Small Value Probabilities for Supercritical Branching Processes with Immigration

WEIJUAN CHU ${ }^{1,2}$, WENBO V. LI^{3} and YAN-XIA REN ${ }^{1,4}$
${ }^{1}$ LMAM School of Mathematical Sciences, Peking University, Beijing 100871, P. R. China.
${ }^{2}$ Department of Mathematics, Nanjing University, Nanjing 210093, P. R. China
E-mail: chuwj@nju.edu.cn
${ }^{3}$ Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA.
E-mail: wli@math.udel.edu
${ }^{4}$ Corresponding author; Center for Statistical Science, Peking University, Beijing 100871, P.
R. China. E-mail: yxren@math.pku.edu.cn

We consider a supercritical Galton-Watson branching process with immigration. It is well known that under suitable conditions on the offspring and immigration distributions, there is a finite, strictly positive limit \mathcal{W} for the normalized population size. Small value probabilities for \mathcal{W} are obtained. Precise effects of the balance between offspring and immigration distributions are characterized.

Keywords: Supercritical Galton-Watson branching process, small value probability, immigration.

1. Introduction and main results

Small value probability for a positive random variable V studies the rate of decay of the so called left tail probability $\mathbb{P}(V \leq \varepsilon)$ as $\varepsilon \rightarrow 0^{+}$. When V is the norm of a random element in a Banach space, one is dealing with small ball probability, see [LS01] for a survey of Gaussian measures. When V is the maximum of a continuous random process starting at zero, one is estimating lower tail probability which is closely related to studies of boundary crossing probabilities or the first exit time associated with a general domain, see [L03] and [LS04] for Gaussian processes. A comprehensive study of small value probability is emerging and available in various talks and lecture notes in [L12+], see also the literature compilation [Lif11].

In this paper, we further study the most natural aspect of the branching tree approach originated in [MO08] on the martingale limit of a supercritical Galton-Watson process. The problem has been solved initially in [D71a], [D71b], see Theorem 1. The main goal is developing additional tools to treat small value probabilities for the martingale limit of a supercritical Galton-Watson process with immigration. The interplay between the offspring and the immigration distribution can be seen clearly from our main result Theorem 2. We next provide a more detailed and precise discussion by introducing additional notations, surveying relevant results and stating our results.

Let $\left(Z_{n}, n \geq 0\right)$ be a supercritical Galton-Watson branching process with $Z_{0}=1$, offspring distribution $p_{k}=\mathbb{P}(X=k), k \geq 0$, and mean $m=\mathbb{E} X \in(1, \infty)$. To avoid non-branching case, we suppose $p_{k}<1$ for all k throughout this paper. Under the natural condition $\mathbb{E}\left[X \log ^{+} X\right]<\infty$, the positive martingale $Z_{n} m^{-n}$ converges to a nontrivial random variable $W<\infty$ in the sense (see Kesten and Stigum [KS66])

$$
Z_{n} m^{-n} \longrightarrow W \quad \text { a.s. } \& L^{1} \text { as } n \rightarrow \infty .
$$

Here and throughout this paper, $\log ^{+} x=\log \max (x, 1) \geq 0$. The distribution of the limit W is of great interests in various applications. However, except for some very special cases, the explicit distribution of W is not available, see, for example, Harris [H48], Hambly [H95] and Williams [W08] Section 0.9. In general, it is known that W has a continuous positive density on $(0, \infty)$ satisfying a Lipschitz condition, see Athreya and Ney [AN72], Ch. II, p. 84 Lemma 2. However it is not clear what type of densities can arise in this way. This lack of complete information on the distribution of W prompts a search for asymptotic information such as the behavior of the left tail, or the small value probabilities of W and its density.

In [D71b], the following results were given with assumption $p_{0}=0$ which holds without loss of generality after the standard Harris-Sevastyanov transformation, see [H48], p. 478 Theorem 3.2 or [B88] p.216. Here and throughout this paper we use $g_{1}(x) \asymp g_{2}(x)$ as $x \rightarrow 0^{+}(\infty)$ to represent $c \leq g_{1}(x) / g_{2}(x) \leq C$ as $x \rightarrow 0^{+}(\infty)$ for two constants $C>$ $c>0$ and $g_{1}(x) \sim g_{2}(x)$ as $x \rightarrow 0^{+}(\infty)$ to represent $g_{1}(x) / g_{2}(x) \rightarrow 1$ as $x \rightarrow 0^{+}(\infty)$.

Theorem 1 (Dubuc 1971(b))
(a) If $p_{1}>0$, then

$$
\mathbb{P}(W \leq \varepsilon) \asymp \varepsilon^{\log p_{1} \mid / \log m} \quad \text { as } \varepsilon \rightarrow 0^{+} .
$$

(b) If $p_{1}=0$, then

$$
-\log \mathbb{P}(W \leq \varepsilon) \asymp \varepsilon^{-\beta /(1-\beta)} \quad \text { as } \varepsilon \rightarrow 0^{+}
$$

with $\beta:=\log \gamma / \log m$ and $\gamma:=\inf \left\{n: p_{n}>0\right\} \geq 2$.
Note that the rough asymptotic \asymp in Theorem 1 can not be improved into more precise asymptotic \sim and the oscillation is very small. This is the so called near-constancy phenomenon that were described and studied theoretically or numerically in [D82], [B88], [BP88] and [BB91]. In fact, it is still an open conjecture that the Laplace transform of W being non-oscillating near ∞ (and hence the small value probability of W being non-oscillating near 0^{+}) is only specific to the case $p_{1}>0$ in [KM68a] p.127. General estimates, near-constancy phenomena, specific examples, and various implications have been studied to various degree of accuracy in Harris [H48], Karlin and McGregor [KM68a] [KM68b], Dubuc [D71a], [D71b] and [D82], Barlow and Perkins [BP88], Goldstein [G87], Kusuoka [K87], Bingham [B88], Biggins and Bingham [BB91] and [BB93], Biggins and Nadarajah [BN93], Fleischman and Wachtel [FW07] and [FW09]. Recently, Berestycki, Gantert, Mörters and Sidorova [BGMS12] studied limit behaviors of the Galton-Watson tree conditioned on $W<\varepsilon$ as $\varepsilon \downarrow 0$.

