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Abstract

Backgroud: Epistatic Miniarray Profiles (EMAP) enables the research of genetic interaction as an importan-
t method to construct large-scale genetic interaction network. However, high proportion of missing values frequently
pose problems in the EMAP data analysis since they hinder useful information in the datasets. While there have been
some imputation approaches available to EMAP data, we adopted an improved SVD modeling procedure to impute
the missing values in EMAP data, which results in a higher accuracy rate comparing to existent methods.

Results: The improved SVD imputation method adopting an effective soft-threshold to SVD approach which has
been showed to be the best model to impute the genetic interaction data comparing a number of advanced imputation
methods. Imputation methods can also improve the result of clustering on EMAP dataset, where more meaningful
modules, known pathways and protein complexes could be detected after applying our imputation method on EMAP
dataset.

Conclusion: The results demonstrate that, while missing data are complicating unavoidably in EMAP data, we
can complete the original dataset by the Soft-SVD approach to accurately recover the genetic interactions.

Keywords: Soft-SVD imputation EMAP

1. Introduction

Genetic interactions refer to the phenomenon whereby the mutation phenotype of two genes differs to the super-
imposition effect of two single mutations [1]. In budding yeast and fission yeast, genetic interactions can be acquired
using high-throughput technologies Epistatic Miniarray Profile (EMAP) platform [2]. EMAP experiment construct
double deletion strains systematically, by crossing query strains with a library of test strains. Then measure the colony
size of the double mutant stains to get the S score which can indicate the genetic interaction: synthetic sick/lethal or
alleviating [3]. In EMAP dataset, each gene in the query (or library) has its genetic interaction spectrum constructing
by the genetic interaction S score with other genes in the library (or query). Researchers could exploit biology path-
ways and protein complexes by clustering the S score matrix.

However, one common characteristic of EMAP experiment is the significant high propotion of missing values -
even up to 35% - that can reduce the effectiveness of the data analysis techniques such as cluster analysis, even prevent
the use of some matrix factorization techniques such as SVD or PCA. One reason leading to the missing entries is that
the genetic interaction strengths could not be measured by the high-throughput technologies, in addition some genetic
interactions would be subsequently filtered due to unreliability.

The problem of missing values in genetic interaction datasets has been discussed before, but few technologies are
used to impute quantitative epistasis values in EMAPs [4]. In previous papers, people improved some techniques used
by imputing values in gene expression datasets and apply them in EMAP data. Four general strategies are considered
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in EMAP data - three local methods (nearest neighbor-based) and one global method. Previously, in order to improve
the accuracy of missing value predictions, symmetric characters of datasets are involved into these original imputing
techniques[4][5]. However, with the recent development of EMAP technology and the need of practical application,
most of EMAP datasets are asymmetric[6][7][8], so symmetric characteristic could not be used in predicting missing
entries on an increasing number of new EMAP experiment datasets. We extended original SVD method by giving
it a soft threshold and some changes to optimization functions and restricted conditions [9]. This method which can
be called Soft-SVD has been used in “Netflix” competition [9], image recovery [9] and eQTL [10], and has been
demonstrated as a best efficient algorithm in these fields. Soft-SVD algorithm is not restricted by symmetry, so it
can be used in widespread EMAP datasets. We introduced this methodology into imputing missing values in EMAP
datasets, and we call it Soft-Impute in the following.

In this paper, we systematically stated how Soft-Impute method applied on EMAP datasets imputation, and then
we conducted a detailed comparison of our method with other general imputing techniques, showing the marked im-
provement in estimation performance. Beyond the imputation accuracy, we evaluated the methods in terms of their
ability to detect genetic interaction modules in which genes have similar interaction profiles and involved in the same
physical complex or pathway, enriched in GO terms. We demonstrate that after imputing missing entries in EMAP
score matrix, the downstream analysis: hierarchical clustering results are highly improved, and more significant ge-
netic interaction modules can be exploited, which are enriched in the known discoveries.

