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We consider two alternative tests to the Higher Criticism test of
Donoho and Jin (2004) for high dimensional means under the spar-
sity of the non-zero means for sub-Gaussian distributed data with
unknown column-wise dependence. The two alternative test statistics
are constructed by first thresholding L1 and L2 statistics based on
the sample means, respectively, followed by maximizing over a range
of thresholding levels to make the tests adaptive to the unknown sig-
nal strength and sparsity. The two alternative tests can attain the
same detection boundary of the Higher Criticism test in Donoho and
Jin (2004) which was established for uncorrelated Gaussian data. It
is demonstrated that the maximal L2-thresholding test is at least as
powerful as the maximal L1-thresholding test, and both the maximal
L2 and L1-thresholding tests are at least as powerful as the Higher
Criticism test.

1. Introduction. Let X1, · · · ,Xn be independent and identically distributed
(IID) p-variate random vectors generated from the following model

(1.1) Xi = Wi + µ for i = 1, · · · , n,

where µ = (µ1, · · · , µp)T is a p−dimensional unknown vector of means, Wi =
(Wi1, · · · ,Wip)T and {Wi}ni=1 are IID random vectors with zero mean and common
covariance Σ. For the i-th sample, {Wij}pj=1 is a sequence of weakly stationary
dependent random variables with zero mean and variances σ2

j . Motivated by the
high dimensional applications arising in genetics, finance and other fields, the current
paper focuses on testing high dimensional hypotheses

(1.2) H0 : µ = 0 vs H1 : non-zero µj are sparse and faint.

The specifications for the sparsity and faintness in the above H1 are the follow-
ing. There are p1−β non-zero µjs (signals) for a β ∈ (1/2, 1), which are sparse
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since the signal bearing dimensions constitute only a small fraction of the total p
dimensions. Also under the H1, the signal strength is faint in that the non-zero
µj =

√
2r log(p)/n for r ∈ (0, 1). These specification of the H1 have been the most

challenging “laboratory” conditions in developing novel testing procedures under
high dimensionality.

Donoho and Jin (2004) pioneered the theory of the Higher Criticism (HC) test
which was originally conjectured in Tukey (1976), and showed that the HC test
can attain the optimal detection boundary established by Ingster (1997) for uncor-
related Gaussian random vectors (Σ = Ip). The optimal detection boundary is a
phase-diagram in the space of (β, r), the two quantities which define the sparsity
and the strength of non-zero µjs under the H1, such that if (β, r) lies above the
boundary, there exists a test which has asymptotically diminishing probabilities of
the type I and type II errors simultaneously; and if (β, r) is below the boundary, no
such test exists. Hall and Jin (2008, 2010) investigated the impacts of the column-
wise dependence on the HC test. In particular, Hall and Jin (2008) found that the
HC test is adversely affected if the dependence is of long range dependent. If the de-
pendence is weak, and the covariance matrix is known or can be estimated reliably,
the dependence can be utilized to enhance the signal strength of the testing problem
so as to improve the performance of the HC test. The improvement is reflected in
lowering the needed signal strength r by a constant factor. Delaigle and Hall (2009)
evaluated the HC test under a nonparametric setting allowing column-wise depen-
dence, and showed that the detection boundary of Donoho and Jin (2004) for the
HC test can be maintained under weak column-wise dependence. Delaigle, Hall and
Jin (2011) showed that the standard HC test based on the normality assumption
can perform poorly when the underlying data deviate from the normal distribution
and studied a version of the HC test based on the t-statistics formulation. Cai, Jeng
and Jin (2011) considered detecting Gaussian mixtures which differ from the null in
both the mean and the variance. Arias-Castro, Bubeck and Lugosi (2012a, 2012b)
established the lower and upper bounds for the minimax risk for detecting sparse
differences in the covariance.

We show in this paper that there are alternative test procedures for weakly depen-
dent sub-Gaussian data with unknown covariance which attain the same detection
boundary as the HC test established in Donoho and Jin (2004) for Gaussian dis-
tributed data with Σ = Ip. The alternative test statistics are obtained by first
constructing, for γ = 1 and 2,

Tγn(s) =
p∑
j=1

|
√
nX̄j |γI(|X̄j | ≥

√
λp(s)/n),

which threshold with respect to X̄j at a level
√
λp(s)/n for s ∈ (0, 1), where λp(s) =

2s log p and X̄j is the sample mean of the j-th margin of the data vectors and I(·)
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is the indicator function. We note that γ = 1 and 2 correspond to the L1 and L2

versions of the thresholding statistics respectively; and γ = 0 corresponds to the
HC test statistic. In the literature, the L1 statistic is called the hard thresholding
in Donoho and Johnstone (1994) and Donoho and Jin (2008), and the L0 statistic
is called the clipping-thresholding in Donoho and Jin (2008). We then maximize
standardized versions of Tγn(s) with respect to s over S, a subset of (0, 1), which
results in the following maximal Lγ-thresholding statistics:

(1.3) M̂γn = max
s∈S

Tγn(s)− µ̂Tγn,0(s)
σ̂Tγn,0(s)

for γ = 0, 1 and 2,

where µ̂Tγn,0(s) and σ̂Tγn,0(s) are, respectively, estimators of the mean µTγn,0(s) and
standard deviation σTγn,0(s) of Tγn(s) under H0, whose forms will be given later
in the paper. By developing the asymptotic distributions of M̂γn, the maximal Lγ-
thresholding tests are formulated for γ = 0, 1 and 2 with the maximal L0-test being
equivalent to the HC test. An analysis on the relative power performance of the
three tests reveals that if the signal strength parameter r ∈ (0, 1), the maximal L2-
thresholding test is at least as powerful as the maximal L1-thresholding test, and
both the L1 and L2-thresholding tests are at least as powerful as the HC test. If we
allow slightly stronger signal so that r > 2β − 1, the differential power performance
of the three tests is amplified with the maximal L2-test being the most advantageous
followed by the maximal L1-test.

In additional to the connection to the HC test, the maximal Lγ-thresholding test,
by its nature of formulation, is related to the high dimensional multivariate testing
procedures, for instance the tests proposed by Bai and Saranadasa (1996) and Chen
and Qin (2010). While these tests can maintain accurate size approximation under
a diverse range of dimensionality and column-wise dependence, their performance
is hampered when the non-zero means are sparse and faint. The proposed test for-
mulation is also motivated by a set of earlier work including Donoho and Johnstone
(1994) for selecting significant wavelet coefficients, and Fan (1996) who considered
testing for the mean of a random vector X with IID normally distributed compo-
nents. We note that the second step of maximization with respect to s ∈ S ⊂ (0, 1)
is designed to make the test adaptive to the underlying signals strength and sparsity,
which is the essence of the HC procedure in Donoho and Jin (2004), as well as that
of Fan (1996).

The rest of the paper is organized as follows. In Section 2, we provide basic results
on the L2-thresholding statistic via the large deviation method and the asymptotic
distribution of the single-threshold statistic. Section 3 gives the asymptotic distribu-
tion of M̂2n as well as the associated test procedure. Power comparisons among the
HC and the maximal L1 and L2-thresholding tests are made in Section 4. Section
5 reports simulation results which confirm the theoretical results. Some discussions
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are given in Section 6. All technical details are relegated to the Appendix.

2. Single-threshold Test Statistic. Let X1, · · · ,Xn be independent p-dimensional
random sample from a common distribution F , and Xi = Wi + µ where µ =
(µ1, · · · , µp)T is the vector of means and Wi = (Wi1, · · · ,Wip)T is a vector consist-
ing of potentially dependent random variables with zero mean and finite variances.
The dependence among {Wij}pj=1 is called the column-wise dependence in Wi. Those
non-zero µj are called “signals”.

Let X̄j = 1
n

∑n
i=1Xij , σ2

j = Var(Wij) and s2
j = (n − 1)−1∑n

i=1(Xij − X̄j)2 be
the sample variance for the j-th margin. The signal strength in the j-th margin
can be measured by the t-statistics

√
nX̄j/sj or the z-statistics

√
nX̄j/σj if σj is

known. For easy expedition, the test statistics will be constructed based on the z-
statistics by assuming σj is known; and without loss of generality we assume σ2

j = 1.
Using the t-statistics actually leads to less restrictive conditions for the underlying
random variables since the large deviation results for the self-normalized t-statistics
can be established under weaker conditions to allow heavier tails in the underlying
distribution as demonstrated in Shao (1997), Jing, Shao and Zhou (2008) and Wang
and Hall (2009). See Delaigle, Hall and Jin (2011) for analysis on the sparse signal
detection using the t-statistics.

We assume the following assumptions in our analysis.
C.1: The dimension p = p(n)→∞ as n→∞ and log(p) = o(n1/3).
C.2: There exists a positive constant H such that, for any j 6= l ∈ {1, · · · , p},

E(eh
′(W d

1j ,W
d
1l)) <∞ for h ∈ [−H,H]× [−H,H] and some 1 < d ≤ 2.