In the present paper, we consider the supercritical branching process with immigration denoted by $\left(\mathcal{Z}_{n}, n \geq 0\right)$, and follow the definition in [AN72], Ch. VI, Section 7.1, p.263. To be more precise, we have

$$
\mathcal{Z}_{0}=Y_{0}, \quad \mathcal{Z}_{n+1}=X_{1}^{n}+X_{2}^{n}+\cdots+X_{\mathcal{Z}_{n}}^{n}+Y_{n+1}, \quad n \geq 0
$$

where $X_{1}^{n}, X_{2}^{n}, \cdots$ are i.i.d. with the same offspring distribution, Y_{0}, Y_{1}, \cdots are i.i.d. with the same immigration distribution $\left\{q_{k}, k \geq 0\right\}$, and $X^{\prime} s$ and $Y^{\prime} s$ are independent. Recall that the offspring number X has distribution $p_{k}=\mathbb{P}(X=k), k \geq 0$ and mean $m=\mathbb{E} X$. Suppose Y has distribution $\left\{q_{k}, k \geq 0\right\}$. We use $f(s)$ and $h(s)$ to denote the generating function of X and Y respectively, i.e.

$$
\begin{equation*}
f(s)=\mathbb{E} s^{X}=\sum_{k=0}^{\infty} p_{k} s^{k} \quad \text { and } \quad h(s)=\mathbb{E} s^{Y}=\sum_{k=0}^{\infty} q_{k} s^{k}, \quad 0<s<1 . \tag{1.1}
\end{equation*}
$$

It is a classical result, see Seneta [S70] for example, that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathcal{Z}_{n} / m^{n}=\mathcal{W} \tag{1.2}
\end{equation*}
$$

exists and is finite a.s. if and only if

$$
\begin{equation*}
\mathbb{E} \log ^{+} Y<\infty \quad \text { and } \quad \mathbb{E}\left(X \log ^{+} X\right)<\infty \tag{1.3}
\end{equation*}
$$

Our main result of this paper is the following small value probabilities for \mathcal{W}, which can be expressed as weighted summation of an infinite independent sequence of W^{\prime} 's, see (2.2).

Theorem 2 Assume the condition (1.3) holds.
(a) If $p_{0}=0$ and $0<q_{0}<1$, then

$$
\begin{equation*}
\mathbb{P}(\mathcal{W} \leq \varepsilon) \asymp \varepsilon^{\left|\log q_{0}\right| / \log m} \quad \text { as } \varepsilon \rightarrow 0^{+} . \tag{1.4}
\end{equation*}
$$

(b) If $p_{0}=0, q_{0}=0$ and $p_{1}>0$, then

$$
\begin{equation*}
\log \mathbb{P}(\mathcal{W} \leq \varepsilon) \sim-\frac{K\left|\log p_{1}\right|}{2(\log m)^{2}} \cdot|\log \varepsilon|^{2} \quad \text { as } \varepsilon \rightarrow 0^{+} \tag{1.5}
\end{equation*}
$$

with $K=\inf \left\{n: q_{n}>0\right\}$.
(c) If $p_{0}=0, q_{0}=0$ and $p_{1}=0$, then

$$
\log \mathbb{P}(\mathcal{W} \leq \varepsilon) \asymp-\varepsilon^{-\beta /(1-\beta)} \quad \text { as } \varepsilon \rightarrow 0^{+}
$$

with β being defined as in Theorem 1(b).
(d) If $p_{0}>0$, then

$$
\begin{equation*}
\mathbb{P}(\mathcal{W} \leq \varepsilon) \asymp \varepsilon^{|\log h(\rho)| / \log m} \quad \text { as } \varepsilon \rightarrow 0^{+} \tag{1.6}
\end{equation*}
$$

where ρ is the solution of $f(s)=s$ between $(0,1), f$ and h are defined in (1.1).

Note that there are additional phase transitions appearing in the case with immigration, in particular between the case where the immigration distribution has a positive mass at 0 and where there is no mass at 0 . In the $p_{0}>0$ case, the extinction probability of the branching process $\left(Z_{n}, n \geq 0\right)$ (without immigration) is strictly positive, and plays the dominating role in the small value probability of \mathcal{W}. Our approach is outlined in Section 2 and detailed proof of Theorem 2 is give in sections 3,4 and 5.

2. Our approach

Our proof of Theorem 2 is based on Dubuc's result stated in Theorem 1. In [D71b], an integral composition transform is used together with some nontrivial complex analysis, which is powerful but inflexible and un-intuitive. It seems impossible to extend the involved analytic method to the branching process with immigration. On the other hand, Mörters and Ortgiese [MO08] provided a very useful probabilistic approach for Theorem 1 , called the "branching tree heuristic" method. Our approach is built on the top of their powerful arguments, and overcomes additional difficulties of immigration effects. More specifically, we start with a fundamental decomposition for \mathcal{W} given in (2.2). Then a suitable truncation is used in order to handle the infinite series. To estimate the lower bound of $\mathbb{P}(\mathcal{W} \leq \varepsilon)$, we investigate when the least population size happens. For the upper bound, we use the exponential Chebyshev's inequality and estimate the Laplace transform of \mathcal{W}. The property of $\mathbb{P}(\mathcal{W} \leq \varepsilon)$ is then obtained through Tauberian type theorems.

Now we consider recursive distribution identities for $\left(\mathcal{Z}_{n}, n \geq 0\right)$ satisfying $\mathcal{Z}_{0}=Y_{0}$. For fixed integers $r \geq 0$ and $l \geq 0$, let $\xi_{r}(1), \cdots, \xi_{r}\left(\mathcal{Z}_{r}\right)$ be the individuals in generation r, and $\eta_{l}(j), j=1, \cdots, Y_{l}$ be the individuals of immigration in generation l. Then for any $r \geq 0$ and $n \geq r+1$,

$$
\mathcal{Z}_{n}=\sum_{i=1}^{\mathcal{Z}_{r}} Z_{n-r}\left(\xi_{r}(i)\right)+\sum_{l=r+1}^{n} \sum_{j=1}^{Y_{l}} Z_{n-l}\left(\eta_{l}(j)\right) .
$$

Here $\left(Z_{n}(v), n \geq 0\right)$ is a supercritical G-W branching process initiated with one individual v and $W(v)$ is the limit of the positive martingale $m^{-n} Z_{n}(v)$.

Dividing both sides of the above equality by m^{n}, then letting $n \rightarrow \infty$, we get

$$
\begin{equation*}
\mathcal{W}=m^{-r} \sum_{i=1}^{\mathcal{Z}_{r}} W\left(\xi_{r}(i)\right)+\sum_{l=r+1}^{\infty} m^{-l} \sum_{j=1}^{Y_{l}} W\left(\eta_{l}(j)\right) \tag{2.1}
\end{equation*}
$$

For simplicity, we rewrite (2.1) as

$$
\begin{equation*}
\mathcal{W}=m^{-r} \sum_{i=1}^{\mathcal{Z}_{r}} W_{i}+\sum_{l=r+1}^{\infty} m^{-l} \sum_{j=1}^{Y_{l}} W_{l}^{j} \tag{2.2}
\end{equation*}
$$

Here all the $W_{i}, W_{l}^{j}, i=1, \cdots, \mathcal{Z}_{r}, l=r+1, \cdots, n, j=1, \cdots, Y_{l}$ are independent and identically distributed as W. The relation (2.2) is the fundamental distribution identity of \mathcal{W} and it is used repeatedly in our approach.

