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Abstract. Latin squares have been widely used to design an experiment where the blocking
factors and treatment factors are of the same levels. For some experiments, the size of blocks
may be less than the number of treatments. Since not all of the treatments can be compared
within each block, a new class of designs called balanced incomplete Latin squares (BILS) is
proposed to deal with such experiments. A general method for constructing BILS is proposed
by an intelligent selection of certain cells from a complete Latin square via orthogonal Latin
squares. The optimality of the proposed BILS designs is investigated. It is shown that
the proposed transversal BILS designs are asymptotically optimal for all the row, column
and treatment effects. The relative efficiencies of a delete-one-transversal BILS design with
respect to the optimal designs for both cases are also derived; it is shown to be close to
100%, as the order becomes large.
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1 Introduction

A Latin square of order k, denoted by LS(k), is a k× k square matrix of k symbols, say
1, 2, ..., k, such that each symbol appears only once in each row and each column. Two Latin
squares of the same order are said to be orthogonal, if these two squares when superimposed
have the property that each pair of symbols appears exactly once. For detailed constructions
of Latin squares and orthogonal Latin squares (OLS) refer to Dénes and Keedwell (1974,
1991).

Latin squares of order k have been widely applied to design an experiment in which
three factors each at k levels are investigated by randomly assigning the k levels of the three
factors to the rows, columns and the symbols of the squares, respectively. When both row and
column factors are treated as two blocking factors, then one treatment factor corresponding
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to the symbols of the square can effectively be studied by removing the inter-row and inter-
column variations. For detailed discussion refer to, for example, Wu and Hamada (2003). It
should be noted that such a design supposes both blocks size is exactly equal to the number
of treatments, i.e., a complete block design is adopted for each blocking factor.

For some experiments, however, the size of blocks may be less than the number of treat-
ments. Since not all of the treatments can be compared within each block, a new class of
incomplete Latin square (ILS) has to be adopted. An incomplete Latin square of order k and
block size r (r < k), denoted by ILS(k, r), is an incomplete Latin square of order k in which
each row and each column has r non-empty cells. If an ILS(k, r) satisfies the condition that
each symbol appears exactly r times in whole square, then the ILS(k, r) is called a balanced
incomplete Latin square, denoted by BILS(k, r). For example, Table 1 presents an example
of Latin square of order six, LS(6). If the six cells in boldface are removed, then the rest
cells form a BILS(6, 5).

Table 1: LS(6) and BILS(6, 5)

1 2 3 4 5 6

2 3 6 1 4 5

3 6 2 5 1 4

4 5 1 2 6 3

5 1 4 6 3 2

6 4 5 3 2 1

LS(6)

=⇒

1 3 4 5 6

2 3 1 4 5

3 6 2 1 4

5 1 2 6 3

5 1 4 6 2

6 4 5 3 2

BILS(6, 5)

The rest of the paper is unfolded as follows. Section 2 introduces a general method for
constructing all kinds of BILS by an intelligent selection of certain cells from a complete
Latin square via orthogonal Latin squares. Section 3 gives the application of a BILS design
on a practical experiment, which works as nearly equally well as the complete Latin square
design. Section 4 reviews the optimality criteria based on the information matrices for the
effects of interest in a linear model, and then investigates the optimality of a BILS(k, k−1)
design among all designs corresponding to all kinds of discrete distributions on any complete
Latin square. It is shown that for a given LS(k), the uniform design on the k2 cells is optimal
for all the row, column and treatment effects. The relative efficiencies of a BILS(k, k − 1)
design with respect to the foregoing optimal design for both cases are derived to be close to
100% as the order k becomes large. Section 5 concludes this paper with some remarks.

2 Construction of BILS

A natural way for constructing a BILS is to select certain cells from a complete Latin
square such that the remaining cells satisfy the condition of balanced occurrance of symbols.
It can be done by removing one or more “transversal.” For a given LS(k), a transversal
is a set of k cells such that only one cell is allowed in each row and in each column, and
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furthermore, each symbol can appear in each cell once. It is known that for two orthogonal
Latin squares of the same order k, any k cells of one square corresponding to the same
symbol of the other square form a transversal. Bose, Shrikhande and Parker (1960) showed
that there always exist at least two orthogonal Latin squares for any order k ≥ 4 except for
k = 6. Thus the following conclusion can be obtained.

