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Abstract

Consider any supercritical Galton-Watson process which may become extinct with
positive probability. It is a well-understood and intuitively obvious phenomenon that,
on the survival set, the process may be pathwise decomposed into a stochastically ‘thin-
ner’ Galton-Watson process, which almost surely survives and which is decorated with
immigrants, at every time step, initiating independent copies of the original Galton-
Watson process conditioned to become extinct. The thinner process is known as the
backbone and characterizes the genealogical lines of descent of prolific individuals in
the original process. Here, prolific means individuals who have at least one descendant
in every subsequent generation to their own.

Starting with Evans and O’Connell [17], there exists a cluster of literature, [13,
30, 5, 2, 26], describing the analogue of this decomposition (the so-called backbone

decomposition) for a variety of different classes of superprocesses and continuous-state
branching processes. Note that the latter family of stochastic processes may be seen
as the total mass process of superprocesses with non-spatially dependent branching
mechanism.

In this article we consolidate the aforementioned collection of results concerning
backbone decompositions and describe a result for a general class of supercritical su-
perprocesses with spatially dependent branching mechanisms. Our approach exposes
the commonality and robustness of many of the existing arguments in the literature.

Key words and phrases: Superprocesses, N-measure, backbone decomposition.

MSC 2000 subject classifications: 60J80, 60E10.

1 Superprocesses and Markov branching processes

This paper concerns a fundamental decomposition which can be found amongst a general
family of superprocesses and has, to date, been identified for a number of specific sub-families
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thereof by a variety of different authors. We therefore start by briefly describing the general
family of superprocesses that we shall concern ourselves with. The reader is referred to the
many, and now classical, works of Dynkin for further details of what we present below; see
for example [6, 7, 8, 9, 10]. The books of Le Gall [28], Etheridge [14] and Li [29] also serve
as an excellent point of reference.

Let E be a domain of Rd. Following the setting of Fitzsimmons [20], we are interested in
strong Markov processes, X = {Xt : t ≥ 0} which are valued in MF (E), the space of finite
measures with support in E. The evolution of X depends on two quantities P and ψ. Here,
P = {Pt : t ≥ 0} is the semi-group of a diffusion on E (the diffusion killed upon leaving E),
and ψ is a so-called branching mechanism which, by assumption, takes the form

ψ(x, λ) = −α(x)λ + β(x)λ2 +

∫

(0,∞)

(e−λz − 1 + λz)π(x, dz), (1)

where α and β ≥ 0 are bounded measurable mappings from E to R and [0,∞) respectively
and for each x ∈ E, π(x, dz) is a measure concentrated on (0,∞) such that x →

∫
(0,∞)

(z ∧

z2)π(x, dz) is bounded and measurable. For technical reasons, we shall additionally assume
that the diffusion associated to P satisfies certain conditions. These conditions are lifted
from Section II.1.1. (Assumptions 1.1A and 1.1B) on pages 1218-1219 of [7]1. They state
that P has associated infinitesimal generator

L =
∑

i,j

ai,j
∂2

∂xi∂xj
+
∑

i

bi
∂

∂xi
,

where the coefficients ai,j and bj are space dependent coefficients satisfying:

(Uniform Elliptically) There exists a constant γ > 0 such that

∑

i,l

ai,juiuj ≥ γ
∑

i

u2i

for all x ∈ E and u1, · · ·ud ∈ R.

(Hölder continuity) The coefficients ai,j and bi are uniformly bounded and Hölder contin-
uous in such way that there exist a constants C > 0 and α ∈ (0, 1] with

|ai,j(x)− ai,j(y)|, |bi(x)− bi(y)| ≤ C|x− y|α

for all x, y ∈ E. Throughout, we shall refer to X as the (P, ψ)-superprocess.
For each µ ∈ MF (E) we denote by Pµ the law ofX when issued from initial state X0 = µ.

The semi-group of X , which in particular characterizes the laws {Pµ : µ ∈ MF (E)}, can be
described as follows. For each µ ∈ MF (E) and all f ∈ bp(E), the space of non-negative,
bounded measurable functions on E,

Eµ(e
−〈f,Xt〉) = exp

{
−

∫

E

uf(x, t)µ(dx)

}
t ≥ 0, (2)

1The assumptions on P may in principle be relaxed. The main reason for this imposition here comes in
the proof of Lemma 6.1 where a comparison principle is used for diffusions.
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where uf(x, t) is the unique non-negative solution to the equation

uf(x, t) = Pt[f ](x)−

∫ t

0

ds · Ps[ψ(·, uf(·, t− s))](x) x ∈ E, t ≥ 0. (3)

See for example Theorem 1.1 on pages 1208-1209 of [7] or Proposition 2.3 of [20]. Here we
have used the standard inner product notation,

〈f, µ〉 =

∫

E

f(x)µ(dx),

for µ ∈ MF (E) and any f such that the integral makes sense.
Suppose that we define E = {〈1, Xt〉 = 0 for some t > 0}, the event of extinction. For

each x ∈ E write
w(x) = − log Pδx(E). (4)

It follows from (2) that

Eµ(e
−θ〈1,Xt〉) = exp

{
−

∫

E

uθ(x, t)µ(dx)

}
t ≥ 0, (5)

Note that uθ(t, x) is increasing in θ and that Pµ(〈1, Xt〉 = 0) is monotone increasing. Using
these facts and letting θ → ∞, then t→ ∞, we get that

Pµ(E) = lim
t→∞

Pµ(〈1, Xt〉 = 0) = exp

{
−

∫

E

lim
t→∞

lim
θ→∞

uθ(x, t)µ(dx)

}
. (6)

By choosing µ = δx, with x ∈ E, we see that

Pµ(E) = exp

{
−

∫

E

w(x)µ(dx)

}
. (7)

For the special case that ψ does not depend on x and P is conservative, 〈1, Xt〉 is a
continuous state branching process. If ψ(λ) satisfy the following condition:

∫ ∞ 1

ψ(λ)
dλ <∞,

then Pµ almost surely we have E = {limt→∞〈1, Xt〉 = 0}, that is to say the event of extinction
is equivalent to the event of extinguishing, see [2] and [26] for examples.

By first conditioning the event E on Ft := σ{Xs : s ≤ t}, we find that for all t ≥ 0,

Eµ(e
−〈w,Xt〉) = e−〈w,µ〉.

The function w will play an important role in the forthcoming analysis and henceforth we
shall assume that it respects the following property.

(A): w is locally bounded away from 0 and ∞.
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The pathwise evolution of superprocesses is somewhat difficult to visualise on account
of their realisations at each fixed time being sampled from the space of finite measures.
However a related class of stochastic processes which exhibit similar mathematical properties
to superprocesses and whose paths are much easier to visualise is that of Markov branching
processes. A Markov branching process Z = {Zt : t ≥ 0} takes values in the space Ma(E) of
finite atomic measures in E taking the form

∑n

i=1 δxi
, where n ∈ N∪{0} and x1, · · · , xn ∈ E.

