
Efficient Three-Party Computation from

Cut-and-Choose?

Seung Geol Choi† Jonathan Katz‡ Alex J. Malozemoff‡ Vassilis Zikas§

Abstract

With relatively few exceptions, the literature on efficient (practical) secure computation has
focused on secure two-party computation (2PC). It is, in general, unclear whether the techniques
used to construct practical 2PC protocols—in particular, the cut-and-choose approach—can be
adapted to the multi-party setting.

In this work we explore the possibility of using cut-and-choose for practical secure three-party
computation. The three-party case has been studied in prior work in the semi-honest setting,
and is motivated by the observation that real-world deployments of multi-party computation are
likely to involve few parties. We propose a constant-round protocol for three-party computation
tolerating any number of malicious parties, whose computational cost is essentially only a small
constant worse than that of state-of-the-art two-party protocols.

1 Introduction

The past few years have seen a tremendous amount of attention devoted to making secure computation
truly practical (e.g., [HEKM11, KsS12, KSS13]). With only a few exceptions [DPSZ12, DKL+13,
KSS13], however, this work has tended to focus on secure two-party computation (2PC). In the semi-
honest setting, a series of papers [BDNP08, HKS+10, HEKM11, HEK12] showed that Yao’s garbled
circuit technique [Yao86] can yield very efficient protocols for the computation of Boolean circuits.
In the malicious setting, Lindell and Pinkas [LP07] initiated use of the cut-and-choose technique, also
based on Yao’s garbled circuits, for constructing efficient, constant-round protocols. This technique
was developed further in several subsequent works [Woo07, LPS08, NO09, PSSW09, LP11, sS11,
KsS12, HKE13, Lin13, MR13, sS13], and yields the fastest known protocols for (malicious) secure
two-party computation (2PC) of Boolean circuits.

2PC protocols with malicious security can also be based on the GMW protocol [GMW87] (e.g.,
the TinyOT protocol [NNOB12]). Although this approach yields protocols with round complexity
linear in the (multiplicative) depth of the circuit, it offers the advantage that much of the computation
can be pushed to an offline, pre-processing phase that is executed before the parties receive their
inputs. The subsequent online computation is very fast and uses mainly information-theoretic
techniques.

? c© IACR 2014. This article is a major revision of the version published by Springer-Verlag.
†Dept. of Computer Science, United States Naval Academy. Portions of this work were done while at the University

of Maryland. Email: choi@usna.edu
‡Dept. of Computer Science, University of Maryland. Email: {jkatz,amaloz}@cs.umd.edu
§Dept. of Computer Science, ETH Zurich. Portions of this work were done while at the University of Maryland

and the University of California, Los Angeles. Email: vzikas@inf.ethz.ch

1

In the setting of multi-party computation (MPC) with security against an arbitrary number
of corruptions, the situation is somewhat different. While there has been much recent work on
optimizing MPC for semi-honest adversaries [BDNP08, BLW08, BCD+09, DGKN09, BSMD10,
BTW12, CHK+12], less work has focused on security against malicious corruptions. The work of
Ishai, Prabhakaran, and Sahai [IPS08] gives protocols with good asymptotic efficiency; however,
despite some promising optimizations [LOP11], it has not yet produced practical instantiations.
The SPDZ protocol [BDOZ11, DKL+12, DPSZ12, DKL+13, KSS13], which handles arithmetic
circuits, has extremely fast online running time at the cost of a very slow offline phase. However,
unlike protocols based on garbled circuits, SPDZ runs for a linear (instead of constant) number
of (online) rounds, and in each such round every party needs to utilize a broadcast channel. To
our knowledge, SPDZ’s implementation experiments [DKL+12, DPSZ12, DKL+13] were run on a
local-area network where physical broadcast is available, and thus the delay due to accounting for
round-timeouts and/or running a multi-party broadcasting protocol when operating in a wide-area
network environment has not been taken into account. This delay may be non-trivial depending
on circumstances: Schneider and Zohner [SZ13] have shown that as the latency between machines
increases, the cost of each round becomes more and more significant.

Finally, the work of Goyal, Mohassel, and Smith [GMS08] uses the (two-party) cut-and-choose
technique to construct a multi-party protocol; however, security only holds in the weaker covert
security setting [AL07].

Multi-Party Computation for a Small Number of Parties. Research on secure computation
has traditionally been divided into two classes: work focusing on two-party computation, and work
focusing on multi-party computation for an arbitrary number of parties.1 Yet, in practice, it seems
that the most likely scenarios for secure MPC would involve a small number of parties. In general,
as the number of parties increases, the cost of communication amongst the parties increases as well.
In a wide-area network setting, this may have a huge impact on the running time of the protocol.

In addition, the three-party setting is interesting in its own right. For example, we can consider the
following use-case. Suppose the government would like to run some privacy preserving computation
on a company’s dataset, such as flight manifests. Now, suppose the public does not trust that
these parties are not colluding. Thus, we could add a third party, trusted by the public, into the
computation to enforce that the two main parties are not simply sharing all their information.

Our Contributions. Motivated by these observations, we initiate the study of efficient three-party
computation in the malicious model, tolerating an arbitrary number of corruptions. We construct
the first practical, constant-round protocol for secure three-party computation of Boolean circuits.
Our protocol uses player-simulation techniques in order to compile existing (cut-and-choose-based)
2PC protocols into three-party protocols. We instantiate our compiler with state-of-the-art 2PC
constructions and show that the addition of a third party comes at the cost of roughly a factor eight
overhead over the underlying 2PC protocol in terms of computation, and a factor sixteen overhead
in terms of communication. This running time appears to be superior to existing state-of-the-art
MPC protocols in terms of start-to-finish running time. Of course, computing the exact overhead
requires implementations of both our protocol and the underlying 2PC protocol and is a subject
of future research. As a further optimization point, our protocol makes only three calls overall
to a broadcast channel (one with each party as sender), as opposed to existing practical MPC

1Here we are interested in protocols tolerating an arbitrary number of corruptions. One could further distinguish
work on MPC that assumes an honest majority.

2

solutions (for more than two parties) which use broadcast for communicating all protocol messages.
This may be important in certain wide-area network settings where communication (and broadcast
specifically) is very expensive. The most efficient instantiation of our protocol requires the random
oracle model. As a downside, our protocol does not currently support free-XOR [KS08] or garbled
row reduction [PSSW09]; we leave such developments as future work.

Overview of Our Protocol. Denote the three parties by P1, P2, and P3. The high-level idea
of our construction is to execute a two-party protocol π̂, where one of the two parties (say P̂1) is
emulated by P1 and P2 via a two-party protocol π, and the other party is played by P3.

