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Enlightened by the theory of Watanabe [Watanabe S (1987) Analysis of Wiener functionals (Malliavin calculus) and its
applications to heat kernels. Ann. Probab. 15:1–39] for analyzing generalized random variables and its further development
in Yoshida [Yoshida N (1992a) Asymptotic expansions for statistics related to small diffusions. J. Japan Statist. Soc. 22:
139–159], Takahashi [Takahashi A (1995) Essays on the valuation problems of contingent claims. Ph.D. thesis, Haas School
of Business, University of California, Berkeley, Takahashi A (1999) An asymptotic expansion approach to pricing contingent
claims. Asia-Pacific Financial Markets 6:115–151] as well as Kunitomo and Takahashi [Kunitomo N, Takahashi A (2001) The
asymptotic expansion approach to the valuation of interest rate contingent claims. Math. Finance 11(1):117–151, Kunitomo
N, Takahashi A (2003) On validity of the asymptotic expansion approach in contingent claim analysis. Ann. Appl. Probab.
13(3):914–952] etc., we focus on a wide range of multivariate diffusion models and propose a general probabilistic method of
small-time asymptotic expansions for approximating option price in simple closed-form up to an arbitrary order. To explicitly
construct correction terms, we introduce an efficient algorithm and novel closed-form formulas for calculating conditional
expectation of multiplication of iterated stochastic integrals, which are potentially useful in a wider range of topics in applied
probability and stochastic modeling for operations research. The performance of our method is illustrated through various
models nested in constant elasticity of variance type processes. With an application in pricing options on VIX under GARCH
diffusion and its multifactor generalization to the Gatheral double lognormal stochastic volatility models, we demonstrate
the versatility of our method in dealing with analytically intractable non-Lévy and non-affine models. The robustness of the
method is theoretically supported by justifying uniform convergence of the expansion over the whole set of parameters.
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1. Introduction. Modeling and pricing of increasingly sophisticated derivative securities are central to finan-
cial engineering. Modeling is usually a trade-off between mathematical tractability and empirical performance.
To explain and fit market trading data, however, increasingly more recent research indicates that some analyti-
cally tractable models may not be able to render satisfactory empirical performance compared with those having
less mathematical tractability. For instance, Christoffersen et al. [14] have demonstrated the superior empirical
features of the GARCH diffusion specification of stochastic volatility over the well-known square- root specifica-
tion proposed in Heston [36] for modeling the volatility of S&P500 index returns. Also, Gatheral [27] has shown
that the double lognormal specification of stochastic volatility outperforms the double Heston type specification
for modeling options on VIX (the CBOE implied volatility index, see CBOE [12]). However, both the GARCH
diffusion and the double lognormal stochastic volatility models belong to the large family of non-Lévy and
non-affine diffusions (see Dai and Singleton [18]), for which characteristic functions do not exist in closed form.
Thus, most analytical methods (e.g., the Fourier or Laplace transform inversions) heavily relying on analytical
tractability of the models are not applicable. Therefore, the closed-form asymptotic expansion method becomes
a viable option for providing flexible, efficient, and easy-to-implement solutions.

From a technical perspective, asymptotic expansions have become prevalent in option valuation owing to
their efficiency and flexibility. Among others, a well-known method is based on perturbations of partial differ-
ential equations (hereafter PDE); see, e.g., Hagan et al. [33], Andersen and Brotherton-Ratcliffe [3], Fouque
et al. [25, 26], Takahashi and Yamada [69], and Kato et al. [44]. Another attractive approach is a probabilis-
tic method based on the theory for analyzing generalized Wiener functionals (random variables) initiated by
Watanabe [74] and its substantial development in favor of a small-diffusion setting (by parameterizing an auxil-
iary parameter only in diffusion components of underlying models) for statistical inference and option valuation
in, e.g., Yoshida [76], Takahashi [61, 62], Kunitomo and Takahashi [48, 49], and Osajima [57]. Resorting to
calculation of the first several orders of the expansions, various applications can also be found in, e.g., Kunitomo
and Takahashi [47], Uchida and Yoshida [72], Takahashi and Takehara [64, 65], Takahashi [63], Takahashi
and Yamada [70], Takahashi and Toda [68], Kawai [45], Jaeckel and Kawai [40], Gobet et al. [30, 31], and
Márquez-Carreras and Sanz-Solé [52].

However, to achieve better accuracy, robustness, and reliability and to make the implementation as comparably
convenient as that of Monte Carlo simulation, seeking for relatively simple closed-form formulas or computa-
tionally efficient algorithms in order to symbolically implement high-order correction terms has become one of
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the major tasks for various asymptotic expansion methods. Among many others, at a level of generality and
an expense of complexity, a recursion-based framework regardless of particular types of parameterization is
outlined in Takahashi et al. [66, 67] with emphasis on small-diffusion type expansion aiming at the valuation of
options with relatively long maturities. As an indispensable development of the asymptotic expansion methods,
we will alternatively focus on small-time type expansion, which has become an important analytical method in
financial engineering because of its simplicity and the concrete economic interpretations; see, e.g., Hagan and
Woodward [34], Hagan et al. [33], Andersen and Brotherton-Ratcliffe [3] and Section 10 in Lipton [50] for
approximating option prices via PDE-based perturbation methods as well as Takahashi and Yamada [69] for
approximating heat kernels via the integration-by-parts techniques of Malliavin calculus; see, e.g., chapter 1 in
Nualart [55].

Focusing on a wide range of diffusion models, we will propose a general closed-form formula (with only basic
mathematical operations without recursions or integrations) up to an arbitrary order for small-time expansion of
option price via a probabilistic approach. The application of Itô-Stratonovich stochastic calculus and the theory
of Watanabe [74] leads to the analytical tractability, Simplicity, and versatility of our closed-form expansion,
particularly for some sophisticated models, in which small-diffusion expansions involve numerically solving
ordinary differential equations and calculating integrals owing to the complexity of drift and diffusion functions;
see, e.g., the nonlinear stochastic variance and nonlinear drift model for spot interest rates and variance proposed
and investigated in Aït-Sahalia [1] and Bakshi et al. [4]. To pragmatically build any arbitrary closed-form
expansion term, we propose an efficient algorithm for calculating conditional expectation of multiplication of
iterated Stratonovich integrals driven by multidimensional Brownian motions. At the heart of this algorithm, we
employ combinatorial analysis to establish a novel closed-form formula for computing conditional expectation
of multiplication of iterated Itô integrals. These developments substantially generalize the existing results( see,
e.g., Nualart et al. [56], Yoshida [76], Takahashi [61, 62], Kunitomo and Takahashi [48, 49], and Takahashi
et al. [66, 67]) and are potentially useful in a wide range of studies in applied probability and stochastic modeling
for operations research.

Without loss of generality, we demonstrate the performance of our method using the celebrated constant
elasticity of variance (CEV) type process (see, e.g., Cox [16] and Davydov and Linetsky [19]), in which several
commonly used models are nested. In addition, we apply our method in the valuation of options on VIX, which
is a challenging issue in derivatives valuation. As a fundamental instrument for hedging, call options on VIX
have become effective tools for managing downside risk. For instance, through rolling options on VIX with one-
month maturity, the VXTH (VIX tail hedge) proposed in CBOE [13] has uniformly outperformed the S&P500
index during the financial depressions; see CBOE [13]. We apply our method to the valuation of options on
VIX under the GARCH diffusion stochastic volatility model (see Christoffersen et al. [14]) and its multifactor
extension to the Gatheral double lognormal model (see, e.g., Gatheral [27]). Such applications demonstrate the
versatility of our method in dealing with analytically intractable non-Lévy and non-affine models as well as
nonlinear payoff functions.

It is noteworthy that the convergence of our expansion can be guaranteed theoretically under some sufficient
conditions on the specification of the underlying model. As shown in the computational results, however, the
applicability of the expansions is not confined to the models, of which the sufficient conditions for convergence
are strictly satisfied, but instead is extendable to a wide range of commonly used derivatives pricing models.
Similar to other existing applications of small-time expansions ( e.g., Andersen and Brotherton-Ratcliffe [3],
Hagan and Woodward [34], Hagan et al. [33], and Takahashi and Yamada [69]) numerical illustrations suggest
that our method does not necessarily require the option maturity to be small in order to deliver satisfactory
performance. At least in principle, arbitrary accuracy could be obtained by employing high-order expansions
based on our general formulas and algorithms. However, we note that, as demonstrated in the computational
results given in §5, the performance of the expansions is reasonably model dependent.

The rest of this paper is organized as follows. In §2, we propose the model and a basic setup. In §3, we
build up a general framework for obtaining closed-form asymptotic expansion up to an arbitrary order for option
valuation. Section 4 is devoted to establishing algorithms and closed-form formulas for the computation of
conditional expectation of multiplication of iterated stochastic integrals, which plays a central role in constructing
the expansions. In §5, we demonstrate the performance of our method through several examples including the
valuation of European options under various CEV type models, as well as the valuation of options on VIX under
the GARCH diffusion and the Gatheral double lognormal stochastic volatility models. We conclude this paper
in §6. The proofs are provided in Appendices A and B.
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2. The model and basic setup. We consider a risk-neutral specification of a general multivariate diffusion
model governed by the following stochastic differential equation (hereafter SDE):

dX4t5=�4X4t51 �5dt +�4X4t51 �5dW4t51 X405= x0 = 4x011 x021 : : : 1 x0m51 (1)

where X4t5 is an m-dimensional vector of state variables; x0 = 4x011 x021 : : : 1 x0m5 is the initial state; 8W4t59
is a d-dimensional standard Brownian motion; � represents a vector of model parameters belonging to a
bounded open set ä; �4x1�5 = 4�14x1 �51 : : : 1�m4x1 �55 is an m-dimensional vector function; and �4x1�5 =

4�ij4x1 �55m×d is an m × d matrix-valued function. For ease of exposition and without loss of generality, we
assume that m= d and drop the parameter vector � throughout the rest of this paper. Let E4⊂ Rm5 denote the
state space (all possible values) of X. Suppose the price of an underlying asset satisfies

S4t5= f 4X4t551 (2)

for some function f 4x5 sufficiently smooth in E with 4¡f /¡x11 ¡f /¡x21 : : : 1 ¡f /¡xm5 6= 0. Without loss of
generality, we assume that ¡f /¡x1 6= 0.

A simplest one-dimensional example is the celebrated Black-Scholes-Merton model (see Black and Scholes [6]
and Merton [53]), for which the functions are specified as

f 4x5= x1 �4x5= rx1 and �4x5= �x1

for some positive constants r and � representing the risk-free interest rate and constant volatility, respectively.
Slightly more general in order to reflect the leverage effect between the asset return and its random volatility, the
constant elasticity of variance model (see, e.g., Cox [16] and Davydov and Linetsky [19]) can be specified via

f 4x5= x1 �4x5= rx1 and �4x5= �x�1 (3)

for some constants � and �. Also, by setting

f 44x11 x255= x11 �44x11 x255=

(

rx1

�24x25

)

1 and �44x11 x255=

( √
x2x1 0

�214x25 �224x25

)

for some functions �24 · 5, �214 · 5, and �224 · 5, we create a model for incorporating stochastic volatility; see, e.g.,
Fouque et al. [25] and the references therein. In particular, by letting �24x25 = �4� − x25 for some positive �
and �, we model the mean-reversion effect in the stochastic variance; by letting �214x25= �

√
x2 and �224x25=

√

1 −�2√x2, for some constant −1 ≤ �≤ 1, we obtain the well-known Heston stochastic volatility model (see
Heston [36]). Alternatively, by letting �214x25= �x2 and �224x25=

√

1 −�2x2, we build the GARCH diffusion
stochastic volatility model, which is recently shown to be a popular candidate for empirically fitting the volatility
of S&P500 returns; see, e.g., Christoffersen et al. [14] and Barone-Adesi et al. [5].

On a level of generality, we suppose that a derivative security pays out p4S4T 55 for some payoff function
p4x5 at a maturity time T . Assuming the risk-free interest rate r to be a constant, the initial arbitrage-free price
of this derivative is given by

V 405 2=E6e−rT p4S4T 557=E6e−rT p4f 4X4T 55570 (4)

Except for a limited number of mathematically tractable models, V 405 is usually calculated by various numerical
methods such as Monte Carlo simulation, numerical methods of partial differential equations, and approxima-
tions by binomial (or multinomial) lattice. However, for efficient calibration of the model to market trading
data, simple closed-form formulas or analytical approximations are preferred to avoid repeated calculations
for optimization. In this paper, we propose an easy-to-implement method for calculating closed-form asymp-
totic expansion approximation for option valuation. Without loss of generality and for ease of exposition, we
demonstrate our method via the valuation of a call option with a payoff function

p4x5 2= 4x−K5+ ≡ max4x−K105 for some strike K0 (5)

Before closing this section, we introduce the following technical assumptions in order to guarantee the theo-
retical validity of our expansion. Let A4x5= �4x5�4x5T = 4aij4x55m×m denote the diffusion matrix.

Assumption 1. The diffusion matrix A4x5 is positive definite, i.e., detA4x5 > 01 for any x in E (the state
space of the underlying diffusion X5.
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Assumption 2. For each integer k ≥ 11 the kth order derivatives in x of the functions �4x3�5 and �4x3�5
are uniformly bounded for any 4x1 �5 ∈E ×ä.

Assumption 3. For each integer k ≥ 1, the kth order derivatives in x of the function f 4x5 are bounded in E.