C.3: For each i = 1, · · · , n, {Wij}pj=1 is a weakly stationary sequence such that
E(Wij) = E(Wi(j+k)) = 0 and Cov(Wij ,Wi(j+k)) do not depend on j for any integer
k. And

∑
k |ρk| <∞ where ρk = Cov(Wi1,Wi(k+1)).

C.4: Among the p marginal means, there are m = p1−β signals for a β ∈ (1/2, 1)
and the signal µj =

√
2r log(p)/n for a r > 0. The signals’ locations `1 < `2 < · · · <

`m are randomly selected from {1, 2, · · · , p} without replacement so that

(2.1) P (`1 = p1, · · · , `m = pm) =

(
p

m

)−1

for all 1 ≤ p1 < p2 < · · · < pm ≤ p.

C.1 specifies the growth rate of p relative to the sample size n is in the paradigm
of “large p, small n”. That log p = o(n1/3) is the rate we can attain for Gaussian
data or cases where we can attain “accurate” enough estimation of µTγn,0 which
satisfies equation (2.6). When data are not Gaussian and the “accurate” estimators
are not attainable, the growth rate of p will be more restrictive at p = n1/θ as will be
discussed in the next section. C.2 assumes the joint distributions of (Wij ,Wil) is sub-
Gaussian, which implies each marginal Wij is sub-Gaussian as well. C.3 prescribes
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weakly dependence among {Wij}pj=1. The first part of C.4 reiterates the sparse and
faint signal setting. The range of the signal strength includes the case of r ∈ (0, 1),
representing the most fainted detectable signal strength, which has been considered
in Donoho and Jin (2004) and other research works. The second part of C.4 provides
a random allocation mechanism for the signal bearing dimensions, which is the same
as the one assumed in Hall and Jin (2010). Existing research on the detection
boundary of the HC test for the sparse mean problem (Donoho and Jin, 2004;
Hall and Jin, 2010) are largely conducted for the case of n = 1 when the data are
Gaussian. This is understandable since the sample means are sufficient statistics and
there is no loss of generality when we treat the problem as n = 1 even if we have
multiple observations. However, when the underlying distributions are as specified
in C.2, we cannot translate the test problem to n = 1 without incurring a loss of
information.

We first consider the L2 version of the thresholding statistic T2n in this section.
The study of the T1n version is outlined in Section 4 when we compare the power
performance to the HC test. Let Yj,n = nX̄2

j . Then, the L2-thresholding statistic
can be written as

(2.2) T2n(s) =
p∑
j=1

Yj,nI{Yj,n ≥ λp(s)}

where s is the thresholding parameter that takes values over a range within (0, 1).
There is no need to consider s ≥ 1 in the thresholding since large deviation results
given in Petrov (1995) imply that under H0, P (max1≤j≤p Yj,n ≤ λp(s))→ 1.

Define a set of slowing varying functions: L(1)
p = 2r log p+ 1, L(2)

p = 2
√
s log p/π,

L
(3)
p = s(

√
s−
√
r)−1

√
log p/π, L(4)

p = 8r log p, L(5)
p = 4s3/2π−

1
2 (log p)3/2 and L(6)

p =
2s2(log p)3/2/

√
π(
√
s−
√
r).

Let µT2n,0(s) and σ2
T2n,0

(s) be the mean and variance of T2n(s) under H0, respec-
tively; and µT2n,1(s) and σ2

T2n,1
(s) be those respectively under the H1 as specified in

C.4. The following proposition depicts the mean and variance of T2n(s) by applying
Fubini’s theorem and the large deviation results (Petrov, 1995 and Lemma A.1 in
Zhong et al., 2013).

Proposition 1. Under C.1-C.4, E{T2n(s)} and Var{T2n(s)} are respectively,

µT2n,0(s) = p{2λ1/2
p (s)φ(λ1/2

p (s)) + 2Φ̄(λ1/2
p (s))}{1 +O{n−1/2λ3/2

p (s)}},(2.3)

σ2
T2n,0(s) = p{2[λ3/2

p (s) + 3λ1/2
p (s)]φ(λ1/2

p (s)) + 6Φ̄(λ1/2
p (s))}{1 + o(1)};(2.4)

under the H0; and

µT2n,1(s) = {L(1)
p p1−βI(s < r) + L(3)

p p1−β−(
√
s−
√
r)2
I(s > r)}{1 + o(1)}+ µT2n,0(s),

σ2
T2n,1(s) = {L(4)

p p1−βI(s < r) + L(5)
p p1−s + L(6)

p p1−β−(
√
s−
√
r)2
I(s > r)}{1 + o(1)}
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under the H1 specified in C.4.

Expressions (2.3) and (2.4) provide the first and the second order terms of µT2n,0(s)
and σ2

T2n,0
(s), which are needed when we consider their empirical estimation un-

der H0 when formulating the L2 thresholding test statistic. Note that µT2n,0(s) =
L

(2)
p p1−s{1 + o(1)} and σ2

T2n,0
(s) = L

(5)
p p1−s{1 + o(1)}. Only the first order terms

for the variance are needed under H1 but the approximation to µT2n,1(s) has to
be more accurate so as to know the order of the difference between µT2n,1(s) and
µT2n,0(s). Proposition 1 indicates that the column-wise dependence as specified in
C.3 does not have much leading order impact on the variance of T2n(s). The lead-
ing order variance is almost the same when Wi are column-wise independent. The
difference only appears in the coefficients of the slow-varying functions L(4)

p , L(5)
p

and L
(6)
p , while their orders of magnitude remain unchanged. The reason behind

this phenomena is the thresholding. It can be understood by an analogue for multi-
variate Gaussian distributions with non-zero correlation. Despite the dependence in
the Gaussian distribution, exceedances beyond high thresholds are asymptotically
independent (Sibuya, 1960 and Joe, 1997).

We now study the asymptotic distribution of T2n(s) to prepare for the proposal
of the maximal L2-thresholding statistic. Write

T2n(s) =
p∑
j=1

Zj,n(s)

where Zj,n(s) := Yj,nI{Yj,n > λp(s)} and λp(s) = 2s log(p). For integers a, b ∈
[−∞,∞] such that a < b, define F b

a = σ{Zl,n(s) : l ∈ (a, b)} be the σ-algebra
generated by {Zl,n(s)}bl=a and define the ρ-mixing coefficients

(2.5) ρZ(s)(k) = sup
l, ξ∈L2(F l

−∞), ζ∈L2(F∞
l+k

)

|Corr(ξ, ζ)|.

See Doukhan (1994) for comprehensive discussions on the mixing concept. The fol-
lowing is a condition regarding the dependence among {Zj,n(s)}pj=1.

C.5: For any s ∈ (0, 1), the sequence of random variables {Zj,n(s)}pj=1 is ρ-mixing
such that ρZ(s)(k) ≤ Cαk for some α ∈ (0, 1) and a positive constant C.

The requirement of {Zj,n(s)}pj=1 being ρ-mixing for each s is weaker than requiring
the original data columns {Xij}pj=1 being ρ-mixing, whose mixing coefficient ρXi(k)
can be similarly defined as (2.5). This is because, according to Theorem 5.2 in
Bradley (2005),

ρZ(s)(k) ≤ sup
i≤n

ρXi(k) = ρX1(k), for each k = 1, · · · , p and s ∈ (0, 1).
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The following theorem reports the asymptotic normality of T2n(s) under both H0

and H1.

Theorem 1. Assume C.1-C.5. Then, for any s ∈ (0, 1),

(i): σ−1
T2n,0

(s){T2n(s)− µT2n,0(s)} d→ N(0, 1) under H0;

(ii): σ−1
T2n,1

(s){T2n(s)− µT2n,1(s)} d→ N(0, 1) under H1.

From (2.3) and (2.4), define the leading order terms of µT2n,0(s) and σ2
T2n,0

(s),
respectively,

µ̃T2n,0(s) = p{2λ1/2
p (s)φ(λ1/2

p (s)) + 2Φ̄(λ1/2
p (s))} and

σ̃2
T2n,0(s) = p{2[λ3/2

p (s) + 3λ1/2
p (s)]φ(λ1/2

p (s)) + 6Φ̄(λ1/2
p (s))}.

It is clear that the asymptotic normality in Theorem 1(i) remains if we replace
σT2n,0(s) by σ̃T2n,0(s).

