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Abstract

Quantifying risks is of importance in insurance. In this paper, we employ the jackknife empirical

likelihood method to construct confidence intervals for some risk measures and related quantities

studied by Jones and Zitikis (2003). A simulation study shows the advantages of the new method

over the normal approximation method and the naive bootstrap method.
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1 Introduction

In life insurance and finance, quantifying risks is a very important task for pricing an insurance product

or managing a financial portfolio. Generally speaking, a risk measure is constructed to be a mapping

from a set of risks to the set of real numbers. Some well-known risk measures include coherent risk

measures (Yaari (1987), Artzner (1999)), distortion risk measures, Wang’s premium principle and

proportional hazards transform risk measures; see Wang, Young and Panjer (1997); Wang (1995,

1996, 1998); Wirch and Hardy (1999) and Necir and Meraghni (2009) for references.

For a risk variable X with distribution function F , Jones and Zitikis (2003) defined a large class

of risk measures associated with X as

R(F ) =
∫ 1

0
F−(t)ψ(t)dt, (1)

where F− denotes the generalized inverse function of F , and ψ is a nonnegative function chosen

for showing the objective opinion about the risk loading. Different choices of ψ result in different

risk measures. For example, Tail Value-at-Risk has ψ(t) = I(t > α)/(1 − α) with 0 < α < 1, the
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proportional hazards transform risk measure has ψ(t) = r(1 − t)r−1 and Wang’s premium principle

has ψ(t) = g′(1− t), where g is an increasing convex function with derivatives over [0, 1]; see Jones and

Zitikis (2003) for details. Other choices of the function ψ can be found in Jones and Zitikis (2007).

Jones and Zitikis (2003) also introduced a related quantity to illustrate the right-tail, left-tail and

two-sided deviations, which is defined as

r(F ) =
R(F )
E(X)

. (2)

Note that the general definition of distortion measures as mentioned in Wang and Young (1998) and

Wirth and Hardy (1999) includes the two widely used risk measures: Value-at-Risk (VaR) and Tail

Value-at-Risk (T-VaR). However the class defined by (1) excludes the VaR. In this paper, we focus on

the statistical inference of the risk measure and its related quantity defined in (1) and (2), respectively.

Statistical inference for R(F ) and r(F ) plays an important role in the applications of risk measures.

Jones and Zitikis (2003) proposed nonparametric estimation by replacing F− and E(X) by the sample

quantile function and sample mean respectively, and derived the asymptotic normality. Therefore,

confidence intervals for R(F ) and r(F ) can be constructed via estimating the asymptotic variance. For

comparing two risk measures, we refer to Jones and Zitikis (2005). Jones and Zitikis (2007) investigated

the nonparametric estimation of the parameter associated with distortion-based risk measures.

Because of the complexity of the asymptotic variance ofR(F ) and r(F ), constructing non-parametric

confidence intervals via estimating the asymptotic variance is usually inaccurate. In order to construct

confidence intervals for R(F ) and r(F ) without estimating the asymptotic variance, we investigate the

possibility of applying an empirical likelihood method in this paper so as to improve the inference.

Empirical likelihood method is a nonparametric likelihood approach for statistical inference, which

has been shown to be powerful in interval estimation and hypothesis testing. We refer to Owen (2001)

for an overview on the method. However, it is known that empirical likelihood method is not effective

in dealing with non-linear functionals. Recently, a so-called jackknife empirical likelihood method

was proposed by Jing, Yuan and Zhou (2009) to deal with nonlinear functionals. The key idea is

to formulate a jackknife sample based on estimating the nonlinear functional and then apply the

empirical likelihood method for a mean to the jackknife sample. Since the risk measure R(F ) and

its related quantity r(F ) are non-linear functionals, we propose to employ the jackknife empirical

likelihood method to obtain interval estimation for these two quantities. Note that for some special

risk measures such as VaR and T-VaR one can simply linearized them so that the profile empirical

likelihood method can be employed; see Baysal and Staum (2008) for the study of VaR and T-VaR.
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This paper is organized as follows. In Section 2, the methodologies and main results are presented.

A simulation study is given in Section 3. All proofs are put in Section 4. Some conclusions are drawn

in Section 5.

2 Methodologies and main results

Throughout we assume that the observations X1, . . . , Xn are independent non-negative random vari-

ables with continuous distribution function F (x). Put Ψ(t) =
∫ t
0 ψ(s)ds. When R(F ) < ∞, we have

t{Ψ(1)−Ψ(F (t))} → 0 as t→∞. Thus the risk measure defined in (1) can be written as

R = R(F ) =
∫ ∞

0
{Ψ(1)−Ψ(F (t))}dt.

Define the empirical distribution function as Fn(x) = 1
n

∑n
j=1 1(Xj ≤ x). Then Jones and Zitikis

(2003) proposed to estimate R(F ) and r(F ) by

R̂n =
∫ ∞

0
(Ψ(1)−Ψ(Fn(t)))dt, and r̂n =

n
∫∞
0 (Ψ(1)−Ψ(Fn(t)))dt∑n

j=1Xj
,

respectively, and showed that

√
n{R̂n −R} d→ N(0, σ2

1) and
√
n{r̂n − r(F )} d→ N(0, σ2

2) (3)

under some regularity conditions, where

σ2
1 = QF (Ψ,Ψ), σ2

2 =
1
µ2

(
QF (Ψ,Ψ)− 2r(F )QF (Ψ, 1) + (r(F ))2QF (1, 1)

)
(4)

and

QF (a, b) =
∫ ∞

0

∫ ∞

0
(F (x ∧ y)− F (x)F (y))a(F (x))b(F (y))dxdy,

where a(·), b(·) are two functions on [0, 1]. Based on (3), confidence intervals for R(F ) and r(F ) can

be obtained via estimating σ2
1 and σ2

2.