Assumptions 1 and 2 are standard and conventionally proposed in the study of SDEs (see, e.g., Ikeda and
Watanabe [38]). They are sufficient (but do not need to be necessary) to guarantee the existence and uniqueness
of the solution and many other desirable technical properties. As shown in what follows, under these conditions,
the theory of Watanabe [74] guarantees validity of the expansion discussed in this paper. Theoretical relaxation
on these conditions may involve case-by-case treatments and standard approximation arguments, which is beyond
the scope of this paper and can be regarded as a future research topic.

3. Closed-form expansion for option valuation.

3.1. Explicit path-wise expansion. Inheriting the tradition of small-time expansions( see, e.g., the PDE
based methods proposed in Andersen and Brotherton-Ratcliffe [3] and Takahashi and Yamada [69]) we choose
� =

√
T as a parameter based on which the expansion is carried out. We begin with rescaling (1) as X�4t5 2=

X4�2t5 in order to bring forth finer local behavior of the diffusion process. By integral substitutions and the
Brownian scaling property, it follows that

dX�4t5= �2�4X�4t55dt + ��4X�4t55dW �4t51 X�405= x01 (6)

where 8W �4t59 is a m-dimensional standard Brownian motion. To simplify notations, we will let W4t5 denote
the scaled Brownian motion W �4t5 in the rest of the paper.

We note that the general framework outlined in Takahashi et al. [66, 67] includes various methods of
parametrization, e.g., the well-studied small-diffusion parametrization (see, e.g., Takahashi [61, 62, 63] and
Uchida and Yoshida [72]) and (6). However, as further demonstrated in what follows, the small-time param-
eterization (6) leads to significant simplicity, explicity, and computational convenience. First, without need of
the general recursion proposed in Takahashi et al. [66, 67], a path-wise expansion of X�4t5 can be obtained
in a simple closed-form using appropriate differential operators and iterated Stratonovich integrals via the Itô-
Stratonovich stochastic calculus. Thus, based on the theory of Watanabe [74], an expansion for option valuation
can be explicitly given via proper indices combinations, which leads to convenient symbolic implementation.
In this regard, our explicit expansion formula can be seen as an important closed-form solution to the recursion-
based asymptotic expansion scheme proposed in Takahashi et al. [66, 67]. Second, as discussed in §§3.2 and 4,
the conditional expectations involving iterated stochastic integrals, which centralize the explicit calculation of the
expansions, are irrelevant of the specification of drift or diffusion. Compared with the small-diffusion expansions,
this advantage facilitates the implementation of high-order expansions.

Instead of directly considering the parameterized SDE (6) like most of the existing expansion methods do,
e.g., Takahashi et al. [66, 67], we focus on its equivalent Stratonovich form:

dX�4t5= �2b4X�4t55dt + ��4X�4t55 �dW4t51 (7)

where � denotes stochastic integrals in the Stratonovich sense and the vector-valued function b4x5 =

4b14x51 b24x51 : : : 1 bm4x55
T is defined by

bi4x5=�i4x5−
1
2

m
∑

k=1

d
∑

j=1

�kj4x5
¡

¡xk
�ij4x50 (8)

In our setting, Stratonovich integrals offer significant computational convenience compared with Itô integrals in
that the Itô-Stratonovich formula resembles the chain rule in classical calculus (see, e.g., Section 3.3 in Karatzas
and Shreve [43]), which will play an important role in constructing a simple closed-form expansion up to any
arbitrary order.

A natural start is to expand f 4X�4155 as a series of � with random coefficients. Following the assumption of
¡f /¡x1 6= 0, we further assume that there exists a function g2 Rm → R such that, for y1 = f 4x11 x21 : : : 1 xm5,
one has x1 = g4y11 x21 : : : 1 xm5. Thus, for computational convenience, we introduce a diffusion process Y �4t5=

4Y �
1 4t51 Y

�
2 4t51 : : : 1 Y

�
m4t55 defined by

Y �
1 4t5= f 4X�4t55= f 4X�

14t51X
�
24t51 : : : 1X

�
m4t551 Y �

2 4t5=X�
24t51 : : : 1 and Y �

m4t5=X�
m4t50 (9)
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A straightforward application of the Itô-Stratonovich formula yields the following SDE for Y �4t5:

dY �4t5= �2�4Y �4t55dt + ��4Y �4t55 �dW4t51 Y �405= y0 = 4f 4x011 x021 : : : 1 x0m51 x021 : : : 1 x0m51 (10)

where the drift vector function and the dispersion matrix are specified as follows: for y = 4y11 y21 : : : 1 ym5,

�4y5=

( m
∑

i=1

¡f

¡xi
4g4y51y21: : : 1ym5bi4g4y51y21: : : 1ym51b24g4y51y21: : : 1ym51: : : 1bm4g4y51y21: : : 1ym5

)T

(11)

and

�4y5 =

( m
∑

i=1

¡f

¡xi
4g4y51 y21 : : : 1 ym5�i·4g4y51 y21 : : : 1 ym51�2·4g4y51 y21 : : : 1 ym51 : : : 1

�m·4g4y51 y21 : : : 1 ym5

)T

1 (12)

where �j· denotes the jth row vector of the diffusion matrix � . Here, ·T denotes the transpose of a matrix.
Inheriting the idea from Watanabe [74] for constructing heat-kernel expansions, we introduce the following

differential operators for expressing the expansion terms in simple closed form:

A0 2=
m
∑

i=1

�i4y5
¡

¡yi
and Aj 2=

m
∑

i=1

�ij4y5
¡

¡yi
1 for j = 11 : : : 1 d1 (13)

which map vector-valued functions to vector-valued functions of the same dimension, respectively. More pre-
cisely, for any � ∈N and a �-dimensional vector-valued function �4y5= 4�14y51�24y51 : : : 1��4y55

T ,

4A04�554y5= 44A04�1554y51 4A04�2554y51 : : : 1 4A04��554y55

and
4Aj4�554y5= 44Aj4�1554y51 4Aj4�2554y51 : : : 1 4Aj4��554y55

for j = 1121 : : : 1 d.
Moreover, for an index i = 4i11 : : : 1 in5 ∈ 8011121 : : : 1 d9n and a right-continuous stochastic process 8f 4t591

we define an iterated Stratonovich integral with integrand f as

Ji6f 74t5 2=
∫ t

0

∫ t1

0
· · ·

∫ tn−1

0
f 4tn5 � dWin

4tn5 · · · � dWi2
4t25 �dWi1

4t151 (14)

which is recursively calculated from inside to outside (see p. 174 of Kloeden and Platen [46]). For ease of
exposition, the order of iterated integrations defined in this paper is the reverse of that employed in Kloeden
and Platen [46] for any arbitrary index. To lighten notations, for f ≡ 1, the integrals Ji6174t5 is abbreviated to
Ji4t5. By convention, we assume W04t5 2= t and define

�i� 2=
n
∑

k=1

62 · 18ik=09 + 18ik 6=097 (15)

as a “norm” of the index i, which counts k with ik = 0 twice.
By regarding Y �415 as a function of �, it is natural to obtain a path-wise expansion in � with random

coefficients. According to Watanabe [74], we introduce the following coefficient function Ci4y5 defined by
iterative applications of the differential operators (13):

Ci4y5 2=Ain
4: : : 4Ai3

4Ai2
4�·i1

555: : : 54y51 (16)

for an index i = 4i11 : : : 1 in5. Here, for i1 ∈ 81121 : : : 1 d9, the vector �·i1
4y5 = 4�1i1

4y51 : : : 1�mi1
4y55T denotes

the i1th column vector of the dispersion matrix �4y5; for i1 = 0, �·04y5 refers to the drift vector �4y5 defined
in (11). Bypassing the general recursion proposed in Takahashi et al. [66, 67], the nature of the small-time param-
eterizations in (7) and (10) renders the following simple closed-form expansion with aid of iterated Stratonovich
integrals of the type (14) based on Theorem 3.3 in Watanabe [74].
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Lemma 1. Y �415 admits the following path-wise asymptotic expansion

Y �415=

J
∑

k=0

Yk�
k
+O4�J+151 (17)

for any J ∈N . Here, Y0 = y0 and Yk can be written as a closed-form linear combination of iterated Stratonovich
integrals, i.e.,

Yk =
∑

�i�=k

Ci4y05Ji4151 (18)

for k = 1121 : : : , where the integral Ji415, the norm �i�, and coefficient Ci4y05 are defined in (14), (15) and (16),
respectively.

Indeed, the correction term (18) is obtained from successive applications of the Itô-Stratonovich formula. For
any arbitrary dimension r = 1121 : : : 1m, one has the following element-wise form:

Y �
r 415=

J
∑

k=0

Yk1 r�
k
+O4�J+151 where Yk1 r =

∑

�i�=k

Ci1 r4y05Ji4151 (19)

with the coefficient

Ci1 r4y05 2=Ain
4: : : 4Ai3

4Ai2
4�ri1

555: : : 54y051 for an index i= 4i11 : : : 1 in50

For instance, the first two correction terms are calculated as

Y11 r =

d
∑

j=1

�rj4y05Wj415 and Y21 r = �r4y05+

d
∑

i11 i2=1

m
∑

l=1

�li2
4y05

¡�ri1

¡xl
4y05

∫ 1

0

∫ t1

0
�dWi2

4t25 � dWi1
4t150

We note that the expansion (17) is different from the Wiener chaos decomposition (see, e.g., chapter 1 in
Nualart [55]); it can be viewed as a stochastic Stratonovich-Taylor expansion (see, e.g., chapter 6 in Kloeden
and Platen [46]) with an arrangement of correction terms according to the power of small-parameter �. For ease
of exposition, we focus on the derivation of our expansion in this and the next subsection and articulate the
theoretical validity of the expansions in the proofs given in Appendix A.

3.2. Small-time expansion for option valuation: A general framework. In this section, we seek for a
simple closed-form expansion for approximating the price

V 405=E6e−rT p4f 4X4T 5557= e−rTE6p4f 4X�415557≡ e−rTE4Y �
1 415−K5+1 (20)

which follows from (4), (5), (7), and (9). To apply the theory of Watanabe [74], we follow the setting in, e.g.,
Takahashi [61], Kunitomo and Takahashi [48, 49], and Takahashi et al. [67], to consider a standardized random
variable

Z� 2=D4y054Y
�
1 415− y05/�0 (21)

By introducing a standard Brownian motion B4t5 defined by

B4t5=D4y05
d
∑

j=1

�1j4y05Wj4t51 where D4y5 2=

( d
∑

j=1

�2
1j4y5

)−1/2

1 (22)

it is easy to see that Z� converges to a standard normal random variable B415 as � → 0. Assuming that Z�

admits an expansion

Z�
=

J
∑

k=0

Zk�
k
+O4�J+151 for some J ∈N1 (23)

the coefficients can be determined by Zi =D4y05Yi+1111 for i = 011121 : : : , where Yi+111 are given by (19). Thus,
the option price (20) can be expressed as

V 405= �e−rTD4y05
−1E4Z�

− z5+1 (24)

where
z=D4y054K − y015/�0 (25)

Thus, our immediate task is to obtain a closed-form expansion for E4Z� − z5+.
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Intuitively speaking, based on the expansion for Z� given in (23), brute force applications of the classical
chain rule to a composition of the generalized function T 4x5 2= 4x − z5+ and Z� with the variable � yields a
Taylor-type expansion for 4Z� − z5+ as follows:

4Z�
− z5+ =

J
∑

k=0

ëk4z5�
k
+O4�J+151 for any J ∈N0 (26)

Here, the initial term is given by ë04z5 = 4Z0 − z5+3 for k = 1121 : : : , the kth expansion term ëk4z5 is deter-
mined by

ëk4z5=
∑

4n1 r4n55∈Rk

1
n!

¡4n5T

¡xn
4Z05Zr1

Zr2
1 : : : 1Zrn

1

where the index set is defined as

Rk 2= 84n1 r4n55 � n= 011121 : : : 1 r4n5= 4r11 r21 : : : 1 rn5 with ri ≥ 1 and r1 + r2 + · · · + rn = k90 (27)

In particular, the derivatives of T are calculated as

¡415T

¡x1
4x5= 18x ≥ z91

¡425T

¡x2
4x5= �4x− z51 and

¡4l5T

¡xl
4x5= �4l−254x− z51 for l ≥ 31

where �4x− z5 is the Dirac delta function centered at z. It is well known that the Dirac delta function �4x5 is
a generalized function depending on a real variable x such that it is zero for all values of the x except x = 0;
and its integral over x from −� to � is equal to one. For many purposes, the Dirac delta can be intuitively
manipulated as a function, although it is formally defined as a distribution that is also a measure; see, e.g.,
Kanwal [42]. Then, by taking expectations on (26), we obtain an expansion

E64Z�
− z5+7 2=

J
∑

k=0

ìk4z5�
k
+O4�J+151 for any J ∈N1 (28)

where the correction term
ìk4z5=Eëk4z5 (29)

will be explicitly determined in what follows.
For k = 0, it is straightforward to deduce the leading term as

ì04z5=E4Z0 − z5+ =E4B415− z5+ =�4z5− z41 −N4z551 (30)

where �4 · 5 and N4 · 5 denote the probability density and cumulative distribution functions of a standard normal
variable, respectively. To give a closed-form formula for ìk4y5 with k ≥ 1, we introduce the following two
operators. For differentiating a product of an arbitrary function and �, we define a differential operator D
such that

D4f 54x52
¡f 4x5

¡x
− xf 4x51 for any function f 4x50 (31)

Note that, for any function g4x5 and �4x5, the derivative of g4x5�4x5 can be simply expressed using (31) as
follows:

¡

¡x
6g4x5�4x57=

[

¡

¡x
g4x5− xg4x5

]

�4x5=D4g54x5�4x50

To explicitly express an integration of a product of a polynomial and �, we introduce an integral operator I
such that, for an arbitrary polynomial q4x5 2=

∑

anx
n,

I4q54x5 2=
∫ �

x
q4u5�4u5du≡

∑

anqn4x51 (32)

where the function qn4x5=
∫ �

x
un�4u5du is defined in the following lemma.