Next we turn to consider a slightly different type of supercritical branching process with immigration, which is denoted by ($\left.\widetilde{\mathcal{Z}}_{n}, n \geq 0\right)$. The only difference is to assume $\widetilde{\mathcal{Z}}_{0}=1$. The corresponding limit of $\widetilde{\mathcal{Z}}_{n} / m^{n}$ is denoted by $\widetilde{\mathcal{W}}$. Then by simple computation we get that

$$
\begin{equation*}
\widetilde{\mathcal{W}}={ }^{d} W+\frac{\mathcal{W}}{m} \tag{2.3}
\end{equation*}
$$

in distribution, denoted by $=^{d}$ throughout this paper, where W and \mathcal{W} are independent. Then owing to (2.3) and the fact that

$$
\begin{align*}
\mathbb{P}(W+\mathcal{W} / m \leq \varepsilon) & \geq \mathbb{P}(W \leq \varepsilon / 2) \cdot \mathbb{P}(\mathcal{W} / m \leq \varepsilon / 2) \\
\mathbb{P}(W+\mathcal{W} / m \leq \varepsilon) & \leq \mathbb{P}(W \leq \varepsilon) \cdot \mathbb{P}(\mathcal{W} / m \leq \varepsilon) \tag{2.4}
\end{align*}
$$

we obtain the following result as a consequence of combining Theorem 1 and Theorem 2.
Theorem 3 Assume the condition (1.3) holds.
(a) If $p_{0}=0, p_{1}>0$ and $q_{0}>0$, then

$$
\mathbb{P}(\widetilde{\mathcal{W}} \leq \varepsilon) \asymp \varepsilon^{\left|\log \left(p_{1} q_{0}\right)\right| / \log m} \quad \text { as } \varepsilon \rightarrow 0^{+}
$$

(b) If $p_{0}=0, p_{1}>0$ and $q_{0}=0$, then

$$
\log \mathbb{P}(\widetilde{\mathcal{W}} \leq \varepsilon) \sim-\frac{K\left|\log p_{1}\right|}{2(\log m)^{2}}|\log \varepsilon|^{2} \quad \text { as } \varepsilon \rightarrow 0^{+}
$$

with K being defined as in Theorem 2(b).
(c) If $p_{0}=0$ and $p_{1}=0$, then

$$
\log \mathbb{P}(\widetilde{\mathcal{W}} \leq \varepsilon) \asymp-\varepsilon^{-\beta /(1-\beta)} \quad \text { as } \varepsilon \rightarrow 0^{+}
$$

with β being defined as in Theorem 1(b).
(d) If $p_{0}>0$, then

$$
\mathbb{P}(\widetilde{\mathcal{W}} \leq \varepsilon) \asymp \varepsilon^{|\log h(\rho)| / \log m} \quad \text { as } \varepsilon \rightarrow 0^{+}
$$

Note that when $q_{0}=1$, i.e., without immigration, Theorem 3 recovers Theorem 1.

3. Proof of Theorem 2: Lower bound

We start with a simple but crucial probability estimate that is a consequence of the condition $\mathbb{E} \log ^{+} Y<\infty$ in (1.3).

Lemma 1 Under the condition that $\mathbb{E} \log ^{+} Y<\infty$ in (1.3), for any fixed constant $\delta>0$, there exists an integer l such that

$$
\begin{equation*}
\mathbb{P}\left(\max _{i \geq l+1} Y_{i} e^{-\delta i} \leq 1\right) \geq e^{-1} \tag{3.1}
\end{equation*}
$$

Proof. For any given $\delta>0$,

$$
\begin{aligned}
\sum_{i=1}^{\infty} \mathbb{P}\left(\log ^{+} Y \geq \delta i\right) & =\sum_{i=1}^{\infty} \sum_{k=i}^{\infty} \mathbb{P}\left(k \leq \delta^{-1} \log ^{+} Y<k+1\right) \\
& =\sum_{k=1}^{\infty} k \mathbb{E} \mathbb{I}\left(k \leq \delta^{-1} \log ^{+} Y<k+1\right) \\
& \leq \delta^{-1} \mathbb{E} \log ^{+} Y<\infty
\end{aligned}
$$

Let Y_{i} and Y be our independent and identically distributed immigration random variables. Then for any large integer l such that

$$
\begin{equation*}
\sum_{i=l+1}^{\infty} \mathbb{P}\left(\log ^{+} Y \geq \delta i\right) \leq 1 / 2 \tag{3.2}
\end{equation*}
$$

we have

$$
\begin{aligned}
\mathbb{P}\left(\max _{i \geq l+1} Y_{i} e^{-\delta i} \leq 1\right) & \geq \prod_{i=l+1}^{\infty}\left(1-\mathbb{P}\left(\log ^{+} Y \geq \delta i\right)\right) \\
& \geq \exp \left(-2 \sum_{i=l+1}^{\infty} \mathbb{P}\left(\log ^{+} Y \geq \delta i\right)\right) \\
& \geq e^{-1}
\end{aligned}
$$

here we used the fact that $(1-x) e^{2 x}$ is increasing for $0 \leq x<1 / 2$. This finishes our proof of the lemma.

Proof of (a) and (b). For any $\varepsilon>0$, let $k=k_{\varepsilon}$ be the integer such that

$$
\begin{equation*}
m^{-k} \leq \varepsilon<m^{-k+1} \tag{3.3}
\end{equation*}
$$

which is equivalent to saying

$$
\begin{equation*}
k-1<|\log \varepsilon| / \log m \leq k, \quad \text { or } \quad k=\lceil|\log \varepsilon| / \log m\rceil . \tag{3.4}
\end{equation*}
$$

Using the fundamental distribution identity (2.2) with $r=0$, we have for a fixed integer l to be chosen later,

$$
\begin{align*}
\mathbb{P}(\mathcal{W} \leq \varepsilon) & =\mathbb{P}\left(\sum_{i=0}^{\infty} m^{-i} \sum_{j=1}^{Y_{i}} W_{i}^{j} \leq \varepsilon\right) \\
& \geq \mathbb{P}\left(\sum_{i=0}^{k+l} m^{-i} \sum_{j=1}^{Y_{i}} W_{i}^{j} \leq \frac{\varepsilon}{2}\right) \cdot \mathbb{P}\left(\sum_{i=k+l+1}^{\infty} m^{-i} \sum_{j=1}^{Y_{i}} W_{i}^{j} \leq \frac{\varepsilon}{2}\right) \tag{3.5}
\end{align*}
$$

The second term in (3.5) can be estimated by using $\varepsilon \geq m^{-k}$ in (3.3) as below

$$
\begin{align*}
\mathbb{P}\left(\sum_{i=k+l+1}^{\infty} m^{-i} \sum_{j=1}^{Y_{i}} W_{i}^{j} \leq \frac{\varepsilon}{2}\right) & \geq \mathbb{P}\left(\sum_{i=k+l+1}^{\infty} m^{-i} \sum_{j=1}^{Y_{i}} W_{i}^{j} \leq \frac{m^{-k}}{2}\right) \\
& =\mathbb{P}\left(\sum_{i=l+1}^{\infty} m^{-i} \sum_{j=1}^{Y_{i}} W_{i}^{j} \leq \frac{1}{2}\right) \tag{3.6}
\end{align*}
$$