An alternative way to construct confidence intervals is to employ the empirical likelihood method.

Since the risk measure R is non-linear, a common technique is to linearize the functional by introducing

some link variables before applying the profile empirical likelihood method; see the study for ROC

curve (Claeskens et al. (2003)) and copulas (Chen, Peng and Zhao (2009)). Unfortunately it remains

unknown on how to linearize R by introducing some link variables. Here we propose to apply the

jackknife empirical likelihood method developed by Jing, Yuan and Zhou (2009). This procedure is

easy to implement and is described as follows.
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Define Fn,i = 1
n−1

∑n
j=1,j 6=i 1(Xj ≤ x) and R̂n,i =

∫∞
0 (Ψ(1)−Ψ(Fn,i(t)))dt for i = 1, . . . , n. Then

the jackknife sample is defined as

Yi = nR̂n − (n− 1)R̂n,i, i = 1, . . . , n.

Now we apply the empirical likelihood method to the above jackknife sample. That is, define the

jackknife empirical likelihood function for θ = R(F ) as

L1(θ) = sup{
n∏

i=1

(npi) : pi ≥ 0, for i = 1, . . . , n;
n∑

i=1

pi = 1;
n∑

i=1

piYi = θ}.

By Lagrange multiplier technique, we have pi = n−1{1+λ(Yi−θ)}−1 and−2 logL1(θ) = 2
∑n

i=1 log{1+

λ(Yi − θ)}, where λ = λ(θ) satisfies

n∑
i=1

Yi − θ

1 + λ(Yi − θ)
= 0. (5)

The following theorem shows that Wilks theorem holds for the proposed jackknife empirical like-

lihood method.

Theorem 1. Assume that |ψ(x)| ≤ cxα−1(1− x)β−1, ψ′(x) exists and |ψ′(x)| ≤ cxα−2(1− x)β−2 for

all 0 < x < 1 and some constants α > 1/2, β > 1/2 and c > 0. Further assume E(|Xi|γ) < ∞ for

some γ such that γ > 1/(α− 1/2) and γ > 1/(β − 1/2). Then we have

−2 logL1(R0)
d→ χ2

1 as n→∞,

where R0 denotes the true value of R and χ2
1 denotes a chi-square distribution with one degree of

freedom.

Remark 1. Some well-known risk measures, such as proportional hazards transform risk measure,

Wang’s right-tail deviation and Wang’s left-tail deviation satisfy the assumptions of Theorem 1; see

Jones and Zitikis (2003). Although the definition of (1) includes the widely employed risk measure

T-VaR, the assumptions in the Theorem 1 exclude it.

Remark 2. Note that when Xi is a real-valued random variable, tΨ(F (t)) → 0 as t → −∞ and

t{Ψ(1)−Ψ(F (t))} → 0 as t→∞, one can write

R = R(F ) =
∫ ∞

0
{Ψ(1)−Ψ(F (t))} dt+

∫ 0

−∞
Ψ(F (t)) dt.

Hence a similar jackknife empirical likelihood method can be applied.

4



Based on the above theorem, a confidence interval for R0 with level b can be obtained as

IR
b = {R : −2 logL1(R) ≤ χ2

1,b},

where χ2
1,b is the b-th quantile of χ2

1.

Next we consider the related quantity r(F ) = R(F )/µ where µ = E(X1). Alternatively, we consider

the quantity R− θµ with θ = r(F ). Then one can estimate this quantity by

R̂n − θn−1
n∑

i=1

Xi = R̂n − θ

∫ ∞

0
xdFn(x) = R̂n − θ

∫ ∞

0
(1− Fn(x)) dx.

As before, we define the jackknife sample as

n

(
R̂n − θ

∫ ∞

0
xdFn(x)

)
− (n− 1)

(
R̂n,i − θ

∫ ∞

0
xdFn,i(x)

)
= Yi − θXi

for i = 1, . . . , n, where Y ′i s are defined as above. So the jackknife empirical likelihood function for

θ = r(F ) is defined as

L2(θ) = sup{
n∏

i=1

(npi) : pi ≥ 0, for i = 1, . . . , n;
n∑

i=1

pi = 1;
n∑

i=1

pi(Yi − θXi) = 0}.

The following theorem shows that Wilks theorem holds for the proposed jackknife empirical like-

lihood method for r(F ).

Theorem 2. Assume the conditions in Theorem 1 hold. Further assume E(X2
1 ) <∞. Then

−2 logL2(r0)
d→ χ2

1 as n→∞,

where r0 denotes the true value of r(F ).

Based on the above theorem, a confidence interval for r0 with level b can be obtained as

Ir
b = {r : −2 logL2(r) ≤ χ2

1,b}.

Remark 3. The intervals given after Theorems 1 and 2 are two sided. Constructing one-sided intervals

may be useful in risk management and similar jackknife empirical likelihood confidence intervals can

be obtained.

5



3 Simulation study

In this section we examine the finite sample behavior of the proposed jackknife empirical likelihood

method in terms of coverage accuracy and interval length, and compare it with the normal approxi-

mation method and the naive bootstrap method. Interval estimation for contaminated data is studied

by Kaiser and Brazauskas (2007). We focus on the proportional hazards transform risk measure with

ψ(s) = a(1 − s)a−1 and choose a = 0.55 and 0.85 for simulation. Since the Pareto distribution, log-

normal distribution, Weibull distribution and Gamma distribution are widely used in fitting the losses

data in insurance (see Klugman, Panjer and Willmot (2008)), our simulation study is based on these

four distributions.

