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Conditional limit theorems for critical

continuous-state branching processes

Yan-Xia Ren∗, Ting Yang and Guo-Huan Zhao

Abstract

In this paper we study the conditional limit theorems for critical continuous-

state branching processes with branching mechanism ψ(λ) = λ1+αL(1/λ)

where α ∈ [0, 1] and L is slowly varying at ∞. We prove that if α ∈ (0, 1],

there are norming constants Qt → 0 (as t ↑ +∞) such that for every x > 0,

Px (QtXt ∈ ·|Xt > 0) converges weakly to a non-degenerate limit. The con-

verse assertion is also true provided the regularity of ψ at 0. We give a

conditional limit theorem for the case α = 0. The limit theorems we obtain

in this paper allow infinite variance of the branching process.

1 Introduction

A [0,+∞)-valued strong Markov process X = {Xt : t ≥ 0} with probabilities

{Px : x > 0} is called a (conservative) continuous-state branching process (CB

process) if it has paths that are right continuous with left limits, and it employs

the following branching property: for any λ ≥ 0 and x, y > 0,

Ex+y(e
−λXt) = Ex(e

−λXt)Ey(e
−λXt). (1.1)

It can be characterized by the branching mechanism ψ which is also the Laplace

exponent of a Lévy process with non-negative jumps. Set ρ := ψ′(0+), then

ExXt = xe−ρt. We call a CB process supercritical, critical or subcritical as ρ <

0, = 0, or > 0.

Let τ := inf{t ≥ 0 : Xt = 0} denote the extinction time of Xt and q(x) :=

Px(τ < +∞). When q(x) < 1 for some (and then for all) x > 0, the asymptotic

behavior of Xt is studied in [3]. It was proved that there are positive constants

ηt such that ηtXt converges almost surely to a non-degenerate random variable
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as t → +∞.Note that q(x) ≡ 1 if and only if X is subcritical or critical with ψ

satisfying ∫ +∞

θ

1

ψ(ξ)
dξ < +∞ (1.2)

for some θ > 0. In this case, one can study the asymptotic behavior of X by

conditioning it on {τ > t} (see [7, 5, 9, 10] and the references therein). In the

subcritical case, it was proved that Px (Xt ∈ ·|τ > t) converges weakly as t→ +∞

to the so-called Yaglom distribution. However in the critical case, the limiting

distribution of Xt conditioned on non-extinction is trivial, converging to the Dirac

measure at ∞. To evaluate the asymptotic behavior of Xt more accurately, we

therefore have to normalize the process appropriately.

Throughout this paper, we assume ψ satisfies

ψ(λ) = λ1+αL(1/λ) ∀λ ≥ 0 (1.3)

where α ∈ [0, 1] and L is slowly varying at infinity. Our assumption on ψ does not

require the finiteness of ExX
2
t .

It is well known that a CB process can be viewed as the analogue of Galton-

Watson branching process in continuous time and continuous state space. So it

is necessary for us to take a look at the asymptotic behavior of critical G-W

branching processes. Let f(s) denote the probability generating function of the

offspring law of the critical G-W process Zn. Let F̄ (n) = P1(Zn > 0). Slack [13, 14]

proved that P1(F̄ (n)Zn ≤ y|Zn > 0) converges weakly to a non-degenerate limit

if and only if

f(s) = s+ (1− s)1+αL

(
1

1− s

)
(1.4)

for some α ∈ (0, 1] and L slowly varying at +∞. Later Nagaev et.al.[6] proved a

conditional limit theorem for f(s) satisfying (1.4) with α = 0. Recently, Pakes [8]

generalized the above results to continuous time Markov branching process. The

proofs given in [8], based on Karamata’s theory for regular varying functions, are

much easier. However, for discrete-state branching process, there leaves open the

question of whether (1.4) is implied by the more general conditional convergence

of P1(bnZn ≤ y|Zn > 0) for some positive sequence {bn} with bn → 0.

This paper is structured as follows: In Section 2, we collect some basic facts

about regularly varying functions and CB processes. Section 3 is devoted to the

conditional limit theorems for ψ with α ∈ (0, 1]. We prove that there exists positive

norming constants Qt → 0 such that Px(QtXt ∈ ·|τ > t) converges weakly to a

non-degenerate limit. An admissible norming is Qt = P1(τ > t). This is analogous

to the result we mentioned in the above paragraph for discrete-state branching

processes. Later we prove that the converse assertion is also true provided some

regularity of ψ at 0 (or equivalently, provided some regularity of the Lévy measure

of ψ at infinity). In Section 4, we give a conditional limit theorem for the case

2



α = 0. Its discrete state analogue is proved independently in [6] and [8]. The last

section provides some concrete examples which satisfy the assumptions in Section

3 or Section 4. The branching mechanisms in these examples are well known and

taken from [11].

