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1. Introduction and main results

Small value probability for a positive random variable V studies the rate of decay of the so
called left tail probability P(V ≤ ε) as ε → 0+. When V is the norm of a random element
in a Banach space, one is dealing with small ball probability, see [LS01] for a survey of
Gaussian measures. When V is the maximum of a continuous random process starting at
zero, one is estimating lower tail probability which is closely related to studies of boundary
crossing probabilities or the first exit time associated with a general domain, see [L03]
and [LS04] for Gaussian processes. A comprehensive study of small value probability is
emerging and available in various talks and lecture notes in [L12+], see also the literature
compilation [Lif11].

In this paper, we further study the most natural aspect of the branching tree approach
originated in [MO08] on the martingale limit of a supercritical Galton-Watson process.
The problem has been solved initially in [D71a], [D71b], see Theorem 1. The main goal
is developing additional tools to treat small value probabilities for the martingale limit
of a supercritical Galton-Watson process with immigration. The interplay between the
offspring and the immigration distribution can be seen clearly from our main result The-
orem 2. We next provide a more detailed and precise discussion by introducing additional
notations, surveying relevant results and stating our results.

1
imsart-bj ver. 2012/08/31 file: CLR-GW20121112.tex date: November 15, 2012
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Let (Zn, n ≥ 0) be a supercritical Galton-Watson branching process with Z0=1, off-
spring distribution pk = P(X = k), k ≥ 0, and mean m = EX ∈ (1,∞). To avoid
non-branching case, we suppose pk < 1 for all k throughout this paper. Under the natu-
ral condition E [X log+ X] < ∞, the positive martingale Znm

−n converges to a nontrivial
random variable W < ∞ in the sense (see Kesten and Stigum [KS66])

Znm
−n −→ W a.s. & L1 as n → ∞.

Here and throughout this paper, log+ x = logmax(x, 1) ≥ 0. The distribution of the
limit W is of great interests in various applications. However, except for some very
special cases, the explicit distribution of W is not available, see, for example, Harris
[H48], Hambly [H95] and Williams [W08] Section 0.9. In general, it is known that W has
a continuous positive density on (0,∞) satisfying a Lipschitz condition, see Athreya and
Ney [AN72], Ch. II, p.84 Lemma 2. However it is not clear what type of densities can
arise in this way. This lack of complete information on the distribution of W prompts a
search for asymptotic information such as the behavior of the left tail, or the small value
probabilities of W and its density.

In [D71b], the following results were given with assumption p0 = 0 which holds without
loss of generality after the standard Harris-Sevastyanov transformation, see [H48], p.478
Theorem 3.2 or [B88] p.216. Here and throughout this paper we use g1(x) ≍ g2(x) as
x → 0+ (∞) to represent c ≤ g1(x)/g2(x) ≤ C as x → 0+ (∞) for two constants C >
c > 0 and g1(x) ∼ g2(x) as x → 0+ (∞) to represent g1(x)/g2(x) → 1 as x → 0+ (∞).

Theorem 1 (Dubuc 1971(b))
(a) If p1 > 0, then

P(W ≤ ε) ≍ ε| log p1|/ logm as ε → 0+.

(b) If p1 = 0, then

− logP(W ≤ ε) ≍ ε−β/(1−β) as ε → 0+,

with β := log γ/ logm and γ := inf{n : pn > 0} ≥ 2.

Note that the rough asymptotic ≍ in Theorem 1 can not be improved into more
precise asymptotic ∼ and the oscillation is very small. This is the so called near-constancy
phenomenon that were described and studied theoretically or numerically in [D82], [B88],
[BP88] and [BB91]. In fact, it is still an open conjecture that the Laplace transform of
W being non-oscillating near ∞ (and hence the small value probability of W being
non-oscillating near 0+) is only specific to the case p1 > 0 in [KM68a] p.127. General
estimates, near-constancy phenomena, specific examples, and various implications have
been studied to various degree of accuracy in Harris [H48], Karlin and McGregor [KM68a]
[KM68b], Dubuc [D71a] , [D71b] and [D82], Barlow and Perkins [BP88], Goldstein [G87],
Kusuoka [K87], Bingham [B88], Biggins and Bingham [BB91] and [BB93], Biggins and
Nadarajah [BN93], Fleischman and Wachtel [FW07] and [FW09]. Recently, Berestycki,
Gantert, Mörters and Sidorova [BGMS12] studied limit behaviors of the Galton-Watson
tree conditioned on W < ε as ε ↓ 0.
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Small Value Probabilities 3