The Soft-Impute methodology adopts the soft threshold to SVD algorithm, and proposes the nuclear norm to re-
sult in a convex optimization problem. It takes advantage of the relevance in dataset to impute missing entries. This
algorithm is suitable to the dataset where there are modules in which entries are with high correlation. In this paper
we constructed a synthetic dataset with low rank to test the effect of Soft-Impute and compare the imputation accuracy
of different imputation methods. EMAP datasets store genetic interaction spectrums, where genes in the same protein
complex or biology pathway tend to have the similar genetic interaction spectrums. So in EMAP data matrixes there
are several modules with high correlation. As a whole, the matrix is low rank which satisfy the request of Soft-Impute
algorithm for datasets. We apply the proposed method to three public EMAP datasets.

The missing value problem is not new in genetic interaction datasets. We introduced an appropriate methodology:
Soft-Impute to solve this problem and to promote the efficiency of downstream data analysis at the same time.

2. Materials

2.1. Epistatic miniarray profile (EMAP)

The genetic interaction datasets here we used are from EMAP analysis. Three EMAP datasets are used in our
analysis, including a dataset studying the early secretory pathway (ESP) [11], and a dataset studying the chromosome
biology (CHR) [12] for budding yeast, as well as a genome-wide EMAP profile for fission yeast [13]. The first two
datasets are symmetric matrix, which query genes are the same as library genes. There are 424 genes with about
80000 pairwise measurements in ESP dataset, containing about 7.5% missing entries, while there are 743 genes with
about 200000 pairwise measurements in CHR dataset, containing about 34% missing entries. On the contrary, the
genome-scale genetic interaction matrix of Fission yeast is not symmetric, containing 953 alleles of 876 genes against
a mutant library of more than 2000 deletions, resulting in an EMAP profile with 1.6 million genetic interactions, with
16% missing entries.

2.2. Synthetic data

We created a synthetic dataset with low rank to realize Soft-Impute algorithm and compare it with other impu-
tation methods. We assume there are k modules in synthetic dataset, in which entries in the same module are with
higher relevance, on the contrary, entries not in the same module are with lower relevance. We constructed a dataset
of 250 elements representing query genes in 500 dimension standing for library genes as following:



1. We first construct a vector of 500 elements randomly chosen from ESP dataset. Denoted by Xl) ={ay,as, ..., asoo}

(a) Multiply by Gaussian noise to every element a; of Xl) , which is randomly chosen from N(1, |a;]). Denoted by
A
. . —> e d
(b) Repeat (a) for k times and result in k vectors {A,...Ax}

2. Generate a matrix with rank k using above k vectors.

(a) Generate k random numbers 7y, ny, ..., iy, ranging from 3 to 30, such that their sum is 250.

. . - . - . -
(b) Generate a matrix with 250 vectors by repeating vector A; for n; times, vector A, for n, times,..., vector A; for
ny times. Apparently, such a matrix is of rank k.

3. Add a Gaussian noise drawn from N(0, 0.5) to each entry of the above matrix.

4. Now we construct a matrix of 250 vectors with 500 dimensions.

3. Model and Algorithm

3.1. Soft-Impute Model

EMAP data can be represented by a matrix X,,x,, where m and n represent the number of query genes and library
genes. As the existing of missing entries in EMAP dataset matrix, Q c {1,...,m} X {1, ...,n} denotes the indices of
observed entries. So X is the original data with observed entries denoted by Q and missing values denoted by Q*.
To impute this matrix, we aim to find a complete matrix Z, which is close to X on the observed entries €2, and has a
low rank. Here low rank assumption is based on the consideration that the genetic interaction profile for co-functional
genes are shown to have high correlation relationships [11][12]. N. Srebro et al. have studied generalization error
bounds for learning the low-rank matrices [14], It is also showed theoretically that the true underlying matrix can be
recovered within very high accuracy under certain assumptions on the entries of the matrix, locations, and proportion
of unobserved entries [15][16][17]. R. Mazumder et al. formulate the above problem as the following optimization
problem [9]:

minimize rank(Z.)

subject to Z Xij—Zi)* <9 M
()0

Where ¢ > 0 is a regularization parameter to control the error tolerance.