Clearly, näıvely applying the above idea yields an inefficient construction even when state-of-the-
art 2PC protocols are used for π and π̂. Assume, for example, that the most efficient 2PC protocol
is used for both π and π̂, where π simply computes the circuit of P̂1 among P1 and P2. The security
of the resulting construction follows trivially from the composition theorem. However, unless the
size of the circuit is very small, this approach results in a huge blowup on the overall runtime; in
particular, if t is the time π needs to compute the circuit of P̂1 and t̂ is the time that π̂ needs to
compute the three-party circuit, then the runtime of the above näıve construction is t · t̂, yielding at
least a quadratic blowup.

Emulating the Sender Versus Emulating the Receiver. In most cut-and-choose-based 2PC
protocols, the parties have distinct roles: one is the sender, or circuit generator, and the other is the
receiver, or circuit verifier. One might be tempted to think that, because the role of the verifier in the
protocol is more “passive” (in the sense that the computation is less complicated), the most natural
approach would be to emulate the verifier among P1 and P2 (and have P3 locally do the heavier
work doing circuit generation and opening over broadcast). This seemingly direct approach fails as
one needs a mechanism for P1 and P2 to include their inputs into the garbled circuits. Clearly, doing
so by having P1 first receive his input-keys via OT (as in the original Yao-based constructions) and
then handing them to P2 yields an insecure protocol; indeed, an adversary corrupting P2 and P3

can then trivially learn P1’s inputs.
Instead, in this work we have P1 and P2 emulate the sender, and we have P3 play the role of

the receiver. More precisely, we adapt the distributed circuit-garbling technique [BMR90, DI05]
to the two-party setting, allowing P1 and P2 to compute a sharing of a garbled circuit which they
then reconstruct for P3. By appropriate optimizations, we ensure that distributed garbling requires
P1 and P2 to compute and communicate roughly as much as the sender in an execution of the
Yao protocol (plus some OT calls per gate); P3 needs to do nothing during the circuit garbling.
Most interestingly, our construction features a mechanism which allows P3 to receive the keys
corresponding to his input bits for evaluating the garbled circuit by only one invocation of OT per
input-bit with each of P1 and P2.

Our distributed garbling scheme is secure against malicious adversaries, which ensures that an
adversary corrupting only one of the parties P1 or P2 cannot produce a maliciously constructed
garbled circuit. In order to protect against an adversary who corrupts both P1 and P2, we rely on
the cut-and-choose technique. We give concrete instantiations (in the random oracle model) of our
protocol using a combination of two 2PC protocols by Lindell and Pinkas [LP07, LP11], as well as
a construction based on the more recent protocol by Lindell [Lin13] which drastically reduces the
number of circuit garblings required for cut-and-choose.

Interestingly, the cut-and-choose technique does not only protect against corrupting both P1

and P2, but allows a considerable efficiency improvement. More precisely, it allows us to avoid
using costly authenticated shares (towards P3) for the computed (shared) garbled circuit. Instead,

3

our distributed garbling scheme outputs, even in the malicious setting, a plain two-out-of-two sum
sharing of the garbled circuit.

The Security Model. We assume the reader is familiar with the simulation paradigm [GMW87,
Can00, Can01, Gol09]. For simplicity we restrict ourselves to computation of non-reactive functions,
also known as secure function evaluation. We consider a static adversary that gets to choose
the corrupted parties at the beginning of the protocol. Without loss of generality, we assume
that the circuit to be computed is deterministic and has a single output received by one of the
parties. We point out that although we use the language of Canetti [Can00], all our proofs use
straight-line black-box simulators, which makes our protocols secure in the Universal Composition
framework [Can01].

Outline. In Section 2 we cover preliminary topics. In Section 3 we describe our two-party distributed
garbling scheme, and in Section 4 we discuss our three party protocol. In Section 5 we show how to
instantiate the various two-party functionalities we utilize in our protocols.

2 Preliminaries

We let k denote the computational security parameter and let s denote the statistical security
parameter. We use x←$S to denote choosing a value x uniformly at random from the set S, and
use ‖ to denote concatenation.

Circuit Notation. We follow the circuit notation of Bellare et al. [BHR12]. Let (n,m, q, L,R,G)←
C be a circuit, where n is the number of input wires, m is the number of output wires, and q is the
number of gates, where each gate is indexed by its output wire. Thus, the total number of wires
in the circuit is n + q. The numbering of wires starts with the inputs and ends with the outputs;
i.e., we have inputs {1, . . . , n} and outputs {n + q−m + 1, . . . , n + q}. The function L (resp., R)
takes as input a gate index and returns the left (resp., right) input wire to the gate. We require
L(γ) < R(γ) < γ for any gate index γ. The function G encodes the functionality of a given gate,
e.g., Gγ(0, 1) = 0 if the gate with index γ is an AND gate. Because we consider circuits with inputs
from multiple parties, let {ni−1 + 1, . . . , ni} denote the input wires “controlled” by party Pi, with
n0 = 0.

We denote input gates as those gates with one or more input wires, inner gates as those gates
with no input or output wires, and output gates as those gates with an output wire.

Secret Sharing. Our constructions use two-out-of-two secret sharing. In the semi-honest setting,
we use a standard (linear) sharing of strings: the secret x ∈ {0, 1}∗ is split into two random
summands x1 and x2 such that x1 ⊕ x2 = x, with Pi holding the summand xi. We denote the
sharing of x by [x] = ([x](1) , [x](2)), where we refer to each [x](i) = xi as Pi’s share of x. This
sharing is linear: If [x] and [y] are sharings of x and y respectively, then [x]⊕ [y] is a sharing of x⊕y;

that is, [x⊕ y] = [x]⊕ [y] and thus Pi can locally compute his share as [x⊕ y](i) = [x](i) ⊕ [y](i). It
is straight-forward to verify that the above secret-sharing is private provided that the summands x1
and x2 are uniformly chosen (restricted only on x1 ⊕ x2 = x); i.e., any single share [x](i) contains no
information about the secret x. Reconstructing a sharing [x] is easily done by having each party

announce his share [x](i) and taking x to be the exclusive-or of the announced shares.
Our protocols use shares of two types of secrets: k-bit strings x ∈ {0, 1}k and bits b ∈ {0, 1}. For

clarity in the presentation, we use the bracket notation introduced above for sharings of x ∈ {0, 1}k,

4

and use the notation 〈·〉 for sharings of bits; i.e., if b ∈ {0, 1} then a sharing of b is denoted as
〈b〉 = (〈b〉(1), 〈b〉(2)).

