, X)) (3.3)
Let s,t > 3tg and write
Ur(s +1) = (0 9, Xpa), M2, X))
First, we consider another R?-valued random variable Us(s,t) defined by
Us(s,t) := (€A1t<¢1,Xt>, MUTIR(F Xy o) — eMUTI2(T Xt)) :

Recall that, given X;, X, ¢ has the same law as [, [y wsNy(dz, dw). We claim that, under P,,,

Usa(s,t) KN (WOO, MG1(3)> , ast— oo, (3.4)

where G1(s) ~ N (0, 0]20(5)) with 0120(5) to be given later. In fact, denote the characteristic function
of Us(s,t) under P, by x(61,602,s,1):

5(917 92) S, t)
= P, (exp {z‘alem@l, X;) + 0020 F X, ) — i0peM (T ¥, Xt>}>

= PH (exp {’igle)\lt(qf)l, Xt>

+ /E /D (exp {¢92eh<t+s>/2< f, w3>} 1= ifpeM /2, w8>)Nx(dw)Xt(d:n)}) . (3.5)
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where in the last equality we used the Markov property of X, (2.3) and (2.4). Define
1
RufO,2) = [ (exp{(i8 ) =1 i6(f,0) + 36,07 ) Mol
D
Then, by (2.5), we get

5(91, 92, S, t)
= IP)# (exp {i01€A1t<¢1, Xt>

‘|‘/ / (—;e)‘l(t+s)9§<f, WS>2> Nm(dW)Xt(d$) + <Rs(€)\1(t+s)/292a ')7 Xt>}>
EJD
— IP)N (exp {i@le)\lt<(b1,Xt> — %nght(vs, Xt> + <R8(e)\l(t+8)/2927 )7Xt>}) ’

where V(z) := eM*Vars, (f, X,). By (3.2), we have

A (t+s)/2
’Rs(e)q(tJrs)/QeQ’x)’ < 9%6)\1(t+s)N$ ((,ﬂ ws>2 (6 92<f’ (Us> A 1))

6

A1t/2
_ ngAltNx (YSQ <926 y Y, A 1)) 7
where Y, := eM/2(f w,). Let

)\1t/2
h(x,s,t) =N, (YSZ <%YS A 1)) '

We note that h(z,s,t) ] 0 ast T oo and by (2.16), we get

h(z,s,t) < Ny (Y2) = Vars, (Y2) < ay,(2)/? € L2(E, m).

~

Thus, by (2.9), we have, for any u < t,

lim sup eAltTt(h(-,s,t)) < lim sup e’\ltTt(h(~, s,u)) = (h(-, s,u), p1)mo1(x).

t—o00 t—o00

Letting u — 0o, we get limy o, €Ty (h(-,s,t)) = 0. Therefore we have
PH <RS(€)\1(t+S)/2927 ')7Xt> < egeAltﬂ(h('a S7t)) - 07 as t — 0o,

which implies
lim <Rs(e/\1(t+s)/292, ), X¢) =0, in probability.

t—o0

Furthermore, by Remark 1.3 and the fact Vi(2) < ay, (2)'/? € L*(E,m) N L*(E, m), we have

lim eMY(V,, X;) = Uﬁ(s)Woo, in probability,

t—o00
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where szc(s) := (Vs, ¢1)m. Hence by the dominated convergence theorem, we get

lim k(61,602,s,t) =P, <exp {101 W} exp {—;Ggaﬁ(s)Ww}> , (3.8)

t—o00

which implies our claim (3.4).
Since eM ) (p1, Xi1s) — €M1, X;) — 0 in probability, as t — oo, we easily get that under
P,

Us(s,8) i= () 01, Xeaa), V2, Xpa) = (T, X)) S (Woe, VWG (9)),

as t — 0o. By (2.15), we have limg_, o Vi(x) = afcqbl(a:), thus limg_, o JJ%(S) = JJ%. So

lim 3(G1(s), G1(f)) = 0. (3.9)

S§—00

Let D(s + t) and D(s,t) be the distributions of Uy(s 4 t) and Us(s, t) respectively, and let D(s)
and D be the distributions of (W, vWsG1(8)) and (Weo, vWeoG1(f)) respectively. Then, using
(3.1), we have

limsup B(D(s +t),D) < limsup[B(D(s+t), 5(5, t)) + 5(5(5, t),D(s)) + B(D(s),D)]

t—o00 t—o0

< Tlimsup(P,(eM V2T, £, X,))?)2 + 0 + B(D(s), D). (3.10)

t—o00

Using this and the definition of limsup,_, .., we easily get that

lim sup B(D(t), D) = limsup B(D(s + t), D) < limsup(P,,(eMF)/2(T, f, X,))*)'/? + B(D(s), D).