Note that the last equality follows from the independence and identical distribution of all W_{i}^{j} 's and Y_{i} 's. Next we have by controlling the size of $Y_{i}, i \geq l+1$, given in Lemma 1,

$$
\begin{align*}
& \mathbb{P}\left(\sum_{i=l+1}^{\infty} m^{-i} \sum_{j=1}^{Y_{i}} W_{i}^{j} \leq \frac{1}{2}\right) \\
\geq & \mathbb{P}\left(\sum_{i=l+1}^{\infty} m^{-i} \sum_{j=1}^{Y_{i}} W_{i}^{j} \leq \frac{1}{2}, \max _{i \geq l+1} Y_{i} e^{-\delta i} \leq 1\right) \\
\geq & \mathbb{P}\left(\sum_{i=l+1}^{\infty} m^{-i} \sum_{j=1}^{\lceil\exp (\delta i)\rceil} W_{i}^{j} \leq \frac{1}{2}\right) \cdot \mathbb{P}\left(\max _{i \geq l+1} Y_{i} e^{-\delta i} \leq 1\right) . \tag{3.7}
\end{align*}
$$

Using Chebyshev's inequality for the first part of (3.7), we get

$$
\begin{align*}
\mathbb{P}\left(\sum_{i=l+1}^{\infty} m^{-i} \sum_{j=1}^{\lceil\exp (\delta i)\rceil} W_{i}^{j} \leq \frac{1}{2}\right) & \geq 1-2 \mathbb{E} \sum_{i=l+1}^{\infty} m^{-i} \sum_{j=1}^{\lceil\exp (\delta i)\rceil} W_{i}^{j} \\
& \geq 1-2 \sum_{i=l+1}^{\infty} m^{-i}\left(e^{\delta i}+1\right) \tag{3.8}
\end{align*}
$$

For δ satisfying $e^{\delta}<m$, we have $\sum_{i=l+1}^{\infty} m^{-i}\left(e^{\delta i}+1\right)<\infty$. Then we choose δ small enough and integer l large enough so that

$$
\begin{equation*}
2 \sum_{i=l+1}^{\infty} m^{-i}\left(e^{\delta i}+1\right)<\frac{1}{2} \tag{3.9}
\end{equation*}
$$

Combining (3.6)-(3.9) and Lemma 1, we obtain

$$
\begin{equation*}
\mathbb{P}\left(\sum_{i=k+l+1}^{\infty} m^{-i} \sum_{j=1}^{Y_{i}} W_{i}^{j} \leq \frac{\varepsilon}{2}\right) \geq \mathbb{P}\left(\sum_{i=l+1}^{\infty} m^{-i} \sum_{j=1}^{Y_{i}} W_{i}^{j} \leq \frac{1}{2}\right) \geq \frac{1}{2 e} . \tag{3.10}
\end{equation*}
$$

Now back to the first part of (3.5), we have to handle it under conditions (a) and (b) separately. In the case (a) with $q_{0}>0$, we have the simple estimate

$$
\begin{equation*}
\mathbb{P}\left(\sum_{i=0}^{k+l} m^{-i} \sum_{j=1}^{Y_{i}} W_{i}^{j} \leq \frac{\varepsilon}{2}\right) \geq \mathbb{P}\left(Y_{0}=\cdots=Y_{k+l}=0\right)=q_{0}^{k+l+1} \tag{3.11}
\end{equation*}
$$

Using $k-1<|\log \varepsilon| / \log m$ in (3.4), it's easy to deduce that

$$
\begin{equation*}
q_{0}^{k} \quad \geq q_{0} \cdot q_{0}^{|\log \varepsilon| / \log m}=q_{0} \varepsilon^{\left|\log q_{0}\right| / \log m} \tag{3.12}
\end{equation*}
$$

Combining (3.5) and (3.10)-(3.12) we have shown the lower bound in Theorem 2(a).
For the case (b) with $q_{0}=0$, we have, recalling the definition of $K=\inf \left\{n: q_{n}>0\right\}$,

$$
\begin{align*}
\mathbb{P}\left(\sum_{i=0}^{k+l} m^{-i} \sum_{j=1}^{Y_{i}} W_{i}^{j} \leq \frac{\varepsilon}{2}\right) & \geq \mathbb{P}\left(\sum_{i=0}^{k+l} m^{-i} \sum_{j=1}^{Y_{i}} W_{i}^{j} \leq \frac{\varepsilon}{2}, Y_{0}=\cdots=Y_{k+l}=K\right) \\
& =\mathbb{P}\left(\sum_{i=0}^{k+l} m^{-i} \sum_{j=1}^{K} W_{i}^{j} \leq \frac{\varepsilon}{2}\right) \cdot q_{K}^{k+l+1} \tag{3.13}
\end{align*}
$$

The above probability of sums can be bounded termwise, and thus

$$
\begin{align*}
\mathbb{P}\left(\sum_{i=0}^{k+l} m^{-i} \sum_{j=1}^{K} W_{i}^{j} \leq \frac{\varepsilon}{2}\right) & \geq \mathbb{P}\left(\max _{0 \leq i \leq k+l} \max _{1 \leq j \leq K} m^{-i} W_{i}^{j} \leq \frac{\varepsilon / 2}{K(k+l+1)}\right) \\
& =\prod_{i=0}^{k+l} \mathbb{P}^{K}\left(m^{-i} W \leq \frac{\varepsilon / 2}{K(k+l+1)}\right) \\
& \geq \prod_{i=0}^{k+l} \mathbb{P}^{K}\left(W \leq \frac{m^{i-k} / 2}{K(k+l+1)}\right) \tag{3.14}
\end{align*}
$$

where we use the independent and identically distributed property of all W_{i}^{j},s in the last equality and $\varepsilon \geq m^{-k}$ from (3.3) in the last inequality.

From Theorem 1(a) there exists a constant $c>0$ such that, for $i=0,1, \cdots, k+l$,

$$
\begin{equation*}
\mathbb{P}\left(W \leq \frac{m^{i-k} / 2}{K(k+l+1)}\right) \geq c\left(\frac{m^{i-k} / 2}{K(k+l+1)}\right)^{\left|\log p_{1}\right| / \log m} \tag{3.15}
\end{equation*}
$$

Combining (3.5), (3.10) and (3.13)-(3.15) together, and taking summation over $0 \leq i \leq$ $k+l$ after taking logarithm, we have

$$
\begin{aligned}
\log \mathbb{P}(\mathcal{W} \leq \varepsilon) & \geq-\frac{K\left|\log p_{1}\right|}{2} k^{2}-O(k \log k) \\
& \geq-\frac{K\left|\log p_{1}\right|}{2(\log m)^{2}}|\log \varepsilon|^{2}-O\left(\log \varepsilon^{-1} \log \log \varepsilon^{-1}\right)
\end{aligned}
$$

which follows easily from $k<1+|\log \varepsilon| / \log m$ in (3.4).