In the present paper, we consider the supercritical branching process with immigration
denoted by (Zn, n ≥ 0), and follow the definition in [AN72], Ch. VI, Section 7.1, p.263.
To be more precise, we have

Z0 = Y0, Zn+1 = Xn
1 +Xn

2 + · · ·+Xn
Zn

+ Yn+1, n ≥ 0,

where Xn
1 , X

n
2 , · · · are i.i.d. with the same offspring distribution, Y0, Y1, · · · are i.i.d. with

the same immigration distribution {qk, k ≥ 0}, and X ′s and Y ′s are independent. Recall
that the offspring number X has distribution pk = P(X = k), k ≥ 0 and mean m = EX.
Suppose Y has distribution {qk, k ≥ 0}. We use f(s) and h(s) to denote the generating
function of X and Y respectively, i.e.

f(s) = E sX =

∞∑
k=0

pks
k and h(s) = E sY =

∞∑
k=0

qks
k, 0 < s < 1. (1.1)

It is a classical result, see Seneta [S70] for example, that

lim
n→∞

Zn/m
n = W (1.2)

exists and is finite a.s. if and only if

E log+ Y < ∞ and E (X log+ X) < ∞. (1.3)

Our main result of this paper is the following small value probabilities for W, which
can be expressed as weighted summation of an infinite independent sequence of W ’s, see
(2.2).

Theorem 2 Assume the condition (1.3) holds.
(a) If p0 = 0 and 0 < q0 < 1, then

P(W ≤ ε) ≍ ε| log q0|/ logm as ε → 0+. (1.4)

(b) If p0 = 0, q0 = 0 and p1 > 0, then

logP(W ≤ ε) ∼ −K| log p1|
2(logm)2

· | log ε|2 as ε → 0+, (1.5)

with K = inf{n : qn > 0}.
(c) If p0 = 0, q0 = 0 and p1 = 0, then

logP(W ≤ ε) ≍ −ε−β/(1−β) as ε → 0+,

with β being defined as in Theorem 1(b).
(d) If p0 > 0, then

P(W ≤ ε) ≍ ε| log h(ρ)|/ logm as ε → 0+, (1.6)

where ρ is the solution of f(s) = s between (0, 1), f and h are defined in (1.1).
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Note that there are additional phase transitions appearing in the case with immigra-
tion, in particular between the case where the immigration distribution has a positive
mass at 0 and where there is no mass at 0. In the p0 > 0 case, the extinction probability
of the branching process (Zn, n ≥ 0) (without immigration) is strictly positive, and plays
the dominating role in the small value probability of W. Our approach is outlined in
Section 2 and detailed proof of Theorem 2 is give in sections 3, 4 and 5.

2. Our approach

Our proof of Theorem 2 is based on Dubuc’s result stated in Theorem 1. In [D71b], an
integral composition transform is used together with some nontrivial complex analysis,
which is powerful but inflexible and un-intuitive. It seems impossible to extend the in-
volved analytic method to the branching process with immigration. On the other hand,
Mörters and Ortgiese [MO08] provided a very useful probabilistic approach for Theorem
1, called the “branching tree heuristic” method. Our approach is built on the top of their
powerful arguments, and overcomes additional difficulties of immigration effects. More
specifically, we start with a fundamental decomposition for W given in (2.2). Then a
suitable truncation is used in order to handle the infinite series. To estimate the lower
bound of P(W ≤ ε), we investigate when the least population size happens. For the
upper bound, we use the exponential Chebyshev’s inequality and estimate the Laplace
transform of W. The property of P(W ≤ ε) is then obtained through Tauberian type
theorems.