2 Preliminary

In the rest of this paper, we shall use the notation f(x) ∼ g(x) for functions f

and g to mean that f(x)/g(x) → 1 as x→ +∞ or 0. Let x ∧ y := min{x, y}.

Suppose X is a CB process with branching mechanism ψ. Generally ψ is

specified by the Lévy-Khintschine formula

ψ(λ) = aλ+ bλ2 +

∫

(0,+∞)

(e−λx − 1 + λx)Λ(dx), λ ≥ 0,

where a ∈ (−∞,+∞), b ≥ 0 and Λ is a non-negative measure on (0,+∞) satis-

fying
∫
(0,+∞)

(x2 ∧ x)Λ(dx) < +∞. Λ is called the Lévy measure of ψ. Obviously,

ψ is convex and infinitely differentiable on (0,+∞). Since we aim at condition-

ing critical CB process on non-extinction, we assume that ψ satisfies (1.2) with

ψ′(0+) = 0. Under this assumption, ψ is a strictly convex function on [0,+∞),

ψ(+∞) = +∞, and ψ(λ) = 0 if and only if λ = 0. This assumption also implies

that Px(τ < +∞) = 1 for every x > 0.

For x > 0 and λ, t ≥ 0, let Ex(e
−λXt) = e−xut(λ). Then ut(λ) is the unique

positive solution to the backward equation

∂

∂t
ut(λ) = −ψ(ut(λ)), u0(λ) = λ. (2.1)

From (2.1) and the semi-group property ut(us(λ)) = ut+s(λ), we also get the

forward equation

∂

∂t
ut(λ) = −ψ(λ)

∂

∂λ
ut(λ), u0(λ) = λ. (2.2)

Note that our moment condition on Λ implies that ExXt = xe−ρt < +∞ for all

x > 0 and t ≥ 0.

Next define

φ(z) :=

∫ +∞

z

1

ψ(ξ)
dξ, ∀z > 0.

The mapping φ : (0,+∞) → (0,+∞) is bijective with φ(0) = +∞ and φ(+∞) =

0. We use ϕ to denote the inverse function of φ. From (2.1), we have

∫ λ

ut(λ)

1

ψ(ξ)
dξ = t, λ, t ≥ 0.
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Hence

ut(λ) = ϕ(t+ φ(λ)), λ, t ≥ 0. (2.3)

Since φ(+∞) = 0, we have ut(+∞) = ϕ(t), and for any x > 0 and t ≥ 0,

Px(τ > t) = Px(Xt > 0) = 1− lim
λ→+∞

e−xut(λ) = 1− e−xϕ(t). (2.4)

Let F̄ (t) := P1(τ > t). Obviously, we have F̄ (t) ∼ ϕ(t) as t ↑ +∞.

Results about regular varying functions will be used a lot in the remaining

paper, so we collect some basic facts here. A positive measurable function L is said

to be slowly varying at ∞ if it is defined on (0,+∞) and limx→+∞ L(λx)/L(x) = 1

for all λ > 0. This convergence holds uniformly with respect to λ on every compact

subset of (0,+∞). Let S denote the set of all slowly varying functions at ∞. If

L ∈ S, then for any δ > 0, limx→+∞ xδL(x) = +∞, and limx→+∞ x−δL(x) = 0.

If a positive function f defined on (0,+∞) satisfies that f(λx)/f(x) → λp as

x→ +∞ (resp. 0) for any λ > 0, then f is called regularly varying at ∞ (resp. 0)

with index p ∈ (−∞,+∞), denoted by f ∈ Rp(∞) (resp. f ∈ Rp(0)). Obviously,

f(x) ∈ Rp(0) is equivalent to f(1/x) ∈ R−p(∞). If f ∈ Rp(∞) (resp. f ∈ Rp(0)),

it can be represented by f(x) = xpL(x) (resp. f(x) = xpL(1/x)) for some L ∈ S.

3 The case 0 < α ≤ 1

The following technical lemma follows from Theorem 1.5.2 and Theorem 1.5.12 in

[1]. We omit the details here.