In the malicious setting we need the sharings of bits to be authenticated ; i.e., in addition to
his summand bi, each party Pi holds an authentication tag ti for a Message Authentication Code
(MAC), with another party Pj holding the corresponding verification key kj . More precisely, in
a sharing 〈b〉 = (〈b〉(1), 〈b〉(2)) of b, each party’s share is now a tuple 〈b〉(i) := (bi, ti, kj), where
b1 ⊕ b2 = b, and ti is a valid MAC on bi with key kj . This ensures that the adversary cannot make
the reconstruction output any value other than the secret b. In particular, to reconstruct some
sharing 〈b〉 = (〈b〉(1), 〈b〉(2)), each party Pi first announces his summand bi and the corresponding
authentication tag ti; subsequently, each party Pi checks that the other party Pj announced a validly
authenticated summand matching his own verification key and if this is not the case he rejects. The
inability of an adversarial Pi to announce a summand other than bi follows from the unforgeability
of the MAC, as Pi does not know the key kj matching his authentication tag.

We also assume this authentication is linear in the following sense: Given 〈b〉 and 〈b′〉, the
parties can compute 〈b〉⊕〈b′〉 locally. Namely, 〈b〉⊕〈b′〉 = (〈b⊕ b′〉(1), 〈b⊕ b′〉(2)), where 〈b⊕ b′〉(i) =
(bi ⊕ b′i, ti ⊕ t′i, kj ⊕ k′j) is a valid authentication. We show how to construct such an authenticated
sharing in Section 5.

3 Two-Party Distributed Garbling Scheme

In this section we describe our construction of a two-party distributed garbling scheme. Our protocol
combines the standard Yao garbling circuit technique with the distributed garbling ideas from
Damg̊ard and Ishai [DI05]. The main idea is the following: The players jointly compute a garbled
circuit, where the gates are garbled by use of a distributed encryption scheme which takes, for each
encryption, one key from each party.

In more detail, our construction is described in several steps. As the first step, in Section 3.1
we give a description of our garbling scheme; i.e., the code of the sender in our version of Yao’s
protocol. This section gives the reader familiarity with our notation and is used as a reference in the
distributed protocol. Next, in Section 3.2 we describe an efficient (semi-honest) protocol that allows
parties P1 and P2 to securely emulate the circuit-garbling procedure from Section 3.1. Finally, in
Section 3.3, we show how to make the garbling procedure maliciously secure.

3.1 Single-Party Garbling Scheme

Our garbling scheme is a slight variant of the protocol by Damg̊ard and Ishai [DI05] adapted to two
parties. This should be regarded as an initial step towards our ultimate goal of a distributed garbling
scheme. Here, we describe the high-level construction; see Figure 1 for the detailed protocol.

We associate two random keys Kw,0,Kw,1 with each wire w in the circuit; key Kw,0 corresponds
to the value ‘0’ and Kw,1 corresponds to the value ‘1’. Each key Kw,b consists of two sub-keys s1w,b
and s2w,b; that is, Kw,b = (s1w,b, s

2
w,b). In addition, for each wire w we choose a random mask bit λw.

Each key has an associated tag, derived from the mask bit, which acts as a blinding of the true
value the key represents.

Now, consider gate Gγ in the circuit with input wires α and β. The garbled gate of Gγ consists
of an array of four encryptions: for each (bα, bβ) ∈ {0, 1} × {0, 1}, the row (bα, bβ) consists of an
encryption of Kγ,Gγ(bα⊕λα,bβ⊕λβ)⊕λγ and its corresponding tag Gγ(bα⊕λα, bβ ⊕λβ)⊕λγ under keys

5

Auxiliary Inputs: Security parameter k, circuit (n,m, q, L,R,G)← C.

1. Generate masks:

Generate input and inner mask bits: For w ∈ {1, . . . , n + q−m}: generate λw←$ {0, 1}.
Generate output mask bits: For w ∈ {n + q−m + 1, . . . , n + q}: generate λw ← 0.

2. Generate sub-keys:

For wires w ∈ {1, . . . , n + q} and b ∈ {0, 1}: generate sub-keys s1w,b, s
2
w,b←$ {0, 1}k.

3. Construct garbled circuit:

Construct garbled gates: For gates γ ∈ {n + 1, . . . , n + q}, do the following:
Let α← L(γ) and β ← R(γ) be the index of the left and right input wires, respectively, of the gate
indexed by γ. Letting Kw,b = (s1w,b, s

2
w,b), compute the following:

P [γ, 0, 0]←EncKα,0,Kβ,0

(
Kγ,Gγ(λα,λβ)⊕λγ‖Gγ(λα, λβ)⊕ λγ

)
P [γ, 0, 1]←EncKα,0,Kβ,1

(
Kγ,Gγ(λα,λβ⊕1)⊕λγ‖Gγ(λα, λβ ⊕ 1)⊕ λγ

)
P [γ, 1, 0]←EncKα,1,Kβ,0

(
Kγ,Gγ(λα⊕1,λβ)⊕λγ‖Gγ(λα ⊕ 1, λβ)⊕ λγ

)
P [γ, 1, 1]←EncKα,1,Kβ,1

(
Kγ,Gγ(λα⊕1,λβ⊕1)⊕λγ‖Gγ(λα ⊕ 1, λβ ⊕ 1)⊕ λγ

)
4. Output circuit:

Set GC ← (n,m, q, L,R, P), and output:(
GC,

{
(s1w,b⊕λw , s

2
w,b⊕λw , b⊕ λw) : w ∈ {1, . . . , n}, b ∈ {0, 1}

})
.

Figure 1: Circuit garbling scheme.

Kα,bα and Kβ,bβ . Let P denote a table that stores all the garbled gates; in particular, the entry
P [γ, bα, bβ] contains an encryption corresponding to row (bα, bβ) of the garbled gate for Gγ .

Evaluation proceeds as follows. Let α and β be input wires connected to gate G with index γ.
The evaluator is given (Kα,bα⊕λα , bα ⊕ λα) and (Kβ,bβ⊕λβ , bβ ⊕ λβ), along with P . He takes the
row P [γ, bα ⊕ λα, bβ ⊕ λβ] and decrypts it using the keys Kα,bα⊕λα and Kβ,bβ⊕λβ , resulting in
(Kγ,G(bα,bβ)⊕λγ , G(bα, bβ)⊕ λγ). It is straightforward to verify that by continuing this evaluation,
the output of each gate will be revealed masked by its corresponding mask. By picking masks of the
output wires to be ‘0’ we ensure that the evaluator receives the (unmasked) output of the circuit.