Now we consider recursive distribution identities for (Zn, n ≥ 0) satisfying Z0 = Y0.
For fixed integers r ≥ 0 and l ≥ 0, let ξr(1), · · · , ξr(Zr) be the individuals in generation
r, and ηl(j), j = 1, · · · , Yl be the individuals of immigration in generation l. Then for
any r ≥ 0 and n ≥ r + 1,

Zn =

Zr∑
i=1

Zn−r(ξr(i)) +

n∑
l=r+1

Yl∑
j=1

Zn−l(ηl(j)).

Here (Zn(v), n ≥ 0) is a supercritical G-W branching process initiated with one individual
v and W (v) is the limit of the positive martingale m−nZn(v).

Dividing both sides of the above equality by mn, then letting n → ∞, we get

W = m−r
Zr∑
i=1

W (ξr(i)) +
∞∑

l=r+1

m−l
Yl∑
j=1

W (ηl(j)). (2.1)

For simplicity, we rewrite (2.1) as

W = m−r
Zr∑
i=1

Wi +
∞∑

l=r+1

m−l
Yl∑
j=1

W j
l . (2.2)
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Here all the Wi,W
j
l , i = 1, · · · ,Zr, l = r + 1, · · · , n, j = 1, · · · , Yl are independent and

identically distributed as W . The relation (2.2) is the fundamental distribution identity
of W and it is used repeatedly in our approach.

Next we turn to consider a slightly different type of supercritical branching process
with immigration, which is denoted by (Z̃n, n ≥ 0). The only difference is to assume

Z̃0 = 1. The corresponding limit of Z̃n/m
n is denoted by W̃. Then by simple computation

we get that

W̃ =d W +
W
m

(2.3)

in distribution, denoted by =d throughout this paper, where W and W are independent.
Then owing to (2.3) and the fact that

P(W +W/m ≤ ε) ≥ P(W ≤ ε/2) · P(W/m ≤ ε/2),

P(W +W/m ≤ ε) ≤ P(W ≤ ε) · P(W/m ≤ ε), (2.4)

we obtain the following result as a consequence of combining Theorem 1 and Theorem 2.

Theorem 3 Assume the condition (1.3) holds.
(a) If p0 = 0, p1 > 0 and q0 > 0, then

P(W̃ ≤ ε) ≍ ε| log(p1q0)|/ logm as ε → 0+.

(b) If p0 = 0, p1 > 0 and q0 = 0, then

logP(W̃ ≤ ε) ∼ −K| log p1|
2(logm)2

| log ε|2 as ε → 0+,

with K being defined as in Theorem 2(b).
(c) If p0 = 0 and p1 = 0, then

logP(W̃ ≤ ε) ≍ −ε−β/(1−β) as ε → 0+,

with β being defined as in Theorem 1(b).
(d) If p0 > 0, then

P(W̃ ≤ ε) ≍ ε| log h(ρ)|/ logm as ε → 0+.

Note that when q0 = 1, i.e., without immigration, Theorem 3 recovers Theorem 1.

3. Proof of Theorem 2: Lower bound

We start with a simple but crucial probability estimate that is a consequence of the
condition E log+ Y < ∞ in (1.3).
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Lemma 1 Under the condition that E log+ Y < ∞ in (1.3), for any fixed constant δ > 0,
there exists an integer l such that

P(max
i≥l+1

Yie
−δi ≤ 1) ≥ e−1. (3.1)

Proof. For any given δ > 0,

∞∑
i=1

P(log+ Y ≥ δi) =
∞∑
i=1

∞∑
k=i

P(k ≤ δ−1 log+ Y < k + 1)

=

∞∑
k=1

kE I(k ≤ δ−1 log+ Y < k + 1)

≤ δ−1E log+ Y < ∞.