We draw 5, 000 random samples of sizes n = 300 and 1000 from the following distributions:

1. Pareto distribution F1(x; θ) = 1− x−θ for x ≥ 1;

2. Log-normal distribution F2(x; θ1, θ2) = Φ((log x − θ1)/θ2) for x > 0, where Φ(x) denotes the

standard normal distribution function;

3. Weibull distribution F3(x; θ1, θ2) = 1− exp{−(x/θ2)θ1} for x > 0;

4. Gamma distribution

F4(x; θ1, θ2) =
∫ x

0

θθ1
2

Γ(θ1)
sθ1−1 exp{−θ2s}ds for x > 0.

For calculating the proposed jackknife empirical likelihood intervals (JELCI) for both R(F ) and

r(F ), we use the R package ’emplik’ (see Zhou (2010)). For calculating the confidence intervals for

R(F ) based on the normal approximation method (NACI), we use the variance estimation in Jones

and Zitikis (2003). For computing the naive bootstrap confidence intervals for r(F ) (NBCI), we draw

5, 000 bootstrap samples with replacement from each random sample X1, . . . , Xn. Empirical coverage

probabilities are reported in Tables 1 and 2 for these three confidence intervals with levels 0.9, 0.95

and 0.99. Tables 3 and 4 report the average interval lengths for these intervals. From these tables,

we conclude that the proposed jackknife empirical likelihood method gives more accurate coverage

probability than the other two methods especially for the case of n = 300. On the other hand, the

new method has a bigger interval length than the other methods for most cases.
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4 Proofs

Throughout we put Ui = F (Xi) for i = 1, . . . , n, Gn(t) = n−1
∑n

i=1 1(Ui ≤ t) and Gn,i = (n −

1)−1
∑n

j=1,j 6=i 1(Uj ≤ t) for i = 1, . . . , n. Since F is continuous, U1, . . . , Un are independent and

uniformly distributed over (0, 1). Without loss of generality we assume no ties in U1, . . . , Un, and let

Un,1 < · · · < Un,n denote the order statistics of U1, . . . , Un. We also use C to denote a generic constant

which may be different in different places.

Under the conditions of Theorem 1, we first list some facts which will be employed in the proofs.

We assume β ≤ α throughout since proofs for the case of β > α are exactly the same. Therefore we

have |ψ(x)| ≤ cxβ−1(1 − x)β−1 and |ψ′(x)| ≤ cxβ−2(1 − x)β−2 for all 0 < x < 1. Since E|X1|γ < ∞

with 1
γ + 1− β < 1

2 , we have

P (|X1| > x) = o(x−γ) as x→∞, (6)

which implies ∫ ∞

0
(F (x))β−1+δ(1− F (x))β−1+δdx ≤ 2 + C

∫ ∞

1
x−(β−1+δ)γdx <∞ (7)

whenever δ ∈ ( 1
γ + 1− β, 1

2), and

max
1≤j≤n

|Xj | = max
1≤j≤n

|F−(Uj)| = op(n1/γ). (8)

It follows from the given conditions on ψ that

Ψ(
1
n

) = O(n−β) and Ψ(
1

n− 1
)−Ψ(

1
n

) = O(n−β−1). (9)

Lemma 1. Under the conditions of Theorem 1, we have

1√
n

n∑
i=1

(Yi −R0)
d→ N(0, σ2

1), (10)

where σ2
1 is given in (4).
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Proof. Write

Yi = (n− 1)
∫ ∞

0
{Ψ(Fn,i(t))−Ψ(Fn(t))}dt+ R̂n

= (n− 1)
∫ 1

0
{Ψ(Gn,i(t))−Ψ(Gn(t))}dF−(t) + R̂n

= (n− 1)
∫ 1

0
{Ψ(Gn,i(t))−Ψ(Gn(t))}1(Un,1 ≤ t < Un,n)dF−(t) + R̂n

= (n− 1)
∫ 1

0
{Ψ(Gn,i(t))−Ψ(Gn(t))}1(Un,1 ≤ t < Un,2)dF−(t)

+ (n− 1)
∫ 1

0
{Ψ(Gn,i(t))−Ψ(Gn(t))}1(Un,2 ≤ t < Un,n−1)dF−(t)

+ (n− 1)
∫ 1

0
{Ψ(Gn,i(t))−Ψ(Gn(t))}1(Un,n−1 ≤ t < Un,n)dF−(t) + R̂n

= (n− 1)
∫ 1

0
{Ψ(Gn,i(t))−Ψ(Gn(t))}1(Un,1 ≤ t < Un,2)dF−(t)︸ ︷︷ ︸

Zi,1

+ (n− 1)
∫ 1

0
ψ(Gn(t)){Gn,i(t)−Gn(t)}1(Un,2 ≤ t < Un,n−1)dF−(t)︸ ︷︷ ︸

Zi,2

+
n− 1

2

∫ 1

0
ψ′(ξn,i(t)){Gn,i(t)−Gn(t)}21(Un,2 ≤ t < Un,n−1)dF−(t)︸ ︷︷ ︸

Zi,3

+ (n− 1)
∫ 1

0
{Ψ(Gn,i(t))−Ψ(Gn(t))}1(Un,n−1 ≤ t < Un,n)dF−(t)︸ ︷︷ ︸

Zi,4

+R̂n

= Zi,1 + Zi,2 + Zi,3 + Zi,4 + R̂n,

where

ξn,i(t) = Gn(t) + θi(t){Gn,i(t)−Gn(t)} = Gn(t) +
θi(t)
n− 1

{Gn(t)− 1(Ui ≤ t)}

for some θi(t) ∈ [0, 1].