Construction Method. For any order k ≥ 4 (except for k = 6), a BILS(k, r) can be
constructed by removing k − r disjoint transversals from a LS(k) via a pair of orthogonal
Latin squares for any 3 ≤ r ≤ k − 1.

Note that if r < 3, the BILS(k, r) design does not offer enough degrees of freedom for
data analysis, so we will focus on the cases r ≥ 3.

Example 1. For k = 4, the two orthogonal LS(4) are given in Table 2 (a), denoted by L1

and L2, respectively. There are four disjoint transversals in L1 corresponding to symbols 1,
2, 3, and 4 in L2, respectively. If we remove the transversal corresponding to 1, i.e., the cells
with symbols in boldface, a BILS(4, 3) is obtained, as displayed in Table 2 (b).

Table 2: Two orthogonal LS(4) and a BILS(4, 3)

3 4 2 1 1 2 3 4

1 2 4 3 2 1 4 3

4 3 1 2 3 4 1 2

2 1 3 4 4 3 2 1

(a) Two orthogonal LS(4)

=⇒

4 2 1

1 4 3

4 3 2

2 1 3

(b) BILS(4, 3)

For the BILS(4, 3) in Example 1, each pair of symbols occurs two times in the same
rows or the same columns. Actually, the following result can be verified.

Proposition 1. For every BILS(k, k − 1), the number of times each pair of symbols occur
in the same rows (or the same columns) is k − 2.

3 Example

Consider the wear experiment (Wu and Hamada, 2003, p.70) for testing the abrasion
resistance of rubber-covered fabric in a Martindale wear tester. The original design is the
complete Latin square L1 in Table 2 (a), where symbols 1, 2, 3, 4 represent the four types
of material A, B, C and D, respectively. The response is the loss in weight in 0.1 milligrams
(mgm) over a standard period of time. Two blocking variables “application” and “position”
are assigned to the rows and columns, respectively. The weight loss data is given in Table
3. Now we consider the BILS(4, 3) design obtained in Example 1, i.e., the data along the
diagonal in Table 3 (a) were removed, as shown in Table 3 (b).
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Table 3: Weight loss data for LS(4) and BILS(4, 3)

235 236 218 268

251 241 227 229

234 273 274 226

195 270 230 225

(a) Data of LS(4)

236 218 268

251 227 229

234 273 226

195 270 230

(b) Data of BILS(4, 3)

The underlying linear model for a BILS(k, r) design is

yijl = µ + αi + βj + τl + εijl, (1)

where i, j take values in {1, 2, ..., k} and l is the symbol in the (i, j)-th cell of the BILS(k, r),
µ is the overall mean, αi is the ith row effect, βj is the jth column effect, τl is the effect of
the lth treatment, and the errors εijl are independent N(0, σ2). Note that the triplet (i, j, l)
takes on only the kr values dictated by the particular BILS(k, r) chosen for the experiment.
For the estimability of all effects, three zero-sum constraints are as usual imposed on the
row, column and treatment effects, i.e., α′1k = 0, β′1k = 0, τ ′1k = 0, where 1k is the
k-dimensional vector of ones, α = (α1, . . . , αk)

′, β = (β1, . . . , βk)
′ and τ = (τ1, . . . , τk)

′.
Test first the null hypothesis of no treatment effect difference, i.e., H0 : τ1 = · · · = τk.

The linear model under the null hypothesis H0 is reduced to

yijl = µ + αi + βj + εijl. (2)

By using the extra sum of squares principle, the ANOVA table for the BILS(4, 3) wear
experiment can be obtained, as shown in Table 4. There, we conclude that at the α = 5%
level the treatment factor (material) has the most significance as indicated by a p-value of
0.02179, which is consistent with the result of the complete LS(4) design in Section 2.6 of
Wu and Hamada (2003).