Lemma 1.

(1) If p ∈ (−∞,+∞), f ∈ Rp(∞) (resp. Rp(0)), T1(t), T2(t) → +∞ (resp. 0)

and T1(t) ∼ T2(t) as t ↑ +∞, then f(T1(t)) ∼ f(T2(t)).

(2) Suppose f ∈ Rp(∞), T1(t), T2(t) → +∞ as t→ +∞, and f(T1(t))/f(T2(t)) ∼

c ∈ (0,+∞). If p > 0, then T1(t)/T2(t) ∼ c1/p; otherwise if p < 0 and f has

inverse function f−1, then f−1 ∈ R1/p(0) and T1(t)/T2(t) ∼ c1/p.

Theorem 1. If (1.3) holds with 0 < α ≤ 1, then for all x > 0 and y ≥ 0,

lim
t→+∞

Px

(
F̄ (t)Xt ≤ y|τ > t

)
= Hα(y), (3.1)

where Hα(y) is a probability distribution function, and its Laplace transform is

given by

hα(θ) =

∫

[0,+∞)

e−θydHα(y) = 1− (1 + θ−α)−1/α. (3.2)
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Moreover, F̄ (t) is regularly varying at +∞ with index −1/α, and consequently,

for any δ > 0,

lim
t→+∞

t
1

α
+δF̄ (t) = +∞, lim

t→+∞
t

1

α
−δF̄ (t) = 0.

Proof. For any z > 0, set g(z) := φ(1/z) =
∫ z

0
ξα−1/L(ξ) dξ. Then by Karamata’s

theorem (see, for example [1, Theorem 1.5.11]), we have g ∈ Rα(∞), more specif-

ically, g(z) ∼ α−1zαL(z)−1 as z → +∞. Consequently, we get φ ∈ R−α(0),

φ(z) ∼ α−1z−αL(1/z)−1 as z ↓ 0, and ϕ ∈ R−1/α(∞).

Since 1− e−u ∼ u as u ↓ 0, we have for any x, θ > 0,

lim
t→+∞

Ex

(
e−θF̄ (t)Xt |τ > t

)
= 1− lim

t→+∞

1− e−xϕ(t+φ(θF̄ (t)))

1− e−xϕ(t)

= 1− lim
t→+∞

ϕ(t + φ(θF̄ (t)))

ϕ(t)
. (3.3)

It follows from Lemma 1 and the fact that F̄ (t) ∼ ϕ(t) as t ↑ +∞, we have

φ(θF̄ (t)) ∼ φ(θϕ(t)) ∼ θ−αφ(ϕ(t)) = θ−αt.

Hence we have ϕ(t+ φ(θF̄ (t))) ∼ ϕ((1 + θ−α)t). By (3.3) and the regularity of ϕ

at ∞, we get

lim
t→+∞

Ex

(
e−θF̄ (t)Xt |τ > t

)
= 1− lim

t→+∞

ϕ((1 + θ−α)t)

ϕ(t)
= 1− (1 + θ−α)−1/α. (3.4)

The assertion follows from the continuity theory for Laplace transforms (see, for

example, [2, Section 6.6 ]).

Remark 1. The stationary-excess operation on Hα(y) is defined by H̃α(y) :=∫
(0,y]

H̄α(x)dx/
∫
(0,+∞)

H̄α(x)dx, where H̄α(y) = 1−Hα(y). H̃α(y) is also a proba-

bility distribution function, and a simple calculation shows that its Laplace trans-

form is (1+θ−α)−1/α. H̃α(y) is often called a generalized positive Linnik law. When

α = 1, it gives the well-known standard exponential law. For more information on

Linnik Law, we refer readers to [8, Section 4] and references therein.

The remainder of this section is devoted to the converse assertions to Theorem

1. Suppose that Xt is a critical CB process. If there exist x > 0 and positive

constants Qt → 0 (as t ↑ +∞) such that Px (QtXt ∈ ·|τ > t) converges weakly to

a non-degenerate limit, then lim inft→+∞Qt/F̄ (t) > 0. In fact, by Fatou’s lemma

0 < lim inf
t→+∞

∫ +∞

0

Px (QtXt > y| τ > t) dy

= lim inf
t→+∞

Ex (QtXt | τ > t)

= lim inf
t→+∞

Qt/F̄ (t).
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Lemma 2. Suppose ψ is the branching mechanism of a non-trivial critical CB

process. If ψ is regularly varying at 0, then ψ ∈ R1+α(0) with α ∈ [0, 1].