Let Yi and Y be our independent and identically distributed immigration random vari-
ables. Then for any large integer l such that

∞∑
i=l+1

P(log+ Y ≥ δi) ≤ 1/2 (3.2)

we have

P(max
i≥l+1

Yie
−δi ≤ 1) ≥

∞∏
i=l+1

(
1− P(log+ Y ≥ δi)

)
≥ exp

(
−2

∞∑
i=l+1

P(log+ Y ≥ δi)

)
≥ e−1,

here we used the fact that (1 − x)e2x is increasing for 0 ≤ x < 1/2. This finishes our
proof of the lemma.

Proof of (a) and (b). For any ε > 0, let k = kε be the integer such that

m−k ≤ ε < m−k+1, (3.3)

which is equivalent to saying

k − 1 < | log ε|/ logm ≤ k, or k = ⌈| log ε|/ logm⌉. (3.4)

Using the fundamental distribution identity (2.2) with r = 0, we have for a fixed integer
l to be chosen later,

P(W ≤ ε) = P
( ∞∑

i=0

m−i
Yi∑
j=1

W j
i ≤ ε

)

≥ P
( k+l∑

i=0

m−i
Yi∑
j=1

W j
i ≤ ε

2

)
· P
( ∞∑

i=k+l+1

m−i
Yi∑
j=1

W j
i ≤ ε

2

)
. (3.5)
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The second term in (3.5) can be estimated by using ε ≥ m−k in (3.3) as below

P
( ∞∑

i=k+l+1

m−i
Yi∑
j=1

W j
i ≤ ε

2

)
≥ P

( ∞∑
i=k+l+1

m−i
Yi∑
j=1

W j
i ≤ m−k

2

)

= P
( ∞∑

i=l+1

m−i
Yi∑
j=1

W j
i ≤ 1

2

)
. (3.6)

Note that the last equality follows from the independence and identical distribution of
all W j

i ’s and Yi’s. Next we have by controlling the size of Yi, i ≥ l + 1, given in Lemma
1,

P
( ∞∑

i=l+1

m−i
Yi∑
j=1

W j
i ≤ 1

2

)

≥ P
( ∞∑

i=l+1

m−i
Yi∑
j=1

W j
i ≤ 1

2
, max
i≥l+1

Yie
−δi ≤ 1

)

≥ P
( ∞∑

i=l+1

m−i

⌈exp(δi)⌉∑
j=1

W j
i ≤ 1

2

)
· P
(

max
i≥l+1

Yie
−δi ≤ 1

)
. (3.7)

Using Chebyshev’s inequality for the first part of (3.7), we get

P
( ∞∑

i=l+1

m−i

⌈exp(δi)⌉∑
j=1

W j
i ≤ 1

2

)
≥ 1− 2E

∞∑
i=l+1

m−i

⌈exp(δi)⌉∑
j=1

W j
i

≥ 1− 2

∞∑
i=l+1

m−i(eδi + 1). (3.8)

For δ satisfying eδ < m, we have
∑∞

i=l+1 m
−i(eδi + 1) < ∞. Then we choose δ small

enough and integer l large enough so that

2
∞∑

i=l+1

m−i(eδi + 1) <
1

2
. (3.9)

Combining (3.6)–(3.9) and Lemma 1, we obtain

P
( ∞∑

i=k+l+1

m−i
Yi∑
j=1

W j
i ≤ ε

2

)
≥ P

( ∞∑
i=l+1

m−i
Yi∑
j=1

W j
i ≤ 1

2

)
≥ 1

2e
. (3.10)

Now back to the first part of (3.5), we have to handle it under conditions (a) and (b)
separately. In the case (a) with q0 > 0, we have the simple estimate

P
( k+l∑

i=0

m−i
Yi∑
j=1

W j
i ≤ ε

2

)
≥ P

(
Y0 = · · · = Yk+l = 0

)
= qk+l+1

0 . (3.11)
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Using k − 1 < | log ε|/ logm in (3.4), it’s easy to deduce that

qk0 ≥ q0 · q| log ε|/ logm
0 = q0ε

| log q0|/ logm. (3.12)

Combining (3.5) and (3.10)–(3.12) we have shown the lower bound in Theorem 2(a).
For the case (b) with q0 = 0, we have, recalling the definition of K = inf{n : qn > 0},