However in the optimization above, the rank constraint makes the problem combinatorially hard for general Q
[18]. One small modification to (1) is [9]:
minimize || Z ||+
subject to Z (X;; - Z,'j)2 <0 )
(i, /)eQ
Where || Z ||, is the nuclear norm of Z ( ||Z|], = Z o, where o, ..., 0, are the singular values of Z and r is the

i=1
rank of Z ). This modification makes problem convex [19]. Such a problem can be reformulated (2) to the Lagrange
form [9]:

o
minimize > Z (Xij — Z:j)* + AIZI, 3

V4
(1,)eQ

Here A > 0 is a regularization parameter controlling the nuclear norm of estimated value Z 1 0f (3).



Suppose we only observed a subset of X, indexed by Q, and the missing entries are indexed by Q*. If we define
an orthogonal projection operator P, the matrix X can be projected onto the linear space of matrices supported by Q
[15]:

Xij if(i,)) €Q
PoX)ijp =4 " 07 “4)
0  if(i,j)¢Q
Now the matrix completion problem in Lagrange form (3) can be written in a nice form:
1
minimize S [|Pa(X) = Po(Z)l; + AIZI. )
3.2. Lemma
To solve the optimization problem (5), we first present the following lemma (proof can be found in [9]).
Lemma. If matrix W, has rank r, then the optimization problem:
1
min =W - Z|[% + A||Z|. (6)
z 2
has solution Z = S 1(W), where
S,(W) =UD, V"
)

with D, = diag[(dy = A+, ... (d, — D]

UDV! is the Singular Value Decomposition (SVD) of W, here ¢, = max(t,0). The notationS,;(W) refers to soft-
thresholding [20]

3.3. Soft-Impute Algorithm
Now we begin to introduce Soft-Impute Algorithm. First we rewrite (5) as follows:

1
minimize =||X — Z||,2v + A||Z]]..
4 2
L1
= minimize EHPQ(X) —[Z - Po- (DI} + AIZ]. ®)
1
= mim‘Zmize §||[PQ(X) + P5(Z)] - Z||12E + A|Z]|.

By Lemma in part 3.2, the optimal solution of optimization problem (8) can be solved by iteratively updating Z
using
Z — S(Pa(X) + Pq:(Z)) ®

With an arbitrary initialization.

As for the parameter tunning, we propose a cross-validation-like strategy to select the optimal one. The idea is as
follows: Q is the index of observed entries of X. Firstly we randomly introduce an additional 5% artificial deletions
in Q, by deleting the original observed ones to get a test dataset. Then we solve (5) on a grid of A values on the test
dataset. We start from a large A,,,,, Which equals to the second largest singular value of matrix Pg(X). We set the
maximum rank of Z, denoted as rank,,,,(Z), equal to min(m, n). If rank(Z) < rank,,.(Z), we continue solving (5),
and reduce A by a factor n = 0.9, until rank(Z) > rank,.,(Z). Finally, to select the optimal parameter, we evaluate
the prediction error between the actual data and the predicting data on a grid of A on the test dataset. Here the Per-
son correlation and the normalized root mean squared error (NRMSE) (10) are used as the evaluation criterion. We
can choose the parameter A*, which minimizes the prediction error (the highest Person correlation or lowest NRMSE).