Lemma 2. Suppose that qn4x5 =
∫ �

x
un�4u5du. Thus, 8qn4x52 n ≥ 09 is a sequence of polynomials recur-

sively determined by

q04x5= 1 −N4x51 q14x5=�4x51 qn4x5= xn−1�4x5+ 4n− 15qn−24x5 for n= 2131 : : : 0 (33)
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Proof. It follows from a straightforward application of the Integration by parts. �
At the heart of a closed-form formula for the expansion term (29), we introduce conditional expectations of

the following type

P4i11i21 : : : 1il5
4z5 2=E

( l
∏

w=1

Jiw415

∣

∣

∣

∣

B415= z

)

=E

( l
∏

w=1

Jiw415

∣

∣

∣

∣

d
∑

i=1

�iWi415= z

)

1 (34)

for some indices i11 i21 : : : 1 il, where the constant coefficients are defined by

�i 2= �1i4y05

( d
∑

k=1

�2
1k4y05

)−1/2

1 for i = 1121 : : : 1 d0 (35)

Starting from Itô [39], investigation of iterated stochastic integrals has become an important and challenging issue
in probablity and stochastic modeling; see, e.g., Kloeden and Platen [46], Houdre and Perez-Abreu [37], Peccati
and Taqqu [58], and the references therein. As an important building block for constructing small-diffusion
type expansions, conditional expectation involving iterated Itô integrals can be found in, e.g., Yoshida [76],
Takahashi [61, 62, 63], Kunitomo and Takahashi [48, 49], Takahashi and Yamada [70], Takahashi et al. [66, 67],
Kawai [45], Jaeckel and Kawai [40], and Gobet et al. [30, 31]. Compared with the conditional expectations
needed for small-diffusion expansions, (34) is irrelevant of the complexity of the functional form of the drift
and diffusion. However, since the large-deviation based expansion for heat-kernel discussed in Watanabe [74],
seeking for algorithms and formulas for calculating conditional expectations involving iterated Stratonovich
integrals in closed form has become an open problem. In §4, we will provide an efficient algorithm for calculating
(34) as a multivariate polynomial in z, which will substantially enhance the feasibility of calculating high-order
expansions.

In the following proposition, we express any arbitrary correction term ìk4z5 with k ≥ 1 by a simple closed-
form formula, which can be regarded as an explicit solution to the recursion-based general scheme proposed in
Takahashi et al. [66, 67].

Proposition 1. For any k ∈ N1 the kth order correction term ìk4z5 admits the following explicit
representation

ìk4z5 = D4y05
∑

�i�=k+1

Ci114y05I4P4i554z5

+
∑

n≥21
4n1 r4n55∈Rk

4−15n−2

n!
D4y05

n
∑

�iw�=rw+11
w=1121 : : : 1n

( n
∏

w=1

Ciw114y05

)

Dn−24P4i11i21 : : : 1in5
54z5�4z51 (36)

where D4y05, � · �, Ciw114y05, I, P4i11i21 : : : 1in5
, Rk, and D are defined in (22), (15), (16), (32), (34), (27),

and (31), respectively.

Proof. See Appendix A.

Without loss of generality, we exemplify the first three closed-form correction terms as follows:

ì14z5=D4y05
∑

�i�=2

Ci114y05I4P4i554z51 (37)

ì24z5=D4y05
∑

�i�=3

Ci114y05I4P4i554z5+
D4y05

2

2

∑

�i1�=�i2�=2

Ci1114y05Ci2114y05P4i11 i25
4z5�4z51 (38)

ì34z5=D4y05
∑

�i�=4

Ci114y05I4P4i554z5+D4y05
2

∑

�i1�=21�i2�=3

Ci1114y05Ci2114y05P4i11 i25
4z5�4z5

−
D4y05

3

6

∑

�i1�=�i2�=�i3�=2

Ci1114y05Ci2114y05Ci3114y05D4P4i11 i21 i35
54z5�4z51 (39)

where the coefficients are explicitly given by

C4i1511 = �1i1
4y051

C4i11 i2511 =

m
∑

i=1

�ii2
4y05

¡

¡xi
�1i1

4y051
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C4i11 i21 i3511 =

m
∑

j=1

�ji3
4y05

¡

¡xj

( m
∑

i=1

�ii2
4y05

¡

¡xi
�1i1

4y05

)

1

C4i11 i21 i31 i4511 =

m
∑

k=1

�ki4
4y05

¡

¡xk

( m
∑

j=1

�ji3
4y05

¡

¡xj

( m
∑

i=1

�ii2
4y05

¡

¡xi
�1i1

4y05

))

0

Finally, by plugging (25) into (28) and recalling (24) with � =
√
T , a J th order expansion approximation for

the option price (20) is defined by

V 4J 5405 2=
√
T e−rTD4y05

−1
J
∑

k=0

ìk4D4y054K − y015/
√
T 5T k/21 (40)

where y0 = 4f 4x011 x021 : : : 1 x0m51 x021 : : : 1 x0m5. Thus, the following proposition states the validity of the expan-
sion (40) under the technical assumptions introduced in §2.

Proposition 2. Under the technical Assumptions 1, 2, and 3, we have

sup
K>01 x0∈S1�∈ä

�V 405−V 4J 5405� ≤ cT 4J+15/21 (41)

for any J ∈N and some constant c > 01 where S is any compact subset of E (the state space of the diffusion X).

Proof. See Appendix A.

Before moving to the next section, we remark that the error estimate in (41) is analogous to the characterization
of a remainder term of Taylor expansion for smooth functions in classical calculus. Similar to the theory of
Taylor expansion, such an error estimate is a local property. However, as demonstrated through the computational
results in §5.1, the accuracy of expansions is not restricted to small values of T 3 instead, the performance can
be enhanced by increasing the number of correction terms.

4. Explicit calculation of conditional expectation (34). In this section, we dwell on a general and efficient
algorithm for explicitly calculating conditional expectation (34), which is different from the existing results on
iterated Itô integrals; see, e.g., Yoshida [76], Takahashi [61, 62, 63], Kunitomo and Takahashi [48, 49], Takahashi
and Yamada [70], Takahashi et al. [66, 67], Kawai [45], Jaeckel and Kawai [40], and Gobet et al. [30, 31].
To introduce a fundamental tool for circumventing the challenge in calculating (34), we generalize (34) to the
following form:

Q4i11i21 : : : 1il5
4x5 2=E

( l
∏

w=1

Jiw415

∣

∣

∣

∣

W415= x
)

1 for x ∈Rd1 (42)

where the conditioning is strengthened to the multidimensional Brownian motion. Such an extension will be
potentially useful in a wide range of studies in theoretical and applied probability as well as stochastic modeling.

4.1. From one-dimensional to multidimensional conditioning. We begin with clarifying how the condi-
tional expectation (34) can be calculated based on (42). For the coefficients (35), we assume �1 6= 0 without loss
of generality. It follows from (34) that

P4i11i21 : : : 1il5
4z5 =

∫

4z21 : : : 1zm5∈R
m−1

E

( l
∏

w=1

Jiw415

∣

∣

∣

∣

d
∑

i=1

�iWi415= z1W2415= z2: : : 1Wd415= zd

)

×�4z21 z31 : : : 1 zd � z5dz2: : : dzd1 (43)

where �4z21 z31 : : : 1 zd � z5 denotes the density of the following conditional distribution:

4W24151W34151 : : : 1Wd4155 given
d
∑

i=1

�iWi415= z0 (44)

It is straightforward to observe that the conditional law of (44) follows a normal distribution with a mean vector
4�21�31 : : : 1 �d5

T z and a covariance matrix

è 2= 4èij54d−15×4d−15 =
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Thus, its moment generating function can be explicitly given by

�4�11�21 : : : 1�d−15 2= E

[

exp
(d−1
∑

k=1

�kWk415
)

∣

∣

∣

∣

d
∑

i=1

�iWi415= z

]

= exp
(d−1
∑

k=1

�k�k+1z+
1
2

d
∑

i1 j=1

�i�jèij

)

0 (45)

On the other hand, for a vector z 2= 4z1 z21 : : : 1 zd5, the conditional expectation in the integrand of (43)
satisfies

E

( l
∏

w=1

Jiw415

∣

∣

∣

∣

d
∑

i=1

�iWi415= z1W2415= z21 : : : 1Wd415= zd

)

=E

( l
∏

w=1

Jiw415

∣

∣

∣

∣

W415=å−1z
)

1

where the matrix å is defined by

å 2=

















�1 �2 · · · �d

0 1 · · · 0

000
000

0 0 0
000

0 0 · · · 1

















0

Provided that the conditional expectation (42) can be calculated as a multivariate polynomial in x1 we assume

Q4i11i21 : : : 1il5
4å−1z5≡E

( l
∏

w=1

Jiw415

∣

∣

∣

∣

W415=å−1z
)

=
∑

n11n21 : : : 1nd∈N

c4n11 n21 : : : 1 nd5z
n1z

n2
2 : : : z

nd
d 1

where c4n11 n21 : : : 1 nd5 is the coefficient corresponding to the term zn1z
n2
2 : : : z

nd
d . Thus, it follows from (43)

that

P4i11i21 : : : 1il5
4z15 =

∑

n11n21 : : : 1nd∈N

c4n11 n21 : : : 1 nd5z
n1

∫

4z21 : : : 1zm5∈R
m−1

z
n2
2 : : : z

nd
d �4z21 z31 : : : 1 zd � z5dz2: : : dzd

=
∑

n11n21 : : : 1nd∈N

c4n11 n21 : : : 1 nd5z
n1M4n21 : : : 1 nd51

where M4n21 : : : 1 nd5 is a cross moment defined by

M4n21 : : : 1 nd5 2=E

(

W2415
n2W3415

n3 : : : W
nd
d 415

∣

∣

∣

∣

d
∑

i=1

�iWi415= z

)

0 (46)

We note that a closed-form expression for (46) can be obtained from differentiating the moment generating
function (45), i.e.,

M4n21 : : : 1 nd5=
¡n2+···+nd�4�11�21 : : : 1�d−15

¡�
n2
1 ¡�

n3
2 : : : ¡�

nd
d−1

∣

∣

∣

∣

�1=�2=···=�d−1=0

0

4.2. Calculation of (42). For any arbitrary indices i11 i21 : : : 1 il1 we propose a general method for calculating
the conditional expectation (42). In the construction of diagonal expansion for heat kernel, Watanabe [74]
outlined the challenges in computing conditional expectation of the type (42). By discretizing stochastic integrals,
Uemura [73] showed that (42) has the structure of a polynomial in x = 4x11 x21 : : : 1 xm5 with some unknown
coefficients.

In addition to the iterated Stratonovich integral defined in (14), let

Ii6f 74t5 2=
∫ t

0

∫ t1

0
· · ·

∫ tn−1

0
f 4tn5dWin

4tn5 · · · dWi2
4t25dWi1

4t15 (47)

be an iterated Itô integral with the right-continuous integrand f for an index i= 4i11 : : : 1 in5 ∈ 8011121 : : : 1 d9n0
To lighten the notation, for f ≡ 1, the integral Ii6174t5 is abbreviated as Ii4t5. Before discussing details, we
outline a brief description of a general algorithm for explicitly computing any arbitrary conditional expectation
of the type (42). It is noteworthy that this algorithm can be conveniently implemented using any symbolic
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package, e.g., Mathematica. In what follows, the iterated Itô integrals may involve not only stochastic integrals
with respect to Brownian motions in the Itô sense but also Lebesgue integrals with respect to time variables.

Algorithm 1
• Convert multiplication of Stratonovich integrals to a linear combination of iterated Stratonovich

integrals.
• Convert each iterated Stratonovich integral to a linear combination of iterated Itô integrals.
• Compute conditional expectation for each iterated Itô integrals.

4.2.1. Conversion from multiplications of Stratonovich integrals to linear combinations. In this subsec-
tion, we provide a simple recursive algorithm for converting any arbitrary multiplication of iterated Stratonovich
integrals to a linear combination. Let −i and i−denote the index obtained by deleting the first and the last com-
ponents of an arbitrary index i, respectively. According to Tocino [71], for a product of two iterated Stratonovich
integrals as defined in (14), it follows that

JÁ4t5JÂ4t5=

∫ t

0
JÁ4s5J−Â4s5 � dW�1

4s5+

∫ t

0
J−Á4s5JÂ4s5 � dW�1

4s51 (48)

for any arbitrary indices Á = 4�11�21 : : : 1�p5 and Â = 4�11�21 : : : 1�q5. Iterative applications of this relation
render a linear combination form of JÁ4t5JÂ4t5. For example, let Á = 4�11�21�35 and Â=4�11�25, iterative
applications of (48) yield a linear combination form of JÁ415JÂ415 as

JÁ415JÂ415 = J4�11�21�11�21�35
415+ J4�11�11�21�21�35

415+ J4�11�21�11�21�35
415+ J4�11�11�21�21�35

415

+ J4�11�11�21�21�35
415+ J4�11�11�21�21�35

415+ J4�11�21�31�11�25
415+ J4�11�21�11�31�25

415

+ J4�11�11�21�31�25
415+ J4�11�11�21�31�25

4150

Thus, iterated applications of the above algorithm yield a conversion from a multiplication of any number of
iterated Stratonovich integrals to a linear combination. Therefore, our immediate task is reduced to the calculation
of conditional expectation of iterated Stratonovich integrals.