t—o00 t—o00 t—o00

Letting s — 0o, we get

limsup 5(D(t), D) < limsup lim sup(IP’u(e)‘l(Hs)ﬂ(Tsf, X))2)V2

t—o0 S§—00 t—o0

Therefore, we are left to prove that

lim sup lim sup e)‘l(t'*'s)]P’#((Tsf, X)) =0. (3.11)
§—00 t—o0
By (2.13) and (2.10), we have for any = € F,
t
e/\l(tJrs)V&r&z (Tsf, X1) = et / Tt—u[A(Ts-i-uf)z]('r) du
0

t
= €(>\12>‘w(f))s/ eM=2muhl=ur 1AM EHIT L £)?)(2) du
0

AN

t
e(AM1=22(p))s </ e()‘1*2)‘w(f>)“e)‘1(tfu)Tt—u[a2to](x) du)
0
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and

t
/ e(h*”‘ﬂy(f))ue)‘l (tiu)Tt—u (G’?to ) (:IZ) du
0

t—to t
B (/ + [ )e“l”“f”“e“t“m—u(agto)(x) du
0 t—to

t—to to
e (@)1 [ OB T, () o)
0 0

N

to
< %mwﬂ+/ To(az)(@) du < agy (2)'7>.
0

The last inequality follows from (2.28). Thus,

lim sup e/\l(H'S)Varu(Tsf, X;) = limsup et (tt+s) (Vars (Tsf, X4¢), i)
t—00 t—00
S By )12, )

By (2.14), we get
lim MOEIPRUTf X = lim MORT ) ) = 0

Now (3.11) follows easily from (3.12) and (3.13). The proof is now complete.

Lemma 3.3 Assume that f € Cs and h € C.. Define
Vi(t) := Y22 (h X)), Ya(t) := MYR(F,XL), >0,

and
Yy = Yi(t) + Ya(t).

Then for any ¢ >0, 6 >0 and x € E, we have
lim Ps, <|Yt|2; Y| > ce‘”) ~0.
t—o0

Proof: For any € > 0 and n > 0, we have

Ps, (W% (%] > ee®) < 2Py, (IVi(0)% V3] > ce™) + 2Py, (Va(t) % |Yi] > e

IN

+2Ps, (|Y2(t)|2§ \Yz(t)|2 > 77) + 2nPs, (|Yt| > ce‘%)
= Ji(t, 6) + Ja(t,€) + J3(t,m) + J4(t, n).

Repeating the proof of [20, Lemma 3.2] (with the S;f there replaced by Yi(t)), we can get

. _ . 2, ot\ _
Jim Ji(t,€) = 2 Jim Py, (¥3(1)[%[Yi(8)] > ee™) = 0.

20

oP5, <\Y1(t)]2; Y1 ()] > ee&> + 262e20tp; <|Yt| > ce‘”)

(3.12)

(3.13)

(3.14)

(3.15)



By (2.14) and (2.15), we easily get
. 2y _ 2
lim Ps, (V2 (0)?) = o (@) (3.16)
By (2.17) and the fact Ps, (V;(t)) = t~/2h(x), we get
Jim By (Va()?) = lim (Varg, (Vi(0) + ¢~ 02(2)) = g ().
Thus,

lim sup Ps, ([¥;[*) < 2 lim Py, (V1(1)]* + [V2(1)]*) = 2(0F + pp) 1 (). (3.17)

t—o00

Thus by Chebyshev’s inequality, we have

lim limsup Ja(t,€) < 2lim e?c¢ 2 limsup Ps, (|¥;]?) = 0. (3.18)

e—0 t 500 e—0 t—ro0

For Js(t,n), by Lemma 3.2, Y5(t) KN G1(f)VWeo. Let Wy (r) = r on [0,7 — 1], ¥,(r) = 0 on
[n, 00|, and let ¥, be linear on [ — 1,7]. Then, by (3.16),
lim sup Ps, ([Ya(O); [¥2()I" >n) = limsup (Bs, (Y2(0)") = Ps, (Y20 2" < )
—00 —00
< limsup (B, ([V2(t)) = Ps, (T4(1%2(1)"))
—00

= ojp1(z) = Ps, (Vy(G1(f)*Wao)) -

By the monotone convergence theorem and the fact that G1(f) and W, are independent, we have
nligglo%z (Uh(G1(f)*Weo)) =Ps, (G1(f)*Wao) = Ps, (G1(f)?) Ps, Weo = 0561(x).