3.2 Distributing the Garbling Scheme Between Two Parties

We now show how to emulate the above garbling scheme between two parties in the semi-honest
setting. We assume the parties have access to the following two-party ideal functionalities:

Gate computation FGgate(〈a〉, 〈b〉): The functionality takes as input sharings 〈a〉 and 〈b〉 of bits a
and b, respectively, and is parameterized by a binary gate G; it outputs a sharing 〈G(a, b)〉 of
the output of G on input (a, b).

One-out-of-two oblivious secret sharing F ioshare(〈b〉,m0,m1): The functionality takes as input a
sharing 〈b〉 of a bit b (i.e., each party inputs his share), along with two messages m0, m1 from
Pi, and outputs a random two-out-of-two sharing [mb] of mb.

Constant bit sharing Fbconst(): The functionality is parameterized by a bit b ∈ {0, 1}, and
outputs a random sharing 〈b〉 of b.

6

Random bit sharing Frand(): The functionality chooses a random bit r←$ {0, 1} and computes
and outputs a random sharing 〈r〉 of r.

Bit secret sharing F iss(b): The functionality takes input bit b ∈ {0, 1} from Pi and outputs a
random two-out-of-two sharing 〈b〉 of b.

Each of these can be instantiated efficiently in the semi-honest setting; see Appendix A and
Appendix B for details.

Distributed Encryption Scheme. We utilize the distributed encryption scheme by Damg̊ard
and Ishai [DI05]. Suppose the message and the key for the encryption scheme are distributed as
follows:

The message m is secret-shared; i.e., P1 and P2 hold [m](1) and [m](2), respectively.

The encryption key K = (s1, s2) is distributed such that P1 and P2 hold s1 and s2, respectively.

The encryption of the secret-shared message m with tweak T under key K = (s1, s2) is:

EncTK([m]) =
(
Enc1s1,T

(
[m](1)

)
,Enc2s2,T

(
[m](2)

))
=
(

[m](1) ⊕ F 1
s1(T), [m](2) ⊕ F 1

s2(T)
)
,

where F 1
k is a PRF keyed by key k. To decrypt a ciphertext c := EncTK(m), each party Pi sends his

sub-key si to the decrypter, who uses them to recover the shares of m and reconstruct m.
Double encryption is defined analogously. For keys Kα = (s1α, s

2
α) and Kβ = (s1β, s

2
β), where Pi

holds (siα, s
i
β), encryption with tweak T works as follows:

EncTKα,Kβ ([m]) =
(

[m](1) ⊕ F 1
s1α

(T)⊕ F 2
s1β

(T), [m](2) ⊕ F 1
s2α

(T)⊕ F 2
s2β

(T)
)
.

Distributed Garbling Scheme. We now give a high-level description of our two-party distributed
garbling scheme ΠGC(P1, P2); see Figure 2 for the detailed description. As before, for each wire w
in the circuit we associate keys Kw,0 = (s1w,0, s

2
w,0) and Kw,1 = (s1w,1, s

2
w,1) corresponding to bits ‘0’

and ‘1’, respectively. However, in the distributed setting, each sub-key is only known to one of the
two parties; i.e., Pi only knows (siw,0, s

i
w,1). Each wire is also associated with a mask bit λw which

is secret shared between the two parties such that no party knows λw.
Consider gate Gγ in the circuit with input wires indexed by α and β. As in the non-distributed

case, we construct an array containing four rows corresponding to a random permutation of the
four possible outcomes of gate Gγ applied to bits bα and bβ. However, in the distributed case
neither party should know what is being encrypted. Recall that in the non-distributed setting, the
circuit generator can easily compute Gγ(λα ⊕ bα, λβ ⊕ bβ) to construct the array. However, in the
distributed setting, neither party knows (and should not know) λα or λβ . Thus, the parties utilize
the Fgate functionality, which takes as input the shares 〈λα〉 ⊕ 〈bα〉 and 〈λβ〉 ⊕ 〈bβ〉, and computes
a sharing of Gγ(λα⊕ bα, λβ ⊕ bβ). Let 〈σγ,bα,bβ 〉 = FGgate(〈bα〉 ⊕ 〈λα〉, 〈bβ〉 ⊕ 〈λβ〉)⊕ 〈λγ〉. The value
σγ,bα,bβ denotes which key to encrypt; that is, in row (bα, bβ) we encrypt key Kγ,σγ,bα,bβ

. However,

we must still enforce that neither party knows what key Kγ,σγ,bα,bβ
represents. We handle this by

utilizing another functionality, Foshare. For each of the four σγ,bα,bβ values, and for each party Pi,

the parties compute F ioshare(〈σγ,bα,bβ 〉, siγ,0, siγ,1). This produces a share of the appropriate sub-key
for party Pi, with the crucial fact that Pi does not know which of his sub-keys was shared. The
results of Foshare are used as the shares to be encrypted.

7

Protocol ΠGC(P1, P2)

Auxiliary Inputs: Security parameter k, circuit (n,m, q, L,R,G)← C.

Parties P1 and P2 generate 〈1〉 ← F1
const, which they use throughout the protocol.

1. Generate mask bits:

Generate masks for P1’s inputs: For w ∈ {1, . . . , n1}: P1 generates λw←$ {0, 1} and computes
〈λw〉 ← F1

ss(λw).

Generate masks for P2’s inputs: For w ∈ {n1 +1, . . . , n}: P2 generates λw←$ {0, 1} and computes
〈λw〉 ← F2

ss(λw).

Generate masks for inner wires: For w ∈ {n + 1, . . . , n + q−m}: generate 〈λw〉 ← Frand.

Generate masks for output wires: For w ∈ {n + q−m + 1, . . . , n + q}: generate 〈λw〉 ← F0
const.

a

2. Generate sub-keys:

For w ∈ {1, . . . , n + q} and b ∈ {0, 1}: Pi generates sub-keys siw,b←$ {0, 1}k.

3. Construct garbled circuit:

For γ ∈ {n + 1, . . . , n + q}:
Let α← L(γ) and β ← R(γ) be the indices of the left and right input wires, respectively, of the
gate indexed by γ. Compute the following selector bits:

〈σγ,0,0〉 ← FGγgate(〈λα〉, 〈λβ〉)⊕ 〈λγ〉 〈σγ,0,1〉 ← FGγgate(〈λα〉, 〈λβ〉 ⊕ 〈1〉)⊕ 〈λγ〉
〈σγ,1,0〉 ← FGγgate(〈λα〉 ⊕ 〈1〉, 〈λβ〉)⊕ 〈λγ〉 〈σγ,1,1〉 ← FGγgate(〈λα〉 ⊕ 〈1〉, 〈λβ〉 ⊕ 〈1〉)⊕ 〈λγ〉.