Proof of (c). First observe that, in this setting with $\gamma=\inf \left\{n: p_{n}>0\right\} \geq 2, K=$ $\inf \left\{n: q_{n}>0\right\} \geq 1$, the smallest number of particles in generation $n(n \geq 1)$ is

$$
\begin{equation*}
b(n):=K\left(\gamma^{n}+\gamma^{n-1}+\cdots+1\right)=K\left(\gamma^{n+1}-1\right) /(\gamma-1) . \tag{3.16}
\end{equation*}
$$

It is also easy to see that the chance this occurs is

$$
\begin{equation*}
\mathbb{P}\left(\mathcal{Z}_{n}=b(n)\right)=p_{\gamma}^{b(n-1)+\cdot \cdot+b(0)} q_{K}^{n+1}:=p_{\gamma}^{B(n)} q_{K}^{n+1} \tag{3.17}
\end{equation*}
$$

where

$$
\begin{equation*}
B(0)=0, \quad B(n)=b(n-1)+\cdots+b(0)=\frac{K\left(\gamma^{n+1}-(n+1) \gamma+n\right)}{(\gamma-1)^{2}}, n \geq 1 \tag{3.18}
\end{equation*}
$$

Given $\varepsilon>0$, we can choose $k=k_{\varepsilon}$ such that

$$
\begin{equation*}
\frac{\gamma^{k}}{m^{k}} \leq \varepsilon<\frac{\gamma^{k-1}}{m^{k-1}} \tag{3.19}
\end{equation*}
$$

which is equivalent to saying

$$
\begin{equation*}
k-1<|\log \varepsilon| / \log (m / \gamma) \leq k, \quad \text { or } \quad k=\lceil|\log \varepsilon| / \log (m / \gamma)\rceil . \tag{3.20}
\end{equation*}
$$

Next let l be an integer that will be determined later. Using the fundamental distribution identity (2.2) with $r=k+l$ and (3.17), we have

$$
\begin{align*}
& \mathbb{P}(\mathcal{W} \leq \varepsilon) \\
\geq & \mathbb{P}\left(\mathcal{W} \leq(\gamma / m)^{k} \mid \mathcal{Z}_{k+l}=b(k+l)\right) \mathbb{P}\left(\mathcal{Z}_{k+l}=b(k+l)\right) \\
= & \mathbb{P}\left(m^{-k-l} \sum_{i=1}^{b(k+l)} W_{i}+\sum_{i=k+l+1}^{\infty} m^{-i} \sum_{j=1}^{Y_{i}} W_{i}^{j} \leq(\gamma / m)^{k}\right) p_{\gamma}^{B(k+l)} q_{K}^{k+l+1} \\
\geq & \mathbb{P}\left(\sum_{i=1}^{b(k+l)} W_{i} \leq \frac{m^{l} \gamma^{k}}{2}\right) \mathbb{P}\left(\sum_{i=1}^{\infty} m^{-i} \sum_{j=1}^{Y_{i}} W_{i}^{j} \leq \frac{m^{l} \gamma^{k}}{2}\right) p_{\gamma}^{B(k+l)} q_{K}^{k+l+1} . \tag{3.21}
\end{align*}
$$

For the first term in (3.21) we have by Chebyshev's inequality and choosing suitable l

$$
\begin{align*}
\mathbb{P}\left(\sum_{i=1}^{b(k+l)} W_{i} \leq m^{l} \gamma^{k} / 2\right) & \geq 1-\frac{2}{m^{l} \gamma^{k}} \mathbb{E} \sum_{i=1}^{b(k+l)} W_{i}=1-\frac{2 b(k+l)}{m^{l} \gamma^{k}} \\
& \geq 1-\frac{2 K \gamma}{\gamma-1}(\gamma / m)^{l} \geq 1 / 2 \tag{3.22}
\end{align*}
$$

where $\mathbb{E} W=1$ and $b(n) \leq K(\gamma-1)^{-1} \gamma^{n+1}$ from (3.16) are used.
For the second part of (3.21), we have

$$
\begin{align*}
\mathbb{P}\left(\sum_{i=1}^{\infty} m^{-i} \sum_{j=1}^{Y_{i}} W_{i}^{j} \leq \frac{m^{l} \gamma^{k}}{2}\right) & =\mathbb{P}\left(\sum_{i=l+1}^{\infty} m^{-i} \sum_{j=1}^{Y_{i}} W_{i}^{j} \leq \frac{\gamma^{k}}{2}\right) \\
& \geq \mathbb{P}\left(\sum_{i=l+1}^{\infty} m^{-i} \sum_{j=1}^{Y_{i}} W_{i}^{j} \leq \frac{1}{2}\right) \geq e^{-1} / 2 \tag{3.23}
\end{align*}
$$

where the last inequality follows from (3.10).
Combing (3.21)-(3.23), we get

$$
\begin{equation*}
\mathbb{P}(\mathcal{W} \leq \varepsilon) \geq p_{\gamma}^{B(k+l)} q_{K}^{k+l+1} e^{-1} / 4 \tag{3.24}
\end{equation*}
$$

Recalling the definition of $B(k+l)$ in (3.18) and $k-1<|\log \varepsilon| / \log (m / \gamma)$ in (3.20), we see

$$
B(k+l) \leq \frac{K}{(\gamma-1)^{2}} \gamma^{k+l+1} \leq C \gamma^{|\log \varepsilon| / \log (m / \gamma)}=C \varepsilon^{-\beta /(1-\beta)}
$$

where β is defined as in Theorem 1(b) and C is a positive constant. Therefore from (3.24) we obtain

$$
\log \mathbb{P}(\mathcal{W} \leq \varepsilon) \geq-C \varepsilon^{-\beta /(1-\beta)}
$$

for some constant $C>0$.

4. Proof of Theorem 2: Upper bound

As we can see from the arguments in Section 3, only the finite terms in (2.2) are contributing to the small value probabilities of \mathcal{W}. Hence we take only $r=0$ in (2.2), choose a suitable cut off k, and focus on properties of $\sum_{l=0}^{k} m^{-l} \sum_{j=1}^{Y_{l}} W_{l}^{j}$.