To describe its evolution we need to specify two quantities, (P, F ), where, as before, P is
the semi-group of a diffusion on E and F is the so-called branching generator which takes
the form

F (x, s) = q(x)
∑

n≥0

pn(x)(s
n − s), x ∈ E, s ∈ [0, 1], (8)

where q is a bounded measurable mapping from E to [0,∞) and, the measurable sequences
{pn(x) : n ≥ 0}, x ∈ E, are probability distributions. For each ν ∈ Ma(E), we denote by Pν

the law of Z when issued from initial state Z0 = ν. The probability Pν can be constructed in
a pathwise sense as follows. From each point in the support of ν we issue an independent copy
of the diffusion with semi-group P. Independently of one another, for (x, t) ∈ E × [0,∞),
each of these particles will be killed at rate q(x)dt to be replaced at their space-time point
of death by n ≥ 0 particles with probability pn(x). Relative to their point of creation, new
particles behave independently to one another, as well as to existing particles, and undergo
the same life cycle in law as their parents.

By conditioning on the first split time in the above description of a (P, F )-Markov branch-
ing process, it is also possible to show that

Eν(e
−〈f,Zt〉) = exp

{
−

∫

E

vf(x, t)ν(dx)

}
t ≥ 0,

where vf(x, t) solves

e−vf (x,t) = P[e−f ](x) +

∫ t

0

ds · Ps[F (·, e
−vf (·,t−s))](x) x ∈ E, t ≥ 0. (9)

Moreover, it is known, cf. Theorem 1.1 on pages 1208-1209 of [7], that the solution to
this equation is unique. This shows a similar characterisation of the semi-groups of Markov
branching processes to those of superprocesses.

The close similarities between the two processes become clearer when one takes account
of the fact that the existence of superprocesses can be justified through a high density scaling
procedure of Markov branching processes. Roughly speaking, for a fixed triplet, µ,P, ψ, one
may construct a sequence of Markov branching processes, say {Z(n) : n ≥ 1}, such that the
n-th element of the sequence is issued with an initial configuration of points which is taken
to be an independent Poisson random measure with intensity nµ and branching generator
Fn satisfying

Fn(x, s) =
1

n
[ψ(x, n(1 − s)) + α(x)n(1− s)], x ∈ E, s ∈ [0, 1].

It is not immediately obvious that the right-hand side above conforms to the required struc-
ture of branching generators as stipulated in (8), however this can be shown to be the case;
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see for example the discussion on p.93 of [29]. It is now a straightforward exercise to show

that for all f ∈ bp(E) and t ≥ 0 the law of 〈f, n−1Z
(n)
t 〉 converges weakly to the law of

〈f,Xt〉, where the measure Xt satisfies (2). A little more work shows the convergence of the
sequence of processes {n−1Z(n) : n ≥ 1} in an appropriate sense to a (P, ψ)-superprocess
issued from an initial state µ.

Rather than going into the details of this scaling limit, we focus instead in this paper
on another connection between superprocesses and branching processes which explains their
many similarities without the need to refer to a scaling limit. The basic idea is that, under
suitable assumptions, for a given (P, ψ)-superprocess, there exists a related Markov branch-
ing process, Z, with computable characteristics such that at each fixed t ≥ 0, the law of Zt

may be coupled to the law of Xt in such a way that, given Xt, Zt has the law of a Poisson
random measure with intensity w(x)Xt(dx), where w is given by (4). The study of so-called
backbone decompositions pertains to how the aforementioned Poisson embedding may be
implemented in a pathwise sense at the level of processes.

The remainder of this paper is structured as follows. In the next section we briefly
review the sense and settings in which backbone decompositions have been previously stud-
ied. Section 3 looks at some preliminary results needed to address the general backbone
decomposition that we deal with in Sections 4, 5 and 6.

2 A brief history of backbones

The basic idea of a backbone decomposition can be traced back to the setting of Galton-
Watson trees with ideas coming from Harris and Sevast’yanov; cf Harris [23]. Within any
supercritical Galton-Watson process with a single initial ancestor for which the probability
of survival is not equal to 0 or 1, one may identify prolific genealogical lines of descent
on the event of survival. That is to say, infinite sequences of descendants which have the
property that every individual has at least one descendant in every subsequent generation
beyond its own. Together, these prolific genealogical lines of descent make a Galton-Watson
tree which is thinner than the original tree. One may describe the original Galton-Watson
process in terms of this thinner Galton-Watson process, which we now refer to as a backbone,
as follows. Let 0 < p < 1 be the probability of survival. Consider a branching process
which, with probability 1− p, is an independent copy of the original Galton-Watson process
conditioned to become extinct and, with probability p, is a copy of the backbone process,
having the additional feature that every individual in the backbone process immigrates an
additional random number of offspring, each of which initiate independent copies of the
original Galton-Watson process conditioned to become extinct. With an appropriate choice
of immigration numbers, the resulting object has the same law as the original Galton-Watson
process.

In Evans and O’Connell [17], and later in Engländer and Pinsky [13], a new decompo-
sition of a supercritical superprocess with quadratic branching mechanism was introduced
in which one may write the distribution of the superprocess at time t ≥ 0 as the result of
summing two independent processes together. The first is a copy of the original process con-
ditioned on extinction. The second process is understood as the superposition of mass from
independent copies of the original process conditioned on extinction which have immigrated
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‘continuously’ along the path of an auxiliary dyadic branching particle diffusion which starts
with a random number of initial ancestors whose cardinality and spatial position is governed
by an independent Poisson point process. The embedded branching particle system is known
as the backbone (as opposed to the spine or immortal particle which appears in another re-
lated decomposition, introduced in Roelly-Coppoletta and Rouault [31] and Evans [16]). In
both [17] and [13] the decomposition is seen through the semi-group evolution equations
which drive the process semi-group. However no pathwise construction is offered.

A pathwise backbone decomposition appears in Salisbury and Verzani [30], who consider
the case of conditioning a super-Brownian motion as it exits a given domain such that the
exit measure contains at least n pre-specified points in its support. There it was found
that the conditioned process has the same law as the superposition of mass that immigrates
in a Poissonian way along the spatial path of a branching particle motion which exits the
domain with precisely n particles at the pre-specified points. Another pathwise backbone
decomposition for branching particle systems is given in Etheridge and Williams [15], which
is used in combination with a limiting procedure to prove another version of Evan’s immortal
particle picture.

In Duquesne and Winkel [5] a version of the Evans-O’Connell backbone decomposition
was established for more general branching mechanisms, albeit without taking account of spa-
tial motion. In their case, quadratic branching is replaced by a general branching mechanism
ψ which is the Laplace exponent of a spectrally positive Lévy process and which satisfies the
conditions 0 < −ψ′(0+) <∞ and

∫∞
1/ψ(ξ)dξ <∞.Moreover, the decomposition is offered

in the pathwise sense and is described through the growth of genealogical trees embedded
within the underling continuous state branching process. The backbone is a continuous-time
Galton Watson process and the general nature of the branching mechanism induces three
different kinds of immigration. Firstly there is continuous immigration which is described
by a Poisson point process of independent processes along the trajectory of the backbone
where the rate of immigration is given by a so-called excursion measure which assigns zero
initial mass, and finite life length of the immigrating processes. A second Poisson point
process along the backbone describes the immigration of independent processes where the
rate of immigration is given by the law of the original process conditioned on extinguishing
and with a positive initial volume of mass randomised by an infinite measure. This accounts
for so-called discontinuous immigration. Finally, at the times of branching of the backbone,
independent copies of the original process conditioned on extinguishing are immigrated with
randomly distributed initial mass which depends on the number of offspring at the branch
point. The last two forms of immigration do not occur when the branching mechanism is
purely quadratic.