Next, compute sharings of the appropriate sub-keys to use for each row:[
ŝ1γ,0,0

]
← F1

oshare(〈σγ,0,0〉, s1γ,0, s1γ,1),
[
ŝ2γ,0,0

]
← F2

oshare(〈σγ,0,0〉, s2γ,0, s2γ,1)[
ŝ1γ,0,1

]
← F1

oshare(〈σγ,0,1〉, s1γ,0, s1γ,1),
[
ŝ2γ,0,1

]
← F2

oshare(〈σγ,0,1〉, s2γ,0, s2γ,1)[
ŝ1γ,1,0

]
← F1

oshare(〈σγ,1,0〉, s1γ,0, s1γ,1),
[
ŝ2γ,1,0

]
← F2

oshare(〈σγ,1,0〉, s2γ,0, s2γ,1)[
ŝ1γ,1,1

]
← F1

oshare(〈σγ,1,1〉, s1γ,0, s1γ,1),
[
ŝ2γ,1,1

]
← F2

oshare(〈σγ,1,1〉, s2γ,0, s2γ,1).

Finally, compute the distributed encryptions of the (permuted) sub-keys and selector bits. That
is, letting Kw,b = (s1w,b, s

2
w,b), compute:

P [γ, 0, 0] = (P 1[γ, 0, 0], P 2[γ, 0, 0])← Enc
γ‖0‖0
Kα,0,Kβ,0

(
[
ŝ1γ,0,0

]
‖
[
ŝ2γ,0,0

]
‖〈σγ,0,0〉),

P [γ, 0, 1] = (P 1[γ, 0, 1], P 2[γ, 0, 1])← Enc
γ‖0‖1
Kα,0,Kβ,1

(
[
ŝ1γ,0,1

]
‖
[
ŝ2γ,0,1

]
‖〈σγ,0,1〉),

P [γ, 1, 0] = (P 1[γ, 1, 0], P 2[γ, 1, 0])← Enc
γ‖1‖0
Kα,1,Kβ,0

(
[
ŝ1γ,1,0

]
‖
[
ŝ2γ,1,0

]
‖〈σγ,1,0〉),

P [γ, 1, 1] = (P 1[γ, 1, 1], P 2[γ, 1, 1])← Enc
γ‖1‖1
Kα,1,Kβ,1

(
[
ŝ1γ,1,1

]
‖
[
ŝ2γ,1,1

]
‖〈σγ,1,1〉).

4. Output circuit:

Let GCi ← (n,m, q, L,R, P i) and let SKi ←
{

(siw,0, s
i
w,1) : w ∈ {1, . . . , n}

}
.

P1 outputs the tuple
(
GC1, SK1,

{
(〈bw〉(1), 〈λw〉(1), bw, λw) : w ∈ {1, . . . , n1}

})
.

P2 outputs the tuple
(
GC2, SK2,

{
(〈bw〉(2), 〈λw〉(2), bw, λw) : w ∈ {n1 + 1, . . . , n}

})
.

aNote that we do not in fact need to create ‘zero’ masks for the output wires; we include this step mainly
for ease of presentation.

Figure 2: Two-party distributed circuit garbling protocol. For semi-honest security use standard
secret sharing for the bits; for malicious security use authenticated secret sharing.

Note that we can use this two-party distributed garbling scheme as a building block for a
somewhat efficient semi-honest two-party secure computation protocol. See Appendix D for the

8

detailed construction. We do not claim that this scheme is superior to existing 2PC protocols;
however, it serves as an important building-block to our end goal of an efficient 3PC protocol.

Also note that this distributed garbling scheme can scale to more than two parties, given access to
multi-party variants of the necessary functionalities. Thus, we can also achieve (semi-honest) multi -
party secure computation using this approach; we leave the development of efficient instantiations
of these functionalities as future work.

3.3 Achieving Malicious Security

The semi-honest distributed garbling scheme described in Section 3.2 can be directly adapted to work
against a malicious adversary by modifying the hybrid functionalities to work in an authenticated
manner; namely, we use authenticated sharings in place of standard secret sharings:

F1
const() and Frand(): The output share is authenticated.

FGgate(〈a〉, 〈b〉): The inputs and outputs are all authenticated sharings.

F ioshare(〈b〉,m0,m1): The selection bit b is an authenticated sharing.

F iss(b): The output is an authenticated sharing of b.

See Appendix A for the detailed descriptions.
We also need to define a notion of encrypting authenticated shares. Recall that for an authenti-

cated share 〈b〉 = (〈b〉(1), 〈b〉(2)), we have 〈b〉(i) = (bi, ti, kj), where party Pi holds bi and ti and party
Pj holds kj . Thus, letting K = (s1, s2), we define

EncTK(〈b〉) = (Enc1s1,T (b1‖t1‖k1),Enc2s2,T (b2‖t2‖k2)).

On decryption, each party’s ciphertext is decrypted and the authenticity of b1 and b2 are verified
using the (encrypted) tags and keys. Thus, when evaluating a garbled circuit, the party checks the
authenticity of the share from the decrypted row of each garbled gate; if the check fails, the party
aborts.

Again, we can convert this garbling scheme into a (now maliciously-secure) 2PC scheme; see
Appendix D for the details. Likewise, we could also construct an MPC variant with efficient
multi-party instantiations of the underlying functionalities which we leave as future work.

4 Three-Party Computation from Cut-and-Choose

As mentioned above, we can directly adapt the distributed garbling scheme to work over multiple
parties, and thus construct a 3PC scheme; however, in this case the underlying functionalities need
to support multiple parties rather than just two parties and are thus unlikely to be more efficient in
practice. Thus, in this section we show how to utilize the maliciously secure two-party distributed
garbling scheme from Section 3 to construct a maliciously secure three-party secure computation
protocol, using almost entirely two-party constructs (the only three-party functionality needed is
that of coin-tossing).

We first cover preliminary notions, such as the ideal functionalities we need, in Section 4.1. Then,
in Section 4.2 we show how to adapt a combination of two existing cut-and-choose protocols [LP07,
LP11] to the three-party setting. Finally, in Section 4.3 we use this “generic” protocol to show
how to adapt Lindell’s protocol [Lin13] (the current state-of-the-art Yao-based protocol at the time

9

of writing) to the three-party setting. The cost of each of these three-party protocols is roughly
eight times the computational cost of the underlying two-party protocol they are based on, and
roughly sixteen times the communication cost (plus the cost of a small number of OTs per gate,
which can be efficiently amortized using OT extension [IKNP03, NNOB12]), and thus we show that
we can achieve efficient secure three-party computation at only a small factor of the cost of the most
efficient Yao-based two-party protocol.