When Un,1 ≤ t < Un,2, we have

Gn(t) =
1
n

and Gn,i(t) =

 0 if Ui = Un,1

1
n−1 else.

(11)
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Hence, it follows from (8) and (9) that

n∑
i=1

Zi,1 = (n− 1)
∫ 1

0
{Ψ(0)−Ψ(

1
n

)}1(Un,1 ≤ t < Un,2)dF−(t)

+ (n− 1)2
∫ 1

0
{Ψ(

1
n− 1

)−Ψ(
1
n

)}1(Un,1 ≤ t < Un,2)dF−(t)

= −(n− 1)Ψ(
1
n

){F−(Un,2)− F−(Un,1)}

+ (n− 1)2{Ψ(
1

n− 1
)−Ψ(

1
n

)}{F−(Un,2)− F−(Un,1)}

= O((n− 1)n−β)op(n1/γ) +O((n− 1)2n−1−β)op(n1/γ)

= op(n1/2−β+1/γ)
√
n

= op(
√
n)

(12)

since 1
2 − β + 1

γ < 0. Similarly, we can show that

n∑
i=1

Zi,4 = op(
√
n). (13)

Since
∑n

i=1{Gn,i(t)−Gn(t)} = 0, we have

n∑
i=1

Zi,2 = 0. (14)

When t ≥ Un,2, we have

(n− 1)−11(Ui ≤ t)
Gn(t)

≤ 1/(n− 1)
2/n

=
n

2(n− 1)
,

i.e.,

ξn,i(t) ≥ Gn(t){1− n

2(n− 1)
}

uniformly in t ≥ Un,2. In the same manner, we can show that

1− ξn,i(t) ≥ (1−Gn(t)){1− n

2(n− 1)
}

holds uniformly in t < Un,n−1. Hence, for n large enough,

(ξn,i(t), 1−ξn,i(t)) ≥
1
3
(Gn(t), 1−Gn(t)) uniformly for Un,2 ≤ t < Un,n−1 and 1 ≤ i ≤ n. (15)

Note that

sup
Un,2≤t≤Un,n−1

Gn(t)
t

= Op(1) and sup
Un,2≤t≤Un,n−1

1−Gn(t)
1− t

= Op(1) (16)
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(see Page 404 of Shorack and Wellner (1986)). It follows from (15) and (16) that

|Zi,3| = Op

(
n

∫ 1

0
tβ−2(1− t)β−2{Gn,i(t)−Gn(t)}21(Un,2 ≤ t < Un,n−1)dF−(t)

)
,

which coupled with (7) and (16) yields

n∑
i=1

Zi,3 = Op

(
n

∫ 1

0
tβ−2(1− t)β−2

n∑
i=1

{Gn,i(t)−Gn(t)}21(Un,2 ≤ t < Un,n−1)dF−(t)

)

= Op

(
n

∫ 1

0
tβ−2(1− t)β−2 n

(n− 1)2
Gn(t){1−Gn(t)}1(Un,2 ≤ t < Un,n−1)dF−(t)

)
= Op

(∫ 1

0
tβ−1(1− t)β−11(Un,2 ≤ t < Un,n−1)dF−(t)

)
= Op

(∫ 1−n−1

n−1

tβ−1(1− t)β−1dF−(t)

)

= Op

(
nδ

∫ 1−n−1

n−1

tβ−1+δ(1− t)β−1+δdF−(t)

)

= Op

(
nδ

∫ ∞

0
(F (x))β−1+δ(1− F (x))β−1+δdx

)
= Op(nδ)

(17)

for any δ ∈ ( 1
γ + 1− β, 1

2). By Jones and Zitikis (2003), we have

√
n{R̂n −R} d→ N(0, σ2

1). (18)

Hence, the lemma follows from (12), (14), (17), (13) and (18).

Lemma 2. Under the conditions of Theorem 1, we have

1
n

n∑
i=1

(Yi −R)2
p→ σ2

1 as n→∞.

Proof. We use the same notations Zi,j as in the proof of Lemma 1. Then, it follows from (11) and (9)

that

1
n

n∑
i=1

Z2
i,1 =

(n− 1)2

n

∫ 1

0

∫ 1

0
{Ψ(0)−Ψ(

1
n

)}21(Un,1 ≤ t1, t2 < Un,2)dF−(t1)dF−(t2)

+
(n− 1)3

n

∫ 1

0

∫ 1

0
{Ψ(

1
n− 1

)−Ψ(
1
n

)}21(Un,1 ≤ t1, t2 < Un,2)dF−(t1)dF−(t2)

= O(
(n− 1)2

n
n−2β)op(n2/γ) +O(

(n− 1)3

n
n−2−2β)op(n2/γ)

= op(1).

(19)
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Similarly,
1
n

n∑
i=1

Z2
i,4 = op(1). (20)

It is easy to check that

1
n

n∑
i=1

Z2
i,2

=
(n− 1)2

n

∫ 1

0

∫ 1

0
ψ(Gn(t1))ψ(Gn(t2))

n∑
i=1

{Gn,i(t1)−Gn(t1)}{Gn,i(t2)−Gn(t2)}

× 1(Un,2 ≤ t1, t2 < Un,n−1)dF−(t2)dF−(t1)

=
∫ 1

0

∫ 1

0
ψ(Gn(t1))ψ(Gn(t2)){Gn(t1 ∧ t2)−Gn(t1)Gn(t2)}1(Un,2 ≤ t1, t2 < Un,n−1)dF−(t2)dF−(t1)

=2
∫ 1

0

∫ t1

0
ψ(Gn(t1))ψ(Gn(t2))Gn(t2){1−Gn(t1)}1(Un,1 ≤ t1, t2 < Un,n−1)dF−(t2)dF−(t1)︸ ︷︷ ︸

I0

.