Table 4: ANOVA table for the BILS(4, 3) wear experiment

Source Degrees of Freedom Sum of Squares Mean Squares F value P value(>F)

application 3 278.2 92.75 3.66 0.22192

position 3 2243.5 747.83 29.52 0.03294

material 3 3424.5 1141.50 45.06 0.02179

residual 2 50.7 25.33

When such an H0 is rejected, multiple comparisons of the k treatments should be per-
formed. When r = k−1, suppose the triplets removed from the complete LS(k) are (il, jl, l),
l = 1, 2, ..., k. Under model (1), it can be shown that the least squares estimate τ̂l is

τ̂l = [k(k − 3)]−1[(k − 2)y··l + yil·· + y·jl· − y···],

4



where y··l is the sum of the y-values for the lth treatment, yil·· is the sum of the y-values
in the ilth row, y·jl· is the sum of the y-values in the jlth column and y··· is the sum of all
the y-values for the BILS(k, k − 1) experiment. It can also be shown that V ar(τ̂j − τ̂i) =
2(k − 2)[k(k − 3)]−1σ2. Thus the t statistics for testing τi = τj, i, j = 1, ..., k, has the form

tij =
τ̂j − τ̂i

σ̂
√

2(k − 2)[k(k − 3)]−1
,

where σ̂2 is the residual mean square. Under H0 : τ1 = · · · = τk, each tij has a t distribution
with k2−4k+2 degrees of freedom. The Tukey multiple comparison method identifies treat-
ments i and j as different if |tij| > qk,k2−4k+2,α/

√
2, where qk,k2−4k+2,α is the upper α quantile

of the Studentized range distribution with parameters k and k2 − 4k + 2. The simultaneous
confidence intervals for τj − τi are given by τ̂j − τ̂i ± qk,k2−4k+2,α σ̂

√
(k − 2)[k(k − 3)]−1 for

all (i, j) pairs.

Table 5: Multiple comparison t statistics for the BILS(4, 3) wear experiment

A vs. B A vs. C A vs. D B vs. C B vs. D C vs. D

-11.03 -5.96 -8.64 5.07 2.38 -2.68

Returning to our experiment, the regression analysis leads to the estimates

τ̂1 = 32.25, τ̂2 = −23.25, τ̂3 = 2.25, τ̂4 = −11.25,

and σ̂2 = 25.33. The corresponding multiple comparison t statistics are given in Table 5. By
comparing with the 0.05 critical value q4,2,0.05/

√
2 = 6.93 for the Tukey method, we conclude

that at the 0.05 level material A wears more than B and D. If comparing with the 0.1
critical value q4,2,0.1/

√
2 = 4.79, we can identify that material A wears more than B, C and

D, and C wears more than B, which is fully consistent with the result of the complete LS(4)
design in Section 2.6 of Wu and Hamada (2003), even though only 12 out of 16 experiments
were conducted.

4 Optimality of BILS(k, k − 1) designs

Consider the linear model (1) for a given complete Latin square LS(k), where the triplet
(i, j, l) takes on the k2 values dictated by the LS(k) in this case. Let X = (x1, x2, ...,xk2)′

be the model matrix of order k2 × (3k + 1).
An experimental design D with the weight matrix W = (wij)k×k is a discrete distribution

of the numbers of experimental replications on the k2 cells of L, where wij is the design weight

on the (i, j)-th cell of L, 0 ≤ wij ≤ 1 and
∑k

i,j=1 wij = 1. Denote by Ω the space of all such
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designs. The moment matrix of a design D is defined as follows (Pukelsheim, 1993):

M(D) =
k∑

i,j=1

wijx(i−1)k+jx
′
(i−1)k+j =


1 r′ s′ t′

r ∆r W W 1

s W ′ ∆s W 2

t W ′
1 W ′

2 ∆t

 , (3)

where W 1 is a k× k matrix whose (i, j)-th entry is the weight on the cell of L which lies in
the ith row and contains symbol j, W 2 is a k × k matrix whose (i, j)-th entry is the weight
on the cell of L which lies in the ith column and contains symbol j, r = W1k = W 11k,
s = W ′1k = W 21k, t = W ′

11k = W ′
21k, and ∆r, ∆s and ∆t are three diagonal matrices

with the elements of the three vectors r, s and t, respectively, as the diagonal entries. Here,
our interest is in the optimal estimation of the treatment effects τ and that of all row, column
and treatment effects θ = (α′, β′, τ ′)′, respectively.