4.1 Preliminaries

Ideal Functionalities. In addition to the ideal functionalities used in the two-party distributed
garbling scheme, we need the following additional (maliciously secure) functionalities:

Three-party coin-flipping Fcf (): The functionality outputs a random bit-string ρ←$ {0, 1}s to
each party.

One-out-of-two oblivious transfer F i,jot (b,m0,m1): The functionality takes as input a choice bit
b from party Pi and messages m0, m1 from Pj , and outputs mb to party Pi.

ZKPoK of extended Diffie-Hellman tuple F i,jzkpok(a, (g, h0, h1, {ui, vi}i)): The functionality takes
as input a from party Pi, and tuple (g, h0, h1, {ui, vi}i) from party Pj , and outputs 1 to party
Pj if either all tuples in {(g, h0, ui, vi)}i are Diffie-Hellman tuples with h0 = ga or all tuples in
{(g, h1, ui, vi)}i are Diffie-Hellman tuples with h1 = ga, and 0 otherwise.

These can all be efficiently instantiated in a standard fashion. We can implement Fcf in the Random
Oracle Model using three commitments and openings. The Fot functionality can be instantiated
using any maliciously secure OT implementation, such as the construction by Peikert et al. [PVW08].
Likewise, Fzkpok can be efficiently instantiated using existing protocols [LP11, Section B].

Distributed Garbled Circuits for Three Parties. Note that the garbling protocol ΠGC in
Figure 2 only garbles a circuit containing inputs from two parties. We can easily adapt this to
support input from a third (external) party as follows. Let Π′GC(P1, P2) be the same as ΠGC(P1, P2)
except for the following modifications:

All of the operations over P2’s input now operate over wires w ∈ {n1 + 1, . . . , n2}.
In Step 1, we add the following sub-step for generating shares for P3’s input wires:

For w ∈ {n2 + 1, . . . , n}: generate 〈λw〉 ← Frand.

In Step 4, party Pi outputs
{
〈λw〉(i) : w ∈ {n2 + 1, . . . , n}

}
in addition to his normal outputs.

4.2 Achieving Malicious Security for Three Parties

Note that our two-party distributed garbling scheme has the property that if at most one of the two
parties is corrupt, the garbling of circuit C either correctly evaluates C on P1’s and P2’s inputs, or
causes the evaluator to abort. That is, a malicious party cannot “alter” the garbling to evaluate
some circuit other than C. Now, if both P1 and P2 are corrupt, they can of course garble an arbitrary
circuit. This suggests the following approach to three-party computation: If either P1 or P2 are
honest, we need only construct a single garbled circuit, which is sent to P3 to be evaluated. To cover
the case where both P1 and P2 are corrupt, we use cut-and-choose to prevent P3 from evaluating a
maliciously constructed circuit. In what follows, we utilize existing cut-and-choose protocols from
the literature [LP07, LP11], and “plug in” our distributed garbling scheme as necessary. Thus,

10

security mostly follows from the security proofs of the underlying cut-and-choose protocols. In
Section 4.3, we show how we can use this protocol in an adaptation of Lindell’s protocol [Lin13] to
the three-party setting.

The basic intuition for security is as follows. Cut-and-choose is used to prevent P3 from evaluating
maliciously constructed circuits when both P1 and P2 are malicious. For the case where either P1

or P2 is honest, Π′GC(P1, P2) assures us that the garbled circuit constructed between P1 and P2 is
either correctly constructed or causes P3 to abort (independent of any party’s input).

Protocol Description. We assume the reader is familiar with the cut-and-choose technique; here
we briefly discuss the main technical challenges that result from a näıve application of cut-and-choose
and how we address them.

Input Inconsistency. The use of cut-and-choose produces multiple garbled circuits to be evaluated
by P3. The idea with this attack is that a given party (either P1 or P2 in the three-party case)
can give inconsistent sub-keys in each of these circuits such that P3 ends up evaluating different
inputs for P1/P2 instead of consistent inputs across all garbled circuits. This is a well-known
attack, and there are multiple solutions in the two-party setting. Here, we use the Diffie-Hellman
pseudorandom synthesizer trick [MF06, LP11] and adapt it in a straightforward manner to the
three-party setting.

Selective Failure. This attack arises any time the parties execute an OT to send the sub-keys
for P3’s input. Note that if the sender in the OT (either party P1 or P2) inputs one valid
label and one invalid label, he can learn a bit of P3’s input by learning whether the garbled
circuit evaluation fails or not. We circumvent this problem by directly applying the “XOR-tree”
approach [LP07, Woo07].

We now give a high-level description of our protocol.

1. The parties first replace the input circuit C0 with a circuit C, where the only difference is
each of P3’s input wires is replaced by an XOR of s new input wires, preventing either party
P1 or P2 from launching a selective failure attack on P3’s input choices.

2. P1 and P2 generate the required commitments needed for input consistency, as is done in the
protocol of Lindell and Pinkas [LP11].

3. P1 and P2 construct s garbled circuits using Π′GC and the input sub-keys generated as is done
in the protocol of Lindell and Pinkas [LP11].

4. P1 and P2 compute authenticated sharings (between each other; P3 is not involved here) of
their input bits.

5. P1 and P2 both run (separately) an OT protocol with P3 for each of P3’s input wires, where
P1/P2 input their sub-keys and P3 chooses based on his input. (Note that any cheating by
P1/P2 here will be caught with high-probability by the cut-and-choose step below.) Thus, P3

now has keys for each of his input bits.

6. P1 and P2 send the (distributed) garbled circuits, along with the input consistency commit-
ments, to P3.

7. All three parties run a coin-tossing protocol to determine which circuits for P3 to open and
which to evaluate.

11

8. For the evaluation circuits, P1 and P2 send the sub-keys and selector bits for their inputs to P3.
Note that we need to be careful in this step, as we need to enforce that, for example, P1 uses
the same input as was shared in Step 2 above. This is accomplished as follows. Recall that
P1 and P2 have sharings of each other’s inputs and mask bits, all of which are authenticated.
Thus, P1 can send the (authenticated) share of her masked input to P2, who can verify its
authenticity, and thus reconstruct the masked input bit using his own share. This allows an
honest P2 to send the correct sub-key (correct in the sense that it corresponds to P1’s input
shared in Step 2) to P3, even with a malicious P1.

9. For the check circuits, P1 and P2 send the required information for P3 to decrypt the check
circuits and verify correctness. If any of these check circuits are incorrectly constructed, P3

aborts; otherwise, he has high confidence that the majority of the evaluation circuits are
correctly constructed.