By (16), we have

sup
Un,2≤t1,t2<Un,n−1

ψ(Gn(t1))ψ(Gn(t2))Gn(t2){1−Gn(t1)} = Op

(
tβ−1
1 (1− t1)β−1tβ−1

2 (1− t2)β−1t2(1− t1)
)
.

Similar to the proof of (7), we can show that∫ 1

0

∫ t1

0
tβ−1
1 (1− t1)β−1tβ−1

2 (1− t2)β−1t2(1− t1)dF−(t2)dF−(t1)

=
∫ ∞

0

∫ F−(t1)

0
F (x)β−1(1− F (x))β−1F (y)β−1(1− F (y))β−1F (y)(1− F (x))dydx

< ∞.

By the Glivenko-Cantelli theorem, sup0<t<1 |Gn(t) − t| → 0 almost surely. It then follows from the

dominated convergence theorem that

I0
p→
∫ 1

0

∫ t1

0
ψ(t1)ψ(t2)t2(1− t1)dF−(t2)dF−(t1).

Hence
1
n

n∑
i=1

Z2
i,2

p→
∫ 1

0

∫ 1

0
ψ(t1)ψ(t2){t1 ∧ t2 − t1t2}dF−(t2)dF−(t1) = σ2

1. (21)
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Note that
n∑

i=1

{Gn,i(t1)−Gn(t1)}2{Gn,i(t2)−Gn(t2)}2

=
n∑

i=1

{Gn(t1)
n− 1

− 1(Ui ≤ t1)
n− 1

}2{Gn(t2)
n− 1

− 1(Ui ≤ t2)
n− 1

}2

=
n

(n− 1)4
{−3G2

n(t1)G2
n(t2) +G2

n(t1)Gn(t2) +Gn(t1)G2
n(t2) + 4Gn(t1)Gn(t2)Gn(t1 ∧ t2)

− 2Gn(t1)Gn(t1 ∧ t2)− 2Gn(t2)Gn(t1 ∧ t2) +Gn(t1 ∧ t2)}

=
n

(n− 1)4
{3Gn(t1)Gn(t2) (Gn(t1 ∧ t2)−Gn(t1)Gn(t2))︸ ︷︷ ︸

I1

−Gn(t1) (Gn(t1 ∧ t2)−Gn(t1)Gn(t2))︸ ︷︷ ︸
I2

−Gn(t2) (Gn(t1 ∧ t2)−Gn(t1)Gn(t2))︸ ︷︷ ︸
I3

+(1−Gn(t1))(1−Gn(t2))Gn(t1 ∧ t2)︸ ︷︷ ︸
I4

}

=
n

(n− 1)4
{I1 − I2 − I3 + I4}.

It follows from (16) that

sup
Un,2≤t1,t2≤Un,n−1

|Gn(t1 ∧ t2)−Gn(t1)Gn(t2)|
t1 ∧ t2 − t1t2

= Op(1),

sup
Un,2≤t1,t2≤Un,n−1

|Gn(t1 ∧ t2)(1−Gn(t1 ∨ t2)|
t1 ∧ t2(1− t1 ∨ t2)

= Op(1).

This coupled with (15) and (16), yields that

1
n

n∑
i=1

Z2
i,3

=Op

((n− 1)2

4n

∫ 1

0

∫ 1

0
tβ−2
1 (1− t1)β−2tβ−2

2 (1− t2)β−2

×
n∑

i=1

{Gn,i(t1)−Gn(t1)}2{Gn,i(t2)−Gn(t2)}21(Un,2 ≤ t1, t2 < Un,n−1)dF−(t2)dF−(t1)
)

=Op

(
n−2

∫ 1

0

∫ 1

0
tβ−2
1 (1− t1)β−2tβ−2

2 (1− t2)β−2

× {I1 − I2 − I3 + I4}1(Un,2 ≤ t1, t2 < Un,n−1)dF−(t2)dF−(t1)
)
.

12



From the above equation we can get that

1
n

n∑
i=1

Z2
i,3

=Op

(
n−2

∫ Un,n−1

Un,2

∫ Un,n−1

Un,2

tβ−2
1 (1− t1)β−2tβ−2

2 (1− t2)β−2t1t2(t1 ∧ t2 − t1t2)dF−(t2)dF−(t1)︸ ︷︷ ︸
J1

)

+Op

(
n−2

∫ Un,n−1

Un,2

∫ Un,n−1

Un,2

tβ−2
1 (1− t1)β−2tβ−2

2 (1− t2)β−2t1(t1 ∧ t2 − t1t2)dF−(t2)dF−(t1)︸ ︷︷ ︸
J2

)

+Op

(
n−2

∫ Un,n−1

Un,2

∫ Un,n−1

Un,2

tβ−2
1 (1− t1)β−2tβ−2

2 (1− t2)β−2t2(t1 ∧ t2 − t1t2)dF−(t2)dF−(t1)︸ ︷︷ ︸
J3

)

+Op

(
n−2

∫ Un,n−1

Un,2

∫ Un,n−1

Un,2

tβ−2
1 (1− t1)β−2tβ−2

2 (1− t2)β−2(1− t1)(1− t2)(t1 ∧ t2)dF−(t2)dF−(t1)︸ ︷︷ ︸
J4

)

=Op(J1) +Op(J2) +Op(J3) +Op(J4).