Let C(D) be the information matrix of a design D under model (1) and φ(C(D)) be a
real-valued function of C(D). A design D1 is said to be φ-optimal in a design space D if
φ(C(D1)) = maxD∈D φ(C(D)). Let C1 and C2 be two information matrices corresponding
to any two designs. Throughout we only consider the optimality functions φ(·) which satisfy
the following four conditions:

(i) isotonic to the Loewner ordering: if C1 ≥ C2, then φ(C1) ≥ φ(C2);

(ii) concavity: φ((1− γ)C1 + γC2) ≥ (1− γ)φ(C1) + γφ(C2) for any scalar γ ∈ (0, 1);

(iii) positive homogeneity: φ(δC1) = δφ(C1) for any scalar δ ≥ 0;

(iv) permutation invariant: φ(P ′C1P ) = φ(C1) for any permutation matrix P .

A design D1 is said to be universally optimal in a design space D if it is φ-optimal in the
space D for all functions φ(·) which satisfy the above four conditions (Kiefer, 1975).

4.1 Optimality of BILS(k, k − 1) designs for the effects τ

Consider the optimality of a BILS(k, k− 1) design in Ω for the estimation of the effects
τ . Following Bailey and Druilhet (2004) and Ai et al. (2009), for any design D ∈ Ω, the
information matrix for τ can be derived from the moment matrix (3) as follows:

Cτ (D) = ∆t −
(
t, W ′

1, W ′
2

)  1 r′ s′

r ∆r W
s W ′ ∆s

−  t′

W 1

W 2


= ∆t −W ′

1∆
−
r W 1 − (W ′

2 −W ′
1∆

−
r W )Q−(W 2 −W ′∆−

r W 1), (4)

where Q = ∆s −W ′∆−
r W and the notation A− denotes a generalized inverse of a matrix

A such that AA−A = A. It is known from Pukelsheim (1993) that Cτ (D) in (4) doesn’t
depend on the choice of the generalized inverses.
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For a given LS(k), denote by D∗ the design with the weight matrix W = k−21k1
′
k.

Note that for the design D∗, W = W 1 = W 2 and ∆r = ∆s = ∆t = k−1Ik, where Ik

is the identity matrix of order k. It can easily be verified that Cτ (D∗) = k−1Hk, where
Hk = Ik − k−11k1

′
k. It should be mentioned that the information matrix of design D∗ is

independent of the choice of the original LS(k). Thus the following result can be obtained,
whose proof is given in Appendix.

Theorem 1. For any design D based on a given LS(k), φ(Cτ (D)) ≤ k−1φ(Hk).

Theorem 1 shows that design D∗ is universally optimal in Ω for the effects τ . Note that
a BILS(k, k− 1) design based on a given LS(k) is typically a design on the LS(k) with the
weight 0 on each of the k deleted cells and the weight [k(k − 1)]−1 on each of the remaining
k(k− 1) cells. The following lemma gives the information matrix of a BILS(k, k− 1) design
and its proof is postponed in Appendix.

Lemma 1. For any ILS(k, k − 1) design D based on a given LS(k), the entries of Cτ (D)
have the following forms

Cτ (D)(i, j) =

{
k

k−2
titj − 2[(k−1)ti+(k−1)tj−1]

(k−1)(k−2)
, for i 6= j,

k
k−2

t2i + k−4
k−2

ti, otherwise,
(5)

where ti is the ith element of t. Especially, the information matrix for a BILS(k, k − 1)
deign has the form (k − 3)/[(k − 1)(k − 2)]Hk.