Concurrently to the work of [5] and within the class of branching mechanisms correspond-
ing to spectrally positive Lévy processes with paths of unbounded variation (also allowing
for the case that −ψ′(0+) = ∞), Bertoin et al. [3] identify the aforementioned backbone as
characterizing prolific genealogies within the underling continuous state branching process.

Berestycki et al. [2] extend the results of [17] and [5], showing that for superprocesses with
relatively general motion and non-spatial branching mechanism corresponding to spectrally
positive Lévy processes with finite mean, a pathwise backbone decomposition arises. The role
of the backbone is played by a branching particle diffusion with the same motion operator
as the superprocesses and, like Salisbury and Verzani [30], additional mass immigrates along
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the trajectory of the backbone in a Poissonian way. Finally Kyprianou and Ren [26] look
at the case of a continuous-state branching process with immigration for which a similar
backbone decomposition to [2] can be shown.

As alluded to in the abstract, our objective in this article is to provide a general backbone
decomposition which overlaps with many of the cases listed above and, in particular, exposes
the general effect on the backbone of spatially dependent branching. It is also our intention
to demonstrate the robustness of some of the arguments that have been used in earlier work
on backbone decompositions. Specifically we are referring to the original manipulations
associated with the semi-group equations given in Evans and O’Connell [17] and Engländer
and Pinsky [13], as well as the use the Dynkin-Kuznetsov excursion measure, as found in
Salisbury and Verzani [30], Berestyki et al. [2] and Kyprianou and Ren [26], to describe the
rate of immigration along the backbone.

3 Preliminaries

Before stating and proving the backbone decomposition, it will first be necessary to describe
a number of mathematical structures which will play an important role.

3.1 Localisation

Suppose that the stochastic process ξ = {ξt : t ≥ 0} on E∪{†}, where † is its cemetery state,
is the diffusion in E corresponding to the semi-group P. We shall denote its probabilities
by {Πx : x ∈ E}. In the next definition, we shall take bp(E × [0, t]) to be the space of
non-negative, bounded measurable functions on E × [0, t] with the additional property that
the value of f(x, s) on E × [0, t] is independent of s, and it is implicitly understood that
for all functions f ∈ bp(E × [0, t]), we extend their spatial domain to include {†} and set
f({†, s}) = 0.

Definition 3.1 For any open, bounded set D ⊂⊂ E, and t ≥ 0, there exists a random
measure X̃D

t supported on the boundary of D × [0, t) such that, for all f ∈ bp(E × [0, t])
and µ ∈ MF (D), the space of finite measures on D,

− logEµ

(
e−〈f,X̃D

t 〉
)
=

∫

E

ũDf (x, t)µ(dx), t ≥ 0, (10)

where ũDf (x, t) is the unique non-negative solution to the integral equation

ũDf (x, t) = Πx[f(ξt∧τD , t ∧ τ
D)]−Πx

[∫ t∧τD

0

ψ(ξs, ũ
D
f (ξs, t− s))ds

]
, (11)

and τD = inf{t ≥ 0, ξt ∈ Dc}. Note that, here, we use the obvious notation that 〈f, X̃D
t 〉 =∫

∂(D×[0,t))
f(x, s)X̃D

t (dx, ds). Moreover, with a slight abuse of notation, since their effective

spatial domain is restricted to D∪{†} in the above equation, we treat ψ and ũDf as functions
in bp(E × [0, t]) and accordingly it is clear how to handle a spatial argument equal to †, as

before. In the language of Dynkin [9], X̃D
t is called an exit measure.
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Now we define a random measure XD
t on D such that 〈f,XD

t 〉 = 〈f, X̃D
t 〉 for any f ∈

bp(D), the space of non-negative, bounded measurable functions on D, where, henceforth,
as is appropriate, we regard f as a function defined on E × [0,∞) in the sense that

f(x, t) =

{
f(x), x ∈ D
0, x ∈ E \D.

(12)

Then for any f ∈ bp(D) and µ ∈ MF (D),

− logEµ

(
e−〈f,XD

t 〉
)
=

∫

E

uDf (x, t)µ(dx), t ≥ 0, (13)

where uDf (x, t) is the unique non-negative solution to the integral equation

uDf (x, t) = Πx[f(ξt); t < τD]− Πx

[∫ t∧τD

0

ψ(ξs, u
D
f (ξs, t− s))ds

]
, x ∈ D. (14)

As a process in time, X̃D = {X̃D
t : t ≥ 0} is a superprocess with branching mechanism

ψ(x, λ)1D(x), but whose associated semi-group is replaced by that of the process ξ absorbed
on ∂D. Similarly, as a process in time, XD = {XD

t : t ≥ 0} is a superprocess with branching
mechanism ψ(x, λ)1D(x), but whose associated semi-group is replaced by that of the process
ξ killed upon leaving D. One may think of XD

t as describing the mass at time t in X which
historically avoids exiting the domain D. Note moreover that for any two open bounded
domains, D1 ⊂⊂ D2 ⊂⊂ E, the processes X̃D1 and X̃D2 (and hence XD1 and XD2) are
consistent in the sense that

X̃D1
t = (

˜̃
XD2

t )D1 , (15)

for all t ≥ 0 (and similarly XD1
t = (XD2

t )D1 for all t ≥ 0).

3.2 Conditioning on extinction

In the spirit of the relationship between (10) and (11), we have that w is the unique solution
to

w(x) = Πx[w(ξt∧τD)]− Πx

[∫ t∧τD

0

ψ(ξs, w(ξs))ds

]
, x ∈ D. (16)

for all open domains D ⊂⊂ E. Again, with a slight abuse of notation, we treat w with its
spatial domain E ∪ {†} as a function in bp(E × [0, t]) and w(†) := 0. From Lemma 1.5 in
[7] we may transform (16) to the equation

w(x) = Πx

[
w(ξt∧τD) exp

{
−

∫ t∧τD

0

ψ(ξs, w(ξs))

w(ξs)
ds

}]
, x ∈ D,

which shows that for all open bounded domains D,

w(ξt∧τD) exp

{
−

∫ t∧τD

0

ψ(ξs, w(ξs))

w(ξs)
ds

}
, t ≥ 0, (17)
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is a martingale.
The function w can be used to locally describe the law of the superprocess when condi-

tioned on global extinction (as opposed to extinction on the sub-domain D). The following
lemma outlines standard theory.

Lemma 3.2 Suppose that µ ∈ MF (E) satisfies 〈w, µ〉 <∞ (so, for example, it suffices that
µ is compactly supported). Define

P
∗
µ(·) = Pµ(·|E).