Proof of (a). Let $k=k_{\varepsilon}$ be the integer defined as in (3.3). Using the fundamental distribution identity (2.2) with $r=0$ and exponential Chebyshev's inequality, we have

$$
\begin{align*}
\mathbb{P}(\mathcal{W} \leq \varepsilon) & \leq \mathbb{P}\left(\sum_{i=0}^{k} m^{-i} \sum_{j=1}^{Y_{i}} W_{i}^{j} \leq \varepsilon\right) \\
& \leq e^{\lambda \varepsilon} \cdot \mathbb{E} \exp \left(-\lambda \sum_{i=0}^{k} m^{-i} \sum_{j=1}^{Y_{i}} W_{i}^{j}\right) \quad \text { for any } \lambda>0 \tag{4.1}
\end{align*}
$$

Noticing that all the $\left(W_{i}^{j}, i=0, \cdots, k, j=1, \cdots, Y_{i}\right)$ are independent, we have

$$
\begin{equation*}
\mathbb{E} \exp \left(-\lambda \sum_{i=0}^{k} m^{-i} \sum_{j=1}^{Y_{i}} W_{i}^{j}\right)=\prod_{i=0}^{k} \mathbb{E} \exp \left(-\lambda m^{-i} \sum_{j=1}^{Y_{i}} W_{i}^{j}\right) . \tag{4.2}
\end{equation*}
$$

Conditioning on $Y_{i}=0$ or $Y_{i} \geq 1$, we have

$$
\begin{equation*}
\mathbb{E} \exp \left(-\lambda m^{-i} \sum_{j=1}^{Y_{i}} W_{i}^{j}\right) \leq q_{0}+\left(1-q_{0}\right) \mathbb{E} \exp \left(-\lambda m^{-i} W_{i}^{1}\right) \leq q_{0}\left(1+\delta_{i}\right) \tag{4.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta_{i}=q_{0}^{-1} \mathbb{E} \exp \left(-\lambda m^{-i} W_{i}^{1}\right)=q_{0}^{-1} \mathbb{E} \exp \left(-\lambda m^{-i} W\right), i=0, \cdots, k \tag{4.4}
\end{equation*}
$$

Substituting (4.3) into (4.1) and letting $\lambda=\varepsilon^{-1}$, we obtain

$$
\mathbb{P}(\mathcal{W} \leq \varepsilon) \leq e q_{0}^{k+1} \prod_{i=0}^{k}\left(1+\delta_{i}\right)
$$

Since $k \geq|\log \varepsilon| / \log m$ in (3.4), we have

$$
q_{0}^{k} \leq \varepsilon^{\left|\log q_{0}\right| / \log m} .
$$

So we finish the proof by showing

$$
\begin{equation*}
\sum_{i=0}^{k} \log \left(1+\delta_{i}\right) \leq \sum_{i=0}^{k} \delta_{i} \leq M \tag{4.5}
\end{equation*}
$$

where $M>0$ is a constant independent of ε (noticing that the k depends on ε).

In order to estimate δ_{i}, we need the following fact given in $\mathrm{Li}[\mathrm{L} 12+]$.
Lemma 2 (i) Assume V is a positive random variable and $\alpha>0$ is a constant. Then

$$
\mathbb{P}(V \leq t) \leq C_{1} t^{\alpha} \quad \text { for some constant } C_{1}>0 \text { and all } t>0
$$

is equivalent to

$$
\mathbb{E} e^{-\lambda V} \leq C_{2} \lambda^{-\alpha} \quad \text { for some constant } C_{2}>0 \text { and all } \lambda>0 .
$$

(ii) Assume V is a positive random variable and $\alpha>0, \theta \in \mathbb{R}$, or $\alpha=0, \theta>0$ are constants. Then we have

$$
\log \mathbb{P}(V \leq t) \leq-C_{1} t^{-\alpha}|\log t|^{\theta} \quad \text { for some constant } C_{1}>0 \text { and all } t>0
$$

is equivalent to
$\log \mathbb{E} e^{-\lambda V} \leq-C_{2} \lambda^{\alpha /(1+\alpha)}(\log \lambda)^{\theta /(1+\alpha)} \quad$ for some constant $C_{2}>0$ and all $\lambda>0$.
To show (4.5), we have to argue separately according to $p_{1}>0$ or $p_{1}=0$. When $p_{1}>0$, by Theorem 1(a) and Lemma 2(i), there exists a constant $C>0$ satisfying that

$$
\begin{equation*}
\mathbb{E} e^{-\lambda W} \leq C \lambda^{-\left|\log p_{1}\right| / \log m}, \quad \lambda>0 \tag{4.6}
\end{equation*}
$$

Combining (4.4) with $\lambda=\varepsilon^{-1}$, then using (4.6), we have

$$
\begin{aligned}
\sum_{i=0}^{k} \delta_{i} & =q_{0}^{-1} \sum_{i=0}^{k} \mathbb{E} \exp \left(-\varepsilon^{-1} m^{-i} W\right) \\
& \leq q_{0}^{-1} C \sum_{i=0}^{k}\left(\varepsilon m^{i}\right)^{\left|\log p_{1}\right| / \log m} \\
& =C q_{0}^{-1} \varepsilon^{\left|\log p_{1}\right| / \log m} \sum_{i=0}^{k} p_{1}^{-i} \\
& \leq C^{\prime} \varepsilon^{\left|\log p_{1}\right| / \log m} \cdot p_{1}^{-k} \leq C^{\prime} p_{1}^{-1}
\end{aligned}
$$

where C^{\prime} is a constant and the last inequality follows from (3.4).
When $p_{1}=0$, using Theorem 1(b) and Lemma 2(ii) with $\alpha=\beta /(1-\beta)$ and $\theta=0$, we have for some constant $b>0$,

$$
\begin{equation*}
\log \mathbb{E} e^{-\lambda W} \leq-b \lambda^{\beta}, \quad \lambda>0 \tag{4.7}
\end{equation*}
$$

from which it's similar to show that (4.5) holds. Indeed, setting $\lambda=\varepsilon^{-1}$ in (4.4), and then using (4.7) and $\varepsilon<m^{-k+1}$ from (3.3), we obtain

$$
\begin{aligned}
\sum_{i=0}^{k} \delta_{i} & =q_{0}^{-1} \sum_{i=0}^{k} \mathbb{E} \exp \left(-\varepsilon^{-1} m^{-i} W\right) \\
& \leq q_{0}^{-1} \sum_{i=0}^{k} \exp \left(-b \varepsilon^{-\beta} m^{-i \beta}\right) \\
& \leq q_{0}^{-1} \sum_{i=0}^{k} \exp \left(-b m^{(k-i-1) \beta}\right) \\
& \leq q_{0}^{-1} \sum_{i=0}^{\infty} \exp \left(-b m^{(i-1) \beta}\right)<\infty
\end{aligned}
$$

Proof of (b). Let k be defined as in (3.3). Using (4.1) and $Y_{i} \geq K$ for any $i \geq 0$,

$$
\begin{equation*}
\mathbb{P}(\mathcal{W} \leq \varepsilon) \leq e^{\lambda \varepsilon} \prod_{i=0}^{k} \prod_{j=1}^{K} \mathbb{E} \exp \left(-\lambda m^{-i} W_{i}^{j}\right), \quad \lambda>0 \tag{4.8}
\end{equation*}
$$

In the case (b) with $p_{1}>0$, substituting (4.6) into (4.8) with $\lambda=\varepsilon^{-1}$, we obtain

$$
\mathbb{P}(\mathcal{W} \leq \varepsilon) \leq e \prod_{i=0}^{k} \prod_{j=1}^{K} C\left(\varepsilon m^{i}\right)^{\left|\log p_{1}\right| / \log m}
$$

Taking the logarithm we obtain

$$
\begin{aligned}
\log \mathbb{P}(\mathcal{W} \leq \varepsilon) & \leq 1+K(k+1)\left(\log C-|\log \varepsilon| \cdot\left|\log p_{1}\right| / \log m\right)+k(k+1) \cdot K\left|\log p_{1}\right| / 2 \\
& =-k \cdot|\log \varepsilon| \cdot K\left|\log p_{1}\right| / \log m+(k-1)^{2} \cdot K\left|\log p_{1}\right| / 2+O(k) \\
& \leq-\frac{K\left|\log p_{1}\right|}{2(\log m)^{2}}|\log \varepsilon|^{2}+O(|\log \varepsilon|)
\end{aligned}
$$

where the last inequality follows from $k-1<|\log \varepsilon| / \log m \leq k$, which is given in (3.4).