P
( k+l∑

i=0

m−i
Yi∑
j=1

W j
i ≤ ε

2

)
≥ P

( k+l∑
i=0

m−i
Yi∑
j=1

W j
i ≤ ε

2
, Y0 = · · · = Yk+l = K

)

= P
( k+l∑

i=0

m−i
K∑
j=1

W j
i ≤ ε

2

)
· qk+l+1

K . (3.13)

The above probability of sums can be bounded termwise, and thus

P
( k+l∑

i=0

m−i
K∑
j=1

W j
i ≤ ε

2

)
≥ P

(
max

0≤i≤k+l
max

1≤j≤K
m−iW j

i ≤ ε/2

K(k + l + 1)

)

=
k+l∏
i=0

PK

(
m−iW ≤ ε/2

K(k + l + 1)

)

≥
k+l∏
i=0

PK

(
W ≤ mi−k/2

K(k + l + 1)

)
, (3.14)

where we use the independent and identically distributed property of all W j
i ’s in the last

equality and ε ≥ m−k from (3.3) in the last inequality.
From Theorem 1(a) there exists a constant c > 0 such that, for i = 0, 1, · · · , k + l,

P
(
W ≤ mi−k/2

K(k + l + 1)

)
≥ c

(
mi−k/2

K(k + l + 1)

)| log p1|/ logm

. (3.15)

Combining (3.5), (3.10) and (3.13)–(3.15) together, and taking summation over 0 ≤ i ≤
k + l after taking logarithm, we have

logP(W ≤ ε) ≥ −K| log p1|
2

k2 −O(k log k)

≥ −K| log p1|
2(logm)2

| log ε|2 −O(log ε−1 log log ε−1),

which follows easily from k < 1 + | log ε|/ logm in (3.4).

Proof of (c). First observe that, in this setting with γ = inf{n : pn > 0} ≥ 2, K =
inf{n : qn > 0} ≥ 1, the smallest number of particles in generation n (n ≥ 1) is

b(n) := K(γn + γn−1 + · ·+1) = K(γn+1 − 1)/(γ − 1). (3.16)
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It is also easy to see that the chance this occurs is

P(Zn = b(n)) = pb(n−1)+··+b(0)
γ qn+1

K := pB(n)
γ qn+1

K , (3.17)

where

B(0) = 0, B(n) = b(n− 1) + · ·+b(0) =
K
(
γn+1 − (n+ 1)γ + n

)
(γ − 1)2

, n ≥ 1. (3.18)

Given ε > 0, we can choose k = kε such that

γk

mk
≤ ε <

γk−1

mk−1
, (3.19)

which is equivalent to saying

k − 1 < | log ε|/ log(m/γ) ≤ k, or k = ⌈| log ε|/ log(m/γ)⌉. (3.20)

Next let l be an integer that will be determined later. Using the fundamental distribution
identity (2.2) with r = k + l and (3.17), we have

P(W ≤ ε)

≥ P
(
W ≤ (γ/m)k|Zk+l = b(k + l)

)
P(Zk+l = b(k + l))

= P
(
m−k−l

b(k+l)∑
i=1

Wi +
∞∑

i=k+l+1

m−i
Yi∑
j=1

W j
i ≤ (γ/m)k

)
pB(k+l)
γ qk+l+1

K

≥ P
( b(k+l)∑

i=1

Wi ≤
mlγk

2

)
P
( ∞∑

i=1

m−i
Yi∑
j=1

W j
i ≤ mlγk

2

)
pB(k+l)
γ qk+l+1

K . (3.21)

For the first term in (3.21) we have by Chebyshev’s inequality and choosing suitable l

P
( b(k+l)∑

i=1

Wi ≤ mlγk/2

)
≥ 1− 2

mlγk
E

b(k+l)∑
i=1

Wi = 1− 2b(k + l)

mlγk

≥ 1− 2Kγ

γ − 1
(γ/m)l ≥ 1/2, (3.22)

where EW = 1 and b(n) ≤ K(γ − 1)−1γn+1 from (3.16) are used.
For the second part of (3.21), we have