NRMSE = | Mol answer ~ iguer)’) (10)
varianceli janswer]

Now we have the algorithm:

Algorithm: Soft-Impute
1. Initialize Z° = 0

2. For 4; in the grid of A, do from A,

(a) Repeat:
i. Compute Z"" « S, (Po(X) + Pq:(Z°'%))
ii. Define the energy function: f;,(Z) = %”PQ(X) - PQ(Z)”%— + A|Z|.
" |f/1,- @)~ fi, (an)|
fx,(Z"“)
iii. Z°04 « Z7ev
(b). Assign Z,, — Z""
Then A;4; = 4; 0.9  for 4;;; repeat (a) to (b) until : rank(Z) > rank,,.(Z)
3. Output the solutions: /Z\,ll, ...,/Z\/li,’Z\ﬂ ...,/Z\,l

< & exit.

i+l -max

4. Choose the optimal solution: 2}

optimal

4. Results

4.1. Assessing the accuracy of quantitative imputation

We applied the Soft-Impute to three genetic interaction datasets and one synthetic dataset. Three genetic interac-
tion datasets investigated here are ESP-EMAP, CHR-EMAP and S. pombe global genetic interaction map.

To assess the effectiveness of imputation techniques for genetic interaction datasets (EMAP), an approach we
adopt is to artificially introduce additional missing values on base of an existing incomplete EMAP matrix. We ran-
domly delete the original observed data in EMAP or synthetic dataset, to get a new matrix with artificial missing
entries. This process is repeated multiple times so that we get a series of test matrixes for every original EMAP or
synthetic data matrix. After applying different imputation methods on these test matrixes, we can evaluate the predic-
tion error between the actual data and the predicting data. Then we get one imputation accuracy distribution for each
EMAP dataset in terms of each imputation method.

For ESP, CHR dataset and the synthetic dataset we repeat the artificial deletions for twenty times, resulting in
twenty test matries respectively. For the S. pombe set, which containing about 1.6 million pairwise data, is too com-
putational expensive, we repeat 15 times only.

There are several existing methods to impute missing values that have been used in synthetic data. These algo-
rithms (see Table 1) include three local methods: k-Nearest Neighbors imputation (kNN) [21], Local Least Squares
imputation (LLS) [22], Iterated Local Least Square imputation (iLLS) [23]; and one global method: Bayesian Princi-
pal Component Analysis imputation (BPCA) [24]. The “local” here represent those algoriths impute missing values
through local information around the missing value.



Figure. la-b show when 10% rate of artificial missing values is generated for 20 times in synthetic dataset,
Soft-Impute algorithm performs best on all test matrixes no matter Person correlation or NRMSE evaluated. BPCA
algorithm could not get one stable result, which has been demonstrated in [24] that when genes have dominant local
similarity structures, BPCA doesn’t work a good performance. Our test matrixes induced from synthetic dataset have
high local correlation which refers to a gene module, but BPCA algorithm is limited by this characteristic. In order
to demonstrate the performance of Soft-Impute algorithm on dataset with different rates of missing values. Artificial
missing rate different from 1% to 37% is used. Figure. 1c-d gives the imputing results of this gradient missing rate in
20 synthetic data test matrixes. To demonstrate whether such accuracy performance differences in synthetic dataset
are statistically significant, we presented the t-test for every two distributions and derived the statistical significance
(P-value) (see Figure. 2 a-b). The running time showed in Table 1 are computed when these imputation methods
applied on 20 synthetic data test matrixes with 10% artificial deletion values and gradient artificial missing value rate.

Table 1: Running Time of Imputation Methods on Synthetic Datasets

Imputation Methods Implementation CPU running time(/)
Soft-Impute Matlab 616.0s/650.1s
Local Least Squares (LLS) Matlab 732.15/4407.8s
Iterated Local Least Squares (ILLS) Matlab 2367.25/19987.3s
Bayesian Principle Component (BPCA) Matlab 10198.0s/11037.8s
k Nerest Neighbor (kNN) R 159.95170.2s

1 Running time (10% missing values/gradient missing rate from 1% to 37%)
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Figure 1: Capability of the imputation methods to reproduce the original measurements in the synthetic datasets. a-b showed the imputation
accuracy (person correlation and NRMSE) on synthetic datasets with 10% values deleted. c-d showed the results on the same original synthetic

dataset with gradient missing rates, the x axis represents the missing rate.