The asymptotic optimality of a BILS(k, k − 1) design can be revealed by its relative
efficiency with respect to the optimal design D∗ under the optimality function φ(·),

Effτ (D, φ) =
φ(Cτ (D))

φ(Cτ (D∗))
. (6)

Based on Lemma 1, the following result can be obtained.

Theorem 2. For any BILS(k, k−1) design D based on a given LS(k) and for any optimality
function φ(·), we have

Effτ (D, φ) =
k(k − 3)

(k − 1)(k − 2)
. (7)

Theorem 2 shows that for any BILS(k, k− 1) design D, its relative efficiency Effτ (D, φ)
quickly approaches 100% as k becomes large. Thus, a BILS(k, k−1) design is asymptotically
universally optimal for the estimation of the effects τ in the space Ω of all such designs.

4.2 Optimality of BILS(k, k − 1) designs for the effects θ

We next consider the optimality of a BILS(k, k − 1) design in Ω for the estimation of
all the row, column and treatment effects θ. For any design D based on a given LS(k), the

7



information matrix for θ under model (1) can be similarly derived as

Cθ(D) =

 ∆r W W 1

W ′ ∆s W 2

W ′
1 W ′

2 ∆t

−

 r
s
t

 (r′, s′, t′). (8)

For the discrete uniform design D∗ based on a given LS(k) introduced in the former sub-
section, we can easily obtain that Cθ(D

∗) = k−1I3 ⊗Hk, where ⊗ denotes the Kronecker
product. Similar to Theorem 1, the following result can also be obtained and its proof is
given in Appendix.

Theorem 3. For any design D based on a given LS(k), φ(Cθ(D)) ≤ k−1φ(I3 ⊗Hk).

For any BILS(k, k − 1) design D based on a given LS(k), since the function φ(Cθ(D))
is invariant under any permutation operation of Cθ(D); without loss of generality, we can
assume that the (i, i)-th cell of the LS(k) contains symbol i for i = 1, . . . , k, and the deleted
k cells of the BILS(k, k − 1) design D are exactly the k main diagonal cells. Then Cθ(D)
has the form

Cθ(D) = (k − 1)−1I3 ⊗Hk − [k(k − 1)]−1131
′
3 ⊗Hk. (9)

Note that the relative efficiency of a BILS(k, k − 1) design D with respect to the optimal
design D∗ is depend on the choice of optimality functions φ(·) unlike the case of optimality
for the effects τ . Some specific classes of optimality functions φ(·) have to be defined in
order to calculate the relative efficiency of a design D, i.e., Effθ(D, φ) in (6).

For any design D based on a given LS(k), it is easy to see that Cθ(D)(1′k,0
′
k,0

′
k)
′ = 0,

Cθ(D)(0′k,1
′
k,0

′
k)
′ = 0, and Cθ(D)(0′k,0

′
k,1

′
k)
′ = 0, where 0k is the k-dimensional vector

of zeroes. Namely, the information matrix Cθ(D) in (8) of design D has the first three
eigenvalues being zero. Denote λ4 ≤ · · · ≤ λ3k the other eigenvalues of Cθ(D) except for the
first three zero eigenvalues. The function φp(·) on the rank deficient matrix Cθ(D) can be
defined as follow (see, Pukelsheim, 1993):

φp(Cθ(D)) =


max4≤j≤3k λj, for p = ∞,
min4≤j≤3k λj, for p = −∞,
(
∏

4≤j≤3k λj)
1/(3k−3), for p = 0,[

(3k − 3)−1
∑

4≤j≤3k λp
j

]1/p

, otherwise.

(10)

It is known that φp(·) cover the commonly used optimality functions as special cases. For
example, φ0-, φ−1-, φ−∞- and φ1-optimality are simply the D-, A-, E- and T -optimality.
The universal optimality in Kiefer’s (1975) sense must be φp-optimality for all p ≤ 0, but
may not for p > 0 (Ai and Hickernell, 2009). Because the function φp(·) can be used as an
optimality function only when p ≤ 1; in the following we need only to consider the case of
p ≤ 1. As for the relative efficiency of a BILS(k, k−1) design based on a given LS(k) under
the above optimality functions φp(·), we can obtain the following conclusion. The proof of
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Table 6: BILS(6, 3) and BILS(6, 4)

5 2 6

2 4 1

6 4 3

3 6 1

2 3 5

5 4 1

BILS(6, 3)

2 3 4 5

4 6 3 5

6 1 2 3

3 2 1 4

5 2 1 6

5 1 4 6

BILS(6, 4)

Theorem 4 is also postponed in Appendix.