P
( ∞∑

i=1

m−i
Yi∑
j=1

W j
i ≤ mlγk

2

)
= P

( ∞∑
i=l+1

m−i
Yi∑
j=1

W j
i ≤ γk

2

)

≥ P
( ∞∑

i=l+1

m−i
Yi∑
j=1

W j
i ≤ 1

2

)
≥ e−1/2, (3.23)
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where the last inequality follows from (3.10).
Combing (3.21)–(3.23), we get

P(W ≤ ε) ≥ pB(k+l)
γ qk+l+1

K e−1/4. (3.24)

Recalling the definition of B(k + l) in (3.18) and k − 1 < | log ε|/ log(m/γ) in (3.20), we
see

B(k + l) ≤ K

(γ − 1)2
γk+l+1 ≤ Cγ| log ε|/ log(m/γ) = Cε−β/(1−β),

where β is defined as in Theorem 1(b) and C is a positive constant. Therefore from (3.24)
we obtain

logP(W ≤ ε) ≥ −Cε−β/(1−β)

for some constant C > 0.

4. Proof of Theorem 2: Upper bound

As we can see from the arguments in Section 3, only the finite terms in (2.2) are con-
tributing to the small value probabilities of W. Hence we take only r = 0 in (2.2), choose

a suitable cut off k, and focus on properties of
∑k

l=0 m
−l
∑Yl

j=1 W
j
l .

Proof of (a). Let k = kε be the integer defined as in (3.3). Using the fundamental
distribution identity (2.2) with r = 0 and exponential Chebyshev’s inequality, we have

P(W ≤ ε) ≤ P
( k∑

i=0

m−i
Yi∑
j=1

W j
i ≤ ε

)

≤ eλε · E exp

(
− λ

k∑
i=0

m−i
Yi∑
j=1

W j
i

)
for any λ > 0. (4.1)

Noticing that all the (W j
i , i = 0, · · · , k, j = 1, · · · , Yi) are independent, we have

E exp

(
− λ

k∑
i=0

m−i
Yi∑
j=1

W j
i

)
=

k∏
i=0

E exp

(
− λm−i

Yi∑
j=1

W j
i

)
. (4.2)

Conditioning on Yi = 0 or Yi ≥ 1, we have

E exp

(
− λm−i

Yi∑
j=1

W j
i

)
≤ q0 + (1− q0)E exp

(
− λm−iW 1

i

)
≤ q0(1 + δi), (4.3)
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where

δi = q−1
0 E exp

(
− λm−iW 1

i

)
= q−1

0 E exp
(
− λm−iW

)
, i = 0, · · · , k. (4.4)

Substituting (4.3) into (4.1) and letting λ = ε−1, we obtain

P(W ≤ ε) ≤ eqk+1
0

k∏
i=0

(1 + δi).

Since k ≥ | log ε|/ logm in (3.4), we have

qk0 ≤ ε| log q0|/ logm.

So we finish the proof by showing

k∑
i=0

log(1 + δi) ≤
k∑

i=0

δi ≤ M, (4.5)

where M > 0 is a constant independent of ε (noticing that the k depends on ε).

In order to estimate δi, we need the following fact given in Li [L12+].

Lemma 2 (i) Assume V is a positive random variable and α > 0 is a constant. Then

P(V ≤ t) ≤ C1t
α for some constant C1 > 0 and all t > 0

is equivalent to

E e−λV ≤ C2λ
−α for some constant C2 > 0 and all λ > 0.

(ii) Assume V is a positive random variable and α > 0, θ ∈ R, or α = 0, θ > 0 are
constants. Then we have

logP(V ≤ t) ≤ −C1t
−α| log t|θ for some constant C1 > 0 and all t > 0

is equivalent to

logE e−λV ≤ −C2λ
α/(1+α)(log λ)θ/(1+α) for some constant C2 > 0 and all λ > 0.