Then for any f ∈ bp(E × [0, t]) with the additional property that the value of f(x, s) on
E × [0, t] is independent of s and µ ∈ MF (D),

− logE∗
µ

(
e−〈f,X̃D

t 〉
)
=

∫

D

ũD,∗
f (x, t)µ(dx),

where ũD,∗
f (x, t) = ũDf+w(x, t)− w(x) and it is the unique solution of

ũD,∗
f (x, t) = Πx[f(ξt∧τD)]−Πx

[∫ t∧τD

0

ψ∗(ξs, ũ
D,∗
f (ξs, t− s))ds

]
, x ∈ D, (18)

where ψ∗(x, λ) = ψ(x, λ+ w(x))− ψ(x, w(x)), restricted to D, is a branching mechanism of

the kind described in the introduction and for each µ ∈ MF (E), (X̃,P
∗
µ) is a superprocess.

Specifically, on E,

ψ∗(x, λ) = −α∗(x)λ+ β(x)λ2 +

∫

(0,∞)

(e−λz − 1 + λz)π∗(x, dz), (19)

where

α∗(x) = α(x)− 2β(x)w(x)−

∫

(0,∞)

(1− e−w(x)z)zπ(x, dz)

and
π∗(x, dz) = e−w(x)zπ(x, dz) on E × (0,∞).

Proof: For all f ∈ bp(∂(D × [0, t))) we have

E
∗
µ(e

−〈f,X̃D
t 〉) = Eµ(e

−〈f,X̃D
t 〉|E)

= e〈w,µ〉
Eµ(e

−〈f,X̃D
t 〉1E)

= e〈w,µ〉
Eµ(e

−〈f,X̃D
t 〉
EX̃D

t
(1E))

= e〈w,µ〉
Eµ(e

−〈f+w,X̃D
t 〉)

= e−〈ũD
f+w

(·,t)−w,µ〉.

Using (11) and (16) then it is straightforward to check that ũD,∗
f (x, t) = ũDf+w(x, t)−w(x) is

a non-negative solution to (18), which is necessarily unique. The proof is complete as soon
as we can show that ψ∗(x, λ), restricted to D, is a branching mechanism which falls into
the appropriate class. One easily verifies the formula (19) and that the new parameters α∗

and π∗, restricted to D, respect the properties stipulated in the definition of a branching
mechanism in the introduction. �
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Corollary 3.3 For any bounded open domain D ⊂⊂ E, any function f ∈ bp(D) and any
µ ∈ MF (D) satisfying 〈w, µ〉 <∞,

− logE∗
µ

(
e−〈f,XD

t 〉
)
=

∫

D

uD,∗
f (x, t)µ(dx),

where uD,∗
f (x, t) = ũDf+w(x, t)− w(x) and it is the unique solution of

uD,∗
f (x, t) = Πx[f(ξt); t < τD]− Πx

[∫ t∧τD

0

ψ∗(ξs, u
D,∗
f (ξs, t− s))ds

]
, x ∈ D, (20)

where ψ∗ is defined by (19).

3.3 Excursion measure

Associated to the law of the processes X , are the measures {N∗
x : x ∈ E}, defined on the

same measurable space as the probabilities {P∗
δx

: x ∈ E} are defined on, and which satisfy

N
∗
x(1− e−〈f,Xt〉) = − logE∗

δx
(e−〈f,Xt〉) = u∗f(x, t), (21)

for all f ∈ bp(E) and t ≥ 0. Intuitively speaking, the branching property implies that P∗
δx

is
an infinitely divisible measure on the path space of X , that is to say the space of measure-
valued cadlag functions, D([0,∞)×M(E)), and (21) is a ‘Lévy-Khinchine’ formula in which
N

∗
x plays the role of its ‘Lévy measure’. Such measures are formally defined and explored in

detail in [12].
Note that, by the monotonicity property, for any two open bounded domains, D1 ⊂⊂

D2 ⊂⊂ E,
〈f,XD1

t 〉 ≤ 〈f,XD2
t 〉 N

∗
x-a.e.,

for all f ∈ bp(D1) understood in the sense of (12), x ∈ D1 and t ≥ 0. Moreover, for an open
bounded domain D and f as before, it is also clear that N∗(1− e−〈f,XD

t 〉) = uD,∗
f (x, t).

The measures {N∗
x : x ∈ E} will play a crucial role in the forthcoming analysis in order

to describe the ‘rate’ of a Poisson point process of immigration.

3.4 A Markov branching process

In this section we introduce a particular Markov branching process which is built from
the components of the (ψ,P)-superprocess and which plays a central role in the backbone
decomposition.

Recall that we abuse our notation and extend the domain of w with the implicit under-
standing that w(†) = 0. Note, moreover, that thanks to (17), we have that, for x ∈ E,

w(x)−1w(ξt) exp
{
−
∫ t

0
ψ(ξs, w(ξs))/w(ξs)ds

}
is in general a positive local martingale and

hence a supermartingale. For each t ≥ 0, let F ξ
t = σ(ξs : s ≤ t). Let ζ = inf{t > 0 : ξt ∈ {†}}

be the life time of ξ. The formula

dΠw
x

dΠx

∣∣∣∣
Fξ

t

=
w(ξt)

w(x)
exp

{
−

∫ t

0

ψ(ξs, w(ξs))

w(ξs)
ds

}
on {t < ζ}, t ≥ 0, x ∈ E, (22)
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uniquely determines a family of (sub-)probability measures {Πw
x : x ∈ E}. It is known that

under these new probabilities, ξ is a right Markov process on E; see [32], Section 62. We
will denote by Pw the semi-group of the E ∪ {†}-valued process ξ whose probabilities are
{Πw

x : x ∈ E}.

Remark 3.4 The equation (16) may formally be associated with the equation Lw(x) −
ψ(x, w(x)) = 0 on E, and the semi-group Pw corresponds to the diffusion with generator

Lw
0 := Lw − w−1Lw = Lw − w−1ψ(·, w),

where Lwu = w−1L(wu) for any u in the domain of L. Intuitively speaking, this means that
the dynamics associated to Pw, encourages the motion of ξ to visit domains where the global
survival rate is high and discourages it from visiting domains where the global survival rate
is low. (Recall from (7) that larger values of w(x) make extinction of the (ψ,P)-superprocess
less likely under Pδx .)

Henceforth the process Z = {Zt : t ≥ 0} will denote the Markov branching process whose
particles move with associated semi-group Pw. Moreover, the branching generator is given
by

F (x, s) = q(x)
∑

n≥0

pn(x)(s
n − s), (23)

where

q(x) = ψ′(x, w(x))−
ψ(x, w(x))

w(x)
, (24)

p0(x) = p1(x) = 0 and for n ≥ 2,

pn(x) =
1

w(x)q(x)

{
β(x)w2(x)1{n=2} + wn(x)

∫

(0,∞)

yn

n!
e−w(x)yπ(x, dy)

}
.

Here we use the notation

ψ′(x, w(x)) :=
∂

∂λ
ψ(x, λ)

∣∣∣∣
λ=w(x)

, x ∈ E.

Note that the choice of q(x) ensures that {pn(x) : n ≥ 0} is a probability mass function. In
order to see that q(x) ≥ 0 for all x ∈ E (but q 6= 0), write

q(x) = β(x)w(x) +
1

w(x)

∫

(0,∞)

(1− e−w(x)z(1 + w(x)z))π(x, dz) (25)

and note that β ≥ 0, w > 0 and 1− e−λz(1 + λz), λ ≥ 0, are all non-negative.