4.2.2. Conversion from iterated Stratonovich integrals to Itô integrals. In this subsection, we briefly
adapt an algorithm proposed in Kloeden and Platen [46] for systematically converting an arbitrary iter-
ated Stratonovich integral to a linear combination of iterated Itô Integrals. For the index i = 4i11 : : : 1 in5 ∈

8011121 : : : 1 d9n, its length is defined by l4i5 2= l44i11 : : : 1 in55 = n. Let � denote the index with zero length,
i.e., l4�5 = 0. We also recall that W04t5 2= t. According to p. 172 of Kloeden and Platen [46], the conversion
between iterated Stratonovich integrals defined in (14) and iterated Itô integrals defined in (47) can be achieved
via a recursive algorithm. For the case of l4i5= 0 or 1, it is easy to have Ji4t5= Ii4t53 for the case of l4i5≥ 2,
a general conversion scheme can be implemented via an iteration:

Ji4t5= I4i156J−i4 · 574t5+ 18i1=i2 6=09I405
[

1
2J−4−i54 · 5

]

4t50 (49)

For instance, if l4i5= 2, we have
Ji4t5= I

i
4t5+

1
2 18i1=i2 6=09I4054t50

More explicitly, the conversion of Stratonovich integral J4i11 i25415, for i11 i2 ∈ 81121 : : : 1 d9, yields that

∫ 1

0

∫ t1

0
1 � dWi2

4t25 � dWi1
4t15=

∫ 1

0
Wi2

4t15 � dWi1
4t15=

∫ 1

0
Wi2

4t15dWi1
4t151

for i1 6= i23
∫ 1

0

∫ t1

0
1 � dWi2

4t25 � dWi1
4t15=

∫ 1

0
Wi1

4t15dWi1
4t15+

1
2 =

1
2Wi1

41521

for i1 = i2.
Now, with the conversion algorithm (49), we are able to express any arbitrary iterated Stratonovich integral

(in the linear combination converted from the multiplication
∏l

w=1 Jiw415) as a linear combination of iterated Itô
integrals. Thus, our immediate task becomes the calculation of conditional expectation of iterated Itô integrals,
which will be intensively discussed in the following subsection.

C
o
p
yr
ig
h
t:

IN
F
O
R
M
S

ho
ld
s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs
io
n,

w
hi
ch

is
m
ad

e
av

ai
la
bl
e
to

su
bs

cr
ib
er
s.

T
he

fil
e
m
ay

no
t
be

po
st
ed

on
an

y
ot
he

r
w
eb

si
te
,
in
cl
ud

in
g

th
e

au
th
or
’s

si
te
.
P
le
as

e
se

nd
an

y
qu

es
tio

ns
re
ga

rd
in
g

th
is

po
lic
y
to

pe
rm

is
si
on

s@
in
fo
rm

s.
or
g.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

22
2.

29
.5

0.
39

] 
on

 3
0 

O
ct

ob
er

 2
01

3,
 a

t 0
4:

34
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Li: Closed-Form Expansion, Conditional Expectation, and Option Valuation
12 Mathematics of Operations Research, Articles in Advance, pp. 1–30, © 2013 INFORMS

4.2.3. A closed-form formula for conditional expectation of iterated Itô integrals. As the most chal-
lenging issue for completing our closed-form expansion, we propose a novel formula for calculating conditional
expectation of the following general form:

E6Ii415 �W415= x7=E

(

∫ 1

0

∫ t1

0
· · ·

∫ tn−1

0
dWin

4tn5 · · · dWi2
4t25dWi1

4t15

∣

∣

∣

∣

W415= x
)

1 (50)

for any arbitrary index i= 4i11 i21 : : : 1 in5 ∈ 8011121 : : : 1 d9n and vector x = 4x11 x21 : : : 1 xd5.
Our formula for the conditional expectation (50) is different from the existing results. For one-dimensional

Brownian motion, an explicit formula for conditional expectation of multiple Itô integrals with deterministic
integrands and without Lebesgue integrals on the time variable was introduced in Nualart et al. [56] via Wiener-
chaos decomposition; see, e.g., chapter 1 in Nualart [55]. Takahashi et al. [66] adapted this result to the case with
iterated Itô integrals. To implement small-diffusion type asymptotic expansions, such a formula was applied and
generalized in order to incorporate multidimensional Brownian motions in, e.g., Yoshida [76, 77], Takahashi [61,
62, 63], Kunitomo and Takahashi [48, 49], Takahashi et al. [66, 67], and Shiraya et al. [60]. By converting
conditional expectations to unconditional ones via Hermite polynomials, an alternative ordinary-differential-
equation-based scheme for computing conditional expectations can be found in Takahashi et al. [66, 67], and
Takahashi and Toda [68].

Proposition 3. For any arbitrary index i= 4i11 i21 : : : 1 in5 with i11 i21 : : : 1 in ∈ 80111 : : : 1 d91 we have

E6Ii415 �W415= x7=
1
n!

ni415
∑

k1=0

· · ·

ni4d5
∑

kd=0

4−15
∑d

l=14ni4l5−kl5/2
d
∏

l=1

[

�4ni4l5− kl5

(

ni4l5

kl

)]

x
k1
1 1 : : : 1 x

kd
d 1 (51)

where ni4l5 denotes the total number of l’s appearing in i; the function � is defined by

�4n5=

4n/25−1
∏

k=0

(

n− 2k
2

)/(

n

2

)

!1

if n is an even integer, and 0 otherwise.

Proof. See Appendix B.

In particular, for d = 112, we illustrate the formula (51) via the following two examples. For d = 1 and
i11 i21 : : : 1 in ∈ 80119, we have

E6Ii415 �W415= x7=
ni415
∑

k1=0

1
n!
4−154ni415−k15/2�4ni415− k15

(

ni415
k1

)

xk1 0

For d = 2 and i11 i21 : : : 1 in ∈ 80111291 we have

E6Ii415 �W415= x7=
ni425
∑

k2=0

ni415
∑

k1=0

1
n!
4−154ni415+ni425−k1−k25/2�4ni425− k25�4ni415− k15

(

ni415
k1

)(

ni425
k2

)

x
k1
1 x

k2
2 0

5. Examples and computational results. To demonstrate the numerical performance of our method, this
section is devoted to examples and computational results. In §5.1, we employ the valuation of European options
under various constant elasticity of variance type models (see Cox [16]) to illustrate the efficiency of our
expansion. In §5.2, we apply our expansion to the valuation of options on VIX, which is a challenging issue
in financial engineering because of the complexity of VIX dynamics implied by that of the stochastic variance.
Without loss of generality, we employ the GARCH diffusion (see, e.g., Christoffersen et al. [14]) and its
multifactor generalization to the Gatheral double lognormal stochastic volatility (hereafter DLN-SV) model (see,
e.g., Gatheral [27]) as two examples to illustrate the applicability of our method to analytically intractable
non-Lévy and non-affine models.

In each example, we begin by systematically nesting the specific model into the general framework proposed
in §2 in order to symbolically implement the closed-form expansion via the general formulas (40) and (36).
To limit the length of the paper, we will not include the closed-form expansion formulas, which will be provided
in the form of Mathematica notebook upon request. The symbolic computation of asymptotic expansions are
implemented in Mathematica; the numerical valuation of the benchmark values (including analytical pricing
formulas for CEV type models and Monte Carlo simulations for the GARCH diffusion and DLN-SV models)
are programmed in MATLAB. All the numerical experiments are conducted on a laptop PC with an Intel(R)
Pentium(R) M 1.73 GHz processor and 2 GB of RAM running Windows XP Professional.
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5.1. Illustrations from valuation of European options under CEV type models. The CEV type models
offer a simple but flexible method for capturing the randomness in volatility, the leverage effect, and even credit
risk; see, e.g., Cox [16], Davydov and Linetsky [19], Andersen and Brotherton-Ratcliffe [3], as well as Carr and
Linetsky [10]. We assume that the risk-neutral dynamics of an underlying asset is given by the following SDE:

dS4t5= rS4t5dt + �S4t5�+1 dW4t51 S405= s0 > 01 (52)

for some constants r , �, and �. By flexible choices of �, which controls the relation between the underlying price
and its volatility, the specification of (52) nests a number of celebrated models, e.g., the Black-Scholes model
obtained from �= 0 (see Black and Scholes [6] and Merton [53]), the Cox-Ingersoll-Ross (CIR) model obtained
from �= −1/2 (see Cox et al. [17]), and the absolute process obtained from �= −1 (see Cox [16] and Davydov
and Linetsky [19]). Various alternative methods for approximating option price and implied volatility under the
CEV type (or even more general local volatility) models can be found in, e.g., Hagan and Woodward [34],
chapter 10 of Lipton [50], chapter 5 of Henry-Labordère [35], Gobet et al. [30], and Gatheral et al. [28].

Based on the analytical tractability of CEV type models, we employ the closed-form formulas for option
valuation (see, e.g., Cox [16], Schroder [59], and Davydov and Linetsky [19]) to generate benchmark true values
and thus numerically validate our expansions. According to the setting given in (3), it is straightforward to
obtain closed-form expansions via (36) and (40). In Table 1, we report the computational results for comparing
the fourth and eighth order expansions with the benchmark true values for the maturities T = 1 and 2 and the
strikes K = 80, 90, 100, 110, and 120 for four choices of �, i.e., �= 0, −1/41 −1/2, and −1. The asymptotic
refers to the expansion approximations. The error is calculated by the difference between the expansion and the
true value. It is evident that the accuracy of the expansions can be obtained at a relatively small order (the fourth
in this case) and improved as the order increases. To further demonstrate the performance and robustness of our
expansion, we plot the uniform absolute errors for a relatively wide range of strikes K ∈ 8801811 : : : 11209 and
for maturities T = 1 and 2 in Figure 1. The J th order uniform error is calculated from

e4J 5 2= max
K∈8801811 : : : 11209

�V 405−V 4J 5405�0

As seen from Figure 1, the increase of orders results in the decrease of uniform errors. This suggests that better
numerical accuracy can be attained by higher order expansions, which will become increasingly feasible to
obtain because of rapid improvement in computing technology. We note that Assumption 2 is violated for some
model specifications (� = −1/4 and −1/2). However, the computational results suggest the wide applicability
of our expansion method beyond the theoretical assumptions.

Moreover, in Figure 2, we demonstrate the efficiency of our method by comparing the average uniform abso-
lute error for pricing options with maturity T = 1 over the strikes from 8801811 : : : 11209 and the corresponding
computing time with those resulting from Monte Carlo simulation methods. For simulations, on the one hand, we
employ an exact simulation method by sampling the noncentral chi-square distributions; see, e.g., chapter 3 in
Glasserman [29]; on the other hand, we employ the Euler discretization; see, e.g., chapter 6 in Glasserman [29].
Note that the latter strategy sheds light on the cases where exact simulation is impractical or impossible and
discretization is inevitable. The comparisons suggest that our expansions significantly outperform both of these
two commonly used Monte Carlo simulation methods.

Before closing this section, we compare the performance of our expansion with those of Hagan and
Woodward [34], Henry-Labordère [35], Gobet et al. [30], and Gatheral et al. [28]. In Table 2, we report what
orders in our expansion are required to obtain comparable accuracy in terms of the Black-Scholes implied
volatility. For our expansion, the error in implied volatility is calculated from the difference between the implied
volatility of our expansion value and that of the benchmark value given by the closed-form formula; see, e.g.,
Cox [16] and Schroder [59]. For the alternative methods, the error is calculated from the difference between the
implied volatility expansion and the implied volatility of the benchmark value. The errors of the two selected
(the second and the fourth) orders of our expansion either sandwich or exhibit magnitudes similar to those of
the aforementioned alternative methods (with negligible differences).

5.2. Applications in valuation of options on VIX. VIX (the S&P500 implied volatility index; see
CBOE [12]) measures market expectations of near term (next 30 calendar days) volatility conveyed by index
option prices. Since volatility often signifies financial turmoil, VIX is often referred to as the “investor fear
gauge.” Options on VIX have become major risk management tools. As important hedging instruments, call
options on VIX are often used to manage downside risk. In particular, through rolling options on VIX with
one-month maturity, VXTH (the VIX tail hedge; see CBOE [13]) proposed by CBOE has shown its indispens-
able role as a powerful hedging tool for protecting portfolios against tail risk. In this section, we apply our
asymptotic expansion method to the valuation of options on VIX.
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Table 1. Numerical performance for the CEV models.