Imputation accuracies in terms of person correlation and NRMSE of the different imputation methods on 20 ESP-
EMAP data test matrixes with artificial 10% deletion values are shown in Figure. 3a-b. Within each matrix, the best
imputation accuracies are obtained by Soft-Imputation, and BPCA algorithm is also not stable to get one optimal re-
sult. The second best performing method are LLS and ILLS, which cost more time (see Table 2). To demonstrate the
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imputation results across different missing rate on ESP-EMAP, we also construct the gradient artificial missing rate
from 1% to 25%, by introducing artificial missing entries in the observed subset (see Figure. 3c-d). For each method,
the imputation accuracy decreases with the increasing missing value rate, meanwhile the Soft-Impute method almost
gets a better performance for different missing rate. Because of the high rate of missing values in the original datasets
of CHR-EMAP and S. pombe, we didn’t evaluate the imputing accuracy with gradient missing rates. For CHR-EMAP
and S. Pombe dataset we introduce 5% artificial missing values. The BPCA method depends heavily on the properties
of the dataset being imputed, and therefore it was difficult to find a stable optimal point. This time, in terms of S.
Pombe dataset, BPCA could not converge, so there is no result of BPCA.

Running times of the different imputation methods on these three EMAP datasets are presented in Table 2. k
Nearest Neighbor imputation is faster than the more advanced imputation methods, but has the worst imputation ac-
curacy (Figure. 3). Soft-Impute algorithm costs a median time but gets the best accuracy among all the datasets. Its
surprisingly imputation ability to the EMAP datasets is supported by the results of Figure. 3.

We have demonstrated the process of constructing EMAP and synthetic data test matrixes with random artificial
missing values. So for every EMAP dataset (ESP, CHR, Pombe) and synthetic one, there are several distributions
of the imputation accuracy in terms of different imputation methods. To demonstrate the imputation accuracy differ-
ences on EMAP datasets with different imputation methods are statistically significant, for every EMAP dataset, we
derived statistic significance (P-value) of t-test between the accuracy distribution of Soft-Imputation and that of the
other methods. This result is showed in Figure. 2. In Figure. 2, X axis represents methods, and Y axis represents the
means of imputation accuracy.

Table 2: Running Time of Imputation Methods on ESP Datasets

EMAP Datasets Imputation Methods
Soft-Impute k-Nearest Local Least Iterated Local Least Bayesian Principal
Neigh- Squares(LLS) Square(iLLS) Component(BPCA)
bors(kNN)
ESP with 10%
missing values 1537.4s 172.6s 3756.6s 7572.4s 46558.3s
ESP with grad
missing values 2006.3s 288.9s 4961.3s 9015.3s 55126.7s
CHR with 5%
missing values 31681.3s 1568.5s 38789.3s 52817.9s 668890.7s
Pombe with 5%
missing values 138979.3s 2327.8s 82647s 1.3141e+05s NA




For example, in Figure. 2a-b there is a set of 20 test matrixes with artificial deletions induced from the original
synthetic dataset. After imputing on this set with different imputation methods, there are two accuracy distributions:
person correlation (Figure. 2a) and NRMSE (Figure. 2b) for every imputation method. In this two figures, the means
of accuracy distributions of different imputation methods are plotted in Figure. 2. Where the red histogram represents
Soft-Impute method, and blue ones represents the other imputation methods. In the two figures, the p-values after
t-test have also been showed.

Figure. 2 shows means of imputation accuracy in terms of Person correlation and NRMSE of different methods
on three kinds of EMAP datasets and synthetic dataset. Through the t-test, we can see that the better imputation
accuracy of Soft-Impute algorithm than other methods on the three kinds of EMAP datasets and the synthetic dataset
is statistically significant.