To formulate a test procedure based on the thresholding statistic T2n(s), we need
to estimate µT2n,0(s) by a µ̂T2n,0(s), say. Ideally, if

(2.6) µT2n,0(s)− µ̂T2n,0(s) = o{σ̃T2n,0(s)},

the first part of Theorem 1 remains valid if we replace µT2n,0(s) with µ̂T2n,0(s). An
obvious choice of µ̂T2n,0(s) is µ̃T2n,0(s) which is known upon given p and s. Indeed,
if Wijs are the standard normally distributed, we have

µT2n,0(s) = µ̃T2n,0(s) for s ∈ (0, 1),

implying the leading order is exactly µT2n,0(s) for the Gaussian data. Hence, if we
take µ̂T2n,0(s) = µ̃T2n,0(s), (2.6) is satisfied for the Gaussian data.

For non-Gaussian observations, the difference between µT2n,0(s) and µ̃T2n,0(s) may
not be a smaller order of σT2n,0(s). Specifically, from (2.3) and (2.4), we have

µT2n,0(s)− µ̃T2n,0(s)
σT2n,0(s)

= O
{
λ5/4
p (s)p(1−s)/2n−1/2

}
.

To make the above ratio diminishing to zero, the strategy of Delaigle, Hall and Jin
(2011) can be adopted by restricting p = n1/θ and s ∈ ((1 − θ)+, 1) for a positive
θ, where (a)+ = a if a > 0 and (a)+ = 0 if a ≤ 0. Under this circumstance

µT2n,0(s)− µ̃T2n,0(s)
σT2n,0(s)

= O
{

(2s/θ log n)5/4n
1−s−θ

2θ

}
→ 0.(2.7)
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Clearly, for not so high dimension with θ ≥ 1, (2.7) holds for all s ∈ (0, 1), and
µ̃T2n,0(s) satisfies (2.6). For higher dimensions with θ < 1, the thresholding level s
has to be restricted to ensure (2.7). The restriction can alter the detection boundary
of the test we will propose in the next section. This echoes a similar phenomena for
the HC test given in Delaigle, Hall and Jin (2011). To expedite our discussion, we
assume in the rest of the paper that (2.6) is satisfied by the µ̂T2n,0(s). We note such
an arrangement is not entirely unrealistic as separate effort may be made to produce
more accurate estimators. Assuming so allows us to stay focused on the main agenda
of the testing problem.

The asymptotic normality established in Theorem 1 allows an asymptotic α-level
test that rejects H0 if

(2.8) T2n(s)− µ̂T2n,0(s) > zασ̃T2n,0(s)

where zα is the upper α quantile of the standard normal distribution.

3. Maximal Thresholding. While the asymptotic normality of T2n(s) in The-
orem 1 ensures the single thresholding level test in (2.8) a correct size asymptotically,
the power of the test depends on s, the underlying signal strength r and the spar-
sity β. A test procedure is said to be able to separate a pair of null and alternative
hypotheses asymptotically if the sum of the probabilities of the type I and type II
errors converges to zero as n → ∞. Let αn be a sequence of the probabilities of
type I error, which can be made converging to zero as n → ∞. The sum of the
probabilities of the type I and type II errors for the test given in (2.8) with nominal
size αn is approximately

(3.1) Errαn := αn + P
(T2n(s)− µT2n,0(s)

σT2n,0(s)
≤ zαn |H1

)
which is attained based on the facts that (i) the size αn is attained asymptoti-
cally and (ii) µ̂T2n,0(s) and σ̃T2n,0(s) are sufficiently accurate estimators in the test
procedure (2.8).

Our strategy is to first make αn → 0 such that zαn = C(log p)ε for an arbitrarily
small ε > 0 and a constant C > 0. The second term on the right hand side of (3.1)
is

ErrII := P

(
T2n(s)− µT2n,1(s)

σT2n,1(s)
≤ zαn

σT2n,0(s)
σT2n,1(s)

− µT2n,1(s)− µT2n,0(s)
σT2n,1(s)

)
.(3.2)

Because zαn is slowly varying, 0 < σT2n,0(s)/σT2n,1(s) ≤ 1 and (T2n(s)−µT2n,1(s))/σT2n,1(s)
is stochastically bounded, a necessary and sufficient condition that ensures Errαn →
0 is

(3.3) ∆2(s; r, β) :=
µT2n,1(s)− µT2n,0(s)

σT2n,1(s)
→∞.
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From Proposition 1, it follows that, up to a factor 1 + o(1),

∆2(s; r, β) =


C1p

(1+s−2β)/2 if s ≤ r and s ≤ β;
C2p

(1−β)/2 if s ≤ r and s > β;
C3p

1/2−β+r−(
√
s−2
√
r)2/2 if s > r and s ≤ (

√
s−
√
r)2 + β;

C4p
(1−β−(

√
s−2
√
r)2)/2 if s > r and s > (

√
s−
√
r)2 + β

where C1 =
√

2(πs)
1
4 ( rs)(log p)

1
4 , C2 = 1

2(r log p)1/2, C3 = s1/4(log p)−
1
4 /{
√

2π1/4(
√
s−

√
r)} and C4 = (2

√
π(
√
s−
√
r))−

1
2 (log p)−

1
4 .

Let

%∗(β) =

{
β − 1/2, 1/2 < β ≤ 3/4;
(1−

√
1− β)2, 3/4 < β < 1.

As demonstrated in Donoho and Jin (2004) and Ingster (1997), the phase diagram
r = %∗(β) is the optimal detection boundary for testing the hypotheses we are con-
sidering in this paper when the data are Gaussian and Σ = Ip. Here the optimality
means that for any r > %∗(β), there exists at least one test such that the sum of
the probabilities of the type I and type II errors diminishes to zero as n→∞; but
for r < %∗(β), no such test exists. For correlated Gaussian data such that Σ 6= Ip,
Hall and Jin (2010) found that the detection boundary r = %∗(β) may be low-
ered by transforming the data via the inverse of Cholesky factorization L such that
LΣLT = Ip. More discussion on the optimality is given in Section 6.

From the expression of ∆2(s; r, β) given above, it can be shown (see the proof of
Theorem 3 in the Appendix) that if r > %∗(β) there exists at least one s ∈ (0, 1)
for each pair of (r, β) such that (3.3) is satisfied and hence the thresholding test
would be powerful. This is the key for the maximal L2-thresholding test that we
will propose later to attain the detection boundary.

It is clear that we have to make the thresholding level s adaptive to the unknown
r and β. One strategy is to use a range of thresholding levels, say s ∈ S ⊂ (0, 1) so
that the underlying (r, β) can be “covered”. This is the very idea of the HC test.

Let T̂2,n(s) = σ̃−1
T2n,0

(s){T2n(s)− µ̂T2n,0(s)} be the standardized version of T2n(s).
Define the maximal thresholding statistic

M̂2n = sup
s∈S
T̂2,n(s),

where S = (0, 1− η] for an arbitrarily small positive η. Let

(3.4) Sn = {si : si = Yi,n/(2 log p) and 0 < Yi,n < 2(1− η) log p} ∪ {1− η}.
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Since both µ̂T2n,0(s) and σ̃T2n,0(s) are monotone decreasing functions of s, it can be
shown that M̂2n can be attained on Sn, namely

M̂2n = max
s∈Sn

T̂2,n(s).(3.5)

This largely reduces the computational burden of M̂2n. The asymptotic distribution
of M̂2n is established in the following theorem.

Theorem 2. Assume C.1-C.3, C.5 and (2.6) hold. Then, under H0,

P (a(log p)M̂2n − b(log p, η) ≤ x)→ exp(−e−x),

where a(y) = (2 log(y))1/2 and b(y, η) = 2 log(y) + 2−1 log log(y)− 2−1 log( 4π
(1−η)2 ).

The theorem leads to an asymptotic α-level test that rejects H0 if

(3.6) M̂2n > Bα = (Eα + b(log p, η))/a(log p),

where Eα is the upper α quantile of the Gumbel distribution exp(−e−x). We name
the test the maximal L2-thresholding test. The following theorem shows that its
detection boundary is r = %∗(β).

Theorem 3. Under conditions C.1-C.5 and assume (2.6) holds, then (i): if
r > %∗(β), the sum of the type I and II errors of the maximal L2-thresholding tests
converges to 0 when the nominal sizes αn = Φ̄((log p)ε)→ 0 for an arbitrarily small
ε > 0 as n→∞.
(ii): if r < %∗(β), the sum of the type I and II errors of the maximal L2-thresholding
test converges to 1 when the nominal sizes αn → 0 as n→∞.

It is noted that when r > %∗(β) in Part (i) of Theorem 3, we need to restrict
the rate of the nominal type I error αn’s convergence to 0, since the conclusion of
Part (i) may not be true for all αn → 0. However, in Part (ii) where r < %∗(β),
no restriction for αn is required, which has to be the case as otherwise there is no
guarantee that r = %∗(β) is the detection boundary of the test.