Thus,
lim limsup J3(t,n) = 0. (3.19)

=0 tsoo

By Chebyshev’s inequality and (3.17),

lim sup Jy(t,1) < 2nc~2 limsup e~ 2%*P;, (|Y;]?) = 0. (3.20)
t—o0 t—r00
Thus, (3.14) follows easily from (3.15), (3.18), (3.19) and (3.20). ]

Lemma 3.4 Let h, f and Y; be the same as in Lemma 3.3. For any ¢ > 0 and 6 > 0, we have

lim N, (|Yt|2; Yy > ce‘”) ~0. (3.21)
t—o00
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Proof: Fort > 1,
N, (Y32 1Yl > ce) = N, (|¥2l%5 ¥l > e, |1 Xa| #0)

Thus, we only need to prove
lim N, (|Yt|2; Yy > ceét) ~0.
t—00

Recall that, given Xo = 6, No(dw,dy) is a Poisson random measure with intensity Ny (dw)d.(dy)

A?:/ /tho(dw,dy).
E JD

We know that {AY,¢ > 0} has the same law as {X;,¢ > 0} under Ps, . Define

and

A 3—/ ﬁtho(dw,dy) and Yy := ¢t 1/2eM2(h A9) 4 M2 (f AD)Y,
EJD

where D := {w : |jwi|| # 0}. It is clear that for ¢ > 1, A9 = A?. Since N, (D) < oo, AY is a compound

Poisson process and can be written as
K
A0 _ YJ
Af = E :Xtv
j=1

where )Z'tj,j = 1,2,... are i.i.d. with the same law as X; under N, and K is a Poisson random
variable with parameter Nw(]]N)) which is independent of )N(g,j =1,2,... . Let

Y] =7 PN, X + (1 X

Then, )N/tj is independent of K and has the same law as Y; under N,. Therefore, for t > 1,

Py, ([Ye[*; [Yi] > ce®) P(|Y5 Y] > ce”|Xo = 6u)

> PV Y > e, K = 11X = )
= P(K = 1|Xo = 6:) P(V [ [V > ™| Xo = 6.)
= Na(B)e ™ OR,(|ViPs V] > o).
Now (3.21) follows easily from Lemma 3.3. O

Lemma 3.5 Assume that f € Cs and h € C.. Then

<6>\1t<¢)1>Xt>7t_1/26>\1t/2<h,Xt>,e>\1t/2<f7 Xt)) 4, (Woo, vV WooGa(h), \/WooGl(f)) , (3.22)

where Ga(h) ~ N(0, p37) and G1(f) ~ N(0, 0]20). Moreover, Woo, G2(h) and G1(f) are independent.
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Proof: In the proof, we always assume ¢ > 3tg. We define an R3-valued random variable by
U1(t) = (M or, Xi) 172N 200, X), M2 (F, X))
Let n > 2 and write
Ur(nt) = (47 (91, X, (nt) /2N, Xor), 72, X))
Now we define another R3-valued random variable U (n,t) by
Us(n,t)

Mnt/2((p X — (T b, X
(6)\1t<¢1,Xt>’ € (< ((nt_> 1)t<>1(/2 1)t t>),€>\1nt/2(<f, Xnt> _ <T(n—1)tf7 Xt>)> )

We claim that
Us(n,t) (Woo, VWaeGa(h), \/WooGl(f)) , ast— oo. (3.23)

Denote the characteristic function of Us(n,t) under P, by k2(61,62,603,n,t). Define
Yi(t, 02) := 0ot /2N 2 (0, X)), Ya(t,03) := 03eMY2(f, Xy), >0,

and
Yi(62,03) = Yi(t,02) + Ya(t,03).