10. For the evaluation circuits, P3 checks for input consistency against the sub-keys sent by P1

and P2 in Step 8 using a zero-knowledge proof-of-knowledge protocol [LP11], aborting on any
inconsistency.

11. Finally, P3 evaluates the evaluation circuits, outputting the majority over the circuits’ output.

See below for the full protocol description.

Protocol Πm
3PC(P1, P2, P3)

Auxiliary Inputs: Security parameter k, statistical security parameter s, circuit C0, cyclic group G with (prime)
order q and generator g, and randomness extractor H.

Inputs: For w ∈ {1, . . . , n1}, P1 has inputs bw; for w ∈ {n1 +1, . . . , n2}, P1 has inputs bw; for w ∈ {n2 +1, . . . , n},
P3 has inputs bw.

1. Each party replaces C0 with a circuit C where each of P3’s input wires is replaced by an exclusive-or of s
new input wires. We let (n,m, q, L,R,G)← C, and denote P3’s new inputs by b̂w.

2. For w ∈ {1, . . . , n1}: P1 generates a1w,0, a
1
w,1←$Zq and constructs set

{
(w, 0, ga

1
w,0), (w, 1, ga

1
w,1)

}
.

For w ∈ {n1 + 1, . . . , n2}: P2 generates a2w,0, a
2
w,1←$Zq and constructs set

{
(w, 0, ga

2
w,0), (w, 1, ga

2
w,1)

}
.

For j ∈ {1, . . . , s}: Pi, for i ∈ {1, 2}, generates rij←$Zq and constructs set
{

(j, gr
i
j)
}

.

For j ∈ {1, . . . , s}: P1 and P2 run up to Step 2 (“Generate sub-keys”) of Π3
GC(P1, P2), where the parties do

the following in the jth iteration:

For w ∈ {1, . . . , n1}: P1 generates sub-keys s1w,b⊕λw,j ,j ← H(ga
1
w,b·r

1
j) for b ∈ {0, 1}.

For w ∈ {n1 + 1, . . . , n2}: P2 generates sub-keys s2w,b⊕λw,j ,j ← H(ga
2
w,b·r

2
j) for b ∈ {0, 1}.

All other sub-keys are generated in the normal fashion.

3. For j ∈ {1, . . . , s}: P1 and P2 continue their executions of Π3
GC(P1, P2), producing garbled circuit GCj .

4. For w ∈ {1, . . . , n1}: P1 and P2 compute 〈bw〉 ← F1
ss(bw).

For w ∈ {n1 + 1, . . . , n2}: P1 and P2 compute 〈bw〉 ← F2
ss(bw).

5. For j ∈ {1, . . . , s} and w ∈ {n2 + 1, . . . , n}: P1 and P2 exchange 〈λw,j〉 with each other, reconstructing λw,j
locally. Both P1 and P2 send λw,j to P3.
For w ∈ {n2 + 1, . . . , n}: Pi, for i ∈ {1, 2}, and P3 run Fot, with Pi as the sender inputting({

siw,λw,j ,j

}
j∈{1,...,s}

,
{
siw,λw,j⊕1,j

}
j∈{1,...,s}

)
and P3 as the receiver inputting b̂w.

6. Pi, for i ∈ {1, 2}, sends the sets constructed in Step 2, along with the garbled circuit
{
GCij

}s
i=1

, to P3.

12

7. The parties compute ρ← Fcf . Let CC = {i : ρi = 1}, and let EC = {1, . . . , s} \ CC.
8. For j ∈ EC:

For w ∈ {1, . . . , n1}: P1 sends 〈bw〉(1) ⊕ 〈λw,j〉(1) to P2, who reconstructs bw ⊕ λw,j locally. P1 sends
(s1w,bw⊕λw,j ,j , bw ⊕ λw,j) to P3, and P2 sends (s2w,bw⊕λw,j ,j , bw ⊕ λw,j) to P3.

For w ∈ {n1 + 1, . . . , n}: P2 sends 〈bw〉(2) ⊕ 〈λw,j〉(2) to P1, who reconstructs bw ⊕ λw,j locally. P1

sends (s1w,bw⊕λw,j ,j , bw ⊕ λw,j) to P3, and P2 sends (s2w,bw⊕λw,j ,j , bw ⊕ λw,j) to P3.

9. For j ∈ CC:

Pi, for i ∈ {1, 2}, does the following:

Sends rij to P3, and P3 checks that these values are consistent with the pairs
{

(j, gr
i
j)
}

sent before.

For w ∈ {1, . . . , n}: Sends sub-keys siw,0,j and siw,1,j , mask bit share λ
(i)
w,j , and the keys to the

authenticated bits to P3.

Given the above information, P3 reconstructs all input labels and verifies they match with those labels
sent previously. Also, using said labels, P3 verifies that the garbled circuit is correctly constructed.

10. For j ∈ EC:

For w ∈ {1, . . . , n1}: P1 sends ga
1
w,bw

·r1j to P3, who computes s1w,bw⊕λw,j ,j ← H(ga
1
w,bw

·r1j).

For w ∈ {n1 + 1, . . . , n2}: P2 sends ga
2
w,bw

·r2j to P3, who computes s2w,bw⊕λw,j ,j ← H(ga
2
w,bw

·r2j).

For w ∈ {1, . . . , n1}: P1 and P3 run Fzkpok, with P1 as the prover inputting a1w,bw and P3 as the verifier

inputting

(
g, ga

1
w,0 , ga

1
w,1 ,

{
(gr

1
j , ga

1
w,bw

·r1j)
}
j∈EC

)
.

For w ∈ {n1 + 1, . . . , n2}: P2 and P3 run Fzkpok, with P2 as the prover inputting a2w,bw and P3 as the

verifier inputting

(
g, ga

2
w,0 , ga

2
w,1 ,

{
(gr

2
j , ga

2
w,bw

·r2j)
}
j∈EC

)
.

11. For j ∈ EC: P3 evaluates circuit GCj using
{

(s1w,bw⊕λw,j ,j , s
2
w,bw⊕λw,j ,j , bw ⊕ λw,j)

}
w∈{1,...,n}

as inputs.

P3 outputs the majority output over the evaluated circuits.

Theorem 1. Let C be an arbitrary polynomial-size circuit and let G be a cyclic group with prime
order. Given access to ideal functionalities Fconst, Fgate, Foshare, Fot, Frand, and Fss, and
assuming that the decisional Diffie-Hellman problem is hard in G, then Πm

3PC(P1, P2, P3) securely
computes the circuit C in the presence of an adversary corrupting an arbitrary number of parties.

Proof. See Appendix E.