Proof. Suppose ψ(λ) = λpL(1/λ) for some p ∈ (−∞,+∞) and L ∈ S. Since

0 = ψ′(0+) = lim
λ↓0

ψ(λ)

λ
= lim

λ↓0
λp−1L(1/λ),

we have p ≥ 1. If p > 2, then

ψ′′(0+) = lim
λ↓0

2ψ(λ)

λ2
= lim

λ↓0
2λp−2L(1/λ) = 0. (3.5)

Recall that ψ′′(λ) = 2b +
∫ +∞

0
x2e−λxΛ(dx) for some b ≥ 0 and

∫
(0,+∞)

(x ∧

x2)Λ(dx) < +∞. So (3.5) implies that b = 0 and Λ(dx) ≡ 0, in which case

ψ is trivial. Hence p ≤ 2. We set α = p− 1, thus proving the conclusion.

Theorem 2. Suppose Xt is a critical CB process with branching mechanism ψ.

If for some x > 0, Px

(
F̄ (t)Xt ≤ y|τ > t

)
converges weakly to a non-degenerate

distribution function H(y), then (1.3) holds with α ∈ (0, 1].

Proof. Let H(y, t) := Px

(
F̄ (t)Xt ≤ y|τ > t

)
. Under the assumption, we have

lim
t→+∞

∫

[0,+∞)

g(y)dH(y, t) =

∫

[0,+∞)

g(y)dH(y) (3.6)

for any continuous function g defined on [0,+∞) such that limy→+∞ g(y) = 0.

Suppose θ > 0. Using (3.6) with g(y) = e−θy we get

h(θ) :=

∫

[0,+∞)

e−θydH(y) = lim
t→+∞

∫

[0,+∞)

e−θydH(y, t)

= lim
t→+∞

Ex

(
e−θF̄ (t)Xt |τ > t

)

= 1− lim
t→+∞

1− exp{−xut(θF̄ (t))}

1− exp{−xϕ(t)}

= 1− lim
t→+∞

ut(θF̄ (t))

ϕ(t)
. (3.7)

So as t ↑ +∞

ut(θF̄ (t)) ∼ h̄(θ)ϕ(t) ∼ h̄(θ)F̄ (t), (3.8)

where h̄(θ) = 1 − h(θ). On the other hand,using (3.6) with g(y) = y e−θy, we

obtain

h̄′(θ) =

∫

[0,+∞)

ye−θydH(y) = lim
t→+∞

∫

[0,+∞)

ye−θydH(y, t)

= lim
t→+∞

Ex

(
F̄ (t)Xte

−θF̄ (t)Xt |τ > t
)

= lim
t→+∞

F̄ (t)Ex(Xte
−θF̄ (t)Xt)

1− e−xϕ(t)
. (3.9)
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From (2.1) and (2.2), we have

∂

∂λ
ut(λ) =

ψ(ut(λ))

ψ(λ)
, ∀λ > 0.

Thus

Ex(Xte
−λXt) = −

∂

∂λ
e−xut(λ) = xe−xut(λ)

ψ(ut(λ))

ψ(λ)
. (3.10)

It follows from (3.8), (3.9) and(3.10) that

h̄′(θ) = lim
t→+∞

xF̄ (t)

1− e−xϕ(t)
e−xut(θF̄ (t))ψ(ut(θF̄ (t)))

ψ(θF̄ (t))

= lim
t→+∞

ψ(ut(θF̄ (t)))

ψ(θF̄ (t))

= lim
t→+∞

ψ(h̄(θ)F̄ (t))

ψ(θF̄ (t))
. (3.11)

The last equality follows from a standard argument using the continuity and mono-

tonicity of ψ. Let λ(θ) := h̄(θ)/θ =
∫ +∞

0
e−θyH̄(y)dy where H̄(y) = 1 − H(y).

λ(θ) is decreasing on (0,+∞). Since F̄ (t) decreases continuously to 0 as t ↑ +∞

and ψ is monotone on (0,+∞), (3.11) implies that

lim
s↓0

ψ(λ(θ)s)

ψ(s)
= ξ(λ(θ)), ∀θ > 0, (3.12)

for some function ξ such that ξ(λ(θ)) = h̄′(θ). From the continuity and mono-

tonicity of λ(θ), we have for any λ ∈ (0, λ(0+)),

lim
s↓0

ψ(λs)

ψ(s)
= ξ(λ). (3.13)

Characterization theorem (see [1, Theorem 1.4.1] ) says that (3.13) holds for all

λ > 0, and there exists p ∈ (−∞,+∞) such that ξ(λ) ≡ λp, i.e. ψ is regularly

varying at 0 with index p. Let α = p− 1, then α ∈ [0, 1] by Lemma 2. If α = 0,

we have
h̄(θ)

θ
= λ(θ) = ξ(λ(θ)) = h̄′(θ).