Algorithms such as kNN, LLS and iLLS focus on the local information around miss values, for example, KNN
only depends on the nearest K neighbours for each missing entry. BPCA does not have a good performance, when
genes have dominant local similarity structures [24]. However, Soft-Impute method performs SVD algorithm to
control the whole rank of the matrix, and chooses one optimal parameter to control the rank. This methodology takes
full advantage of the correlation of the genetic interaction profile to predict unknown genetic interactions.
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4.2. Agreement with the original clustering results

Another of our motivations to impute in EMAP datasets is to improve downstream analysis. A widely used
analysis technique applied to EMAP datasets is average-linkage hierarchical clustering, using R program. In order
to assess the impact of different imputation methods on clustering and downstream biological analysis, we compared
clustering results on the three kinds of EMAP datasets, after imputation using kinds of methods presented above. Soft-
Impute algorithm improved the clustering results better than the other imputation methods. We used the Jaccard index
to determine how well the predicted cluster modules correspond to benchmark gene sets (GO terms). The Jaccard
index [25] between two sets M; and B; is defined as:

(11)
where #{A} denotes the number of set A

For module M;, the Jaccard Index between M; and the benchmark gene sets is defined as the maximum of Jaccard
Index between M; and any gene set in the benchmark:

Jaccard Index(M;, B) = max;{JaccardIndex(M;, B;)} (12)

Thus, the average Jaccard index of the predicted modules and the benchmark gene sets can be computed:

>, Jaccard Index(M;, B)
i€l,..k

Jaccard Index(M, B) = 3 (13)

The accuracy of clustering result is evaluated by average Jaccard index of the predicted modules and benchmark
gene sets. In the ideal situation where the predicted modules perfectly match the benchmark gene sets, the Jaccard
index is 1. The larger the Jaccard index, the better the predictions are. Hierarchical clustering algorithm is used to
predict the gene clusters in the three kinds of original EMAP gene sets after kinds of imputation. The benchmark
(“theoretical’) gene sets are GO iterms. The results are presented as Jaccard index, numbers of predicted gene mod-
ules, and numbers of predicted gene modules enriched in GO (see Table. 3). The clear differences can be observed in
Table. 3 among different imputation methods.

Table 3: Clustering Results

Imputation Methods ~ Jaccard Index # Modules § Enriched Benchmark set®

Soft-Impute 0.118 41 35
LLS 0.102 14 13
iLLS 0.086 15 13
BPCA 0.093 17 15
kNN 0.097 26 22

A : ESP-EMAP datasets
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Imputation Methods ~ Jaccard Index # Modules § Enriched Benchmark set®

Soft-Impute 0.075 74 70
LLS 0.063 24 36
iLLS 0.062 55 53
BPCA 0.062 40 39
kNN 0.073 54 54

B: CHR-EMAP datasets

Imputation Methods ~ Jaccard Index # Modules # Enriched Benchmark set®

Soft-Impute 0.029 188 143
LLS 0.024 67 55
iLLS 0.023 61 53
kNN 0.022 60 51

C: S.Pombe-EMAP datasets

@: hyper-geometric test applied to test the enrichment of gene sets. Significance level :FDR<=0.05.
#iModules: the number of modules predicted by hierarchical clustering after EMAP datasets imputed by
different imputation methods. §Enriched Benchmarkset: the number of modules predicted by hierarchical
clustering enriched in the GO-slim iterms

Table. 3 (A-B) present the results of S. Cerevisiae EMAP datasets. GO-slim iterm of S. Cerevisiae was down-
loaded from SGD. Table. 3 (C) presents the result of S. Pombe EMAP dataset, and GO-slim iterm of S. Pombe was
downloaded from the home page of Prof. Krogan (http://kroganlab.ucsf.eduy).