To show (4.5), we have to argue separately according to p1 > 0 or p1 = 0. When
p1 > 0, by Theorem 1(a) and Lemma 2(i), there exists a constant C > 0 satisfying that

E e−λW ≤ Cλ−| log p1|/ logm, λ > 0. (4.6)
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Combining (4.4) with λ = ε−1, then using (4.6), we have

k∑
i=0

δi = q−1
0

k∑
i=0

E exp(−ε−1m−iW )

≤ q−1
0 C

k∑
i=0

(εmi)| log p1|/ logm

= Cq−1
0 ε| log p1|/ logm

k∑
i=0

p−i
1

≤ C ′ε| log p1|/ logm · p−k
1 ≤ C ′p−1

1 ,

where C ′ is a constant and the last inequality follows from (3.4).
When p1 = 0, using Theorem 1(b) and Lemma 2(ii) with α = β/(1 − β) and θ = 0,

we have for some constant b > 0,

logE e−λW ≤ −bλβ , λ > 0, (4.7)

from which it’s similar to show that (4.5) holds. Indeed, setting λ = ε−1 in (4.4), and
then using (4.7) and ε < m−k+1 from (3.3), we obtain

k∑
i=0

δi = q−1
0

k∑
i=0

E exp(−ε−1m−iW )

≤ q−1
0

k∑
i=0

exp(−bε−βm−iβ)

≤ q−1
0

k∑
i=0

exp(−bm(k−i−1)β)

≤ q−1
0

∞∑
i=0

exp(−bm(i−1)β) < ∞.

Proof of (b). Let k be defined as in (3.3). Using (4.1) and Yi ≥ K for any i ≥ 0,

P(W ≤ ε) ≤ eλε
k∏

i=0

K∏
j=1

E exp
(
−λm−iW j

i

)
, λ > 0. (4.8)

In the case (b) with p1 > 0, substituting (4.6) into (4.8) with λ = ε−1, we obtain

P(W ≤ ε) ≤ e

k∏
i=0

K∏
j=1

C(εmi)| log p1|/ logm.
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Taking the logarithm we obtain

logP(W ≤ ε) ≤ 1 +K(k + 1)(logC − | log ε| · | log p1|/ logm) + k(k + 1) ·K| log p1|/2
= −k · | log ε| ·K| log p1|/ logm+ (k − 1)2 ·K| log p1|/2 +O(k)

≤ −K| log p1|
2(logm)2

| log ε|2 +O(| log ε|),

where the last inequality follows from k − 1 < | log ε|/ logm ≤ k, which is given in (3.4).

Proof of (c). It is clear that

P(W ≤ ε) ≤ P(W ≤ ε), (4.9)

and therefore we finish the proof of (c) by using estimate in Theorem 1(b).

5. Proof of Theorem 2(d)

If p0 > 0, then f(s) = s has a unique solution ρ ∈ (0, 1) and P(W = 0) = ρ. By means
of the Harris-Sevastyanov transformation

f̃(s) :=
f((1− ρ)s+ ρ)− ρ

(1− ρ)
,

f̃ defines a new branching mechanism with p̃0 = 0 and f̃ ′(1) = m. We use (Z̃n, n ≥ 0)

to denote the corresponding branching process and W̃ to denote the limit of m−nZ̃n. By
Theorem 3.2 in [H48],

W =d W0 · W̃ , (5.1)

where W0 is independent of W̃ and takes the values 0 and 1/(1− ρ) with probabilities ρ

and 1− ρ respectively. Notice that the small value probability of W̃ has the asymptotic
behavior described in Theorem 1(a) with p̃1 = f̃ ′(0) = f ′(ρ) > 0, and τ = | log p̃1|/ logm,
that is

P(W̃ ≤ ε) ≍ ετ . (5.2)

Now we start to prove the lower bound. For any ε > 0, let k = kε be the integer
defined in (3.3). Then using (3.5) and (3.10), we only need to estimate the first part of
(3.5):