If the estimator µ̂T2n,0(s) cannot attain (2.6) and µ̃T2n,0(s) is used as the estimator,
we have to restrict p = n1/θ for a θ ∈ (0, 1) and limit s ∈ (1− θ, 1). In this case, the
above theorem is valid if we replace %∗(β) by %∗θ(β) where

%∗θ(β) =


(
√

1− θ −
√

1− β − θ/2)2 if 1/2 < β ≤ (3− θ)/4;
β − 1/2 if (3− θ)/4 < β ≤ 3/4;
(1−

√
1− β)2 if 3/4 < β < 1,
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which is clearly inferior to %∗(β). The boundary %∗θ(β) is the same as the one in
Delaigle, Hall and Jin (2011) based on the marginal t-statistics, whereas our result
is based on the z-statistics. The t-statistic formulation reduces the demand on the
tails of the distributions as shown in Delaigle, Hall and Jin (2011). We note that if
θ ≥ 1, Theorem 3 remains so that the Gaussian detection boundary is still valid.

4. Power Comparison. We compare the power of the maximal L2-thresholding
test with those of the HC test and the maximal L1-thresholding test in this section.
Let us first introduced these two tests.

The HC test is based on

(4.1) T̂0,n(s) =
T0n(s)− 2pΦ̄(λ1/2

p (s))√
2pΦ̄(λ1/2

p (s))(1− 2Φ̄(λ1/2
p (s)))

where T0n(s) =
∑p
j=1 I(Yj,n ≥ λp(s)). Like Delaigle and Hall (2009), we consider

here a two-sided HC test instead of a one-sided test treated in Donoho and Jin
(2004). With the same reasoning as Donoho and Jin (2004, p968), we define the HC
test statistic

M̂0n = max
s∈S
T̂0,n(s),

where S = (0, 1 − η] for an arbitrary small η and is the same as the maximal L2-
thresholding statistic. Using the same argument for the maximal L2-thresholding
statistic, it can be shown that M̂0n attains its maximum value on Sn given in (3.4)
as well.

According to Donoho and Jin (2004), under H0

P (a(log p)M̂0n − b(log p, η) ≤ x)→ exp(−e−x),

with the same normalizing sequences as those in Theorem 2. Let Bα be the same as
that of the maximal L2-thresholding test given in (3.6). An α level HC test rejects
H0 if

(4.2) M̂0n > Bα.

Let us introduce the maximal L1-thresholding test statistic. Recall that

T1n(s) =
p∑
j=1

|
√
nX̄j |I(|X̄j | >

√
λp(s)/n).

It can be shown that the mean and variance of T1n(s) under H0 are, respectively,

µT1n,0(s) =
√

2/πp1−s{1 + o(1)} and σ2
T1n,0(s) = {2p1−s

√
(s/π) log p}{1 + o(1)}.
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Define
T̂1,n(s) =

T1n(s)− µ̂T1n,0(s)
σ̃T1n,0(s)

where µ̂T1n,0(s) is a sufficiently accurate estimator of µT1n,0(s) in a similar sense to
(2.6) and σ̃2

T1n,0
(s) = 2p1−s√(s/π) log p. The maximal L1-thresholding statistic is

M̂1n = max
s∈S
T̂1,n(s)

where, again S = (0, 1 − η]. It can be shown that M̂1n = maxs∈Sn T̂1,n(s) for the
same Sn in (3.4).

Using a similar approach to that in Theorem 2, we can show that

P (a(log p)M̂1n − b(log p, η) ≤ x)→ exp(−e−x).

Hence, an α-level maximal L1-thresholding test rejects the H0 if

(4.3) M̂1n > Bα.

From (3.6), (4.2) and (4.3), the three tests have the same critical values Bα at
nominal level α. This brings convenience for the power comparison. Let us define
the power of the three tests

Ωγ(r, β) := P (M̂γn > Bα)

for γ = 0, 1 and 2 respectively. Notice that

(4.4) M̂γn = max
s∈Sn

{
Tγn(s)ẽγ(s) + σ̃−1

Tγn,0
(s)
(
µTγn,0(s)− µ̂Tγn,0(s)

)}
,

where ẽγ(s) = σTγn,0(s)/σ̃Tγn,0(s) and

Tγn(s) = σ−1
Tγn,0

(s)
(
Tγn(s)− µTγn,0(s)

)
= Tγn,1(s)Rγ(s) + ∆γ,0(s; r, β),

in which Rγ(s) = σTγn,1(s)/σTγn,0(s), Tγn,1(s) = σ−1
Tγn,1

(s)
(
Tγn(s) − µTγn,1(s)

)
and

∆γ,0(s; r, β) = σ−1
Tγn,0

(s)
(
µTγn,1(s)−µTγn,0(s)

)
. As shown in (A.8), (A.22) and (A.24)

in the Appendix

∆0,0(s; r, β) = (sπ log p)
1
4 p1/2−β+s/2I(r > s) + L(6)

p p1/2−β−(
√
s−
√
r)2+s/2I(r < s)

∆1,0(s; r, β) = (sπ log p)
1
4 (r/s)

1
4 p1/2−β+s/2I(r > s) + L(6)

p p1/2−β−(
√
s−
√
r)2+s/2I(r < s).

and

∆2,0(s; r, β) = (sπ log p)
1
4 (r/s)p1/2−β+s/2I(r > s) + L(6)

p p1/2−β−(
√
s−
√
r)2+s/2I(r < s),
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where L(6)
p = {2(

√
s−
√
r)}−1s1/4(π log p)−1/4.

Derivations given in the proof of Theorem 4 in the Appendix show that for γ = 0, 1
and 2

(4.5) M̂γn ∼ max
s∈Sn

∆γ,0(r, s, β)

where ‘a ∼ b’ means that the a/b = 1 + op(1). This implies that we only need to
compare maxs∈Sn ∆γ,0(r, s, β) in the power comparison.

From the established expressions of ∆γ,0(s; r, β), we note two facts. One is that
if r > 2β − 1, for any s ∈ (2β − 1, r),
(4.6)
∆2,0(s; r, β)/∆1,0(s; r, β) = (r/s)3/4 > 1 and ∆1,0(s; r, β)/∆0,0(s; r, β) = (r/s)1/4 > 1.

The other is if r ∈ (%∗(β), 2β − 1], asymptotically,

(4.7) ∆0,0(s; r, β) = ∆1,0(s; r, β) = ∆2,0(s; r, β) for all s ∈ S.

Hence, when (r, β) lies just above the detection boundary, the three ∆γ,0 functions
are the same. If (r, β) moves further away from the detection boundary so that
r > 2β − 1, there will be a clear ordering among the ∆γ,0 functions. The following
theorem summarizes the relative power performance.

Theorem 4. Assume C.1-C.5 and (2.6) hold. For any given significant level
α ∈ (0, 1), the powers of the HC, the maximal L1 and L2-thresholding tests under
H1 as specified in C.4 satisfy, as n→∞,

(4.8) Ω0(r, β) ≤ Ω1(r, β) ≤ Ω2(r, β) for r > 2β − 1

and Ωγ(r, β)s are asymptotic equivalent for r ∈ (%∗(β), 2β − 1].

The theorem indicates that when (r, β) is well above the detection boundary such
that r > 2β − 1 there is a clear ordering in the power among the three tests with
the L2 being the most powerful followed by the L1 test. However, when (r, β) is just
above the detection boundary such that r ∈ (%∗(β), 2β − 1], the three tests have
asymptotically equivalent powers. In the latter case, comparing the second order
terms of M̂γn may lead to differentiations among the powers of the three tests.
However, it is a rather technical undertaking to assess the impacts of the second
order terms. The analysis conducted in Theorem 4 is applicable to the setting of
Gaussian data with n = 1 and Σ satisfying C.3, which is the setting commonly
assumed in the investigation of the detection boundary for the HC test (Donoho
and Jin, 2004; Hall and Jin, 2010; and Arias-Castro et al., 2012a). Specifically, the
power ordering among the three maximal thresholding tests in Theorem 4 remains
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but under lesser conditions C.3-C.5. Condition C.1 is not needed since the Gaussian
assumption allows us to translate the problem to n = 1 since the sample mean
is sufficient. Condition C.2 is automatically satisfied for the Gaussian distribution.
The condition (2.6) is met for the Gaussian data as we have discussed in Section 2.

5. Simulation Results. We report results from simulation experiments which
were designed to evaluate the performance of the maximal L1 and L2-thresholding
tests and the HC test. The purpose of the simulation study is to confirm the theoret-
ical findings that there is an ordering in the power among the three tests discovered
in Theorem 4.

Independent and identically distributed p-dim random vectors Xi were generated
according to

Xi = Wi + µ, i = 1, · · · , n

where Wi = (Wi1, · · · ,Wip)T is a stationary random vector and {Wij}pj=1 have
the same marginal distribution F . In the simulation, Wi was generated from a
p-dimensional multivariate Gaussian distribution with zero mean and covariance
Σ = (σij)p×p where σij = ρ|i−j| for ρ = 0.3 and 0.5, respectively.