Parameters Benchmark 4th order expansion 8th order expansion

T K True value Asymptotic Error Asymptotic Error

�= 0

1 80 24014718964 24014693216 2057 × 10−4 24014718963 1025 × 10−8

90 16097187578 16097163582 2040 × 10−4 16097187577 1006 × 10−8

100 11034847683 11034823719 2040 × 10−4 11034847681 1006 × 10−8

110 7025577635 7025553699 2040 × 10−4 7025577634 1006 × 10−8

120 4046330171 4046307640 2025 × 10−4 4046330170 8089 × 10−9

2 80 28030846514 28030650378 1096 × 10−3 28030846479 3049 × 10−7

90 21095705499 21095511675 1094 × 10−3 21095705465 3040 × 10−7

100 16072842463 16072648665 1094 × 10−3 16072842430 3040 × 10−7

110 12055715618 12055521841 1094 × 10−3 120557155840 3040 × 10−7

120 9031369441 9031177426 1092 × 10−3 9031369407 3033 × 10−7

�= −1/4

1 80 24029700872 24029676550 2043 × 10−4 24029700871 1008 × 10−8

90 17007894600 17007870793 2038 × 10−4 17007894599 1006 × 10−8

100 11035005220 11034981264 2040 × 10−4 11035005219 1006 × 10−8

110 7014025331 7014001225 2041 × 10−4 7014025330 1006 × 10−8

120 4026509695 4026485927 2038 × 10−4 4026509694 1002 × 10−8

2 80 28055925556 28055733393 1092 × 10−3 28055925521 3054 × 10−7

90 22011232682 22011039699 1093 × 10−3 22011232648 3040 × 10−7

100 16073274849 16073081135 1094 × 10−3 16073274815 3040 × 10−7

110 12039509455 12039315000 1095 × 10−3 12039509421 3039 × 10−7

120 9000454690 9000259377 1095 × 10−3 9000454669 3006 × 10−7

�= −1/2

1 80 24045553812 24045533260 2006 × 10−4 24045553812 4097 × 10−9

90 17019001023 17018978314 2027 × 10−4 17019001022 7042 × 10−9

100 11035480260 11035456392 2039 × 10−4 11035480259 1001 × 10−8

110 7002893190 7002868214 2050 × 10−4 7002893189 1024 × 10−8

120 4007439179 4007412303 2069 × 10−4 4007439177 2008 × 10−8

2 80 28082489615 28082312246 1077 × 10−3 28082489602 1034 × 10−7

90 22027702410 22027515601 1087 × 10−3 22027702383 2066 × 10−7

100 16074584949 16074392228 1093 × 10−3 16074584917 3020 × 10−7

110 12024351006 12024152619 1098 × 10−3 12024350970 3064 × 10−7

120 8070980382 8070773767 2007 × 10−3 8070980337 4047 × 10−7

�= −1

1 80 24080176688 24080158145 1086 × 10−4 24080176686 1072 × 10−8

90 17042594029 17042571707 2023 × 10−4 17042594028 1021 × 10−8

100 11037418604 11037394286 2043 × 10−4 11037418603 1007 × 10−8

110 6081790584 6081764162 2064 × 10−4 6081790583 9033 × 10−9

120 3071352164 3071321232 3009 × 10−4 3071352164 3053 × 10−9

2 80 29041089763 29040917823 1072 × 10−3 29041089821 5083 × 10−7

90 22064091260 22063903080 1088 × 10−3 22064091245 1051 × 10−7

100 16080039525 16079841820 1098 × 10−3 16080039494 3002 × 10−7

110 11096994656 11096787000 2008 × 10−3 11096994625 3015 × 10−7

120 8015849610 8015623031 2027 × 10−3 8015849585 2051 × 10−7

Note. Parameters: s0 = 100, r = 0003, and � = �s
�
0 = 0025.

5.2.1. Modeling for VIX. According to CBOE [12], regardless of model specifications, VIX is defined
by averaging the weighted prices of out-of-the-money put and call options on S&P500 with 30-day maturity.
Suppose the risk-neutral dynamics of an asset is given by

dS4t5= rS4t5dt +
√

V 4t5S4t5dW4t51 (53)

where 8W4t59 is a standard Brownian motion; r is the risk-free rate; the process 8V 4t59 models the stochastic
variance. Based on the realized variance over the time interval 6t1 t +ãT 7 defined by

RV4t1 t +ãT 5 2=
1
ãT

∫ t+ãT

t
V 4s5ds1
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Figure 1. Uniform errors of the expansions for the CEV models.

where ãT corresponds to the 30-day maturity of the out-of-the-money options employed for constructing VIX,
a theoretical squared VIX for modeling and pricing of derivatives on VIX (see Carr and Wu [11]) is defined by

̂VIX
2
4t5=E6RV4t1 t +ãT 5 �F4t57=

1
ãT

∫ t+ãT

t
E4V 4s5 �F4t55ds1 (54)

where the expectations are taken under the risk-neutral measure and 8F4t51 t ≥ 09 denotes the filtration generated
by the process 8V 4t59.

The literature has witnessed various models for pricing options on VIX or related volatility derivatives. Similar
to the Black-Scholes model for pricing equity and index options, Whaley [75] regarded VIX as a geometric
Brownian motion with constant volatility. Grunbichler and Longstaff [32] specified the dynamics of VIX as a
mean-reverting square-root process. Detemple and Osakwe [20] employed a logarithmic mean-reverting process
for pricing options on volatility. Carr and Lee [9] proposed a model-free approach by using the associated
variance and volatility swap rates as model inputs. Cont and Kokholm [15] studied a modeling framework
for the joint dynamics of an index and a set of forward variance swap rates. In this paper, we will directly
model the stochastic variance process 8V 4t59 in the asset dynamics (53) using the GARCH diffusion (see, e.g.,
Christoffersen et al. [14]) as well as its multifactor generalization to the Gatheral double lognormal stochastic
volatility (DLN-SV) model (see, e.g., Gatheral [27]) and price options on VIX based on the theoretical proxy
of VIX defined by (54).

5.2.2. Valuation of options on VIX under the GARCH diffusion model. In this subsection, we apply our
expansion method to the valuation of options on VIX under the GARCH diffusion stochastic volatility model.
According to Christoffersen et al. [14], the risk-neutral dynamics for the model is specified as follows.
Model 1. The GARCH diffusion stochastic volatility model is governed by

dV 4t5=κ4�−V 4t55dt +�V 4t5dW4t51 V 405= v0 > 01 (55)

where κ , � and � are positive constants3 8W4t59 is a standard Brownian motion.
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Figure 2. Convergence of uniform errors.

Table 2. Comparisons with alternative methods.

Parameters Alternative methods 2nd order expansion 4th order expansion

� K (%) Error in implied volatility Error in implied volatility Error in implied volatility

Comparison with the 3rd order approximation formula (2.6) in Gobet et al. [30]
−002 80 −106×10−5 −106×10−4 −200×10−6

100 −600×10−6 −302×10−5 −100×10−6

120 100×10−6 600×10−5 −807×10−7

Comparison with the 3rd order approximation formula (2.9) in Gobet et al. [30]
−008 80 407×10−4 408×10−4 102×10−4

100 102×10−4 102×10−4 300×10−5

120 −804×10−5 −800×10−5 −806×10−6

Comparison with the approximation formula (7) in Hagan and Woodward [34]
−005 80 702×10−5 208×10−4 107×10−5

100 602×10−5 503×10−5 302×10−6

120 404×10−5 −905×10−5 −504×10−6

Comparison with the approximation formula (5.41) in Henry-Labordère [35]
−005 80 708×10−5 208×10−4 107×10−5

100 602×10−5 503×10−5 302×10−6

120 406×10−5 −905×10−5 −504×10−6

Comparison with the approximation formula given in §3 of Gatheral et al. [28]
−005 80 101×10−5 208×10−4 107×10−5

100 607×10−6 503×10−5 302×10−6

120 500×10−6 −905×10−5 −504×10−6

Note. Parameters: s0 = 11 T = 10, r = 0, and �= 002.
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In the SDE (55), we employ κ for the speed of mean reversion, � for the long-term level, � for the
volatility of variance. Nelson [54] showed that, under the GARCH diffusion model, discrete time log returns
follow a GARCH41115 process of Engle and Bollerslev [24], which is popular for modeling stochastic volatility
and has shown outstanding empirical performance. We note that the GARCH diffusion specification is also
employed for constructing the �-SABR model in Henry-Labordère [35]. According to the classification in Dai
and Singleton [18], the model (55) belongs to the non-affine class, which is usually regarded to be analytically
intractable and computationally challenging.

By explicitly solving E4V 4s5 �F4t55 from the fact that

E4V 4t +ãT 5−V 4t5 �F4t55=κ
∫ t+ãT

t
4�−E4V 4s5 �F4t555ds1

and recalling the definition of the squared VIX in (54), we express the VIX under model (55) as a linear
combination of the instantaneous variance V 4t5 and the long-term level � in the following lemma.

Lemma 3. Under the GARCH diffusion stochastic volatility model (55), the VIX defined by (54) admits the
following representation:

VIX4t5=
√

a1V 4t5+ a2�1 (56)

where the coefficients are given by

a1 =
1
ãT

·
1 − e−κãT

κ 1 and a2 = 1 −
1
ãT

·
1 − e−κãT

κ 0 (57)

Thus, the price for a call option on VIX with maturity T and strike k (expressed in percentage) can be
represented by risk-neutral expectation of the discounted payoff, i.e.,

c0 = e−rTE4VIX4T 5− k5+ = e−rTE
(

√

a1V 4T 5+ a2�− k
)+
0 (58)

According to the convention proposed in CBOE [12], the price per share is given by C0 = 100 × c00 To apply
our general expansion formulas (36) and (40), we identify V 4t5 as the underlying model X4t5 proposed in (1).
According to Lemma 3, the function for constructing VIX from X4t5 is given by f 4x5 =

√

a1x+ a2�. Thus,
following the procedures proposed in (6), (7) and (9), we obtain the following nonlinear SDE for Y �4t5 =

f 4X�4t55:

dY �4t5= �2�4Y �4t55dt + ��4Y �4t55 �dW4t51 Y �405= y0 = f 4v051 (59)

where

�4x5=
κ4�− x25

2x
−

�24x2 − a2�5

4x
and �4x5=

�4x2 − a2�5

2x
0 (60)

Thus, (58) can be expressed as c0 = e−rTE64Y �415− k5+7. We note that the drift and volatility functions (60)
both exhibit nonlinearity, which poses significant challenge on the valuation. However, such difficulty can be
circumvented by our expansion.

In numerical experiments, we select a set of parameters from Barone-Adesi et al. [5]. Accordingly, the initial
value for VIX is calculated as VIX405 =

√

a1V 405+ a2� = 003. To provide benchmark values for comparison,
we simulate the path of 8V 4t59 using Euler discretization. Thus, the initial value of an option on VIX is simulated
by averaging a large number of trials, which is assumed to be the square of the number of discretization steps
according to the optimal rule for allocating computational resources suggested by Duffie and Glynn [21].

As listed from the Chicago Board Options Exchange, traded options on VIX usually have relatively small
maturities. The longest maturities are less than or equal to six months; and the large trading volumes are
usually associated with options with small maturities, e.g., front-month options. Our numerical experiments target
options with maturities ranging from one month to six months and strikes corresponding to various moneyness.
In Table 3, computational results from the simulations as well as expansions of the fourth and the ninth orders are
exhibited. The accuracy of the expansions can be seen from the fact that all values of the ninth order expansions
lie in the 95% confidence intervals of the simulated benchmark values. In Figure 3, we plot the absolute errors
of our expansions with three different orders for the four representative maturities listed in Table 3. As seen from
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Table 3. Numerical performance for pricing options on VIX under the GARCH diffusion model.