Proof of (c). It is clear that

$$
\begin{equation*}
\mathbb{P}(\mathcal{W} \leq \varepsilon) \leq \mathbb{P}(W \leq \varepsilon) \tag{4.9}
\end{equation*}
$$

and therefore we finish the proof of (c) by using estimate in Theorem 1(b).

5. Proof of Theorem 2(d)

If $p_{0}>0$, then $f(s)=s$ has a unique solution $\rho \in(0,1)$ and $\mathbb{P}(W=0)=\rho$. By means of the Harris-Sevastyanov transformation

$$
\widetilde{f}(s):=\frac{f((1-\rho) s+\rho)-\rho}{(1-\rho)}
$$

\tilde{f} defines a new branching mechanism with $\widetilde{p}_{0}=0$ and $\widetilde{f}^{\prime}(1)=m$. We use ($\widetilde{Z}_{n}, n \geq 0$) to denote the corresponding branching process and \widetilde{W} to denote the limit of $m^{-n} \widetilde{Z}_{n}$. By Theorem 3.2 in [H48],

$$
\begin{equation*}
W={ }^{d} W_{0} \cdot \widetilde{W}, \tag{5.1}
\end{equation*}
$$

where W_{0} is independent of \widetilde{W} and takes the values 0 and $1 /(1-\rho)$ with probabilities ρ and $1-\rho$ respectively. Notice that the small value probability of \widetilde{W} has the asymptotic behavior described in Theorem 1(a) with $\widetilde{p}_{1}=\widetilde{f^{\prime}}(0)=f^{\prime}(\rho)>0$, and $\tau=\left|\log \widetilde{p_{1}}\right| / \log m$, that is

$$
\begin{equation*}
\mathbb{P}(\widetilde{W} \leq \varepsilon) \asymp \varepsilon^{\tau} . \tag{5.2}
\end{equation*}
$$

Now we start to prove the lower bound. For any $\varepsilon>0$, let $k=k_{\varepsilon}$ be the integer defined in (3.3). Then using (3.5) and (3.10), we only need to estimate the first part of (3.5):

$$
\begin{align*}
\mathbb{P}\left(\sum_{i=0}^{k+l} m^{-i} \sum_{j=1}^{Y_{i}} W_{i}^{j} \leq \frac{\varepsilon}{2}\right) & \geq \prod_{i=0}^{k+l} \mathbb{P}\left(\sum_{j=1}^{Y_{i}} W_{i}^{j}=0\right) \\
& =\prod_{i=0}^{k+l}\left(\sum_{n=0}^{\infty} q_{n} \mathbb{P}^{n}(W=0)\right)=h(\rho)^{k+l+1} \tag{5.3}
\end{align*}
$$

where h is the generating function of immigration Y. Using $k-1<|\log \varepsilon| / \log m$ given in (3.4), it's easy to deduce that

$$
\begin{equation*}
h(\rho)^{k} \geq h(\rho) \cdot h(\rho)^{|\log \varepsilon| / \log m}=h(\rho) \cdot \varepsilon^{|\log h(\rho)| / \log m} . \tag{5.4}
\end{equation*}
$$

Combining (3.5), (3.10), (5.3) and (5.4) we obtain the lower bound of (d).

Next we show the upper bound. Using (5.1), we have

$$
\begin{equation*}
\mathbb{E} e^{-\lambda W}=\rho+\mathbb{E} e^{-\lambda W} \mathbb{I}_{\{W>0\}}:=\rho+\delta(\lambda), \quad \lambda>0 \tag{5.5}
\end{equation*}
$$

Using (4.1), (4.2) and the independent and identically distributed property of all the $\left(W_{i}^{j}, i=0, \cdots, k, j=1, \cdots, Y_{i}\right)$, we have

$$
\begin{align*}
\mathbb{P}(\mathcal{W} \leq \varepsilon) & \leq e^{\lambda \varepsilon} \prod_{i=0}^{k} h\left(\rho+\delta\left(\lambda m^{-i}\right)\right) \\
& =(h(\rho))^{k+1} \exp \left(\lambda \varepsilon+\sum_{i=0}^{k} \log \left(h\left(\rho+\delta\left(\lambda m^{-i}\right)\right) / h(\rho)\right)\right) \tag{5.6}
\end{align*}
$$

where $\lambda=\lambda_{k}$ depends on $k\left(=k_{\varepsilon}\right)$ and is given later. Since $k \geq|\log \varepsilon| / \log m$ from (3.4), we have

$$
\begin{equation*}
(h(\rho))^{k} \leq \varepsilon^{|\log h(\rho)| / \log m} . \tag{5.7}
\end{equation*}
$$

Next we show there is a constant $M>0$, which does not depend on ε, such that

$$
\begin{align*}
& \lambda \varepsilon+\sum_{i=0}^{k} \log \left(h\left(\rho+\delta\left(\lambda m^{-i}\right)\right) / h(\rho)\right) \\
\leq & \lambda m^{-k+1}+h(\rho)^{-1} \sum_{i=0}^{k}\left(h\left(\rho+\delta\left(\lambda m^{-i}\right)\right)-h(\rho)\right) \leq M . \tag{5.8}
\end{align*}
$$

Since $\delta\left(\lambda m^{-x}\right)$ is increasing with respect to x, we have

$$
\begin{equation*}
\sum_{i=0}^{k}\left(h\left(\rho+\delta\left(\lambda m^{-i}\right)\right)-h(\rho)\right) \leq \int_{0}^{k+1}\left(h\left(\rho+\delta\left(\lambda m^{-x}\right)\right)-h(\rho)\right) \mathrm{d} x . \tag{5.9}
\end{equation*}
$$

Note that $\delta(\lambda)=(1-\rho) \mathbb{E} e^{-(\lambda /(1-\rho)) \widetilde{W}}$. By (5.2) and Lemma 2(i), there exists a constant $C>0$ such that

$$
\begin{equation*}
\delta\left(\lambda m^{-x}\right) \leq C\left(\lambda m^{-x}\right)^{-\tau} \tag{5.10}
\end{equation*}
$$

with $\tau=\left|\log f^{\prime}(\rho)\right| / \log m$. Thus we have

$$
\begin{align*}
& \sum_{i=0}^{k}\left(h\left(\rho+\delta\left(\lambda m^{-i}\right)\right)-h(\rho)\right) \\
\leq & \int_{0}^{k+1}\left(h\left(\rho+C\left(\lambda m^{-x}\right)^{-\tau}\right)-h(\rho)\right) \mathrm{d} x \\
= & 1 /(\tau \log m) \cdot \int_{\lambda^{-\tau}}^{\lambda^{-\tau} m^{(k+1) \tau}} 1 / y \cdot(h(\rho+C y)-h(\rho)) \mathrm{d} y \\
\leq & 1 /(\tau \log m) \cdot \int_{0}^{\lambda^{-\tau} m^{(k+1) \tau}} 1 / y \cdot(h(\rho+C y)-h(\rho)) \mathrm{d} y . \tag{5.11}
\end{align*}
$$