Definition 3.5 In the sequel we shall refer to Z as the (Pw, F )-backbone. Moreover, in the

spirit of Definition 3.1, for all bounded domains D and t ≥ 0, we shall also define Z̃D
t to be

the atomic measure, supported on ∂(D × [0, t)), describing particles in Z which are first in
their genealogical line of descent to exit the domain D × [0, t).

11



Just as with the case of exit measures for superprocesses, we define the random measure,
ZD = {ZD

t : t ≥ 0}, on D such that 〈f, ZD
t 〉 = 〈f, Z̃D

t 〉 for any f ∈ bp(D), where we remind
the reader that we regard f as a function defined on E × [0,∞) as in (12). As a process in
time, ZD is a Markov branching process, with branching generator which is the same as in
(23) except that the branching rate q(x) is replaced by qD(x) := q(x)1D(x), and associated
motion semi-group given by that of the process ξ killed upon leaving D. Similarly to the
case of superprocesses, for any two open bounded domains, D1 ⊂⊂ D2 ⊂⊂ E, the processes
Z̃D1 and Z̃D2 (and hence ZD1 and ZD2) are consistent in the sense that

Z̃D1
t = (

˜̃
ZD2

t )D1

for all t ≥ 0 (and similarly ZD1
t = (ZD2

t )D1 for all t ≥ 0).

4 Local backbone decomposition

We are interested in immigrating (P, ψ∗)-superprocesses onto the path of an (Pw, F )-backbone
within the confines of an open, bounded domain D ⊂⊂ E and initial configuration ν ∈
Ma(D), the space of finite atomic measures in D of the form

∑n

i=1 δxi
, where n ∈ N ∪ {0}

and x1, · · · , xn ∈ D. There will be three types of immigration: continuous, discontinuous
and branch-point immigration which we now describe in detail. In doing so, we shall need
to refer to individuals in the process Z for which we shall use classical Ulam-Harris nota-
tion, see for example p290 of Harris and Hardy [22]. Although the Ulam-Harris labelling
of individuals is rich enough to encode genealogical order, the only feature we really need
of the Ulam-Harris notation is that individuals are uniquely identifiable amongst T , the set
labels of individuals realised in Z. For each individual u ∈ T we shall write bu and du for
its birth and death times respectively, {zu(r) : r ∈ [bu, du]} for its spatial trajectory and Nu

for the number of offspring it has at time du. We shall also write T D for the set of labels of
individuals realised in ZD. For each u ∈ T D we shall also define

τDu = inf{s ∈ [bu, du], zu(s) ∈ Dc},

with the usual convention that inf ∅ := ∞.

Definition 4.1 For ν ∈ Ma(D) and µ ∈ MF (D), let ZD be a Markov branching process
with initial configuration ν, branching generator which is the same as in (23), except that the
branching rate q(x) is replaced by qD(x) := q(x)1D(x), and associated motion semi-group
given by that of Pw killed upon leaving D. Let XD,∗ be an independent copy of XD under
P
∗
µ. Then we define the measure valued stochastic process ∆D = {∆D

t : t ≥ 0} such that, for
t ≥ 0,

∆D
t = XD,∗

t + ID,N∗

t + ID,P∗

t + ID,η
t , (26)

where ID,N∗

= {ID,N∗

t : t ≥ 0}, ID,P∗

= {ID,P∗

t : t ≥ 0} and ID,η = {ID,η
t : t ≥ 0} are defined

as follows.

i) (Continuum immigration:) The process ID,N∗

is measure-valued on D such that

ID,N∗

t =
∑

u∈T D

∑

bu<r≤t∧du∧τDu

X
(D,1,u,r)
t−r ,

12



where, given ZD, independently for each u ∈ T D such that bu < t, the processes
X(D,1,u,r) are independent copies of the canonical process XD, immigrated along the
space-time trajectory {(zu(r), r) : r ∈ (bu, t ∧ du ∧ τ

D
u ]} with rate

dr × 2β(zu(r))dN
∗
zu(r).

ii) (Discontinuous immigration:) The process ID,P∗

is measure-valued on D such that

ID,P∗

t =
∑

u∈T D

∑

bu<r≤t∧du∧τDu

X(D,2,u,r),

where, given ZD, independently for each u ∈ T D such that bu < t, the processes
X(D,2,u,r) are independent copies of the canonical process XD, immigrated along the
space-time trajectory {(zu(r), r) : r ∈ (bu, t ∧ du ∧ τ

D
u ]} with rate

dr ×

∫

y∈(0,∞)

ye−w(zu(r))yπ(zu(r), dy)× dP∗
yδzu(r)

.

iii) (Branch point biased immigration:) The process ID,η is measure-valued on D such
that

ID,η
t =

∑

u∈T D

1{du≤t∧τDu }X
(D,3,u)
t−du

,

where, given ZD, independently for each u ∈ T D such that du < t ∧ τDu , the processes
X(D,3,u) are independent copies of the canonical process XD issued at time du with law
P
∗
Yuδzu(du)

such that, given u has n ≥ 2 offspring, the independent random variable Yu
has distribution ηn(zu(r), dy), where

ηn(x, dy) =
1

q(x)w(x)pn(x)

{
β(x)w2(x)δ0(dy)1{n=2} + w(x)n

yn

n!
e−w(x)yπ(x, dy)

}
.

(27)

It is not difficult to see that ∆D is consistent in the domain D in the sense of (15).
Accordingly we denote by P(µ,ν) the law induced by {∆D

t , D ∈ O(E), t ≥ 0}, where O(E) is
the collection of bounded open sets in E.

The so-called backbone decomposition of (XD,Pµ) for µ ∈ MF (D) entails looking at the
process ∆D in the special case that we randomise the law P(µ,ν) by replacing the deterministic
choice of ν with a Poisson random measure having intensity measure w(x)µ(dx). We denote
the resulting law by Pµ.

Theorem 4.2 For any µ ∈ MF (D), the process (∆D,Pµ) is Markovian and has the same
law as (XD,Pµ).
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5 Proof of Theorem 4.2

The proof involves several intermediary results in the spirit of the non-spatially dependent
case of Berestycki et al. [2]. Throughout we take D as an open bounded domain in E. Any
function f defined on D will be extend to E by defining f = 0 on E \D.

Lemma 5.1 Suppose that µ ∈ MF (D), ν ∈ Ma(D), t ≥ 0 and f ∈ bp(D), We have

E(µ,ν)

(
e−〈f,ID,N∗

t +I
D,P∗

t 〉|{ZD
s : s ≤ t}

)
= exp

{
−

∫ t

0

〈φ(·, uD,∗
f (·, t− s)), ZD

s 〉ds

}
,

where

φ(x, λ) = 2β(x)λ+

∫

(0,∞)

(1− e−λz)zπ(x, dz), x ∈ D, λ ≥ 0. (28)

Proof: We write

〈f, ID,N∗

t + ID,P∗

t 〉 =
∑

u∈T D

∑

bu<r≤t∧du∧τDu

〈f,X
(D,1,u,r)
t−r 〉+

∑

u∈T D

∑

bu<r≤t∧du∧τDu

〈f,X
(D,2,u,r)
t−r 〉.