The EMAP datasets clustering results after imputed by kinds of imputation methods are finally compared by mea-
suring their consistency with known gene modules (GO iterms). For ESP-EMAP dataset [11], there are many func-
tionally homogeneous subtrees of the quantitative EMAP score matrix. The author [11] presented several interaction-
dense clusters. For CHR-EMAP dataset and S. Pombe dataset, there are many previously detected modules [12] [13].
We also compared the predict modules got by clustering EMAP datasets after imputation by kinds of methods with
the published gene modules. The results can be found in Table. 4. We compared the number of genes predicted by
hierarchical clustering that are in the published modules, and the number of published modules in which gene are
predicted by hierarchical clustering.
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Table 4: Clustering Results

. ) ) f Published modules  #f Gene number mean
Imputation Methods  § Genes in published modules i
found by h-cluster  of published modules

Soft-Impute 63 6 10.5
LLS 37 4 9.25
iLLS 37 4 9.25
BPCA 39 4 9.75
kNN 6 1 6

A : ESP-EMAP datasets

) ) . # Published modules  # Gene number mean
Imputation Methods  § Genes in published modules )
found by h-cluster  of published modules

Soft-Impute 36 6 6
LLS 30 6 5
iLLS 30 6 5
BPCA 30 6 5
kNN 2 1 2

B : CHR-EMAP datasets

. ) ) # Published modules  # Gene number mean
Imputation Methods  § Genes in published modules )
found by h-cluster  of published modules

Soft-Impute 68 14 4.9
LLS 48 9 53
iLLS 43 12 3.6
kNN 46 13 3.5

C: S.Pombe-EMAP datasets

Table. 4 presents that our method applying imputation before hierarchical clustering (using average-linkage) are
more informative. Specially, in S. Pombe dataset, [13] has demonstrated that they found two previously uncharacter-
ized genes: SPAC1610.01 and SPAC18G6.13 which were clustered in mRNA splicing module. The clustering results
after Soft-Impute imputation could find this module containing these two genes and other genes involved in mRNA
splicing, while LLS, iLLS or kNN can not find these genes.

These results have demonstrated the ability of Soft-Impute algorithm to improve the downstream data analysis.
Soft-Impute Algorithm takes advantage of the correlation of genetic interaction profile to predict unknown genetic
interactions. The Z matrix is the integrated matrix that has been imputed by Soft-Impute imputation and its rank
is limited during the imputation. Mathematically, the Soft-Impute procedure eliminates those small eigenvalues and
reserve big eigenvalues, equivalently, such a procedure tend to clear up data to enhance the strong correlation structure
among genes in the data matrix. In other words, the procedure of Soft-Impute algorithm achieves the reorganization
and refining of the original dataset while imputes the missing entries. So this methodology could better improve the
downstream clustering effectiveness while predicting the missing entries than the other imputation methods do.
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5. Conclusion

In this article, we have introduced a method named Soft-Impute to impute missing values of EMAP datasets.
Soft-Impute method uses the correlation among genes to impute the missing values. This method adopts an efficient
algorithm to solve imputation problem and guaranteed its convergence [9]. It develops one soft threshold to SVD
algorithm, which can be selected an optimal one by choosing the regularization parameter A. This methodology was
proposed by Hastie [9], and has been used in image recovery and eQTL study, but it is the first time to be introduced
in genetic interaction data imputation.

We have compared Soft-Impute method with four other popular imputation methods for genetic interaction data,
on one synthetic dataset and tree kinds of EMAP datasets. Firstly, the given datasets were imputed and evaluated the
imputation accuracy, and then clustered by hierarchical clustering. Finally we compared the clustering results against
GO annotations, and the published literature annotations. We demonstrated that Soft-Impute method achieved a better
performance in imputation accuracy and improved downstream data analysis than other existing methods.

As far as we know, this paper is the first attempt to introduce Soft-Impute algorithm into imputing missing values
in genetic interaction datasets.This algorithm is appropriate for datasets where there are modules in which entries
are with high correlation. So it can be used widely in many kinds of fields with such characteristics to realize the
imputation of missing entries.

The imputation of missing values is the first step of data analysis, and it has very important impact to the down-
stream analysis. Soft-Impute method could improve the performance of downstream data analysis and promote the
further exploration of genetic interaction network.
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