The simulation design on µ had the sparsity parameter β = 0.6, 0.7 and 0.8,
respectively, and the signal strength r = 0.1, 0.3, 0.5, 0.6, 0.8, 0.9, 1.1 and 1.2, respec-
tively. We chose two scenarios on the dimension and sample size combinations: (a)
a large p, small n setting and (b) both p and n are moderately large. For Scenario
(a), we chose p = exp(c0n

0.3 + c1) where c0 = 1.90 and c1 = 2.30 so that the dimen-
sions p were 2000 and 20,000, and the sample sizes n are 30 and 100, respectively.
We note that under the setting β = 0.8, there were only 4 and 7 non-zero means,
respectively, among the 2000 and 20,000 dimensions. And those for β = 0.7 were 9
and 19 respectively, and those for β = 0.6 were 20 and 52, respectively. These were
quite sparse. For Scenario (b), we chose p = n1.25 +184 such that (p, n) = (500, 100)
and (p, n) = (936, 200).

The maximal L2-test statistic M̂2n was constructed using µ̃T2n,0(s) and σ̃T2n,0(s)
given in (2.3) and (2.4), respectively, as the mean and standard deviation estima-
tors. The maximal L1 test statistic and the HC test statistic, M̂1n and M̂0n, were
constructed similarly using the leading order mean and standard deviation under
H0. The set of thresholding level S was chosen to be (0, 1− η] with η = 0.05.

Figures 1-4 display the average empirical sizes and powers of the HC, the max-
imal L1 and L2-thresholding tests based on 20,000 simulations, with Figures 1-2
for Scenario (a) and Figures 3-4 for Scenario (b). To make the power comparison
fair and conclusive, we adjusted the nominal level of the tests so that the simulated
sizes of the tests were all around α = 0.05 with the HC had slightly larger sizes than
those of the maximal L1 test, and the sizes of the maximal L1 test were slightly
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larger than those of the maximal L2 test. These were designed to rule out potential
“favoritism” in the power comparison due to advantages in the sizes of the maximal
L2 and/or L1 tests.

Figures 1-4 show that the power of the tests were the most influenced by the signal
strength parameter r, followed by the sparsity β. The powers were insensitive to the
level of dependence ρ, which confirmed our finding that the thresholding largely
removes the dependence. The observed ordering in the empirical power shown in
Figures 1-4 were consistent to the conclusions in Theorem 4. We observed that in
all the simulation settings, despite some size advantages by the HC test and/or the
maximal L1 test, the maximal L2 test had better power than the maximal L1 and
the HC test, and the maximal L1 test test had better power than the HC test. We
find that for each fixed level of sparsity β, when the signal strength r was increased
so that (r, β) move away from the detection boundary r = %∗(β), the difference
among the powers of the three test were enlarged. This was especially the case for
the most sparse case of β = 0.8 and was indeed confirmatory to Theorem 4. The
simulated powers of the three tests were very much the same at r = 0.1 and were
barely changed even both n and p were increased. This was consistent with the fact
that r = 0.1 is below the detection boundary for β = 0.7 and 0.8 considered in the
simulation.

6. Discussion. Our analysis shows that there are alternative L1 and L2 for-
mulations to the HC test which attain the detection boundary r = %∗(β) of the HC
test. The tests based on the L1 and L2 formulations are more powerful than the HC
test when (r, β) pair is away from the detection boundary such that r > 2β − 1.
The three tests have asymptotically equivalent power when (r, β) is just above the
detection boundary.

The detection boundary r = %∗(β) coincides with that of the HC test discovered
in Donoho and Jin (2004) for the Gaussian data with independent components. That
the three tests considered in this paper attain the detection boundary r = %∗(β)
under the considered sub-Gaussian setting with column-wise dependence can be
understood in two aspects. One is that the three test statistics are all directly for-
mulated via the marginal sample means X̄j which are asymptotically normally dis-
tributed; the other is that the thresholding statistics are asymptotically uncorrelated
as implied from Proposition 1.

According to Ingster (1997) and Donoho and Jin (2004), r = %∗(β) is the optimal
detection boundary for Gaussian distributed data with independent components.
However, it may not be optimal for the dependent nonparametric setting considered
in this paper. Indeed, for weakly dependent Gaussian data, Hall and Jin (2010)
showed that the detection boundary r = %∗(β) can be lowered by utilizing the
dependence. The latter was carried out by pre-transforming the data with L, the
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Fig 1. Empirical sizes and powers of the HC (dotted lines with squares), the maximal L1- (dashed
lines with dots) and L2-(solid lines with circles) thresholding tests when p = 2000 and n = 30 with
the marginal distribution is the standard normal.
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Fig 2. Empirical sizes and powers of the HC (dotted lines with squares), the maximal L1- (dashed
lines with dots) and L2-(solid lines with circles) thresholding tests when p = 20, 000 and n = 100
with the marginal distribution is the standard normal.
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Fig 3. Empirical sizes and powers of the HC (dotted lines with squares), the maximal L1- (dashed
lines with dots) and L2-(solid lines with circles) thresholding tests when p = 500 and n = 100 with
the marginal distribution is the standard normal.
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Fig 4. Empirical sizes and powers of the HC (dotted lines with squares), the maximal L1- (dashed
lines with dots) and L2-(solid lines with circles) thresholding tests when p = 936 and n = 200 with
the marginal distribution is the standard normal.
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inverse of Cholesky decomposition of Σ, or an empirically estimate of L and then
conducting the HC test based on the transformed data. It is expected that the main
results of this paper on the relative performance of the three tests would remain
valid for the transformed data. Hall and Jin (2008) and Delaigle and Hall (2009)
studied the detection boundary for dependent data and Cai and Wu (2012) studied
the boundary for detecting mixtures with a general known distribution. However, the
optimal detection boundary under the dependent sub-Gaussian distribution setting
is still an open problem.

APPENDIX A: TECHNICAL DETAILS

In this Appendix, we provide proofs to Theorems 2, 3 and 4 reported in Sections
3 and 4. Throughout this Appendix we use Lp = C logb(p) to denote slow varying
functions for some constant b and positive constant C, and φ(·) and Φ̄(·) for the
density and survival functions of the standard normal distribution, respectively. Let
ρk be the correlation coefficient between Wi1 and Wi(k+1), and write ρ1 = ρ for
simplicity and µj = E(Xij) for i ∈ {1, · · · , n} and j ∈ {1, · · · , p}. Put λp(s) =
2s log p.

Proof of Theorem 2. Let u = Φ̄(λ1/2
p (s)). Write J2(u) := T̂2,n(s) and

M2n = max
s∈(0,1−η]

T̂2,n(s) = max
u∈[u0,1/2)

J2(u)

where u0 = Φ̄(λ1/2
p (1− η)). Using the same technique for the proof of Theorem 1 in

Zhong et al. (2013), it may be shown that the joint asymptotic normality of T2,n(s)
at any finite points s = (s1, · · · , sd)T . This is equivalent to the joint asymptotic
normality of J2(u) at ui = Φ̄(

√
2si log p) for i = 1, · · · , d.

We want to show the tightness of the process J2(u). Let fn,u(x) = σ−1
0 (u)x2I{|x| >

g(u)} where σ2
0(u) = σ2

0(p; s) and σ2
0(p; s) = σ2

T2n,0
(s)/p. Write

J2(u) = p−1/2
p∑
j=1

{
fn,u(|

√
nX̄j |)− E(fn,u(|

√
nX̄j |))

}
,

where g(u) = Φ̄−1(u). Based on the finite dimensional convergence of J2(u) and
Theorem 1.5.6 in Van der Vaart and Wellner (1996), we only need to show the
asymptotically equicontinuous of J2(u), that is, for any ε > 0 and η > 0 there exists
a finite partition Λ = ∪ki=1Λi such that

(A.1) lim sup
n→∞

P ∗{max
1≤i≤k

sup
u,v∈Λi

|J2(u)− J2(v)| > ε} < η,

where P ∗ is the outer probability measure.
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Define Fn = {fn,u(|
√
nX̄j |) = σ−1

0 (u)|
√
nX̄j |2I{|

√
nX̄j | > g(u)} : u ∈ Λ :=

[u0, 1/2)} and ρ(fn,u − fn,v) = [E{fn,u(|
√
nX̄j |) − fn,v(|

√
nX̄j |)}2]1/2. It can be

shown that if u > v,

ρ(fn,u − fn,v)2 = {2− 2σ−1
0 (u)σ0(v)}{1 + o(1)}.

Thus, for every δn → 0, sup|u−v|<δn ρ(fn,u − fn,v) → 0, which implies that for each
δ > 0, Λ can be partitioned into finitely many sets Λ1, · · · ,Λk satisfy

max
1≤i≤k

sup
u,v∈Λi

ρ(fn,u − fn,v) < δ.