Using an argument similar to that leading to (3.5), we get
/62(91, 02, 03,1, t) = P# <eXp {ieleht(gbl’ Xt> + / / (exp {Z'ez\1t/2y'(n_1)t(92, 93)(0.2)}
EJD
1= i€V, 1), (02, 03) (w) ) Na(dw) Xi(do) } )
Define

Rl(2,0) = /D <exp{z‘eyt(92, 05)(w)} — 1 — i0Yi(0s, By)(w) + %92(1@(92, 03)(w))2> N, (dw)

and
J(n,t,x) = /D (exp{iex\lt/znnil)t(ez, 63)(w)} — 1 — Z'e/\lt/2Yv(n71)t(92; 93)(w)> N, (dow).
Then
J(n,t,x) = 7%e>\1tNx(Y(n—1)t(92, 93))2 + R/(n_l)t(:v, e>‘1t/2),
and

a6, 02, 03,m,1) = B, (exp {i61eM (61, X) + (J(n.t,), X0} })
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Let V;"(x) := Ng(Y{n—1y¢(62,03))*. Then

(J(TL, t, ')7 Xt>

1

) MUV, Xo) + (Rl 1y, (€M), Xo)
= Ji(n,t) + Ja(n,t).
We first consider Ji(n,t). By (2.5),

Vi"(z) = Vars, (Yv(nfl)t(e% 03))

Vars, (Yi((n — 1)t,02)) + Vars, (Ya((n — 1)t,63)) + Covs, (Yi((n — 1)¢,602), Ya((n — 1)t, 63)).

So by (2.17), (2.20) and (2.25), we have, for ¢ > 3ty,

V" () — (0307 + 3Uf)¢1( )|

< |Varg, (Yi((n — 1)t,02)) — 03p7¢n ()| + |[Vars, (Ya((n — 1)t, 03)) — 030761 ()|

-+ ‘(COV(SI (Y1(<TL — l)t, 92), YQ((TL — l)t, 93))’

< ( A1=20y(p)(n=1)t | ,(A=A2)(n=1)t | ((n — 1),5)*1/2 +((n— 1)t)*1) at, (az)l/Z. (3.24)

Thus, we have that as t — oo,

M|V (@) — (0307 + 030F) 1 ()]

Xy)
5 ( (M =22y () (n=1)t + e(>\1—>\2)(n—1)t + ((TL _ 1)t)—1/2 + ((n o 1)t)_1> 6)\1t<(at0)1/2 Xt> 0
in probability. It follows that

li)m Ji(n,t) = tlgn —ie’\lt(ﬂ ps+ 03af)<gb1,Xt> = —7(0 P2+ 030f)WOO in probability. (3.25)
For Jy(n,t), by (3.2), we have, for any € > 0,

1 —
’R/(n_1)t(a:,e/\1t/2)| < 5 NI (’Yn—l)t(%,@g)lg;\Y(n,l)t(92,63)| < ce m/z)

+eM'N, (|Y 1(02,03) %5 [Y(—1): (62, 03)] > 6641”2)
6
AltNx (IV(n—1y(02,03)[%)

+MIN,, (|Y

IN

£(02,03) %5 [Y(—1)¢ (62, 63)] > €€_A1t/2)
= (V@) + M (@),

where FJ*(z) = Ny (|Y(,- 1) (02, 03)[% |[Yin—1)¢(02, 05)| > ee=*1%/2). Note that

6A1tPu<Ftn($)a Xi) = 6Alt<E(Ftn)a 1)

(3.26)
It follows from Lemma 3.4 that lim; .. F}*(x) = 0. By (3.24), we also have

F(z) < V() S ar(2)'7,
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which implies that ||F{*||]2 — 0 as t — oo. By Lemma (2.5),

lim eMUT(F) = 0.

t—o00

Note that eM!T,(F') < eMTy(a 1/2) S a%o/ . Since p has compact support and ay, is contin-
uous, we have (ay,p) < oo. By (3.26) and the dominated convergence theorem, we obtain
limy—o0 M!P, (F7*(z), X;) = 0, which implies that eM!(F/*(x), X;) — 0 in probability. Further-
more, by (3.25), we have that as t — oo,

%ekltﬂ/t”, X)) — (0 P2+ 03af)Woo in probability.
Thus, letting € — 0, we get that as ¢t — oo,

Ja(n,t) — 0 in probability. (3.27)

Thus, when ¢ — oo,

exp {(J(n,t,-), X¢)} — exp { (0 ph + 030f)W } (3.28)
in probability. Since the real part of J(n,t,x) is less than 0, which implies
lexp {(J(n,t, ), X)} | < 1.
So by the dominated convergence theorem, we get that
tli)rélo k2(01,02,03,m,t) =P, [exp {if1 W} exp {—(0 pr + 93Uf)W H , (3.29)

which implies our claim (3.23).
By (3.23) and the fact e*™ (g1, Xp1) — eMi{py, X;) — 0, in probability, as t — oo , we easily
get