This has the solution h(θ) = 1 − cθ for some constant c. This is the Laplace

transform of a distribution function if and only if c = 0, in which case H(y) ≡ 1

is the distribution function of Dirac measure at 0. Therefore α > 0.

Suppose µ is a positive measure supported on (0,+∞). We say µ is regularly

varying at +∞ if u(x) := µ((0, x]) is regularly varying at +∞. The following

theorem tells us that (1.3) with α ∈ (0, 1] is implied by the more general limit

Px (QtXt ≤ y|τ > t) → H(y) where Qt are positive constants such that Qt → 0.
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Theorem 3. Let ψ be the branching mechanism of a non-trivial critical CB process

with Lévy measure Λ. Suppose x2Λ(dx) is regularly varying at +∞. If there exist

x > 0 and positive constants Qt → 0 (as t ↑ +∞) such that Px (QtXt ≤ y|τ > t)

converges weakly to a non-degenerate limit H(y), then (1.3) holds with α ∈ (0, 1].

In this case, Qt/F̄ (t) ∼ c ∈ (0,+∞), and the Laplace transform of H(y) is given

by

h(θ) =

∫

[0,+∞)

e−θydH(y) = 1− (1 + c−αθ−α)−1/α.

To proof Theorem 3, we need the following lemma.

Lemma 3. Suppose ψ is the branching mechanism of a non-trivial critical CB

process. Then ψ is regularly varying at 0 if and only if x2Λ(dx) is regularly varying

at +∞.

Proof. We may and do assume that

ψ(λ) = bλ2 +

∫

(0,+∞)

(e−λx − 1 + λx)Λ(dx)

where b ≥ 0 and
∫
(0,+∞)

(x ∧ x2)Λ(dx) < +∞. Let U(z) :=
∫
(0,z]

x2Λ(dx) and

Û(θ) :=
∫
(0,+∞)

e−θxdU(x). If ψ′′(0+) < +∞, then ψ ∈ R2(0) and
∫
[1,+∞)

x2Λ(dx) <

+∞. Obviously limz→+∞U(z) =
∫
(0,+∞)

x2Λ(dx) < +∞, which implies that

x2Λ(dx) is slowly varying at +∞.

Now we suppose ψ′′(0+) = +∞, in which case
∫
[1,+∞)

x2Λ(dx) = +∞. If ψ is

regularly varying at 0 with index p ∈ [1, 2], then for any A > 0, using L’Hospital

rule, we have

Ap = lim
λ→0+

ψ(Aλ)

ψ(λ)
= lim

λ→0+
A2 ψ

′′(Aλ)

ψ′′(λ)

= lim
λ→0+

A2 2b+ Û(Aλ)

2b+ Û(λ)
= lim

λ→0+
A2 Û(Aλ)

Û(λ)
. (3.14)

The last equality is because limθ→0+ Û(θ) = limθ→0+

∫
(0,+∞)

e−θxx2Λ(dx) = +∞.

Thus Û is regularly varying at 0 with index p−2 ∈ [−1, 0]. By Tauberian theorem

(see, for example [1, Theorem 1.7.1]), x2Λ(dx) is regularly varying at +∞ with

index 2 − p ∈ [0, 1]. The converse assertion is clear through the equalities in

(3.14).

Proof of Theorem 3. The proof is similar to that of Theorem 2. We pro-

vide details here for the reader’s convenience. Let H(y, t) := Px (QtXt ≤ y|τ > t),

h(θ) :=
∫
[0,+∞)

e−θydH(y, t) and h̄(θ) := 1 − h(θ). Similarly we can get the ana-

logues to (3.8) and (3.11):

ut(θQt) ∼ h̄(θ)F̄ (t) as t→ +∞, (3.15)
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and

lim
t→+∞

Qt

F̄ (t)

ψ(ut(θQt))

ψ(θQt)
= h̄′(θ). (3.16)

It follows from Lemma 3 that ψ is regularly varying at 0. Using Lemma 1, (3.15)

and (3.16), we have

lim
t→+∞

Qt

F̄ (t)

ψ(h̄(θ)F̄ (t))

ψ(θQt)
= h̄′(θ). (3.17)

In view of Lemma 2, we may and do assume ψ ∈ R1+α(0) with α ∈ [0, 1]. We

first consider the case α > 0. Put g(z) := (zψ(1/z))−1, z > 0. Then g ∈ Rα(+∞).