Let N(ε,Fn, ρ) be the bracketing number N0, the smallest number of functions
f1, · · · , fN0 in Fn such that for each f in Fn there exists an fi (i ∈ {1, · · · , N0})
satisfying ρ(f − fi) ≤ ε. Applying Theorem 2.2 in Andrews and Pollard (1994), if
the following two conditions hold for an even integer Q ≥ 2 and a real number γ > 0
such that

∞∑
d=1

dQ−2α(d)
γ

Q+γ <∞ and(A.2)

∫ 1

0
ε
− γ

2+γN(ε,Fn, ρ)1/Qdε <∞,(A.3)

we have for n large enough
∥∥∥ sup ρ(fn,u−fn,v)<δ

u,v∈Λi

|J2(u)− J2(v)|
∥∥∥
Q
< k−1/Qηε.

Invoking the maximal inequality of Pisier (1983), it follows that∥∥∥ max
1≤i≤k

sup
ρ(fn,u−fn,v)<δ

s,t∈Λi

|J2(u)− J2(v)|
∥∥∥
Q
< ηε.

Now using the Markov inequality, we get for n large enough

P ∗{max
1≤i≤k

sup
u,v∈Λi

|J2(u)− J2(v)| > ε}

≤
∥∥∥ max

1≤i≤k
sup

ρ(fn,u−fn,v)<δ
u,v∈Λi

|J2(u)− J2(v)|
∥∥∥
Q
/ε < η.

Hence, the condition (A.1) holds and J2(u) is asymptotically tight.
It remains to show (A.2) and (A.3) hold. For (A.3), we note that Fn is a V-C

class for each n. This is because

Gn = {fn,u(x) = σ−1
0 (u)I(x > g(u)) : u ∈ (u0, 1/2)}

is a V-C class with VC index 2. Let ϕ(x) = x2. Then Fn = ϕ · Gn is a V-C class by
Lemma 2.6.18 in Van der Vaart and Wellner (1996). Let Gn(x, u0) = supu∈Λ |fn,u(x)|
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be the envelop function for class Fn. Clearly, we can take Gn(x, u0) = σ−1
0 (u0)x2. It

is easy to see that ρ{Gn(|
√
nX̄i|, u0)} <∞ for a constant u0 > 0. Applying a result

on covering number of V-C classes (Theorem 2.6.7, Van der Vaart and Wellner,
1996), we get N(ε,Fn, ρ) ≤ Kε−2 for a universal constant K. It can be verified that
if Q > 2 + γ, then (A.3) holds. The condition (A.2) follows from the assumption
that ρZ(d) ≤ Cαd.

As a result, J2(u) converge to a zero mean Gaussian process N2(u) with

Cov(N2(u),N2(v)) =
σ0(u)
σ0(v)

= exp(−1
2 [log{σ2

0(v)} − log{σ2
0(u)}])

for u < v. It can be shown that there exists an Ornstein-Uhlenbeck(O-U) process
U2(·) with mean zero 0 and E(U2(u)U2(v)) = exp{−|u − v|} such that N2(u) =
U2(1

2 log{σ2
0(u)}). Therefore, by a result for O-U process in Leadbetter et al. (1983,

p217),

P (max
s∈S
T̂2,n(s) < Bτn(x)) = P (max

u∈Λ
N2(u) < Bτn(x))

= P ( max
u∈(0,τn)

U2(u) < Bτn(x))→ exp{− exp(−x)}

where τn = 1
2 log{σ2

0(1
2)/σ2

0(u0)}, Bτn(x) = (x + b∗(τn))/a(τn), a(t) = (2 log(t))1/2

and b∗(t) = 2 log(t)+2−1 log log(t)− 1
2 log(π). From (2.4), we have τn = 1−η

2 log p{1+
o(1)}. Since

a(τn) max
u∈(0,τn)

U2(u)− b∗(τn) =
a(τn)
a(log p)

[a(log p) max
u∈(0,τn)

U2(u)− b∗(log p)]

+
a(τn)
a(log p)

b∗(log p)− b∗(τn),

a(τn)/a(log p)→ 1 and

a(τn)
a(log p)

b∗(log p)− b∗(τn) =
a(τn)
a(log p)

[b∗(log p)− b∗(τn)]

+ b∗(τn)[
a(τn)
a(log p)

− 1]→ − log
(1− η)

2
,

we have

a(τn) max
u∈(0,τn)

U2(u)− b∗(τn) = a(log p) max
u∈(0,τn)

U2(u)− (b∗(log p) + log
(1− η)

2
).

Finally, note that b∗(log p) + log (1−η)
2 = b(log p, η). This finishes the proof of Theo-

rem 2. 2
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Proof of Theorem 3. (i). The proof is made under four cases. For each case, we
find the corresponding detectable region and the union of the four regions is the
overall detectable region of the thresholding test. Basically, we show for any (β, r)
above %∗(β) within one of the four cases, there exists at least one threshold level
s such that H1 is detectable. For notation simplification, we only keep the leading
order terms for µT2n,1(s)− µT2n,0(s), σT2n,1(s), σT2n,0(s) and ∆2(s; r, β).

Case 1: s ≤ r and s ≤ β. In this case, µT2n,1(s) − µT2n,0(s) = Lpp
1−β and

σT2n,1(s) = σT2n,0(s) = Lpp
(1−s)/2. Hence

∆2(s; r, β) =
µT2n,1(s)− µT2n,0(s)

σT2n,1(s)
= Lpp

(1+s−2β)/2.

So to make (µT2n,1(s) − µT2n,0(s))/σT2n,1(s) → ∞, we need s > 2β − 1. It fol-
lows that the detectable region for this case is r ≥ 2β − 1. Specifically, if we se-
lect s = min{r, β}, we arrive at the best divergence rate for ∆2(s; r, β) of order
Lpp

(1+min{r,β}−2β)/2.
Case 2: s ≤ r and s > β. In this case, µT2n,1(s)−µT2n,0(s) = Lpp

1−β, σT2n,1(s) =
Lpp

(1−β)/2, and σT2n,0(s) = Lpp
(1−s)/2. Then,

∆2(s; r, β) =
µT2n,1(s)− µT2n,0(s)

σT2n,1(s)
= Lpp

(1−β)/2.

So the detectable region in (β, r) plane is r > β. In this region, the best divergence
rate of ∆2 is of order Lpp(1−β)/2 for any β < s ≤ r.

Case 3: s > r and s ≤ (
√
s −
√
r)2 + β. The case is equivalent to

√
r <
√
s ≤

(r + β)/(2
√
r) and µT2n,1(s) − µT2n,0(s) = Lpp

1−(
√
s−
√
r)2−β, σT2n,1(s) = σT2n,0 =

Lpp
(1−s)/2. Then

∆2(s; r, β) =
µT2n,1(s)− µT2n,0(s)

σT2n,1(s)
= Lpp

1
2 − β + r − (

√
s− 2

√
r)2/2.(A.4)

To ensure (A.4) diverging to infinity, we need

2
√
r −

√
1− 2β + 2r <

√
s < 2

√
r +

√
1− 2β + 2r.

Thus, the detectable region must satisfy
√
r < (r + β)/(2

√
r), 1− 2β + 2r > 0 and 2

√
r −

√
1− 2β + 2r ≤ (r + β)/(2

√
r)

This translates to

β − 1
2 < r < β and either r ≤ β/3 or r > β/3 and r ≥ (1−

√
1− β)2).
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Case 4: s > r and s > (
√
s −
√
r)2 + β. This is equivalent to

√
s > max{(r +

β)/(2
√
r),
√
r}. In this case, µT2n,1(s) − µT2n,0(s) = Lpp

1−(
√
s−
√
r)2−β, σT2n,1(s) =

Lpp
(1−(

√
s−
√
r)2−β)/2. Then

∆2(s; r, β) =
µT2n,1(s)− µT2n,0(s)

σT2n,1(s)
= Lpp

(1−(
√
s−
√
r)2−β)/2.

Hence, it requires that
√
r −

√
1− β <

√
s <
√
r +

√
1− β.

In order to find a s, we need
√
r +
√

1− β > max{(r + β)/(2
√
r),
√
r}. If

√
r >

(r + β)/(2
√
r), namely r > β, the above inequality is obviously true. If r ≤ β, then√

r+
√

1− β > (r+ β)/(2
√
r) is equivalent to r > (1−

√
1− β)2. So the detectable

region is r > (1−
√

1− β)2 in this case.
In summary of Cases 1-4, the union of the detectable regions in above four cases

is r > %∗(β), as illustrated in Figure 5.
Now we are ready to prove the theorem. We only need to show that the sum

of type I and II errors of the maximal test goes to 0 when r > %∗(β). Because the
maximal test is of asymptotic αn level, it suffices to show that the power goes to 1 in
the detectable region as n→∞ and αn → 0. Recall that the αn level rejection region
is Rαn = {M̂2n > Bαn}. From Theorem 2, we notice that Bαn = O{(log log p)1/2} :=
L∗p. Then, it is sufficient if

P (M2n/L
∗
p →∞)→ 1, as n→∞(A.5)

at every (β, r) in the detectable region. SinceM2n ≥ T2(s) for any s ∈ S. Therefore,
(A.5) is true if for any point in the detectable region, there exists a λp(s) = 2s log p
such that

(A.6) T2(s)/L∗p
p→∞.