Hence conditioning on ZD, appealing to the independence of the immigration processes
together with Campbell’s formula and that N∗

x(1− e−〈f,XD
s 〉) = uD,∗

f (x, s), we have

E(µ,ν)(e
−〈f,ID,N∗

t 〉|{ZD
s : s ≤ t})

= exp

{
−

∑

u∈T D

2

∫ t∧du∧τDu

bu

β(zu(r)) ·N
∗
zu(r)(1− e−〈f,XD

t−r〉)dr

}

= exp

{
−

∑

u∈T D

2

∫ t∧du∧τDu

bu

β(zu(r))u
D,∗
f (zu(r), t− r)dr

}
. (29)

On the other hand

E(µ,ν)(e
−〈f,ID,P∗

t 〉|{ZD
s : s ≤ t})

= exp

{
−

∑

u∈T D

∫ t∧du∧τDu

bu

∫ ∞

0

ye−w(zu(r))yπ(zu(r), dy)E
∗
yδzu(r)

(1− e−〈f,XD
t−r〉)dr

}

= exp

{
−

∑

u∈T D

∫ t∧du∧τDu

bu

∫ ∞

0

(1− e−u
D,∗
f

(zu(r),t−r)y)ye−w(zu(r))yπ(zu(r), dy)dr

}
. (30)

Combining (29) and (30) the desired result follows. �

Lemma 5.2 Suppose that the real-valued function J(s, x, λ) defined on [0, T )×D×R satisfies
that for any c > 0 there is a constant A(c) such that

|J(s, x, λ1)− J(s, x, λ2)| ≤ A(c)|λ1 − λ2|,

14



for all s ∈ [0, T ), x ∈ D and λ1, λ2 ∈ [−c, c]. Then for any bounded measurable function
g(s, x) on [0, T )×D, the integral equation

v(t, x) = g(t, x) +

∫ t

0

Πx

[
J(t− s, ξs, v(t− s, ξs)); s < τD

]
dx, t ∈ [0, T ),

has at most one bounded solution.

Proof: Suppose that v1 and v2 are two solutions, then there is a constant c > 0 such that
−c ≤ v1, v2 ≤ c and

‖v1 − v2‖(t) ≤ A(c)

∫ t

0

‖v1 − v2‖(s)ds,

where ‖v1 − v2‖(t) = supx∈D |v1(t, x)− v2(t, x)|, t ∈ (0, T ). It follows from Gronwall’s lemma
(see, for example, Lemma 1.1 on page 1208 of [7]) that ‖v1 − v2‖(t) = 0, t ∈ [0, T ).

Lemma 5.3 Fix t > 0. Suppose that f, h ∈ bp(D) and gs(x) is jointly measurable in
(x, s) ∈ D × [0, t] and bounded on finite time horizons of s such that gs(x) = 0 for x ∈ Dc.
Then for any µ ∈ MF (D), x ∈ D and t ≥ 0,

e−W (x,t) := E(µ,δx)

[
exp

(
−

∫ t

0

〈gt−s, Z
D
s 〉ds− 〈f, ID,η

t 〉 − 〈h, ZD
t 〉

)]
,

where e−W (x,t) is the unique [0, 1]-valued solution to the integral equation

w(x)e−W (x,t) = Πx

[
w(ξt)e

−h(ξt), t < τD
]

+Πx

[∫ t∧τD

0

[Ht−s(ξs,−w(ξs)e
−W (ξs,t−s))− w(ξs)e

−W (ξs,t−s)gt−s(ξs)

−ψ(ξs, w(ξs))e
−W (ξs,t−s)]ds

]
, (31)

for x ∈ D, where

Ht−s(x, λ) = q(x)λ + β(x)λ2 +

∫ ∞

0

(e−λy − 1 + λy)e−(w(x)+u
D,∗
f

(x,t−s))yπ(x, dy), x ∈ D,

and q(x) was defined in (24).

Proof: Following Evans and O’Connell [17] it suffices to prove the result in the case when
g is time invariant. To this end, let us start by defining the semi-group Ph,D by

Ph,D
t [k](x) = Πx

(
e−

∫ t∧τD

0
h(ξs)dsk(ξt∧τD)

)

= Πx

(
e−

∫ t

0 h(ξs)dsk(ξt); t < τD
)
, for h, k ∈ bp(D), (32)

where, for convenience, we shall write

PD
t [k] = P0,D

t [k]. (33)
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Define the function χ(x) = ψ(x, w(x))/w(x). Conditioning on the first splitting time
in the process ZD and recalling that the branching occurs at the spatial rate qD(x) =
1D(x)(ψ

′(x, w(x))− χ(x)) we get that for any x ∈ D,

e−W (x,t) =
1

w(x)
Pg+q+χ,D

t [we−h](x) (34)

+Πw
x

[∫ t∧τD

0

exp

(
−

∫ s

0

(g + q)(ξr)dr

)

{
q(ξs)

∑

n≥2

pn(ξs)e
−nW (ξs,t−s)

∫

(0,∞)

ηn(ξs, dy)e
−yu

D,∗
f

(ξs,t−s)

}
ds

]
. (35)

From (27) we quickly find that for x ∈ D

∑

n≥2

pn(x)e
−nW (x,t−s)

∫

(0,∞)

ηn(x, dy)e
−yu

D,∗
f

(x,t−s)

=
1

q(x)w(x)

{
Ht−s(x,−w(x)e

−W (x,t−s)) + w(x)q(x)e−W (x,t−s)
}
.

Using the above expression in (34) we have that

w(x)e−W (x,t) = Pg+q+χ,D
t [we−h](x)

+Πx

[∫ t∧τD

0

exp

(
−

∫ s

0

(g + q + χ)(ξr)dr

)

[
(Ht−s(ξs,−w(ξs)e

−W (ξs,t−s)) + w(ξs)q(ξs)e
−W (ξs,t−s))

]
ds

]
.

Now appealing to Lemma 1.2 in Dynkin [10] and recalling that χ(·) = ψ(·, w(·))/w(·) on D,
we may deduce that for any x ∈ D,

w(x)e−W (x,t) = PD
t [we−h](x)

+Πx

[∫ t∧τD

0

[Ht−s(ξs,−w(ξs)e
−W (ξs,t−s))− w(ξs)g(ξs)e

−W (ξs,t−s)

−ψ(ξs, w(ξs))e
−W (ξs,t−s)]ds

]
(36)

as required. Note that in the above computations we have implicitly used that w is uniformly
bounded away from 0 and ∞ on D.

To complete the proof we need to show uniqueness of solutions to (36). Lemma 5.2 offers
sufficient conditions for uniqueness of solutions to a general family of integral equations which
includes (36). In order to check these sufficient conditions, let us define wD = supy∈D w(y).
Thanks to Assumption (A) we have that 0 < wD < ∞. For s ≥ 0, x ∈ D and λ ∈ [0, wD],
define the function J(s, x, λ) := [Hs(x,−λ)− (g(x) + χ(x))λ]. We rewrite (36) as

w(x)e−W (x,t) = PD
t [we−h](x) +

∫ t

0

Πx

[
J(t− s, ξs, w(ξs)e

−W (ξs,t−s)); s < τD
]
ds.
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Lemma 5.2 tells us that (36) has a unique solution as soon as we can show that J is continuous
in s and that for each fixed T > 0, there exists a K > 0 (which may depend on D and T )
such that

sup
s≤T

sup
y∈D

|J(s, y, λ1)− J(s, y, λ2)| ≤ K|λ1 − λ2|, λ1, λ2 ∈ (0, wD].