It is easy to check from (7) that for every δ ∈ ( 1
γ + 1− β, 1

2)

J2 + J3 =2n−2

∫ Un,n−1

Un,2

∫ t1

Un,2

tβ−2
1 (1− t1)β−2tβ−2

2 (1− t2)β−2(t1 + t2)t2(1− t1)dF−(t2)dF−(t1)

≤4n−2

∫ Un,n−1

Un,2

tβ−1
1 (1− t1)β−1

∫ t1

Un,2

tβ−1
2 (1− t2)β−2dF−(t2)dF−(t1)

=n−2

∫ 1

0
tβ−1
1 (1− t1)β−1O(U−δ

n,2 + (1− t1)−1−δ)dF−(t1)

=O(n−2U−δ
n,2)

∫ 1

0
tβ−1
1 (1− t1)β−1dF−(t1) +O(n−2)

∫ 1

0
tβ−1
1 (1− t1)β−2−δdF−(t1)

=O(n−2U−δ
n,2)(U

−δ
n,2 + (1− Un,n−1)−δ) +O(n−2)(U−δ

n,2 + (1− Un,n−1)−1−2δ)

=Op(n−2+2δ + n−1+2δ)

=op(1).

Similarly, we can show that

J1 = op(1) and J4 = op(1).

Hence,
1
n

n∑
i=1

Z2
i,3 = op(1). (22)

Since R̂n
p→ R, we have

1
n

n∑
i=1

(R̂n −R)2 = op(1). (23)

13



It follows from (19), (20), (22) and (23) that

1
n

n∑
i=1

{Zi,1 + Zi,3 + Zi,4 + R̂n −R}2 = O(
1
n

n∑
i=1

{Z2
i,1 + Z2

i,3 + Z2
i,4 + (R̂n −R)2}) = op(1). (24)

Note that

1
n

n∑
i=1

Zi,2{Zi,1 + Zi,3 + Zi,4 + R̂n −R} ≤

√√√√ 1
n

n∑
i=1

Z2
i,2

√√√√ 1
n

n∑
i=1

{Zi,1 + Zi,3 + Zi,4 + R̂n −R}2

= op(1).

(25)

Therefore, the lemma follows from (19)–(25).

Proof of Theorem 1. First we observe by using (7) that for any δ ∈ ( 1
γ + 1− β, 1

2),

max
1≤i≤n

|Zi,2| ≤
∫ 1

0
ψ(Gn(t))1(Un,2 ≤ t < Un,n−1)dF−(t)

= Op

(∫ Un,n−1

Un,2

tβ−1(1− t)β−1dF−(t)

)
= Op(U−δ

n,2 + (1− Un,n−1)−δ)

= op(n1/2).

(26)

Similarly we can show that

max
1≤i≤n

|Zi,j | = op(n1/2) for j = 1, 3, 4.

Hence, max1≤i≤n |Yi| = op(n1/2). By the standard arguments in the empirical likelihood method (see

Chapter 11 of Owen (2001)), it follows from Lemmas 1 and 2 that

−2 logL1(R) =
{
∑n

i=1(Yi −R)}2∑n
i=1(Yi −R)2

+ op(1) d→ χ2(1).

In order to prove Theorem 2, we need the following lemmas.

Lemma 3. Under the conditions of Theorem 2, we have

√
n

(
R̂n −

R(F )
µ

1
n

n∑
i=1

Xi

)
d→ N(0, σ̄2) as n→∞,

where

σ̄2 =
∫ 1

0

∫ 1

0
ψ(t1)ψ(t2)(t1 ∧ t2 − t1t2)dF−(t1)dF−(t2) +

R2(F )
µ2

E(X1 − µ)2

+ 2
R(F )
µ

∫ 1

0

∫ 1

0
ψ(t1)(t1 ∧ t2 − t1t2)dF−(t1)dF−(t2).
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Proof. It is known that there exists a Brownian bridge W such that

sup
0≤t≤1

√
n(Gn(t)− t)−W (t)

tδ0(1− t)δ0
= op(1) (27)

for any δ0 ∈ (0, 1/2) (see Chapter 4 of Csorgo and Horvath (1993)). It follows from (8) and (9) that

√
n
∫ 1
0 {Ψ(t)−Ψ(Gn(t))}I(t < Un,1) dF−(t)

=
√
n
∫ Un,1

0 Ψ(t) dF−(t)

≤
√
nΨ(Un,1)F−(Un,1)

= op(
√
nn−βn1/γ)

= op(1).

(28)

Similarly we can show that
√
n
∫ 1
0 {t−Gn(t)}ψ(t)I(t < Un,1) dF−(t) = op(1)

√
n
∫ 1
0 {Ψ(t)−Ψ(Gn(t))}I(t > Un,n−1) dF−(t) = op(1)

√
n
∫ 1
0 {t−Gn(t)}ψ(t)I(t < Un,n−1) dF−(t) = op(1).

(29)

Note that (16) holds with Un,2 replaced by Un,1 and we assume β ≤ α in the beginning of Section 4.

Hence, by the Taylor expansion, (27), (7) and choosing δ0 close to 1/2 enough such that δ+1/2−2δ0 < 0

with δ ∈ (1/γ + 1− β, 1/2) , we have

√
n
∫ 1
0 {Ψ(t)−Ψ(Gn(t))− (t−Gn(t))ψ(t)}I(Un,1 ≤ t ≤ Un,n−1) dF−(t)

=
√
n
∫ Un,n−1

Un,1

1
2ψ

′(ξ){t−Gn(t)}2 dF−(t)

= Op

(
1√
n

∫ 1−n−1

n−1 tβ−2(1− t)β−2t2δ0(1− t)2δ0 dF−(t)
)

= Op

(
n−1/2+δ+1−2δ0

∫ 1−n−1

n−1 tβ−1+δ(1− t)β−1+δ dF−(t)
)

= Op

(
nδ+1/2−2δ0

∫∞
0 (F (x))β−1+δ(1− F (x))β−1+δ dx

)
= op(1),

(30)

where ξ depends on t and lies between t and Gn(t). It follows from (27)–(30) that

√
n

∫ 1

0
{Ψ(t)−Ψ(Gn(t))} dF−(t) +

∫ 1

0
ψ(t)W (t) dF−(t) = op(1).