Therefore, we want to show

T2n(s)− µT2n,0(s)
L∗pσTn,0(s)

=
(T2n(s)− µT2n,1(s)

L∗pσT2n,1(s)
+
µT2n,1(s)− µT2n,0(s)

L∗pσT2n,1(s)

)σT2n,1(s)
σT2n,0(s)

p→∞.

(A.7)

Because (T2n(s)− µT2n,1(s))/L∗pσT2n,1(s) = op(1) and σT2n,0(s) ≤ σT2n,1(s), (A.7) is
true if (µT2n,1(s)− µT2n,0(s))/L∗pσT2n,1(s)→∞. As we have shown in the early proof,

for every (r, β) in the detectable region, there exist a s such that µT2n,1
(s)−µT2n,0

(s)

LpσT2n,1
(s) →

∞ for any slow varying function Lp. This concludes (A.6) and hence (A.5), which
completes the proof of Part (i).
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Fig 5. The detectable sub-regions of the L2 threshold test. Case 1: the union of {I, II, III, IV};
Case 2, the region is I; Case 3: the union of {II, III, IV, V, VI, VII}; Case 4: the union of {I, II,
III, VI, VII}.

(ii) Note that

M̂2n = max
s∈Sn

{
(T2n,1(s)R2(s) + ∆2,0(s; r, β))ẽ2(s) +

µTγn,0(s)− µ̂Tγn,0(s)
σ̃Tγn,0(s)

}
where R2(s), ẽ2(s) and T2n,1(s) are defined in (4.4) and

∆2,0(s; r, β) =
µT2n,1(s)− µT2n,0(s)

σT2n,0(s)
= (sπ log p)1/4(r/s)p1/2−β+s/2I(r > s)(A.8)

+
s1/4(π log p)−1/4

2(
√
s−
√
r)

p1/2−(
√
s−
√
r)2−β+s/2I(r < s).
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If r < %∗(β), then r < β and r < (r + β)2/(4r). Hence

R2(s) =


1 + o(1) if s ≤ r;
1 + o(1) if r < s ≤ (r+β)2

4r ;

s
1
4 (
√
s−
√
r)−

1
2 p

1
2(2
√
sr − r − β){1 + o(1)} if s > (r+β)2

4r .

It is also noticed that r < %∗(β) implies that (r + β)2/(4r) > 1. Therefore, for all
s ∈ Sn, R2(s) = 1 + o(1).

If r < %∗(β), then r < 2β − 1. Hence, maxs≤r ∆2,0(s; r, β) ≤ Lpp1/2−β+r/2 → 0 as
p(n)→∞.

If r < %∗(β) and r < 1/4, then r < β − 1/2. It follows that, for all s > r,

1/2− (
√
s−
√
r)2 − β + s/2 = 1/2 + r − β − 1

2
(
√
s− 2

√
r)2 ≤ 1/2 + r − β < 0.

If r < %∗(β) and r > 1/4, then for all s > r,

1/2− (
√
s−
√
r)2 − β + s/2 ≤ 1/2 + r − β − 1

2
(1− 2

√
r)2 < 0.

Hence, maxs>r ∆2,0(s; r, β) ≤ Lpp1/2+r−βI{r < 1/4}+Lpp1−β−(1−
√
r)2
I{r > 1/4} →

0 as p(n)→∞. In summary, we have R2(s) = 1+o(1) and maxs∈Sn ∆2,0(s; r, β)→ 0
if r < %∗(β). Therefore, together with the assumption (2.6), M̂2n = maxs∈Sn T2n,1(s){1+
op(1)}.

We note that, by employing the same argument of Theorem 2, it can be shown
that

P

(
a(log p) max

s∈S
T2n,1(s)− b(log p, δ) ≤ x

)
→ exp(−e−x)

where δ is defined just above (A.11). Then the power of the test

P
(
M̂2n > (Eαn + b(log p, η))/a(log p)

)
= P

(
M̂2n > (Eαn + b(log p, δ))/a(log p)

)
{1 + o(1)} = αn{1 + o(1)} → 0.

Thus the sum of type I and II errors goes to 1. This completes the proof of Part
(ii). 2

Proof of Theorem 4. We first prove that M̂γn ∼ maxs∈Sn ∆γ,0(r, s, β), which
will be proved in two parts.

M̂γn ∼Mγn and(A.9)
Mγn ∼ max

s∈Sn
∆γ,0(r, s, β)(A.10)
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where Mγn = maxs∈Sn Tγn(s) = maxs∈Sn {Tγn,1(s)Rγ(s) + ∆γ,0(s; r, β)}.
To show (A.9), note the decomposition for M̂γn in (4.4). Let M̃γn = maxs∈Sn

{
Tγn(s)ẽγ(s)

}
.

We can firstly show that M̂γn ∼ M̃γn because of the following inequality

M̃γn −
∣∣max
s∈Sn

µTγn,0(s)− µ̂Tγn,0(s)
σ̃Tγn,0(s)

∣∣ ≤ M̂γn ≤ M̃γn +
∣∣max
s∈Sn

µTγn,0(s)− µ̂Tγn,0(s)
σ̃Tγn,0(s)

∣∣.
Under condition (2.6), i.e., maxs∈S σ̃−1

Tγn,0
(s)
(
µTγn,0(s) − µ̂Tγn,0(s)

)
= o(1), hence,

M̂γn ∼ M̃γn. Second, we can show Mγn ∼ M̃γn. Note the following inequality

min
{
Mγn min

s∈Sn
ẽγ(s),Mγn max

s∈Sn
ẽγ(s)

}
≤ M̃γn

≤ max
{
Mγn min

s∈Sn
ẽγ(s),Mγn max

s∈Sn
ẽγ(s)

}
.

Under conditions C.1-C.4, mins∈Sn ẽγ(s) = maxs∈Sn ẽγ(s) = 1 + o(1). So we have

M̃γn ∼Mγn min
s∈Sn

ẽγ(s) ∼Mγn min
s∈Sn

ẽγ(s) ∼Mγn.

In summary, we have M̂γn ∼ M̃γn ∼Mγn. Therefore, M̂γn ∼Mγn.
The path leading to (A.10) is the following. First of all, it can be shown using an

argument similar to the one used in the proof of Theorem 2 that

P

(
a(log p) max

s∈S
Tγn,1(s)− b(log p, δ) ≤ x

)
→ exp(−e−x)

where δ = max{η − r + 2r
√

1− η − β, η}I(r < 1− η) + max{1− β, η}I(r > 1− η).
Thus, for γ = 0, 1 and 2,

(A.11) max
s∈S
Tγn,1(s) = Op{log1/2(log p)}.

Equations (A.13) to (A.20) in the following reveal that for all s ∈ S and r > %∗(β),
we can classify s ∈ S into two sets S1 and S2 such that

(i) ∆γ,0(s; r, β) >> Rγ(s) for s ∈ S1

(ii) ∆γ,0(s; r, β)→ 0 and Rγ(s) = 1 + o(1) for s ∈ S2

where ‘c >> d’ means that c/d = Lpp
ξ for some ξ > 0. Because r is above the

detection boundary %∗(β), there exists at least one s ∈ S1 such that ∆γ,0(s; r, β)→
∞. Hence,

(A.12) max
s∈S

∆γ,0(s; r, β) = max
s∈S1

∆γ,0(s; r, β) >> max
s∈S

Rγ(s).
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Namely, the maximum of ∆γ,0(s; r, β) is reached on Set S1 where ∆γ,0(s; r, β) di-
verges at a much faster rate than that of R̃γ(s), if the latter ever diverges.

Let A(s) = T2n,1(s)Rγ(s). Combining (A.11) and (A.12), we have

|max
s∈Sn

Tγn,1(s)||max
s∈Sn

Rγ(s)| = op{max
s∈Sn

∆γ,0(s; r, β)}.