Parameters Simulation 4th order expansion 9th order expansion

T K Mean Std. err. Asymptotic Discrepancy Asymptotic Discrepancy

1/12 25 0.048792 5075 × 10−5 0.048776 1065 × 10−5 0.048749 4033 × 10−5

26 0.039403 5058 × 10−5 0.039378 2044 × 10−5 0.039359 4037 × 10−5

27 0.030616 5027 × 10−5 0.030623 7018 × 10−6 0.030607 9008 × 10−6

28 0.022806 4080 × 10−5 0.022828 2026 × 10−5 0.022813 7028 × 10−6

29 0.016269 4023 × 10−5 0.016254 1050 × 10−5 0.016238 3013 × 10−5

30 0.011018 3059 × 10−5 0.011032 1045 × 10−5 0.011016 1080 × 10−6

31 0.007115 2093 × 10−5 0.007135 2006 × 10−5 0.007118 2096 × 10−6

32 0.004387 2029 × 10−5 0.004402 1056 × 10−5 0.004384 2069 × 10−6

33 0.002595 1077 × 10−5 0.002596 1060 × 10−6 0.002578 1067 × 10−5

34 0.001469 1031 × 10−5 0.001466 2089 × 10−6 0.001449 2000 × 10−5

2/12 25 0.048592 7029 × 10−5 0.048654 6014 × 10−5 0.048490 1002 × 10−4

26 0.039778 6098 × 10−5 0.039927 4041 × 10−5 0.039795 8053 × 10−6

27 0.031879 6056 × 10−5 0.031997 1049 × 10−4 0.031926 1073 × 10−5

28 0.024824 6003 × 10−5 0.025011 1088 × 10−4 0.024881 5081 × 10−5

29 0.018866 5040 × 10−5 0.019065 1099 × 10−4 0.018933 6071 × 10−5

30 0.014022 4077 × 10−5 0.014181 1059 × 10−4 0.014048 2057 × 10−7

31 0.010184 4012 × 10−5 0.010305 1021 × 10−4 0.010169 1051 × 10−5

32 0.007196 3049 × 10−5 0.007330 1034 × 10−4 0.007191 4056 × 10−6

33 0.004961 2089 × 10−5 0.005116 1055 × 10−4 0.004973 1015 × 10−5

34 0.003359 2037 × 10−5 0.003514 1055 × 10−4 0.003369 9089 × 10−6

3/12 25 0.048323 8014 × 10−5 0.048865 5042 × 10−4 0.048404 8004 × 10−5

26 0.040009 7077 × 10−5 0.040565 5056 × 10−4 0.040127 1019 × 10−4

27 0.032622 7032 × 10−5 0.033073 4051 × 10−4 0.032642 1094 × 10−5

28 0.026041 6075 × 10−5 0.026489 4048 × 10−4 0.026050 9033 × 10−6

29 0.020459 6015 × 10−5 0.020853 3094 × 10−4 0.020409 4096 × 10−5

30 0.015672 5049 × 10−5 0.016157 4085 × 10−4 0.015709 3069 × 10−5

31 0.011939 4087 × 10−5 0.012343 4004 × 10−4 0.011889 5008 × 10−5

32 0.008974 4027 × 10−5 0.009320 3045 × 10−4 0.008856 1018 × 10−4

33 0.006512 3064 × 10−5 0.006974 4063 × 10−4 0.006502 1001 × 10−5

34 0.004724 3011 × 10−5 0.005191 4067 × 10−4 0.004710 1040 × 10−5

6/12 25 0.048042 1085 × 10−4 0.051545 3057 × 10−3 0.047901 1079 × 10−4

26 0.040342 1077 × 10−4 0.043774 3032 × 10−3 0.040201 2052 × 10−4

27 0.033432 1067 × 10−4 0.036841 3035 × 10−3 0.033290 1099 × 10−4

28 0.027364 1056 × 10−4 0.030769 3026 × 10−3 0.027218 2097 × 10−4

29 0.022140 1043 × 10−4 0.025552 3047 × 10−3 0.021991 9026 × 10−5

30 0.017728 1031 × 10−4 0.021149 3034 × 10−3 0.017573 2034 × 10−4

31 0.014063 1018 × 10−4 0.017500 3038 × 10−3 0.013903 2017 × 10−4

32 0.011065 1006 × 10−4 0.014524 3038 × 10−3 0.010898 1061 × 10−4

33 0.008640 9045 × 10−5 0.012135 3048 × 10−3 0.008472 1083 × 10−4

34 0.006692 8037 × 10−5 0.010241 3053 × 10−3 0.006535 1071 × 10−4

Note. Parameters: κ = 2, � = 0009, � = 008, v0 = 0009, and r = 0003. Std. err.: standard error. Discrepancy:
Asymptotic-Mean.

Table 3 and Figure 3, the decrease of discrepancies between the simulated benchmark value and the asymptotic
expansion value resulting from the increase of orders of expansion suggests the indispensable role of high-order
expansions.

5.2.3. Valuation of options on VIX under the Gatheral double lognormal stochastic volatility model.
Similar to the previous application, we consider an extension of the GARCH diffusion model to a multifactor
stochastic volatility model as follows.
Model 2. The Gatheral double log-normal stochastic volatility 4DLN-SV5 model is governed by

dV 4t5= �4V ′4t5−V 4t55dt + �1V 4t5dW14t51 V 405= v0 > 01 (61)

dV ′4t5= �′4� −V ′4t55dt + �2V
′4t56�dW14t5+

√

1 −�2 dW24t571 V ′405= v′

0 > 01

where −1 ≤ � ≤ 13 � > �′ > 03 �11 �2 and � > 0; 8W14t51W24t59 is a standard two-dimensional Brownian
motion.
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Figure 3. Absolute errors of the expansions for the GARCH diffusion model.

Initiated by Gatheral [27], Model 2 can be regarded as a generalization of Model 1 by allowing an additional
freedom in the sense that the instantaneous variance V 4t5 reverts to a moving intermediate level V ′4t5 at rate �,
while V ′4t5 reverts to the long-term level � at a slower rate �′ <�. For various purposes, alternative multifactor
stochastic volatility models have been proposed in, e.g., Duffie et al. [22], Buehler [8], Egloff et al. [23], Kaeck
and Alexander [41], and Aït-Sahalia et al. [2]. Similar to the GARCH diffusion model, the DLN-SV model falls
into the non-affine class.

By explicitly solving E4V 4s5 �F4t55 and E4V ′4s5 �F4t55 from the fact that

E4V 4t +ãT 5 �F4t55−V 4t5= �
∫ t+ãT

t
4E4V ′4s5 �F4t55−E4V 4s5 �F4t555ds1

E4V ′4t +ãT 5 �F4t55−V ′4t5= �′�ãT −�′

∫ t+ãT

t
E4V ′4s5 �F4t55ds1

we obtain an explicit representation of VIX using a linear combination of the instantaneous variance V 4t5, the
intermediate level V ′4t5, and the long-term level � in the following lemma.

Lemma 4. Under the Gatheral DLN-SV model (61), the VIX defined by (54) admits the following
representation:

VIX(t) =
√

b1V 4t5+ b2V
′4t5+ b3�1 (62)

where the coefficients are given by

b1 =
1
ãT

·
1 − e−�ãT

�
1 (63)

b2 =
1
ãT

·
�

�−�′
·

(

1 − e−�′ãT

�′
−

1 − e−�ãT

�

)

1 (64)

b3 = 1 −
1
ãT

·
1 − e−�ãT

�
−

1
ãT

·
�

�−�′
·

(

1 − e−�′ãT

�′
−

1 − e−�ãT

�

)

0 (65)
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Table 4. Numerical performance for pricing options on VIX under the DLN-SV model.

Parameters Simulation 3rd order expansion 6th order expansion

T K Mean Std. err. Asymptotic Discrepancy Asymptotic Discrepancy

1/52 8 0.043911 3024 × 10−5 0.043994 8034 × 10−5 0.043943 3028 × 10−5

9 0.033957 3023 × 10−5 0.033999 4020 × 10−5 0.033976 1091 × 10−5

10 0.024173 3017 × 10−5 0.024155 1080 × 10−5 0.024171 1045 × 10−6

11 0.015298 2090 × 10−5 0.015246 5021 × 10−5 0.015274 2044 × 10−5

12 0.008402 2037 × 10−5 0.008381 2008 × 10−5 0.008407 5051 × 10−6

13 0.004056 1073 × 10−5 0.040170 3089 × 10−5 0.004044 1019 × 10−5

14 0.001726 1014 × 10−5 0.001700 2054 × 10−5 0.001729 3047 × 10−6

15 0.000667 7010 × 10−6 0.000650 1073 × 10−5 0.006732 6004 × 10−6

16 0.000242 4020 × 10−6 0.000240 2002 × 10−6 0.000247 5019 × 10−6

17 0.000083 2036 × 10−6 0.000092 8090 × 10−6 0.000086 3009 × 10−6

2/52 8 0.045213 4041 × 10−5 0.045338 1025 × 10−4 0.045218 5018 × 10−6

9 0.035326 4038 × 10−5 0.035440 4043 × 10−5 0.035318 8057 × 10−6

10 0.025829 4024 × 10−5 0.025927 8081 × 10−5 0.025875 4057 × 10−5

11 0.017635 3087 × 10−5 0.017653 1063 × 10−4 0.017610 2056 × 10−5

12 0.011162 3031 × 10−5 0.011219 1018 × 10−4 0.011178 1053 × 10−5

13 0.006681 2069 × 10−5 0.006722 1035 × 10−4 0.006680 2059 × 10−7

14 0.003813 2007 × 10−5 0.003845 1053 × 10−4 0.003800 1027 × 10−5

15 0.002090 1054 × 10−5 0.002117 1052 × 10−4 0.002085 4027 × 10−6

16 0.001089 1013 × 10−5 0.000990 9090 × 10−5 0.001077 1015 × 10−5

17 0.000542 8020 × 10−6 0.000524 1079 × 10−5 0.000549 7060 × 10−6

3/52 8 0.046746 5033 × 10−5 0.046658 8082 × 10−5 0.046662 8040 × 10−5

9 0.036806 5027 × 10−5 0.036550 2055 × 10−4 0.036781 2043 × 10−5

10 0.027602 5007 × 10−5 0.027241 3061 × 10−4 0.027624 2013 × 10−5

11 0.019723 4068 × 10−5 0.019309 4014 × 10−4 0.019688 3053 × 10−5

12 0.013479 4013 × 10−5 0.013066 4013 × 10−4 0.013452 4034 × 10−5

13 0.008896 3052 × 10−5 0.008481 4019 × 10−4 0.008853 4072 × 10−5

14 0.005684 2089 × 10−5 0.005290 3094 × 10−4 0.005673 1018 × 10−5

15 0.003598 2033 × 10−5 0.003159 4039 × 10−4 0.003553 4057 × 10−5

16 0.002246 1090 × 10−5 0.001805 4041 × 10−4 0.002230 1056 × 10−5

17 0.001294 1050 × 10−5 0.001016 2078 × 10−4 0.001274 2000 × 10−5

1/12 8 0.047775 7093 × 10−5 0.047590 1058 × 10−4 0.047730 1067 × 10−5

9 0.038101 7086 × 10−5 0.037438 6063 × 10−4 0.038063 3082 × 10−5

10 0.028960 7063 × 10−5 0.028238 7023 × 10−4 0.028915 4055 × 10−5

11 0.021208 7025 × 10−5 0.020447 7061 × 10−4 0.021121 8068 × 10−5

12 0.014986 6067 × 10−5 0.014264 7022 × 10−4 0.014924 6021 × 10−5

13 0.010356 6007 × 10−5 0.009616 7039 × 10−4 0.010279 7069 × 10−5

14 0.007028 5096 × 10−5 0.006258 7070 × 10−4 0.006945 8027 × 10−5

15 0.004652 5090 × 10−5 0.003900 7053 × 10−4 0.004609 4032 × 10−5

16 0.003153 5085 × 10−5 0.002298 8055 × 10−4 0.003048 1004 × 10−4

17 0.002144 5072 × 10−5 0.001282 8062 × 10−4 0.002034 1009 × 10−4

Note. Parameters: � = 505, �1 = 206, v0 = 000137, �′ = 001, � = 00078, �2 = 0044, v′

0 = 000208, � = 0057, and
r = 0004. Std. err.: standard error. Discrepancy: Asymptotic-Mean.

Thus, the price of a call option on VIX with maturity T and strike k can be represented as

c0 = e−rTE
(

√

b1V 4t5+ b2V
′4t5+ b3� − k

)+
0 (66)

To apply the general formulas (40) and (36) for expansion, we identify 4V 4t51V ′4t55 as a two-dimensional
general model X4t5= 4X14t51X24t55 as proposed in (1). The function for constructing the VIX (62) from X4t5

is given by f 4x11 x25 =
√

b1x1 + b2x2 + b3� . Thus, following the procedures proposed in (6), (7) and (9), we
obtain the following nonlinear SDE for Y �4t5= 4Y �

1 4t51 Y
�
2 4t55 with Y �

1 4t5= f 4X�
14t51X

�
24t55 and Y �

2 4t5=X�
24t5:

dY �4t5= �2�4Y �4t55dt + ��4Y �4t55 �dW4t51 Y �405= y0 = f 4v051

where

�4x5≡ �44x11 x255=





1
2x1

[(

b1�− b2�
′
−

1
2b2�

2
2

)

x2 −
(

�+
1
2�

2
1

)

4x2
1 − b2x2 − b3�5+ b2�

′�
]

�′4� − x25− 1
2�

2
2x2
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Figure 4. Absolute errors of the expansions for the Gatheral DLN-SV model.

and

�4x5≡ �44x11 x255=





1
2x1

6�14x
2
1 − b2x2 − b3�5+��2b2x27

1
2x1

√

1 −�2�2b2x2

��2x2

√

1 −�2�2x2



 0

Thus, (58) can be expressed as c0 = e−rTE64Y �
1 415− k5+7.

Owing to the highly volatile feature of VIX, the front-month (maturity less then or equal to one month)
options on VIX have been widely used as important and effective hedging tools. For instance, by rolling
one-month VIX options, VXTH (VIX tail hedge strategy) proposed in CBOE [13] has shown satisfactory
performance for managing portfolio downside risk. Accordingly, we illustrate the applicability of our expansion
in the valuation of options on VIX with relatively small maturities. In the numerical experiments, we employ
the set of parameters given in Gatheral [27]. Accordingly, the initial value for VIX is calculated as VIX 405=
√

b1V 405+ b2V
′405+ b3� = 001226. To provide benchmark values for comparison, we simulate the path of

84V 4t51V ′4t559 using Euler discretization. In Table 4, computational results for the simulated values as well as
the third and the sixth orders of our expansions are exhibited. The accuracy of the expansion can be seen from
the fact that all the sixth order expansion values lie in the 95% confidence intervals of the simulated benchmark
values. In Figure 4, we plot the absolute errors of our expansions with different orders for the four representative
maturities listed in Table 4. As seen from Table 4 and Figure 4, the decrease of discrepancies between the
simulated benchmark value and the asymptotic expansion value resulting from the increase of expansion orders
suggests the applicability of our method. In particular, for valuation of options on VIX with longer maturities,
we could seek for desirable accuracy by implementing higher-order expansions.