U3(n,t)

Mnt/2((h X0 — (Ti_1yeh, X
= (e)\1nt<¢1’ X’nt), ‘ (< (2t)1/<2 (n—1)t t>) ) e/\lnt/2(<f7 Xnt> - <T(n—1)tf7 Xt>)>

LA (Ww’ \/’LT\/@GQ(@, mGl(f)> :

Using (2.17) and the fact P, (h, X;) = (Tyh, p) = e MY2(h, 1), we can get

(nt) MM T 1yh, X)) = (nt) " 'eMVary(h, Xi)? + (nt) " M (P (R, Xy))?
< 1 4th. (3.30)
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Using (3.12) with s = (n — 1)¢, and then letting t — oo, by (2.14) we get
MNP (Tin1yef, Xe))? S €M TPR) O g (2) V2, ) 4+ XU (T f, 1) — 0. (3.31)

Let D(nt) and D"(t) be the distributions of Uy (nt) and Us(n,t) respectively, and let D" and D

be the distributions of <Woo, L Waa G (h), /W G ( f)) and (Woo, v/WasGa(h), Voo G1 (f))

respectively. Then, using (3.1), we have

lim sup B(D(nt), D) < limsup[B(D(nt), D"(t)) + B(D"(t), D") + B(D", D)]

t—o00 t—o00

1/2
< nmsup((nt>—1e*1"tPu<T<n_1>th,Xt>2+eA1”tPu<T(n_1>tf,Xt>2) +0+ (D", D).

t—o00

(3.32)
Using the definition of limsup,_, .., (3.30) and (3.31), we easily get that
limsup 3(D(t), D) = limsup B(D(nt), D) < ¢/+/n+ B(D", D),
t—00 t—00

where ¢ is a constant. Letting n — oo, we get limsup,_,., B(D(t),D) = 0. The proof is now
complete. O
Recall that

g@)= > S 6e@) and Lg@) = Y Y kel (a).

k22, <A1 j=1 k22 <A1 j=1

Define

Hoi= > i DYHET.

k22, <A1 j=1

By Lemma 3.1, we have, as u — 00
(I.g, Xu) = Hso, Ng-ae., in L}(N,) andin L*(N,).

Since Ny (1,9, Xu) = Ps, (Iug, Xu) = g(z), we get

N (Ho) = g(x). (3.33)
By (2.5) and (2.13), we have
ng 2
Ny (I,g, Xu)? = Vars, (I,g, X,) :/ To|Al >0 D Mkl | | (a)ds, (3.34)
0 k:2xp<Ap j=1
which implies
2
e Nk
N, (Hy)? = / T (AL Y. D eMvheh | | (x)ds. (3.35)
0 k:22p <A1 j=1
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By (1.9), we have that for any = € F,

> Z M laf][ @ (x)] S Mg, ()2,

k2 <A1 j=1

where K = sup{k : 2\, < A1}. So by (3.35), (2.10) and (2.28), we have that for any = € F,

Ny (Hoo)?

174N

/ 6(2>\K_)\1)5€)\15T8(a2t0)(:L') ds
0

to o0
- </ +/ ) PN NT, (agy, ) () ds
0 to

to [e’s)
/ Ty(ag,)(x) ds + / A=A gg gy ()12

0 to
< ag(2)Y? € L2(E,m) N LY(E,m). (3.36)

N

Now we are ready to prove Theorem 1.4.
Proof of Theorem 1.4: Consider an R*-valued random variable Uy(t) defined by:

Ua(t)

At Ait/2 Atk rrkyj eMU2(h, Xy) Ait/2
€ <¢17Xt>7 € g Xt Z Ze b H ’ t1/2 , € <fa Xt)
k2 <A1 j=1

To get the conclusion of Theorem 1.4, it suffices to show that, under P,

Us(t) % (Woes VIWocGs(9), VWocGa(h), VWG (1)) (3.37)

where Woo, G3(g), G2(h) and G1(f) are independent. Denote the characteristic function of Uy(t)
under P, by r1(61,02,03,04,t). Then, we only need to prove

tlg})lo k1(01,02,03,04,t) =P, <exp{z€1WOO} exp {—(9259 + 02p7 + 94Uf)W }) . (3.38)
Note that, by Lemma 1.1, 3 ;o\ Z?il e‘Aktbé?H&j = limy— o0 (Jug; Xt4u), Py-a.s.. We have
K1(6h, 02,05, 04,1)
= lim P, (exp {i@le)‘lt<¢1,Xt> +i02eMY2((g, X3) — (1ug, Xoru))
Fif5t 12N (LX) + 04N, Xt>}>