Therefore

√
n{R̂n −

R(F )
µ

1
n

n∑
i=1

Xi}

=
√
n

∫ 1

0
{Ψ(t)−Ψ(Gn(t))}dF−(t) +

R(F )
µ

√
n

∫ 1

0
{t−Gn(t)}dF−(t)

d→−
∫ 1

0
ψ(t)W (t)dF−(t)− R(F )

µ

∫ 1

0
W (t)dF−(t).
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Lemma 4. Under the conditions of Theorem 2, we have

1√
n

n∑
i=1

(
Yi −

R(F )
µ

Xi

)
d→ N(0, σ̄2) as n→∞.

Proof. It can be shown in a way similar to the proof of Lemma 1.

Lemma 5. Under the conditions of Theorem 2, we have

1
n

n∑
i=1

(
Yi −

R(F )
µ

Xi

)2
p→ σ̄2 as n→∞.

Proof. It can be proved in a similar way to the proof of Lemma 2.

Proof of Theorem 2. This can be done in a way similar to the proof of Theorem 1.

5 Conclusions

This paper employs the jackknife empirical likelihood method to construct confidence intervals for

some risk measures and related quantities studied by Jones and Zitikis (2003). Unlike the normal

approximation method, the new method does not need to estimate the asymptotic variance explicitly

and is easy to implement by employing the R package ’emplik’. A simulation study shows that

the proposed jackknife empirical likelihood confidence intervals are more accurate than the normal

approximation based confidence intervals.
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Table 1: Coverage probabilities for R(F ) are reported for the intervals based on the proposed

jackknife empirical likelihood method (JELCI) and the normal approximation method (NACI).

(n, a, F ) JELCI NACI JELCI NACI JELCI NACI

level 0.9 level 0.9 level 0.95 level 0.95 level 0.99 level 0.99

(300, 0.55, F1(; 4)) 0.6316 0.4408 0.7096 0.4978 0.8348 0.6082

(300, 0.85, F1(; 4)) 0.8618 0.8500 0.9202 0.9020 0.9768 0.9512

(1000, 0.55, F1(; 4)) 0.6160 0.4438 0.7084 0.5032 0.8402 0.6108

(1000, 0.85, F1(; 4)) 0.8702 0.8642 0.9330 0.9240 0.9870 0.9738

(300, 0.55, F2(; 0, 1)) 0.6906 0.5376 0.7692 0.6020 0.8808 0.7012

(300, 0.85, F2(; 0, 1)) 0.8664 0.8560 0.9270 0.9104 0.9802 0.9590

(1000, 0.55, F2(; 0, 1)) 0.7206 0.5870 0.7968 0.6522 0.8972 0.7556

(1000, 0.85, F2(; 0, 1)) 0.8810 0.8698 0.9332 0.9236 0.9828 0.9750

(300, 0.55, F3(; 4, 1)) 0.8998 0.8798 0.9496 0.9344 0.9872 0.9802

(300, 0.85, F3(; 4, 1)) 0.9080 0.9066 0.9556 0.9534 0.9890 0.9884

(1000, 0.55, F3(; 4, 1)) 0.9032 0.8918 0.9530 0.9462 0.9912 0.9876

(1000, 0.85, F3(; 4, 1)) 0.9094 0.9068 0.9558 0.9560 0.9926 0.9932

(300, 0.55, F4(; 4, 1)) 0.8568 0.8024 0.9152 0.8718 0.9774 0.9460

(300, 0.85, F4(; 4, 1)) 0.8934 0.8842 0.9458 0.9402 0.9898 0.9870

(1000, 0.55, F4(; 4, 1)) 0.8728 0.8430 0.9336 0.9060 0.9844 0.9696

(1000, 0.85, F4(; 4, 1)) 0.9010 0.8988 0.9514 0.9490 0.9904 0.9900

Table 2: Coverage probabilities for r(F ) are reported for the intervals based on the proposed

jackknife empirical likelihood method (JELCI) and the naive bootstrap method (NBCI).