Recall that g(y) is assumed to be bounded, moreover, Assumption (A) together with the
fact that

sup
y∈D

{
|α(y)|+ β(y) +

∫

(0,∞)

(z ∧ z2)π(y, dz)

}
<∞ (37)

also implies that χ is bounded on D. Appealing to the triangle inequality, it now suffices to
check that for each fixed T > 0, there exists a K > 0 such that

sup
s≤T

sup
y∈D

|Hs(y,−λ1)−Hs(y,−λ2)| ≤ K|λ1 − λ2|, λ1, λ2 ∈ (0, wD]. (38)

First note from Proposition 2.3 of Fitzsimmons [20] that

sup
s≤T

sup
x∈D

uD,∗
f (x, s) <∞. (39)

Straightforward differentiation of the function Hs(x,−λ) in the variable λ yields

−
∂

∂λ
Hs(x,−λ) = q(x)− 2β(x)λ+

∫

(0,∞)

(1− eλz)e−(w(x)+u
D,∗
f

(x,s))zzπ(x, dz).

Appealing to (37) and (39) it is not difficult to show that the derivative above is uniformly
bounded in absolute value for s ≤ T , x ∈ D and λ ∈ [0, wD], from which (38) follows by
straightforward linearisation. The proof is now complete. �

Theorem 5.4 For every µ ∈ MF (D), ν ∈ Ma(D) and f, h ∈ bp(D)

E(µ,ν)

(
e−〈f,∆D

t 〉−〈h,ZD
t 〉
)
= e−〈uD,∗

f
(·,t),µ〉−〈vD

f,h
(·,t),ν〉, (40)

where e−vD
f,h

(x,t) is the unique [0, 1]-solution to the integral equation

w(x)e−vD
f,h

(x,t) = Πx

[
w(ξt)e

−h(ξt); t < τD
]

+Πx

[∫ t∧τD

0

[ψ∗(ξs,−w(ξs)e
−vD

f,h
(ξs,t−s) + uD,∗

f (ξs, t− s))− ψ∗(ξs, u
D,∗
f (ξs, t− s))]ds

]
.(41)

Proof: Thanks to Lemma 3.2 it suffices to prove that

E(µ,ν)(e
〈−f,IDt 〉−〈h,ZD

t 〉) = e−〈vD
f,h

(·,t),ν〉,

where ID := ID,N∗

+ ID,P∗

+ ID,η, and vDf,h solves (41). Putting Lemma 5.1 and Lemma

5.3 together we only need to show that, when gt−s(·) = φ(·, uD,∗
f (·, t− s)) (where φ is given
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by (28)), we have that exp{−W (x, t)} is the unique [0, 1]-valued solution to (41). Again
following the lead of [2], in particular referring to Lemma 5 there, it is easy to see that on D

Ht−s(·,−w(·)e
−W (·,t−s))− φ(·, uD,∗

f (·, t− s))w(·)e−W (·,t−s) −
ψ(·, w(·))

w(·)
w(·)e−W (·,t−s)

= ψ∗(·, w(·)e−W (·,t−s) + uD,∗
f (·, t− s))− ψ∗(·, uD,∗

f (·, t− s)),

which implies that exp{−W (x, t)} is the unique [0, 1]-valued solution to (41). �

Proof of Theorem 4.2:. The proof is guided by the calculation in the proof of Theorem
2 of [2]. We start by addressing the claim that (∆D,Pµ) is a Markov process. Given
the Markov property of the pair (∆D, ZD), it suffices to show that, given ∆D

t , the atomic
measure ZD

t is equal in law to a Poisson random measure with intensity w(x)∆D
t . Thanks

to Campbell’s formula for Poisson random measures, this is equivalent to showing that for
all h ∈ bp(D),

Eµ(e
−〈h,ZD

t 〉|∆D
t ) = e−〈w·(1−e−h),∆D

t 〉,

which in turn is equivalent to showing that for all f, h ∈ bp(D),

Eµ(e
−〈f,∆D

t 〉−〈h,ZD
t 〉) = Eµ(e

−〈w·(1−e−h)+f,∆D
t 〉). (42)

Note from (40) however that when we randomize ν so that it has the law of a Poisson random
measure with intensity w(x)µ(dx), we find the identity

Eµ(e
−〈f,∆D

t 〉−〈h,ZD
t 〉) = exp

〈
−uD,∗

f (·, t)− w · (1− e−vD
f,h

(·,t)), µ
〉
.

Moreover, if we replace f by w · (1− e−h) + f and h by 0 in (40) and again randomize ν so
that it has the law of a Poisson random measure with intensity w(x)µ(dx) then we get

Eµ

(
e−〈w·(1−e−h)+f,∆D

t 〉
)
= exp

〈
−uD,∗

w·(1−e−h)+f
(·, t)− w ·

(
1− exp

{
−vDw·(1−e−h)+f,0

})
, µ

〉
.

These last two observations indicate that (42) is equivalent to showing that, for all f, h as
stipulated above and t ≥ 0,

uD,∗
f (x, t) + w(x)(1− e−vD

f,h
(x,t)) = uD,∗

w·(1−e−h)+f
(x, t) + w(x)(1− e

−vD
w·(1−e−h)+f,0

(x,t)
). (43)

Note that both left and right-hand side of the equality above are necessarily non-negative
given that they are Laplace exponents of the left and right-hand sides of (42). Making use
of (18), (16), and (41), it is computationally very straightforward to show that both left and
right-hand side of (43) solve (11) with initial condition f +w(1− e−h), which is bounded in
D. Since (1.2) has a unique solution with this initial condition, namely uD

f+w·(1−e−h)(x, t), we

conclude that (43) holds true. The proof of the claimed Markov property is thus complete.
Having now established the Markov property, the proof is complete as soon as we can

show that (∆D,Pµ) has the same semi-group as (XD,Pµ). However, from the previous part
of the proof we have already established that when f, h ∈ bp(D),

Eµ

(
e−〈h,ZD

t 〉−〈f,∆D
t 〉
)
= e

−〈uD

w(1−e−h)+f
(·,t),µ〉

= Eµ

(
e−〈f+w(1−e−h),XD

t 〉
)
. (44)
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In particular, choosing h = 0 we find

Eµ

(
e−〈f,∆D

t 〉
)
= Eµ

(
e−〈f,XD

t 〉
)
, t ≥ 0,

which is equivalent to saying that the semi-groups of (∆D,Pµ) and (XD,Pµ) agree. �

6 Global backbone decomposition

So far we have localized our computations to an open bounded domain D. Our ultimate
objective is to provide a backbone decomposition on the whole domain E. To this end, let
Dn be a sequence of open bounded domains in E such that Dn ↑ E. Let XDn, ∆Dn and ZDn

be defined as in previous sections with D being replaced by Dn.