Theorem 4. For any BILS(k, k−1) design D based on a given LS(k), its relative efficiency
in (6) under the optimality functions φp(·) (p ≤ 1) has the following forms

Effθ(D, φp) =


k−3
k−1

, for p = −∞,

(k−3
k−1

)1/3( k
k−1

)2/3, for p = 0,
k

k−1
[2
3

+ 1
3
(k−3

k
)p]1/p, otherwise.

Theorem 4 shows that for any BILS(k, k−1) design D based on a given LS(k), its relative
efficiency Effθ(D, φp) quickly goes to 100% as k becomes large. Thus a BILS(k, k−1) design
is asymptotically φp-optimal for the estimation of the effects θ in the space Ω of all such
designs.

5 Concluding remarks

In this paper we introduce a new class of designs, called balanced incomplete Latin
square (BILS) designs, to deal with the experiments with two blocking and treatment vari-
ables where the size of both blocks may be less than the number of treatments. A general
construction method of BILS designs is proposed via orthogonal Latin squares. An ap-
plication shows that BILS designs works well on practical experiments. Furthermore, the
asymptotic optimality of these BILS designs of block size k − 1 is derived. The optimality
issue of the BILS designs with other block sizes becomes much more complicated and is
under investigation.

Note that when k = 6, where there do not exist two orthogonal Latin squares, the
foregoing construction method can not be used. Table 1 presents a Latin square with one
transversal consisting of the six symbols in boldface and a BILS(6, 5) can be obtained by
removing the transversal from the complete Latin square. For the block size r = 3 and 4,
computer searching gives BILS(6, 3) and BILS(6, 4) with better balance property, shown
in Table 6.

It should be mentioned that the concept of “balance” in the BILS simply requires equal
times of occurance of each treatment. But the “balance” in a balanced incomplete block
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design (BIBD) further demands the balance condition that each pair of treatments is com-
pared in the same number of blocks. The BILS(k, k − 1) designs constructed in this paper
satisfy all the balance conditions such that the designs reduce to a BIBD when one of the
two blocking factors is only considered. If we redefine all BILS designs in this strict sense,
the construction of this new kind of BILS designs becomes an issue of great sparsity, since
in this strict sense of balance, BILS designs do not exist at all for most parameters except
for block size k − 1.

Acknowledgements. The work is supported by NNSF of China Grant 11271032.
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For any design D based on a given LS(k), it can easily be verified that W ′∆−
r r =

W ′1k = s and W ′
1∆

−
r r = W ′

11k = t, whether the r has elements zero or not. Then it can
be derived that Cτ (D)1k = 0.

Denote by Pk the set of all possible k × k permutation matrices. Let

Cτ (D) = (k!)−1
∑

P∈Pk

P ′Cτ (D)P .

Because P ′
1Cτ (D)P 1 = (k!)−1

∑
P∈Pk

P ′
1P

′Cτ (D)PP 1 = Cτ (D) for any permutation ma-

trix P 1, Cτ (D) is completely symmetric, i.e., Cτ (D) = aIk + b1k1
′
k, where a and b are

two scalars. Furthermore, since 1′kCτ (D)1k = 1′kCτ (D)1k = 0 and trCτ (D) = trCτ (D),
we can obtain that a = (k − 1)−1trCτ (D), b = −[k(k − 1)]−1trCτ (D), and so Cτ (D) =
[(k − 1)−1trCτ (D)]Hk.