This implies that |maxs∈Sn A(s)| = op{maxs∈Sn ∆γ,0(s; r, β)}. Together with the
following inequality,

max
s∈Sn

∆γ,0(s; r, β)− |max
s∈Sn

A(s)| ≤ max
s∈Sn
{A(s) + ∆γ,0(s; r, β)}

≤ max
s∈Sn

∆γ,0(s; r, β) + max
s∈Sn

A(s),

we conclude that (A.10) holds.
It remains to show the existence of S1 and S2 in arriving (A.12). We only prove it

for the L2 test. To complete that, we compare the relative order between ∆2,0(s; r, β)
and R2(s) for three regions above the detection boundary %∗(β): (i) r > β (ii) r ∈
(2β−1, β] and (iii) r ∈ (%∗(β), 2β−1]. In regions (i) and (ii) with r > (1−

√
1− β)2,

we can show that

∆2,0(s; r, β) >> R2(s) for s > 2β − 1 ;(A.13)
∆2,0(s; r, β)→ 0 and R2(s) = 1 + o(1) for s ≤ 2β − 1.(A.14)

In region (ii) with r < (1−
√

1− β)2, we have

∆2,0(s; r, β) >> R2(s) for 2β − 1 < s ≤ (2
√
r +
√

1 + 2r − 2β)2 ;(A.15)
∆2,0(s; r, β)→ 0 and R2(s) = 1 + o(1) for s ≤ 2β − 1(A.16)

and (2
√
r +
√

1 + 2r − 2β)2 < s < 1.

For r ∈ (%∗(β), 2β−1] in region (iii). If r > (1−
√

1− β)2, define D1 = (0, (2
√
r−√

1 + 2r − 2β)2) and D2 = ((2
√
r−
√

1 + 2r − 2β)2, 1). Then it may be shown that

∆2,0(s; r, β)→ 0 and R2(s) = 1 + o(1) for s ∈ D1;(A.17)
∆2,0(s; r, β) >> R2(s) for s ∈ D2.(A.18)

If r < (1−
√

1− β)2, defineD3 = (0, (2
√
r−
√

1 + 2r − 2β)2)∪((2
√
r+
√

1 + 2r − 2β)2, 1)
and D4 = ((2

√
r −
√

1 + 2r − 2β)2, (2
√
r +
√

1 + 2r − 2β)2). Then, it can be shown
that

∆2,0(s; r, β)→ 0 and R2(s) = 1 + o(1) for s ∈ D3;(A.19)
∆2,0(s; r, β) >> R2(s) for s ∈ D4.(A.20)
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The results in (A.13)-(A.20) indicate that in each region listed above, max ∆2,0(s; r, β)
will be attained in situations covered by (A.13), (A.15), (A.18) and (A.20), which
together imply (A.12).

Next, we compute ∆γ,0(s; r, β) for the HC (γ = 0) and the L1 (γ = 1) test. For
the HC test, let Gp,1(s) = P (Yi,n > 2s log p). Under assumptions C.1-C.2, applying
the large deviation results (Petrov, 1995), it may be shown that

Gp,1(s) = {(2
√
π log p(

√
s−
√
r))−1p−(

√
s−
√
r)2}{1 + o(1)} if r < s and

Gp,1(s) = {1− (2
√
π log p(

√
r −
√
s))−1p−(

√
r−
√
s)2}{1 + o(1)} if r > s.

The mean and variance of T0n(s) under H0 are µT0n,0(s) = (
√
sπ log p)−1p1−s{1+

o(1)} and σ2
T0n,0

(s) = (
√
sπ log p)−1p1−s{1 + o(1)} respectively. The mean and

variance of T0n(s) under the H1 as specified in C.4 are, respectively,

µT0n,1(s) = p1−βGp,1(s) + (p− p1−β)2Φ̄(λ1/2
p (s)){1 + o(1)} and

σ2
T0n,1(s) = p1−βGp,1(s)(1−Gp,1(s)) + p(1− p−β)2Φ̄(λ1/2

p (s))(1− 2Φ̄(λ1/2
p (s))).

These imply that, up to a factor {1 + o(1)},
(A.21)
µT0n,1(s)−µT0n,0(s) = {(2

√
π log p(

√
s−
√
r))−1p1−β−(

√
s−
√
r)2
I(r < s)+p1−βI(r > s)}.

and

R0(s) =

{
1 if s ≤ (

√
s−
√
r)2 + β;

s1/4|2(
√
s−
√
r)|−

1
2 p−

1
2((
√
s−
√
r)2 + β − s) if s > (

√
s−
√
r)2 + β.

Hence,

∆0,0(s; r, β) =
s1/4

2(
√
s−
√
r)(π log p)1/4

p1/2−β−(
√
s−
√
r)2+s/2I(r < s)

+ (sπ log p)1/4p1/2−β+s/2I(r > s).(A.22)

For L1 test, the mean and variances of T1n(s) under H1 specified in C.4 are
respectively, up to a factor 1 + o(1),

µT1n,1(s) =
√
s√

2π(
√
s−
√
r)
p1−β−(

√
s−
√
r)2
I(r < s)

+ (
√

2r log p)p1−βI(r > s) +
√

2/πp1−s and

σ2
T1n,1(s) =

s
√

log p√
π(
√
s−
√
r)
p1−β−(

√
s−
√
r)2
I(r < s) + p1−βI(r > s) + 2

√
(s/π) log pp1−s.
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It follows that, up to a factor 1 + o(1),
(A.23)

µT1n,1(s)−µT1n,0(s) =
√
s√

2π(
√
s−
√
r)
p1−β−(

√
s−
√
r)2
I(r < s) + (

√
2r log p)p1−βI(r > s)

and

R1(s) =


1 if s ≤ r and s ≤ β;

(
√

2)−1( sπ )−
1
4 (log p)−

1
4 p(s−β)/2 if s ≤ r and s ≥ β;

1 if s > r and s ≤ (
√
s−
√
r)2 + β;

s
1
4 (2
√
s− 2

√
r)−

1
2 p−

1
2((
√
s−
√
r)2 + β − s) if s > r and s > (

√
s−
√
r)2 + β.

Therefore,

∆1,0(s; r, β) =
s

1
4

2(π log p)
1
4 (
√
s−
√
r)
p1/2−β−(

√
s−
√
r)2+s/2I(r < s)

+ (sπ log p)
1
4 (r/s)

1
4 p1/2−β+s/2I(r > s).(A.24)

Replicating the above proof for the L2 test, it can be shown that, for γ = 0 and
1,

M̂γn ∼ max
s∈Sn

∆γ,0(s; r, β).

At last, we will compare maxs∈Sn ∆γ,0(s; r, β) for γ = 0, 1 and 2 when r > 2β−1.
Let s∗n = arg max{s : s ∈ Sn ∩ (2β − 1, r)} be a threshold in (2β − 1, r) that
is closest to r. Then the maximal value of ∆γ,0(s, r, β) over Sn is attained at s∗n.
Note that such s∗n exists with probability 1. To show this point, it is enough to
show that Sn ∩ (2β − 1, r) 6= ∅, which is equivalent to show that P (∪pi=1{Yi,n ∈
((4β − 2) log p, 2r log p)}) → 1. Let {k1, · · · , kq} ∈ (1, · · · , p) be a sub-sequence
such that q → ∞ and kmin = minj |kj − kj−1| → ∞. Let Dn =

∏kq
k=k1

P ({Yi,n ∈
((4β − 2) log p, 2r log p)c}) − P (∩kqi=k1

{Yi,n ∈ ((4β − 2) log p, 2r log p)c}). By mixing
assumption (C.5) and triangle inequality, it can be seen that |Dn| ≤ qαZ(kmin)→ 0
as n→∞. Then it follows that

P (∪pi=1{Yi,n ∈ ((4β − 2) log p, 2r log p)})

≥ P (∪kqi=k1
{Yi,n ∈ ((4β − 2) log p, 2r log p)})

= 1− P (∩kqi=k1
{Yi,n ∈ ((4β − 2) log p, 2r log p)c})

= 1−
kq∏

k=k1

P ({Yi,n ∈ ((4β − 2) log p, 2r log p)c}) +Dn → 1
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where we used P ({Yi,n ∈ ((4β − 2) log p, 2r log p)c}) < 1 for all i = 1, · · · , p.
Comparing (A.8), (A.22) and (A.24), we see that ∆0,0(s∗n; r, β) < ∆1,0(s∗n; r, β) <
∆2,0(s∗n; r, β).

It follows that, for r > 2β − 1,

max
s∈Sn

∆0,0(s; r, β) < max
s∈Sn

∆1,0(s; r, β) < max
s∈Sn

∆2,0(s; r, β).

Therefore, asymptotically with probability 1, M̂0n < M̂1n < M̂2n, which results in
Ω0(r, β) ≤ Ω1(r, β) ≤ Ω2(r, β). This completes the proof. 2

SUPPLEMENTARY MATERIAL

A supplemental to “Tests alternative to higher criticism for high di-
mensional means under sparsity and column-wise dependence”
(http://www.e-publications.org/ims/support/dowload/imsart-ims.zip). The supple-
mentary material contains proofs for Proposition 1 and Theorem 1 in Section 2.
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