Lemma 6.1 For any h, f ∈ bp(E) with compact support and any µ ∈ MF (E), we have
that for any t ≥ 0,each element of the pair {(〈h, ZDn

s 〉, 〈f,∆Dn
s 〉) : s ≤ t} pathwise in-

creases Pµ-almost surely as n → ∞. The limiting pair of processes, here denoted by
{(〈h, Zmin

s 〉, 〈f,∆min
s 〉) : s ≤ t}, are such that 〈f,∆min

t 〉 is equal in law to 〈f,Xt〉 and, given
∆min

t , the law of Zmin
t is a Poisson random field with intensity w(x)∆min

t (dx). Moreover, Zmin

is a (Pw, F ) branching process with branching generator as in (23) and associated motion
semi-group given by that of the process ξ.

Proof: Appealing to the stochastic consistency of ZD and ∆D in the domain D, it is
clear that both 〈h, ZDn

t , 〉 and 〈f,∆Dn

t 〉 are almost surely increasing in n. It therefore follows
that the limit as n → ∞ exists for both 〈h, ZDn

t 〉 and 〈f,∆Dn

t 〉, Pµ-almost surely. In light
of the discussion at the end of the proof of Theorem 4.2, the distributional properties of the
limiting pair are established as soon as we show that

− logEµ

(
e−〈h,Zmin

t 〉−〈f,∆min
t 〉

)
=

∫

E

uw(1−e−h)+f (x, t)µ(dx), t ≥ 0. (45)

Assume temporarily that µ has compact support so that there exists an n0 ∈ N such that
for n ≥ n0 we have that suppµ ⊂ Dn and h = f = 0 on Dc

n. Thanks to (44) and monotone
convergence (45) holds as soon as we can show that uDn

g ↑ ug for all g ∈ bp(E) satisfying
g = 0 on Dc

n for n ≥ n0. By (13) and (14), we know that uDn
g (x, t) is the unique non-negative

solution to the integral equation

uDn

g (x, t) = Πx[g(ξt∧τDn
)]−Πx

[∫ t∧τDn

0

ψ(ξs, u
Dn

g (ξs, t− s))ds

]
. (46)

Using Lemma 1.5 in [7] we can rewrite the above integral equation in the form

uDn

g (x, t) = Πx

[
g(ξt∧τDn

) exp

(∫ t∧τDn

0

α(ξs)ds

)]

−Πx

[∫ t∧τDn

0

exp

(∫ s

0

α(ξr)dr

)[
ψ(ξs, u

Dn

g (ξs, t− s)) + α(ξs)u
Dn

g (ξs, t− s))
]
ds

]
. (47)
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Since g = 0 on Dc
n for n ≥ n0, we have

Πx

[
g(ξt∧τDn

) exp

(∫ t∧τDn

0

α(ξs)ds

)]
= Πx

[
g(ξt) exp

(∫ t

0

α(ξs)ds

)
; t < τDn

]
,

which is increasing in n. By the comparison principle, uDn
g is increasing in n (see Theorem

3.2 in part II of [7]). Put ũg = limn→∞ uDn
g . Note that ψ(x, λ) + α(x)λ is increasing in λ.

Letting n→ ∞ in (47), by the monotone convergence theorem,

ũg(x, t) = Pα
s g(x)− Πx

∫ t

0

Pα
s [ψ(·, ũg(·, t− s)) + α(·)ũg(·, t− s))] ds,

where

Pα
t f = Πx

[
g(ξt) exp

(∫ t

0

α(ξs)ds

)]
, g ∈ bp(E),

which in turn is equivalent to

ũg(x, t) = Psg(x)− Πx

∫ t

0

Psψ(·, ũg(·, t− s))ds.

Therefore, ũg and ug are two solutions of (3) and hence by uniqueness they are the same, as
required.

To remove the initial assumption that µ is compactly supported, suppose that µn is
a sequence of compactly supported measures with mutually disjoint support such that
µ =

∑
k≥1 µk. By considering (45) for

∑n
k=1 µk and taking limits as n ↑ ∞ we see that

(45) holds for µ. Note in particular that the limit on the left hand side of (45) holds as a
result of the additive property of the backbone decomposition in the initial state µ. �

Note that, in the style of the proof given above (appealing to monotonicity and the max-
imality principle) we can easily show that the processes XDn,∗, n ≥ 1, converge distribution-
ally at fixed times, and hence in law, to the process (X,P∗

µ); that is, a (P, ψ∗)-superprocess.
With this in mind, again appealing to the consistency and monotonicity of the local back-
bone decomposition in the size of domain the following, our main result, follows as a simple
corollary of Lemma 6.1.

Corollary 6.2 Suppose that µ ∈ MF (E). Let Z be a (Pw, F )-Markov branching process
with initial configuration consisting of a Poisson random field of particles in E with intensity
w(x)µ(dx). Let X∗ be an independent copy of (X,P∗

µ). Then define the measure valued
stochastic process ∆ = {∆t : t ≥ 0} such that, for t ≥ 0,

∆t = X∗
t + IN

∗

t + IP
∗

t + Iηt , (48)

where IN
∗

= {IN
∗

t : t ≥ 0}, IP
∗

= {IP
∗

t : t ≥ 0} and Iη = {Iηt : t ≥ 0} are defined as follows.

i) (Continuum immigration:) The process IN
∗

is measure-valued on E such that

IN
∗

t =
∑

u∈T

∑

bu<r≤t∧du

X
(1,u,r)
t−r ,
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where, given Z, independently for each u ∈ T such that bu < t, the processes X(1,u,r)

are independent copies of the canonical process X, immigrated along the space-time
trajectory {(zu(r), r) : r ∈ (bu, t ∧ du]} with rate

dr × 2β(zu(r))dN
∗
zu(r).

ii) (Discontinuous immigration:) The process IP
∗

is measure-valued on E such that

IP
∗

t =
∑

u∈T

∑

bu<r≤t∧du

X(2,u,r),

where, given Z, independently for each u ∈ T such that bu < t, the processes X(2,u,r)

are independent copies of the canonical process X, immigrated along the space-time
trajectory {(zu(r), r) : r ∈ (bu, t ∧ du]} with rate

dr ×

∫

y∈(0,∞)

ye−w(zu(r))yπ(zu(r), dy)× dP∗
yδzu(r)

.

iii) (Branch point biased immigration:) The process Iη is measure-valued on E such
that

Iηt =
∑

u∈T D

1{du≤t}X
(3,u)
t−du

,

where, given Z, independently for each u ∈ T such that du < t, the processes X(3,u) are
independent copies of the canonical process X issued at time du with law P

∗
Yuδzu(du)

such

that, given u has n ≥ 2 offspring, the independent random variable Yu has distribution
ηn(zu(r), dy), where ηn(x, dy) is defined by (27).

Then (∆,Pµ) is Markovian and has the same law as (X,Pµ).
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[29] Li, Z. (2011) Measure-valued branching Markov processes. Probability and its Applica-
tions (New York). Springer, Heidelberg, 350 pp.

[30] Salisbury, T. and Verzani, J. (1999) On the conditioned exit measures of super Brownian
motion. Probab. Theory Relat. Fields 115, 237–285.

[31] Roelly-Coppoletta, S. and Rouault, A. (1989) Processus de Dawson-Watanabe condi-
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