As $\rho<1$, we may choose $\delta_{0}>0$ such that $\rho+\delta_{0}<1$. Next we choose $\lambda=\left(C / \delta_{0}\right)^{1 / \tau} m^{(k+1)}$ in order to assure $\rho+C y<1$ so that $h(\rho+C y)$ is well defined. Indeed we have

$$
\begin{equation*}
\lambda m^{-k+1}=m^{2}\left(C / \delta_{0}\right)^{1 / \tau}:=M_{1} \tag{5.12}
\end{equation*}
$$

and

$$
\rho+C y \leq \rho+C \lambda^{-\tau} m^{(k+1) \tau}=\rho+\delta_{0}<1, \quad y \leq \lambda^{-\tau} m^{(k+1) \tau}
$$

Then we follow (5.11) to get

$$
\begin{align*}
& \sum_{i=0}^{k}\left(h\left(\rho+\delta\left(\lambda m^{-i}\right)\right)-h(\rho)\right) \\
\leq & 1 /(\tau \log m) \cdot \int_{0}^{\delta_{0} / C} 1 / y \cdot(h(\rho+C y)-h(\rho)) \mathrm{d} y \\
:= & M_{2}<\infty, \tag{5.13}
\end{align*}
$$

where we used

$$
\lim _{y \rightarrow 0} 1 / y \cdot(h(\rho+C y)-h(\rho))=C h^{\prime}(\rho)<\infty .
$$

From (5.8), (5.12) and (5.13) we obtain that (5.8) holds with $M=M_{1}+M_{2}$, and finish the proof of Theorem 2(d).

Acknowledgements

We would like to thank referees for insightful remarks and suggestions. The second author is supported in part by DMS-0805929, DMS-1106938, NSFC-10928103. The third author is supported in part by NSFC (Grant No. 10971003 and 11128101) and Specialized Research Fund for the Doctoral Program of Higher Education of China.

References

[AN72] Athreya, K. B. and Ney, P. E. (1972). Branching Processes. New York: SpringerVerlag.
[BGMS12] Berestycki, N., Gantert, N., Mörters, P. and Sidorova, N. (2012). GaltonWatson trees with vanishing martingale limit. arXiv:1204.3080 [math.PR].
[B88] Bingham, N. H. (1988). On the limit of a supercritical branching process. J. Appl. Probab. 25A 215-228.
[BB91] Biggins, J. D. and Bingham, N. H. (1991). Near-constancy of phenomena in branching processes. Math. Proc. Cambridge Philos. Soc. 110 545-558.
[BB93] Biggins, J. D. and Bingham, N. H. (1993). Large deviation in the supercritical branching process. Adv. Appl. Probab. 25 757-772.
[BN93] Biggins, J. D. and Nadarajah, S. (1993). Near-constancy of the Harris function in the simple branching process. Comm. Statist. Stochastic Models n. 3 435-444.
[BP88] Barlow, M. T. and Perkins, E. A. (1988). Brownian Motion on the sierpinski gasket. Probab. Theory Related Fields 79 543-623.
[D71a] Dubuc, S. (1971a). La Densité de la loi-limite d'un processus en cascade expansif. Z. Wahrsch. Verw. Gebiete 19 281-290.
[D71b] Dubuc, S. (1971b). Problèmes relatifs à l'itération de fonctions suggérés par les processus en cascade. Ann. Inst. Fourier(Grenoble) 21 171-251.
[D82] Dubuc, S. (1982). Étude théorique et numérique de la fonction de KarlinMcGregor. J. Anal. Math. 42 15-37.
[FW07] Fleischmann, K. and Wachtel, V. (2007). Lower deviation probabilities for supercritical Galton-Watson processes. Ann. Inst. H. Poincaré Probab. Stat. 43 233-255.
[FW09] Fleischmann, K. and Wachtel, V. (2009). On the left tail asymtotics for the limit law of supercritical Galton-Watson processes in the Böttcher case. Ann. Inst. H. Poincaré Probab. Stat. 45 201-225.
[G87] Goldstein, S. (1987). Random walks and diffusions on fractals. Percolation theory and ergodic theory of infinite particle systems (Minneapolis, Minn., 1984C1985), 121C129, IMA Vol. Math. Appl., 8, Springer, New York.
[H95] Hambly, B. M. (1995). On constant tail behavior for the limiting random variable in a supercritical branching process. J. Appl. Probab. Trust 32 267-273.
[H48] Harris, T. E. (1948). Branching processes. Ann. Math. Statist. 19 474-494.
[KM68a] Karlin, S. and McGregor, J. (1968a). Embeddability of discrete time simple branching processes into continuous time branching processes. Trans. Amer. Math. Soc. 132 115-136.
[KM68b] Karlin, S. and McGregor, J. (1968b). Embedding iterates of analytic functions with two fixed points into continuous groups. Trans. Amer. Math. Soc. 132 137-145.
[KS66] Kesten, H. and Stigum, B. (1966). A limit theorem for multidimensional GaltonWatson processes. Ann. Math. Statist. 37 1211-1223.
[K87] Kusuoka, S. (1987). A diffusion process on a fractal. Probabilistic methods in mathematical physics (Katata/Kyoto, 1985) 251-274.
[L03] Li, W. V. (2003). The first exit time of Brownian motion from unbounded convex domain, Ann. Probab. 31 1078-1096.
[L12+] Li, W. V. (2012+). Small Value Probabilities: Techniques and Applications. Lecture notes. http://www.math.udel.edu/~wli/svp.html
[Lif11] Lifshits, M. A. (2011). Bibliography compilation on small deviation probabilities. http://www.proba.jussieu.fr/pageperso/smalldev/biblio.pdf, 2011
[LS01] Li, W. V. and Shao, Q.-M.(2001). Gaussian processes: inequalities, small ball probabilities and applications. Stochastic processes: theory and methods, Handbook of Statist. 19 533-597.
[LS04] Li, W. V. and Shao, Q.-M. (2004). Lower tail probabilities for Gaussian processes. Ann. Probab. 32 216-242.
[MO08] Mörters, P. and Ortgiese, M. (2008). Small value probabilities via the branching tree heuristic. Bernoulli 14(1) 277-299.
[S70] Seneta, E. (1970). On the supercrirical branching process with immigration. Math. Biosci. 7-14.
[W08] Williams, D. (2008). Probability with Martingales. Cambridge: Cambridge Mathematical textbooks.