6. Concluding remarks. Enlightened by the theory of Watanabe [74] for analyzing generalized random
variables and its further development in Yoshida [76], Takahashi [61, 62] as well as Kunitomo and Takahashi
[48, 49] etc., we focus on a wide range of multivariate diffusion models and propose a general probabilistic
method of small-time asymptotic expansions for approximating option price in simple closed-form up to an
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arbitrary order. To explicitly construct correction terms, we introduce an efficient algorithm and novel closed-
form formulas for calculating conditional expectation of multiplication of iterated stochastic integrals, which
are potentially useful in a wider range of topics in applied probability and stochastic modeling for operations
research. The performance of our method is illustrated through various models nested in the CEV type processes.
With an application in pricing options on VIX under the GARCH diffusion and its multifactor generalization to
the Gatheral double lognormal stochastic volatility models, we demonstrate the versatility of our method in deal-
ing with analytically intractable non-Lévy and non-affine models. The robustness of the method is theoretically
supported by justifying uniform convergence of the expansion over the whole set of parameters.

In summary, our method may become a convenient and efficient tool for option valuation under a wide range
of diffusion models with flexible specification. In particular, because of the fast development of computing
technology in terms of speed and storage capacity, symbolic implementation of high-order expansions will
become increasingly more feasible and will thus render desirable accuracy for various purposes.
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editor), an associate editor, and two anonymous referees for their extensive and constructive comments. This
research was supported by the Guanghua School of Management, the Center for Statistical Sciences, and the Key
Laboratory of Mathematical Economics and Quantitative Finance (Ministry of Education) at Peking University,
as well as the National Natural Science Foundation of China [Grant 11201009].

Appendix A. Proofs for Section 3

A.1. Proof of Proposition 1.

Proof. Indeed, we have

ìk4z5 =
∑

4n1 r4n55∈Rk

1
n!
E

(

¡4n5T

¡xn
4Z05Zr1

Zr2
: : : Zrn

)

= E418Z0 ≥ z9Zk5+
∑

n≥21 4n1 r4n55∈Rk

1
n!
E4�4n−254Z0 − z5Zr1

Zr2
: : : Zrn

50 (A1)

We deduce that

E418Z0 ≥ z9Zk5=

∫ �

−�

E418Z0 ≥ z9Zk �Z0 = x5�4x5dx =

∫ �

z
E4Zk �Z0 = x5�4x5dx1

where the integrand can be further explicitly calculated as

E4Zk �Z0 = x5 = D4y05E4Yk+111 �Z0 = x5

= D4y05E

(

∑

�i�=k+1

Ci114y05Ji415

∣

∣

∣

∣

Z0 = x

)

=D4y05
∑

�i�=k+1

Ci114y05E4Ji415 � B415= x50

Thus, we obtain that

E418Z0 ≥z9Zk5=D4y05
∑

�i�=k+1

Ci114y05
∫ �

z
E4Ji415 �B415=x5�4x5dx=D4y05

∑

�i�=k+1

Ci114y05I4P4i554z50 (A2)

On the other hand, by the integration-by-parts formula involving the Dirac delta function ( see, e.g., section 2.6
in Kanwal [42]) we deduce that,

E4�4n−254Z0 − z5Zr1
Zr2

: : : Zrn
5 =

∫ �

−�

�4n−254x− z5E4Zr1
Zr2

: : : Zrn
�Z0 = x5�4x5dx

= 4−15n−2
∫ �

−�

�4x− z5
¡4n−25

¡xn−2

[

E4Zr1
Zr2

: : : Zrn
�Z0 = x5�4x5

]

dx

= 4−15n−2 ¡
4n−25

¡zn−2

[

E4Zr1
Zr2

: : : Zrn
�Z0 = z5�4z5

]

1
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where the conditional expectation is calculated as

E4Zr1
Zr2

: : : Zrn
�Z0 = z5 = D4y05

nE4Yr1+111Yr2+111: : : Yrn+111 �Z0 = z5

= D4y05
nE

( n
∏

j=1

∑

�i�=rj+1

Ci114y05Ji415

∣

∣

∣

∣

Z0 = z

)

= D4y05
n

∑

�iw�=rw+11
w=1121 : : : 1n

( n
∏

w=1

Ciw114y05

)

E

(( n
∏

w=1

Jiw415
)

∣

∣

∣

∣

B415= z

)

0

Using the differential operator (31), we obtain that

¡4n−25

¡zn−2
6E4Zr1

Zr2
: : : Zrn

�Z0 = z5�4z57=D4y05
n

∑

�iw�=rw+11
w=1121 : : : 1n

( n
∏

w=1

Ciw114y05

)

Dn−24P4i11i21 : : : 1in5
54z5�4z50 (A3)

Thus, the formula (36) follows from plugging (A2) and (A3) into (A1). �

A.2. Proof of Proposition 2. Without loss of generality and in order to simplify the notations, we consider
the case of f 4x5≡ x, in which the transform in (9) becomes an identity and the dynamics (7) and (10) coincide
with each other, i.e.,

X�4t5≡ Y �4t51 x0 ≡ y01 �4x5≡ �4x51 and �4x5≡ �4x50

For general specifications of f 4x5 satisfying Assumption 3, the proof follows from a straightforward adaption
of the following arguments. For simplicity, we avoid such notational complication.

Based on Assumption 2, we introduce the following uniform upper bounds. For k ≥ 1, let �k and �k be the
uniform upper bounds of the kth order derivative of � and � , respectively, i.e.,

�¡4k5�4x3�5/¡xk
� ≤�k and �¡4k5�4x3�5/¡xk

� ≤ �k1 (A4)

for 4x1 �5 ∈ Rm ×ä. Also, for any arbitrary x0, let �0 and �0 denote the uniform upper bounds of ��4x03 �5�
and ��4x03 �5� on � ∈ä, respectively, i.e.,

��4x03 �5� ≤�0 and ��4x03 �5� ≤ �01 (A5)

for any � ∈ ä. To establish the uniform convergence rate in Proposition 2, we introduce the following lemma.
When the dependence of parameters is emphasized, we express Y �415 as Y �413 �1 y05 and express the stan-
dardized random variable Z� defined in (21) as Z�4�1 y05 = D4y054Y

�413 �1 y05− y05/
√
T in this appendix. Let

S4⊂E5 be an arbitrary compact subset of the state space of the diffusion X.

Lemma 5. Under Assumption 2, the following asymptotic expansion holds uniformly in 4�1 y05 ∈ä× S:
∥

∥

∥

∥

Z�4�1 y05−

J
∑

k=0

1
k!

¡4k5Z�4�1 y05

¡�k

∣

∣

∣

∣

∣

�=0

�k
∥

∥

∥

∥

D
p
s

= O4�J+151

for any J ∈N , p ≥ 1 and s ∈N1 where � · �D
p
s

is the Dp
s -Malliavin norm (see, e.g., section 1.5 in Nualart [55])

Proof of Lemma 5. The proof of this lemma follows the similar lines of argument for proving Theorem 7.1
in Malliavin and Thalmaier [51]. Thus, it is omitted. �

Proof of Proposition 2. First, we note that the diffusion matrix (12) satisfies

�4y05= �44f 4x011 x021 : : : 1 x0m51 x021 : : : 1 x0m55≡M�4x051

where M is a matrix defined by

M =





















¡f 4x05

¡x1

¡f 4x05

¡x2

: : :
¡f 4x05

¡xm

0 1 : : : 0

000
000

0 0 0
000

0 0 : : : 1





















m×m

0
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Since we assume ¡f /¡x1 6= 01 it follows that Assumption 1 is equivalent to the positive definite property of the
matrix �4y05�4y05

T , i.e.,

detA4x05= det4�4x05�4x05
T 5 > 0 ⇐⇒ det4�4y05�4y05

T 5 > 00 (A6)

According to the theory of Watanabe [74] and Yoshida [76, 77, 78], the uniform nondegeneracy of the standard-
ized random variable (21) and the convergence of the expansion (23) clarified in Lemma 5 yields the validity
of the expansion (28) in the following sense:

sup
z∈R1x0∈S1�∈ä

∣

∣

∣

∣

E64Z�
− z5+7−

J
∑

k=0

ìk4z5�
k

∣

∣

∣

∣

≤ c′�J+11

for any J ∈N and some positive constant c′0 Based on (24), we have

sup
z∈R1x0∈S1�∈ä

∣

∣

∣

∣

√
T e−rTD4y05

−1E64Z�
− z5+7−

√
T e−rTD4y05

−1
J
∑

k=0

ìk4z5�
k

∣

∣

∣

∣

≤ c�J+11

for some constant c. Therefore, by plugging in (25) and � =
√
T , we obtain that

sup
K∈R+1 x0∈S1�∈ä

∣

∣

∣

∣

V 405−
√
T e−rTD4y05

−1
J
∑

k=0

ìk4D4y054K − y015/
√
T 5T k/2

∣

∣

∣

∣

≤ cT 4J+15/20 �

Appendix B. Proofs for §4 This appendix is devoted to proving Proposition 3. We begin by introducing
some preparatory notions (e.g., pair partition) in combinatorial analysis in Appendix B.1, which is followed by
a useful lemma in Appendix B.2. Then, based on pair partitions, a formula for calculating (50) is proposed in
Appendix B.3. Finally, a proof for Proposition 3 is given in Appendix B.4 based on all the previous development.

B.1. Paring partitions. First, we introduce the following notions involving partitions of an index set X.
A partition is a collection of pair-wise disjoint and nonempty subsets whose union is X. In particular, suppose
that X contains an even number of elements; a partition is called a pair partition, if each of its sets has exactly
two elements. For example, 8811291 831491 851699 is a pair partition of the set 81121314151690 For an arbitrary
set Y 1 let �4X1Y 5 denote the collection of pair partitions of the set X satisfying that none of its elements is Y .
In particular, for Y being an empty set �1 we simply abbreviate �4X1Y 5 as �4X5. For example,

�
(

8112131491 82139
)

=
{

8811291 8314991 8811391 821499
}

1

and
�
(

811213149
)

=
{

8811291 8314991 8811391 8214991 8811491 821399
}

0

For more details about set partitions, readers are refereed to, e.g., Brualdi [7]. For an arbitrary pair-partition
P=

{

8l11 l291 8l31 l49 · · · 8l2n−11 l2n9
}

for some integer set, we correspondingly define

P4i5 2=
{

8il11 il291 8il31 il49 · · · 8il2n−1
1 il2n9

}

for il11 il21 il31 il41 : : : 1 il2n−1
1 il2n ∈ 8011121 : : : 1 d9. Also, we define a characterization of P4i5 as

�4P4i55 2= �il1 il2
�il3 il4

: : : �il2n−1
il2n

1 (B1)

where �ij is the Kronecker delta function taking value 1 if i = j , and 0 otherwise. In particular, for the empty
set ∅, we let �4∅5= 1.

B.2. A useful lemma. We propose a useful lemma by generalizing Proposition 5.2.3 in Kloeden and
Platen [46].

Lemma 6. Let i = 4i11 i21 : : : 1 il5 ∈ 8011121 : : : 1 d9l be an index satisfying that ir > 0 if and only if r ∈

8j11 j21 : : : 1 jn9 ⊂ 81121 : : : 1 l9 for some integer n. For any arbitrary integer k = 1121 : : : , and il+11 il+21
: : : 1 il+k ∈ 81121 : : : 1 d9, we have

E

(

∏

1≤s≤k

Wil+s
415I4i11i21 : : : 1il5415

)

=
∑

S∈�48j11j21 : : : 1jn1 l+11l+21 : : : 1l+k918j11j21 : : : 1jn95

�4S4i55

l!
1 (B2)

if k ≥ n and k+ n is even;

E

(

∏

1≤s≤k

Wil+s
415I4i11i21 : : : 1il5415

)

= 01

otherwise.
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Before giving a proof to this lemma, we provide three concrete examples in what follows.

Example 1. For 4i11 i21 : : : 1 i65 ∈ 81121 : : : 1m96, we have

E6Wi1
415Wi2

415Wi3
415I4i41 i554157= 01 and E6Wi1

415Wi2
415I4i41 i51 i654157= 01

and

E6Wi1
415Wi2

415Wi3
415I4i41 i51 i654157

=
1
6

(

�i1i4
�i2i5

�i3i6
+ �i1i4

�i2i6
�i3i5

+ �i1i5
�i2i4

�i3i6
+ �i1i5

�i2i6
�i3i4

+ �i1i6
�i2i5

�i3i4
+ �i1i6

�i2i4
�i3i5

)

1

as well as

E6Wi1
415Wi2

415Wi3
415I4i41 i5101 i65

4157

= 1
24

(

�i1i4
�i2i5

�i3i6
+ �i1i4

�i2i6
�i3i5

+ �i1i5
�i2i4

�i3i6
+ �i1i5

�i2i6
�i3i4

+ �i1i6
�i2i5

�i3i4
+ �i1i6

�i2i4
�i3i5

)

0

Proof of Lemma 6. The main idea of the proof is based on iterative applications of Proposition 5.2.3 in
Kloeden and Platen [46], which asserts that a multiplication of a Brownian multiplier to an iterated Itô stochastic
integral can be expressed as a linear combination of iterated Itô stochastic integrals. For ease of exposition, we
introduce a linear operator as follows. For any i ∈ 81121 : : : 1 d9, we define

Wi 2=WP
i +WR

i 1

where WP
i is a plug operator defined by

WP
i 4I4i11i21 : : : 1il54t55 2=

∑

1≤�≤l+1

I4i11 : : : 1i�−11i1i� 1 : : : 1il5
4t53 (B3)

WR
i is a replacement operator defined by

WR
i 4I4i11i21 : : : 1il54t55 2=

∑

1≤�≤l

�ii�
I4i11 : : : 1i�−1101i�+11 : : : 1il5

4t51 (B4)

for an arbitrary iterated Itô integral I4i11i21 : : : 1il54t5. Thus, Proposition 5.2.3 in Kloeden and Platen [46] can be
recasted as

Wi4t5I4i11i21 : : : 1il54t5≡Wi4I4i11i21 : : : 1il54t55≡WP
i 4I4i11i21 : : : 1il54t55+WR

i 4I4i11i21 : : : 1il54t550 (B5)

Iterative applications of (B5) yield
∏

1≤s≤k

Wil+s
415I4i11i21 : : : 1il5415=Wil+1

4Wil+2
4: : : 4Wil+k

4I4i11i21 : : : 1il54155: : : 551 (B6)

which can be eventually written as a linear combination of iterated (stochastic) integrals.
When k < n, we claim that

E

(

∏

1≤s≤k

Wil+s
415I4i11i21 : : : 1il5415

)

= 00 (B7)

Indeed, in this case, there are fewer Brownian multipliers for performing replacement than the nonzero elements
in 4i11 i21 : : : 1 il5. Thus, every term in a linear combination form of (B6) will contain stochastic integrations with
respect to Brownian motions. Therefore, (B7) follows from the martingale property of stochastic integrals.