(3.17) implies that

lim
t→+∞

g(1/θQt)

g(1/h̄(θ)F̄ (t))
= lim

t→+∞

ψ(h̄(θ)F̄ (t))

ψ(θQt)

θQt

h̄(θ)F̄ (t)
=

θ

h̄(θ)
h̄′(θ), ∀θ > 0.

(3.18)

By Lemma 1, we have for all θ > 0,

θQt

h̄(θ)F̄ (t)
∼

(
θ

h̄(θ)
h̄′(θ)

)−1/α

, as t ↑ +∞,

or equivalently,

Qt

F̄ (t)
∼

(
θ

h̄(θ)

)−1/α−1

h̄′(θ)−1/α, as t ↑ +∞.

Hence we have Qt/F̄ (t) ∼ c for some constant c ∈ (0,+∞), and

(
θ

h̄(θ)

)−1/α−1

h̄′(θ)−1/α ≡ c, θ ∈ (0,∞).

In view of the initial condition h̄(0) = 1, the above equation has the unique

solution h(θ) = 1− (1 + c−αθ−α)−1/α.

Otherwise if α = 0, we assume ψ(λ) = λl(λ) where l is slowing varying at 0.

From (3.17), we get

lim
t→+∞

l(F̄ (t))

l(Qt)
=

θ

h̄(θ)
h̄′(θ), ∀θ > 0.

Thus there exists a constant c1 independent of θ such that

θ

h̄(θ)
h̄′(θ) ≡ c1, θ ∈ (0,∞).

This has the solution h(θ) = 1 − c2θ
c1 for some constant c2. h(θ) is the Laplace

transform of a distribution function only if c2 = 0, in which case H(y) ≡ 1, y ∈

[0,∞) is the distribution function of the Dirac measure at 0. This contradicts

our assumption that H is the distribution function of a non-degenerate random

variable. Hence α > 0. We complete the proof.
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Remark 2. Through the above proof we see that for ψ satisfying (1.3) with α = 0,

the limit distribution of Px (QtXt ∈ · | τ > t), if exists, must be the Dirac measure

at 0.

4 The case α = 0

In this section, we stay in the regime α = 0. Suppose ψ(λ) = λL(1/λ) satisfies

our assumption (1.2) and ψ′(0+) = 0. From Remark 2 we know that for α = 0,

any possible positive sequence Qt → 0 overnormalizes Xt. So we need to find

an alternative way to normalize Xt. [8] considers the analogous conditional limit

theorem for critical Markov branching processes with the offspring generating

function f(s) = s + (1 − s)L(1/(1 − s)) where L ∈ S. The proof in [8] can be

adapted here to get the convergence result for a CB process.

Set

V (x) := φ(1/x) =

∫ +∞

1/x

1

ψ(ξ)
dξ =

∫ x

0

1

ξL(ξ)
dξ, x > 0.

Obviously, V is differentiable, strictly increasing on (0,+∞), V ′(x) = x−1L(x)−1,

V (0) = 0 and V (+∞) =
∫ +∞

0
1/ψ(ξ)dξ = +∞. By Karamata’s theorem, we have

V ∈ S, and V (x)L(x) → +∞ as x→ +∞.

Let R denote the inverse function of V . It is easy to see that R(x) = 1/ϕ(x),

R is continuous, strictly increasing on (0,+∞) with R(+∞) = +∞ and R(0) = 0.

By [1, Theorem 2.4.7], R belongs to the class of Karamata rapidly varying func-

tions denoted by KR∞. We refer readers to [1, Section 2.4] for more information

about KR∞. Since y = V (R(y)), we have

1 = V ′(R(y))R′(y) =
R′(y)

R(y)L(R(y))
, ∀y > 0,

or equivalently
R′(y)

R(y)
= L(R(y)), ∀y > 0.