~ lim P, <exp {i@le’\lt<¢1,Xt>+z’03t_1/26’\1t/2<h,Xt>+i94e“t/2<f,Xt)+<Ju(t,~),Xt>}),
U— 00
(3.39)
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where

Tu(t.) = [ (exp {=iboM 2 Tuguw) | — 14 022 Lg.00,)) M)
D

The last equality above follows from the Markov property of X, (2.3) and the fact

/D (Lug, wa)No(dw) = Py, (Tug, Xa) = 9(2).
We will show that

lim Ju(t,z) = N, (exp {—z'QQeMt/?HOO} 1+ nge’\lt/QHoo> — J(t,z). (3.40)

U— 00

For u > 1, |e—i92€“t/2(1u97wu> — 1] < 21y x, 20y (w). It is clear that Ny (|| X1[| # 0) < co. Thus, by

Lemma 3.1 and the dominated convergence theorem, we get

lim A (exp {7i926’\1t/2<lug,wu>} — 1> Ny (dw) =N, (exp {*’L'92€>\1t/2Hoo} — 1) .

U— 00

Since Ny Hoo = Ny (9, wy), (3.40) follows immediately .
By (3.2), we get

1 1
sup |J,(t,x)| < §0§ekltsupNx<Iug,Xu>2 < §9§ekltNxH§O < 0.
u>0 u>0

Note that, by (3.36),

Pu(N.H2, X,) S Pula)? X)) = (Toay!?, 1) < oo,

which implies that (N.H2 , X;) < oo, P,-a.s. So, by the dominated convergence theorem, we get

lim (J,(t,), X;) = (J(t,"), X;), P-as.

U— 00

Using the dominated convergence theorem again, we obtain
/11((91, 92, 03, 94, t) = PM (exp {i916A1t<¢1, Xt> + i03t71/2€)\1t/2<h, Xt> + 1946/\1t/2<f, Xt> + <J(t, ~), Xt> }) ’

Let
1
R(6,z) =N, <exp {i0H.} — 1 —ifH,, + 2921{30) :

Thus, )
(J(t,), Xe) = = 503N (VLX) + (R(=eM05, ), X),

where V(z) := N, (Hx)?. By (3.2), we have

>\1t/20 H
|R(—e 205, )| < eMPO2N, (yHooP <€62’°°| A 1>> : (3.41)
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which implies that

B[ (R-eM202,), X0 < 63 MU TR 1), o),

)\1t/2 H
k(z,t) := N, (|Hool2 <€062’OO‘ A 1>> .

It is clear that k(x,t) | 0 as t 1 co. Thus as t — oo, eM!T}(k(-,t))(x) — 0, which implies

where

tli>r£10<R(—e’\1t/202, -), X¢) =0 in probability. (3.42)
Since V € L*(E,m) N L*(E,m), by Remark 1.3, we have
Jim MUV, X)) = (V, ¢1)mWae in probability. (3.43)
Therefore, combining (3.42) and (3.43), we get
lim exp {{J(1, ). X)) = exp{—%@%(\/, S1)mWal  in probability. (3.44)
Since the real part of J(¢,x) is less than 0,

lexp {(J(¢,"), Xe)}| < 1. (3.45)

Recall that lim;_,o. eM(¢1, Xi) = Woo, Py-a.s. Thus by (3.44), (3.45) and the dominated conver-

gence theorem, we get that as ¢t — oo,

1
Py (oo { (102 = 308UV 0n)n ) 0010 +i0ar 20020 1)+ 0201, X0 |
—K1 (017 025 03) 947 t)‘

< Pulexp{(J(t,), Xs)} —exp {—;agw, q51>me)‘1t<¢)1,Xt)}‘ — 0. (3.46)

By Lemma 3.5,

lim P, <exp { <¢91 — %950/, ¢1>m> M1, Xy) + i0st 722 (h, X) + i0,eMY2(f, Xt)}>

t—o00
_ . 1o 29 p2.2
= P, | exp{ihiWx}exp 5 (05(V, ¢1)m + 0307 + 940f)WOO ) (3.47)

By (3.35), we get
(V, G = / e (A(Lg) 1), ds.
0

The proof is now complete. O
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