When k ≥ n, we begin by observing the following basic fact. The total number of nonzero indices in the
iterated (stochastic) integrals on the right-hand side of (B3) is n + 1; the total number of nonzero indices
in the iterated (stochastic) integrals on the right-hand side of (B4) is n − 1. Iterative application of this
fact to (B6) leads to the following observation. Assuming k + n (the total number of nonzero indices in
Wil+1

415Wil+2
415: : : Wil+k

415I4i11i21 : : : 1il5415) is an odd number, the operation (B6) renders a linear combination of
iterated (stochastic) integrals, each of which has an odd number of nonzero indices. Therefore, we obtain (B7).
Alternatively, we consider the case where k + n is an even number. We note that, in (B5), the consumptions
of nonzero indices in 4i11 i21 : : : 1 il5 must be based on replacement operations as defined in (B4). The way to
create iterated Lebesgue integrals in the operations (B3) and (B4) can be characterized as follows: each nonzero
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index in 8j11 j21 : : : 1 jn9 must be replaced by zero via multiplication with a Brownian multiplier; in the rest k−n
operations, 4k− n5/2 must be chosen as a plug; the others are thereby performed as replacement.

Each iterated Lebesgue integration in the linear combination form of (B6) must be associated to a pair partition
in �48j11 j21 : : : 1 jn1 l+ 11 l+ 21 : : : 1 l+ k9, 8j11 j21 : : : 1 jn95. Indeed, without loss of generality, we consider an
arbitrary pair partition, e.g.,

Q =
{

8l+ 11 j191 8l+ 21 j291 : : : 1 8l+ n1 jn91 8l+ n+ 11 l+ n+ 291

8l+ n+ 31 l+ n+ 491 : : : 1 8l+ k− 11 l+ k9
}

0 (B8)

Such a choice corresponds to the following operations:
• Perform the plug operations using the Brownian multipliers Wil+n+2

1Wil+n+4
1 : : : 1Wil+k

0

• Perform the replacement operations using the Brownian multipliers Wil+n+1
4151Wil+n+3

4151 : : : 1Wil+k−1
415.

• Replace ij1
1 ij2

1 : : : 1 ijn by zeros via the replacement operations using the Brownian multipliers
Wil+1

4151Wil+2
4151 : : : 1Wil+n

415.
Therefore, we have that

E

(

∏

1≤s≤k

Wil+s
415I4i11i21 : : : 1il5415

)

=
∑

S∈�48j11j21 : : : 1jn1 l+11l+21 : : : 1l+k918j11j21 : : : 1jn95

c4S5�4S4i551 (B9)

where c4S5 is a coefficient (to be determined) associated with a pair-partition S. In particular, owing to the
commutativity, we observe that

∏

1≤s≤k

Wil+s
415I4i11i21 : : : 1il5415 ≡ Wil+1

415Wil+2
415 · · ·Wil+n

4154Wil+n+1
415Wil+n+3

415 · · ·Wil+k−1
4155

× 4Wil+n+2
415Wil+n+4

415 · · ·Wil+k
4155I4i11i21 : : : 1il54150

Thus, the term in (B9) generated by the operations corresponding to the pair-partition (B8) is given by

c4Q5�4Q4i55 = E
[

W4R5
il+1

(

W4R5
il+2

4· · ·W4R5
il+n

4W4R5
il+n+1

4W4R5
il+n+3

4· · ·W4R5
il+k−1

4W4P5
il+n+2

4W4P5
il+n+4

4· · ·W4P5
il+k

4I4i11i21 : : : 1il54155 · · · 555 · · · 5555
)]

0 (B10)

We note that the iterated Lebesgue integrals resulting from expanding (B10) all have length l+ 4k− n5/20 We
also observe that

W4P5
il+n+2

(

W4P5
il+n+4

4· · ·W4P5
il+k

4I4i11i21 : : : 1il54155 · · · 5
)

=
∑

i∈B48i11 : : : 1il1il+n+21il+n+41 : : : 1il+k918i11i21 : : : 1il95

Ii4151

where B4x1 y5 collects all permutations of an ordered index set x without shuffling the order of indices in
its subset y (for example, B48i11 i21 i31 i491 8i11 i21 i395= 88i11 i21 i31 i491 8i11 i21 i41 i391 8i11 i41 i21 i391 8i41 i11 i21 i3995.
Therefore, we have

c4Q5 =
∣

∣B
(

8i11 : : : 1 il1 il+n+21 il+n+41 : : : 1 il+k91 8i11 i21 : : : 1 il9
)

∣

∣

×

∫ 1

0

∫ t1

0
· · ·

∫ tl+4k−n5/2−1

0
dtl+4k−n5/2 · · ·dt2 dt1

=

(

l+ 4k− n5/2
4k− n5/2

)

×

(

k− n

2

)

! ×
1

4l+ 4k− n5/25!
=

1
l!
0

Hence, (B2) is proved. �

B.3. A formula based on pairing partition. Based on Lemma 6, we establish the following expression for
a conditional expectation of an arbitrary iterated Itô integral using pair partition.

Lemma 7. For any arbitrary index i=4i11 i21 : : : 1 in5 with i11 i21 : : : 1 in ∈ 80111 : : : 1 d9, we have

E6Ii415 �W415= x7=
1
n!

�n/2�
∑

j=0

4−15j
∑

Ln−2j=8l11l21 : : : 1ln−2j 9⊂Nn

∑

S∈�4Nn\Ln−2j 5

�4S4i55xil1
xil2

1 : : : 1 xiln−2j
1 (B11)

where Nn denotes the integer set 81121 : : : 1 n9; Lk = 8l11 l21 : : : 1 lk9 denotes any arbitrary subset of Nn with k
elements; �x� denotes the largest integer less than or equal to x; xi is assumed to be 1 for i = 0.

C
o
p
yr
ig
h
t:

IN
F
O
R
M
S

ho
ld
s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs
io
n,

w
hi
ch

is
m
ad

e
av

ai
la
bl
e
to

su
bs

cr
ib
er
s.

T
he

fil
e
m
ay

no
t
be

po
st
ed

on
an

y
ot
he

r
w
eb

si
te
,
in
cl
ud

in
g

th
e

au
th
or
’s

si
te
.
P
le
as

e
se

nd
an

y
qu

es
tio

ns
re
ga

rd
in
g

th
is

po
lic
y
to

pe
rm

is
si
on

s@
in
fo
rm

s.
or
g.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

22
2.

29
.5

0.
39

] 
on

 3
0 

O
ct

ob
er

 2
01

3,
 a

t 0
4:

34
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Li: Closed-Form Expansion, Conditional Expectation, and Option Valuation
Mathematics of Operations Research, Articles in Advance, pp. 1–30, © 2013 INFORMS 27

Proof of Lemma 7. This proof starts from an explicit construction of the conditional distribution of
4W4t5 � W415 = x5 using Brownian bridges. By the construction of Brownian bridge (see Karatzas and Shreve
[43, p. 358]), we obtain the following distributional identity, for any k = 1121 : : : 1 d,

4Wk4t5 �W415= x5 D
= 4Wk4t5 �Wk415= xk5

D
= BBx

k4t5 2=Bk4t5− tBk415+ txk1

where Bk’s are independent Brownian motions. In other words, 8BBx
k4t510 ≤ t ≤ 19 is distributed as a Brownian

bridge starting from 0 at time 0 and ending at xk at time 1. For ease of exposition, we also introduce B04t5≡ 0
and x0 = 1. Therefore, we have

E6Ii415 �W415=x7=E

(

∫ 1

0

∫ t1

0
···

∫ tn−1

0
d4Bin

4tn5−tnBin
415+tnxin5···d4Bi1

4t15−t1Bi1
415+t1xi15

)

0 (B12)

By expanding the right-hand side of (B12) and collecting terms according to monomials of xi’s, we obtain that

E6Ii415 �W415= x7=
n
∑

k=0

∑

8l11l21 : : : 1lk9⊂Nn=81121 : : : 1n9

c4l11 l21 : : : 1 lk5xil1
xil2

1 : : : 1 xilk
1

where the coefficients are determined by

c4l11 l21 : : : 1 lk5 2= E
∫ 1

0

∫ t1

0
· · ·

∫ tn−1

0
d4Bin

4tn5− tnBin
4155 · · ·d4Bilk+1

4tlk+15− tlk+1Bilk+1
4155dtlk

·d4Bilk−1
4tlk−15− tlk−1Bilk−1

4155 · · ·d4Bil2+1
4tl2+15− tl2+1Bil2+1

4155dtl2

·d4Bil2−1
4tl2−15− tl2−1Bil2−1

4155 · · ·d4Bil1+1
4tl1+15− tl1+1Bil1+1

4155dtl1

·d4Bil1−1
4tl1−15− tl1−1Bil1−1

4155 · · ·d4Bi1
4t15− t1Bi1

41550 (B13)

To explicitly calculate (B13), we define the following index mapping. For an index i=4i11 i21 : : : 1 in5, an integer
set Lk = 8l11 l21 : : : 1 lk9, and any subset M ⊂Nn\Lk, let

�4i3Lk1M5= 4j11 j21 : : : 1 jn51

where, for any r = 1121 : : : 1 n,

jr = 01 if r ∈ Lk ∪M3 jr = ir 1 otherwise.

Thus, we have

c4l11 l21 : : : 1 lk5 = E

(

∑

M⊂Nn\Lk

4−15�M �I�4i3Lk1M5415
∏

r∈M

Bir
415
)

=
∑

M⊂Nn\Lk

4−15�M �E

(

I�4i3Lk1M5415
∏

r∈M

Bir
415
)

0

By Lemma 6, we have

E

(

I�4i3Lk1M5415
∏

r∈M

Bir
415
)

=
1
n!

∑

S∈�4Nn\Lk1Nn\4Lk∪M55

�4S4i551

if n− k is an even number and �M � ≥ 4n− k5/21 where �S� denotes the cardinality of a set S;

E

(

I�4i3Lk1M5415
∏

r∈M

Bir
415
)

= 01

otherwise.
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So, if n− k is an odd number, we have c4l11 l21 : : : 1 lk5= 00 If n− k is an even number, we deduce that

c4l11 l21 : : : 1 lk5 =
1
n!

∑

M⊂Nn\Lk

4−15�M �
∑

S∈�4Nn\Lk1Nn\4Lk∪M55

�4S4i55

=
1
n!

n−k
∑

r=4n−k5/2

4−15r
∑

P∈�4Nn\Lk5

∑

M∈8M2 �M �=r1P∈�4Nn\Lk1Nn\4Lk∪M559

�4P4i55

=
1
n!

∑

P∈�4Nn\Lk5

n−k
∑

r=4n−k5/2

4−15r
(

4n− k5/2
r − 4n− k5/2

)

2n−k−r�4P4i55

=
1
n!

∑

P∈�4Nn\Lk5

4−154n−k5/2�4P4i551

where we have employed combinatorics to calculate the cardinality of a set, i.e.,

∣

∣

{

M2 �M � = r1P ∈�4Nn\Lk1Nn\4Lk ∪M55
}

∣

∣=

(

4n− k5/2
r − 4n− k5/2

)

2n−k−r 0

Hence, the formula (B11) follows immediately. �

B.4. Proof of Proposition 3. Finally, we give a proof to Proposition 3 based on Lemma 7.

Proof of Proposition 3. We express (B11) in an alternative way according to monomials of x11 : : : 1 xd.
Thus, combinatorial analysis and the definition (B1) indicate that the term x

k1
1 : : : x

kd
d for some k11 k21 : : : 1 kd ∈

81121 : : : 1 n9 appears in (B11) if and only if ni415− k11 ni425− k21 : : : 1 ni4d5− kd are all even integers. In this
case, the total number of appearances of the term x

k1
1 : : : x

kd
d is given by

d
∏

l=1

[

��4Nni4l5−kl
5�

(

ni4l5

kl

)]

1

where ��4Nn5� is the total number of all possible pair partitions of the set Nn = 81121 : : : 1 n90 It is straightforward
to observe that

��4Nn5� ≡ �4n5=

4n/25−1
∏

k=0

(

n− 2k
2

)/(

n

2

)

!1

for an arbitrary even integer n0 Also, any arbitrary pair partition in �4Nni4l5−kl
5 has exactly 4ni4l5 − kl5/2

elements. Therefore, we obtain the formula (51). �
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