Thus there exist c, A > 0 such that

R(y) = c exp

{∫ y

A

L(R(z))dz

}
, y ∈ [A,+∞). (4.1)

Lemma 4 ([8] Lemma 5.2). As t ↑ +∞, I(y, t) :=
∫ t+y/L(R(t))

t
L(R(z))dz → y,

and this convergence holds locally uniformly with respect to y ∈ (−∞,+∞).
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Theorem 4. If (1.3) holds with α = 0, then

V (F̄ (t)−1) ∼ t, as t ↑ +∞, (4.2)

and

lim
t→+∞

Px

(
L(F̄ (t)−1)V (Xt) ≤ y|τ > t

)
= 1− e−y (4.3)

for any x > 0 and y ≥ 0.

Proof. (4.2) follows from the fact that V (F̄ (t)−1) ∼ V (R(t)) = t as t ↑ +∞.

Henceforth we only need to prove (4.3). By the monotonicity of V , we have

Px

(
L(F̄ (t)−1)V (Xt) ≤ y|τ > t

)
= Px

(
Xt ≤ R

(
y/L(F̄ (t)−1)

)
|τ > t

)
. (4.4)

For any θ > 0, using the argument of (3.3), we have

lim
t→+∞

Px

(
exp

{
−θ

Xt

R
(
y/L(F̄ (t)−1)

)
}
|τ > t

)

= 1− lim
t→+∞

ϕ
(
t + φ

(
θ/R

(
y/L(F̄ (t)−1)

)))

ϕ(t)

= 1− lim
t→+∞

R(t)

R
(
t + φ

(
θ/R

(
y/L(F̄ (t)−1)

))) , (4.5)

where in the last equality we used the fact that R(t) = 1/ϕ(t), t > 0.

Since V ∈ S and F̄ (t) ∼ ϕ(t) = R(t)−1 as t ↑ +∞, we get

φ
(
θ/R

(
y/L(F̄ (t)−1)

))
= V

(
1

θ
R
(
y/L(F̄ (t)−1)

))

∼ V
(
R
(
y/L(F̄ (t)−1)

))

=
y

L(F̄ (t)−1)

∼
y

L(R(t))
. (4.6)

Thus by (4.1), (4.6) and Lemma 4, we have

lim
t→+∞

R(t)

R
(
t+ φ

(
θ/R

(
y/L(F̄ (t)−1)

)))

= lim
t→+∞

exp

{
−

∫ t+φ(θ/R(y/L(F̄ (t)−1)))

t

L(R(z))dz

}

= lim
t→+∞

exp

{
−

∫ t+y/L(R(t))

t

L(R(z))dz

}

= e−y,
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and consequently,

lim
t→+∞

Px

(
exp

{
−θ

Xt

R
(
y/L(F̄ (t)−1)

)
}
|τ > t

)
= 1− e−y.

Note that 1−e−y is the Laplace transform of the defective law which assigns mass

1 − e−y at 0 and no mass in (0,+∞). It follows from the continuity theory for

Laplace transform (see, for example [2, Section 6.6]) that

lim
t→+∞

Px

(
Xt ≤ R

(
y/L(F̄ (t)−1)

)
|τ > t

)
= 1− e−y,

or equivalently by (4.4)

lim
t→+∞

Px

(
L(F̄ (t)−1)V (Xt) ≤ y|τ > t

)
= 1− e−y.

5 Examples

In this section we collect a few examples of branching mechanisms that satisfy the

assumptions in Section 3 or Section 4. Branching mechanisms in Examples 1, 2

and 4 are well-known. It follows from [11, Proposition 5.2] that ψ(λ) = λf(λ) is

a critical branching mechanism if and only if f is a Bernstein function and there

exists b ≥ 0 such that f(λ) = bλ +
∫∞

0
(1 − e−xλ)g(x)dx with g ≥ 0 decreasing

and
∫∞

0
(x ∧ 1)g(x)dx < ∞. Branching mechanisms in Examples 3 and 5 are

in given in this from. We refer the reader to [11] for more information on the

connections between branching mechanisms and Bernstein functions, and [12] for

more examples of Bernstein functions.

Example 1. Let ψ(λ) = cλ1+α where c > 0 and α ∈ (0, 1]. In this case

φ(t) = (cα)−1λ−α, ϕ(t) = (cαt)−1/α. Thus we have

F̄ (t) = 1− exp{−(cαt)−1/α} ∼ (cαt)−1/α as t ↑ +∞.

Similarly to (3.4), we get

lim
t→+∞

Ex

(
e−θt−1/αXt |τ > t

)
= 1− lim

t→+∞

ϕ(t + φ(θt−1/α))

ϕ(t)
= 1−(1+(cα)−1θ−α)−1/α.