P
( k+l∑

i=0

m−i
Yi∑
j=1

W j
i ≤ ε

2

)
≥

k+l∏
i=0

P
( Yi∑
j=1

W j
i = 0

)
=

k+l∏
i=0

( ∞∑
n=0

qnPn(W = 0)

)
= h(ρ)k+l+1, (5.3)
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where h is the generating function of immigration Y . Using k − 1 < | log ε|/ logm given
in (3.4), it’s easy to deduce that

h(ρ)k ≥ h(ρ) · h(ρ)| log ε|/ logm = h(ρ) · ε| log h(ρ)|/ logm. (5.4)

Combining (3.5), (3.10), (5.3) and (5.4) we obtain the lower bound of (d).

Next we show the upper bound. Using (5.1), we have

E e−λW = ρ+ E e−λW I{W>0} := ρ+ δ(λ), λ > 0. (5.5)

Using (4.1), (4.2) and the independent and identically distributed property of all the
(W j

i , i = 0, · · · , k, j = 1, · · · , Yi), we have

P(W ≤ ε) ≤ eλε
k∏

i=0

h
(
ρ+ δ(λm−i)

)
= (h(ρ))k+1 exp

(
λε+

k∑
i=0

log
(
h
(
ρ+ δ(λm−i)

)
/h(ρ)

))
, (5.6)

where λ = λk depends on k(= kε) and is given later. Since k ≥ | log ε|/ logm from (3.4),
we have

(h(ρ))k ≤ ε| log h(ρ)|/ logm. (5.7)

Next we show there is a constant M > 0, which does not depend on ε, such that

λε+
k∑

i=0

log
(
h
(
ρ+ δ(λm−i)

)
/h(ρ)

)
≤ λm−k+1 + h(ρ)−1

k∑
i=0

(
h
(
ρ+ δ(λm−i)

)
− h(ρ)

)
≤ M. (5.8)

Since δ(λm−x) is increasing with respect to x, we have

k∑
i=0

(
h
(
ρ+ δ(λm−i)

)
− h(ρ)

)
≤
∫ k+1

0

(
h
(
ρ+ δ(λm−x)

)
− h(ρ)

)
dx. (5.9)

Note that δ(λ) = (1−ρ)E e−(λ/(1−ρ))W̃ . By (5.2) and Lemma 2(i), there exists a constant
C > 0 such that

δ(λm−x) ≤ C(λm−x)−τ (5.10)
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with τ = | log f ′(ρ)|/ logm. Thus we have

k∑
i=0

(
h
(
ρ+ δ(λm−i)

)
− h(ρ)

)
≤

∫ k+1

0

(
h
(
ρ+ C(λm−x)−τ

)
− h(ρ)

)
dx

= 1/(τ logm) ·
∫ λ−τm(k+1)τ

λ−τ

1/y · (h (ρ+ Cy)− h(ρ)) dy

≤ 1/(τ logm) ·
∫ λ−τm(k+1)τ

0

1/y · (h (ρ+ Cy)− h(ρ)) dy. (5.11)

As ρ < 1, we may choose δ0 > 0 such that ρ+δ0 < 1. Next we choose λ = (C/δ0)
1/τ

m(k+1)

in order to assure ρ+ Cy < 1 so that h (ρ+ Cy) is well defined. Indeed we have

λm−k+1 = m2 (C/δ0)
1/τ

:= M1, (5.12)

and
ρ+ Cy ≤ ρ+ Cλ−τm(k+1)τ = ρ+ δ0 < 1, y ≤ λ−τm(k+1)τ .

Then we follow (5.11) to get

k∑
i=0

(
h
(
ρ+ δ(λm−i)

)
− h(ρ)

)
≤ 1/(τ logm) ·

∫ δ0/C

0

1/y · (h (ρ+ Cy)− h(ρ)) dy

:= M2 < ∞, (5.13)

where we used
lim
y→0

1/y · (h (ρ+ Cy)− h(ρ)) = Ch′(ρ) < ∞.

From (5.8), (5.12) and (5.13) we obtain that (5.8) holds with M = M1 +M2, and finish
the proof of Theorem 2(d).
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