Now we are ready to prove that trCτ (D) ≤ 1−k−1. By Lemma 3.12 of Pukelsheim (1993),
it is known that both Q = ∆s −W ′∆−

r W and (W ′
2 −W ′

1∆
−
r W )Q−(W 2 −W ′∆−

r W 1)
are nonnegative definite and hence their traces are not less than zero. Then we can obtain
that trCτ (D) ≤ 1− trW ′

1∆
−
r W 1 = 1−

∑k
i=1,ri 6=0 r−1

i

∑k
j=1 w2

ij ≤ 1− k−1
∑k

i=1 ri = 1− k−1,
where ri is the ith element of r.

Thus, by applying the properties of the function φ(·), we further have that k−1φ(Hk) ≥
φ(Cτ (D)) ≥ (k!)−1

∑
P∈Pk

φ(P ′Cτ (D)P ) = φ(Cτ (D)). The proof of Theorem 1 is complete.

Proof of Lemma 1
For an ILS(k, k−1) deign D based on a given LS(k), the weight on each of the remaining

k(k − 1) cells is [k(k − 1)]−1. It can be derived that ∆r = ∆s = k−1Ik, W ′∆−
r W =

[k(k − 1)2]−1[Ik + (k − 2)1k1
′
k], and so Q = k−2

(k−1)2
Hk. Then the information matrix Cτ (D)

in (4) is given by

Cτ (D) = ∆t − kW ′
1W 1 − (k − 1)2(k − 2)−1

(
W ′

2W 2+
k2W ′

1WW ′W 1 − kW ′
1WW 2 − kW ′

2W
′W 1

)
.

(11)

It can be verified that the entries of the matrices in (11) have the following forms:

W ′
1W 1(i, j) = k−1(k − 1)−2

[
(k − 1)ti + (k − 1)tjI{i6=j} − I{i6=j}

]
,

W ′
2W 2(i, j) = k−1(k − 1)−2

[
(k − 1)ti + (k − 1)tjI{i6=j} − I{i6=j}

]
,

W ′
1WW 2(i, j) = k−2(k − 1)−3

[
k(k − 1)2titj − (k − 1)ti − (k − 1)tjI{i6=j} + I{i6=j}

]
,

W ′
1WW ′W 1(i, j) = k−3(k − 1)−4

[
k(k − 1)2(k − 2)titj + (k − 1)ti +

(k − 1)tjI{i6=j} − I{i6=j}
]
,

where I{·} is the indicator function. Thus, applying the above expressions, the formula (5)
can easily be obtained. For a BILS(k, k−1) design, the conclusion is followed just by letting
t1 = · · · = tk = k−1 in (5). So the proof of Lemma 1 is complete.

Proof of Theorem 3
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Denote by P3
k the set of all permutation matrices of the form P = diag(P 1, P 2, P 3),

where P 1, P 2 and P 3 are any three k × k permutation matrices. Let

Cθ(D) = (k!)−3
∑

P∈P3
k

P ′Cθ(D)P .

For any design D based on a given LS(k), following the proof of Theorem 1, we can obtain

Cθ(D) = (k − 1)−1diag(1− r′r, 1− s′s, 1− t′t)⊗Hk.

Because r′r, s′s and t′t are all not less than k−1, we have that Cθ(D) ≤ k−1I3⊗Hk. Then
it holds that k−1φ(I3⊗Hk) ≥ φ(Cθ(D)) ≥ φ(Cθ(D)). The proof of Theorem 3 is complete.

Proof of Theorem 4
Since Hk has (k−1) eigenvalues being 1 and one being 0, it can be obtained that I3⊗Hk

has (3k−3) positive eigenvalues being 1 and 131
′
3⊗Hk has (k−1) positive eigenvalues being

3. Note that (I3⊗Hk)(13×3⊗Hk) = (13×3⊗Hk)(I3⊗Hk). Since those two matrices can
be diagonalized simultaneously, it can easily be verified that the information matrix Cθ(D)
in (9) has three eigenvalues being zero, (k − 1) eigenvalues being (k − 3)[k(k − 1)]−1 and
(2k − 2) eigenvalues being (k − 1)−1. Then the expression of Effθ(D, φp) follows directly
under the optimality function φp(·) for different values p ≤ 1. The proof of Theorem 4 is
complete.
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