Therefore for any y ≥ 0,

lim
t→+∞

Px

(
t−1/αXt ≤ y|τ > t

)
= Hα(y),

where Hα(y) is uniquely determined by its Laplace transform

h(θ) =

∫ +∞

0

e−θydHα(y) = 1− (1 + (cα)−1θ−α)−1/α.
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Remark 3. This case was excluded in Pakes et. al. [9, 10], and was studied

independently in Haas et.al. [4] and Zhang [15]. More specifically, [4] discussed

Example 1 as a special case of self-similar Markov process, while [15] viewed the

corresponding CB process as the scaling limit of a special sequence of Markov

branching processes and exploited limit theorems for some general conditioning

events.

Example 2. If ψ′′(0+) = σ < +∞, then (1.3) holds with α = 1 and

lims↓0 L(1/s) = σ/2. By Karamata’s theorem, we have φ(z) ∼ z−1L(1/z)−1 ∼

2/σz as z ↓ 0, and ϕ ∈ R−1(∞). Thus we have

lim
t→+∞

Ex

(
e−θXt/t|τ > t

)
= 1− lim

t→+∞

ϕ((1 + 2
σ
θ−1)t)

ϕ(t)
= 1− (1 +

2

σ
θ−1)−1.

Therefore

F̄ (t) ∼
2

σt
as t ↑ +∞,

and for any y ≥ 0,

lim
t→+∞

Px (Xt/t > y|τ > t) = e−
2

σ
y.

This conditional convergence was proved independently in Li [7] and Lambert [5].

Example 3. Let ψ(λ) = λ(λ−α + λ−β)−1 where 0 < β < α ≤ 1. By [12]

(λ−α+λ−β)−1 is a Bernstein function, and then ψ is a branching mechanism. Note

that ψ(λ) = λ1+αL(1/λ) with L(z) = (1 + z−α+β)−1. By Karamata’s theorem, we

have g(z) := φ(1/z) =
∫ z

0
ξα−1/L(ξ)dξ ∈ Rα(∞), and

g(z) ∼ α−1zαL(z)−1 ∼ α−1zα =: h(z) as z ↑ +∞.

Both g and h are strictly increasing on (0,+∞). Let g−1 and h−1 respectively

denote the inverse functions of g and h. Since

1 = g(g−1(z))/h(h−1(z)) ∼ g(g−1(z))/g(h−1(z)),

by Lemma 1 we have g−1(z) ∼ h−1(z) = (αz)1/α as z ↑ +∞. Consequently,

ϕ(t) = 1/g−1(t) ∼ (αt)−1/α as t ↑ +∞. Therefore, we have

F̄ (t) ∼ (αt)−1/α as t→ +∞,

and for any y ≥ 0,

lim
t→+∞

Px

(
t−1/αXt ≤ y|τ > t

)
= Hα(y),

where Hα(y) has the Laplace transform

hα(θ) = 1− (1 + α−1θ−α)−1/α.
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Example 4. Let ψ(λ) = λ1+β + λ1+γ , 0 < γ < β ≤ 1. Then ψ(λ) =

λ1+γL(1/λ) with L(z) = 1 + zγ−β ∈ S. Using similar arguments as that in

Example 3, we have

F̄ (t) ∼ (γt)−1/γ as t→ +∞,

and for any y ≥ 0,

lim
t→+∞

Px

(
t−1/γXt ≤ y|τ > t

)
= Hγ(y),

where Hγ(y) has the Laplace transform:

hγ(θ) = 1− (1 + γ−1θ−γ)−1/γ .

Example 5. Let ψ(λ) = λ log−β(1+λ−1), β ∈ (0, 1] and where log−β(1+λ−1)

is a Bernstein function (see [11, P.133]). Then ψ satisfies (1.3) with α = 0 and

L(z) = log−β(1 + z). Immediately we have V (z) ∼ (β + 1)−1 logβ+1 z and L(z) ∼

log−β z as z ↑ +∞. Inserting the asymptotic equivalents of V and L into Theorem

4, we get

− log F̄ (t) ∼ [(β + 1)t]
1

β+1 , as t ↑ +∞,

and

lim
t→+∞

Px

(
logβ+1Xt

(β + 1) logβ(F̄ (t)−1)
≤ y | τ > t

)
= 1− e−y

for any x > 0 and y ≥ 0.
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