(n, a, F ) JELCI NBCI JELCI NBCI JELCI NBCI

level 0.9 level 0.9 level 0.95 level 0.95 level 0.99 level 0.99

(300, 0.55, F1(; 4)) 0.5002 0.3682 0.5802 0.4060 0.6990 0.4858

(300, 0.85, F1(; 4)) 0.7310 0.6782 0.8026 0.7366 0.8980 0.8128

(1000, 0.55, F1(; 4)) 0.5550 0.4342 0.6344 0.4840 0.7610 0.5600

(1000, 0.85, F1(; 4)) 0.7924 0.7536 0.8646 0.8124 0.9482 0.8830

(300, 0.55, F2(; 0, 1)) 0.5432 0.4242 0.6098 0.4744 0.7184 0.5628

(300, 0.85, F2(; 0, 1)) 0.7116 0.6546 0.7770 0.7168 0.8762 0.8084

(1000, 0.55, F2(; 0, 1)) 0.6102 0.5296 0.6850 0.5854 0.7908 0.6698

(1000, 0.85, F2(; 0, 1)) 0.7670 0.7290 0.8384 0.7928 0.9202 0.8726

(300, 0.55, F3(; 4, 1)) 0.8554 0.8380 0.9118 0.8936 0.9736 0.9608

(300, 0.85, F3(; 4, 1)) 0.8922 0.8798 0.9444 0.9320 0.9850 0.9802

(1000, 0.55, F3(; 4, 1)) 0.8646 0.8538 0.9192 0.9130 0.9776 0.9762

(1000, 0.85, F3(; 4, 1)) 0.8850 0.8796 0.9390 0.9330 0.9886 0.9842

(300, 0.55, F4(; 4, 1)) 0.7740 0.7200 0.8452 0.7924 0.9282 0.8820

(300, 0.85, F4(; 4, 1)) 0.8560 0.8346 0.9180 0.8960 0.9738 0.9598

(1000, 0.55, F4(; 4, 1)) 0.8200 0.7944 0.8876 0.8584 0.9538 0.9326

(1000, 0.85, F4(; 4, 1)) 0.8828 0.8758 0.9342 0.9254 0.9844 0.9780
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Table 3: Average interval lengths for R(F ) are reported for the intervals based on the proposed

jackknife empirical likelihood method (JELCI) and the normal approximation method (NACI).

(n, a, F ) JELCI NACI JELCI NACI JELCI NACI

level 0.9 level 0.9 level 0.95 level 0.95 level 0.99 level 0.99

(300, 0.55, F1(; 4)) 0.3336 0.2416 0.4038 0.2879 0.5409 0.3784

(300, 0.85, F1(; 4)) 0.1217 0.1170 0.1485 0.1394 0.2041 0.1832

(1000, 0.55, F1(; 4)) 0.2405 0.1762 0.2939 0.2100 0.4028 0.2760

(1000, 0.85, F1(; 4)) 0.0678 0.0684 0.0830 0.0815 0.1142 0.1071

(300, 0.55, F2(; 0, 1)) 1.1940 1.1396 1.3265 1.3580 1.5084 1.7847

(300, 0.85, F2(; 0, 1)) 0.5835 0.5447 0.7034 0.6490 0.9342 0.8530

(1000, 0.55, F2(; 0, 1)) 0.9583 0.8167 1.0952 0.9731 1.3048 1.2789

(1000, 0.85, F2(; 0, 1)) 0.3319 0.3165 0.4016 0.3771 0.5446 0.4956

(300, 0.55, F3(; 4, 1)) 0.0996 0.0968 0.1209 0.1154 0.1643 0.1516

(300, 0.85, F3(; 4, 1)) 0.0911 0.0956 0.1097 0.1139 0.1461 0.1497

(1000, 0.55, F3(; 4, 1)) 0.0520 0.0545 0.0633 0.0649 0.0862 0.0853

(1000, 0.85, F3(; 4, 1)) 0.0498 0.0525 0.0596 0.0626 0.0788 0.0822

(300, 0.55, F4(; 4, 1)) 0.3132 0.2689 0.3809 0.3204 0.5221 0.4211

(300, 0.85, F4(; 4, 1)) 0.2043 0.2058 0.2454 0.2452 0.3273 0.3223

(1000, 0.55, F4(; 4, 1)) 0.1756 0.1582 0.2134 0.1885 0.2921 0.2477

(1000, 0.85, F4(; 4, 1)) 0.1092 0.1135 0.1314 0.1353 0.1750 0.1778

Table 4: Average interval lengths for r(F ) are reported for the intervals based on the proposed

jackknife empirical likelihood method (JELCI) and the naive bootstrap method (NBCI).

(n, a, F ) JELCI NBCI JELCI NBCI JELCI NBCI

level 0.9 level 0.9 level 0.95 level 0.95 level 0.99 level 0.99

(300, 0.55, F1(; 4)) 0.1342 0.1273 0.1504 0.1445 0.1739 0.1761

(300, 0.85, F1(; 4)) 0.0268 0.0226 0.0326 0.0262 0.0445 0.0330

(1000, 0.55, F1(; 4)) 0.1218 0.1084 0.1387 0.1242 0.1650 0.1539

(1000, 0.85, F1(; 4)) 0.0182 0.0160 0.0220 0.0187 0.0307 0.0239

(300, 0.55, F2(; 0, 1)) 0.4298 0.3964 0.4838 0.4509 0.5661 0.5488

(300, 0.85, F2(; 0, 1)) 0.0743 0.0634 0.0881 0.0732 0.1134 0.0910

(1000, 0.55, F2(; 0, 1)) 0.3922 0.3423 0.4468 0.3923 0.5342 0.4827

(1000, 0.85, F2(; 0, 1)) 0.0535 0.0461 0.0646 0.0538 0.0864 0.0682

(300, 0.55, F3(; 4, 1)) 0.0277 0.0249 0.0337 0.0296 0.0460 0.0387

(300, 0.85, F3(; 4, 1)) 0.0059 0.0061 0.0072 0.0073 0.0097 0.0096

(1000, 0.55, F3(; 4, 1)) 0.0154 0.0144 0.0187 0.0171 0.0256 0.0224

(1000, 0.85, F3(; 4, 1)) 0.0030 0.0034 0.0036 0.0041 0.0049 0.0053

(300, 0.55, F4(; 4, 1)) 0.0851 0.0689 0.1019 0.0810 0.1322 0.1038

(300, 0.85, F4(; 4, 1)) 0.0152 0.0141 0.0185 0.0167 0.0253 0.0217

(1000, 0.55, F4(; 4, 1)) 0.0532 0.0442 0.0649 0.0521 0.0890 0.0673

(1000, 0.85, F4(; 4, 1)) 0.0084 0.0083 0.0102 0.0098 0.0140 0.0128
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