4.3 Adapting Lindell’s Protocol to the Three-Party Setting

The 3PC protocol described above has a replication factor of roughly 3×; namely, for statistical
security parameter s, the actual probability of cheating is roughly 2−0.32s [LP11]. Thus, for a desired
error probability of 2−40 a total of 128 circuits need to be garbled. Recently, Lindell [Lin13] showed
a beautiful construction which removes this replication factor in the two-party setting; that is, for a
cheating probability of 2−s the sender needs to garble only s circuits. In this section we show how
to adapt this protocol to the three-party setting.

Lindell’s construction works in two phases. In the first phase, the parties do a standard cut-
and-choose, with P1 constructing s circuits (for error probability 2−s) and P2 opening half of them.
If, during evaluation, P2 finds that two or more circuits have conflicting outputs, it stores these
conflicting outputs as a “proof-of-cheating” φ. In the second phase, the parties run a circuit which

13

takes as input from P1 her original input x, and from P2 the “proof-of-cheating” φ. If φ is a valid
proof, then the circuit reveals x to P2, who can then compute the output himself; otherwise P2 gets
no output. Thus, this second phase enforces that if P1 cheated in the cut-and-choose then P2 learns
P1’s input.

To adapt this to the three-party setting, we proceed as follows. For the circuit in the first
phase, we essentially just run Πm

3PC(P1, P2, P3), with the same tweaks as are used by Lindell [Lin13]
(namely, the use of encoded output translation tables and doing circuit evaluation before circuit
checking).

For the second phase circuit, we run into some issues, due to Lindell’s scheme being inherently
a “two-party” approach. Recall that this circuit is constructed in such a way that if P2 receives
any conflicting outputs when evaluating, he inputs these outputs as a “proof-of-cheating” in order
to reveal P1’s input. At first glance, it appears this technique would not work in the three-party
setting because in that case P3 needs to learn both P1’s and P2’s inputs to reconstruct the output;
however, it could be the case that only one of these two parties is cheating. Recall, however, that
our distributed garbling scheme enforces that as long as one of the two parties is honest, the garbled
circuits are “correct” in the sense that they either correctly compute the desired circuit are cause a
failure independent of any party’s input. Thus, P3 only finds mismatched outputs in the case where
both P1 and P2 cheat, making it okay at this point to reveal both those parties’ inputs in the second
phase circuit.

Another issue arises in how this circuit is constructed. In Lindell’s two-party scheme, P1

hardwires the output keys into the circuit. In a näıve adaptation to the three-party setting, both P1

and P2 would need to hardwire their output sub-keys into the circuit. However, this would allow
each party to learn the others’ sub-keys for the output, which leads to the following attack by a
colluding P1 and P3: During the construction of the second phase circuit, P1 learns P2’s output
sub-keys, and he sends these, as well as his own output sub-keys, to P3. Now, when P3 evaluates
the circuit, he can input conflicting outputs as his “proof-of-cheating” because he knows all of the
outputs keys, thus allowing P1 and P3 to learn P2’s input. We can fix this by having the output
sub-keys of P1 and P2 be inputs to the circuit, rather than hardcoded. However, this raises another
issue, as P3 cannot verify that the sub-keys input by P1 and P2 are the correct ones. Thus, we
modify the circuit to output these sub-keys in the clear, allowing P3 to do this check.

See below for the full protocol description.

Protocol Πm−lindell
3PC (P1, P2, P3)

Auxiliary Inputs: Security parameter k, statistical security parameter s, circuit C0, cyclic group G with (prime)
order q and generator g, and randomness extractor H.

Inputs: For w ∈ {1, . . . , n1}, P1 has inputs bw; for w ∈ {n1 +1, . . . , n2}, P2 has inputs bw; for w ∈ {n2 +1, . . . , n},
P3 has inputs bw.

1. Each party replaces C0 with a circuit C where each of P3’s input wires is replaced by an exclusive-or of s
new input wires. We let (n,m, q, L,R,G)← C, and denote P3’s new inputs by b̂w.

2. For w ∈ {1, . . . , n1}: P1 generates a1w,0, a
1
w,1←$Zq and constructs set

{
(w, 0, ga

1
w,0), (w, 1, ga

1
w,1)

}
.

For w ∈ {n1 + 1, . . . , n2}: P2 generates a2w,0, a
2
w,1←$Zq and constructs set

{
(w, 0, ga

2
w,0), (w, 1, ga

2
w,1)

}
.

For w ∈ {n + q−m + 1, . . . , n + q}: Pi, for i ∈ {1, 2}, generates oiw,0, o
i
w,1←$ {0, 1}k.

For j ∈ {1, . . . , s}: Pi, for i ∈ {1, 2}, generates rij←$Zq and constructs set
{

(j, gr
i
j)
}

.

14

For j ∈ {1, . . . , s}: P1 and P2 run up to Step 2 (“Generate sub-keys”) of Π′GC(P1, P2), where the parties do
the following:

For w ∈ {1, . . . , n1}: P1 generates sub-keys s1w,b⊕λw,j ,j ← H(ga
1
w,b·r

1
j) for b ∈ {0, 1}.

For w ∈ {n1 + 1, . . . , n2}: P2 generates sub-keys s2w,b⊕λw,j ,j ← H(ga
2
w,b·r

2
j) for b ∈ {0, 1}.

For w ∈ {n + q−m + 1, . . . , n + q}: Pi sets siw,b⊕λw,j ← oiw,b.

All other sub-keys are generated in the normal fashion.

3. For j ∈ {1, . . . , s}: P1 and P2 continue their executions of Π′GC(P1, P2), producing (distributed) garbled
circuit GCj := (GC1

j , GC
2
j).

4. For w ∈ {1, . . . , n1}: P1 and P2 compute 〈bw〉 ← F1
ss(bw).

For w ∈ {n1 + 1, . . . , n2}: P1 and P2 compute 〈bw〉 ← F2
ss(bw).

5. For j ∈ {1, . . . , s} and w ∈ {n2 + 1, . . . , n}: P1 and P2 exchange 〈λw,j〉 with each other, reconstructing λw,j
locally. Both P1 and P2 send λw,j to P3.
For w ∈ {n2 + 1, . . . , n}: Pi, for i ∈ {1, 2}, and P3 run Fot, with Pi as the sender inputting({

siw,λw,j ,j

}
j∈{1,...,s}

,
{
siw,λw,j⊕1,j

}
j∈{1,...,s}

)
and P3 as the receiver inputting b̂w.

6. For i ∈ {1, 2}: Pi sends the sets constructed in Step 2, along with the garbled circuit
{
GCij

}s
j=1

, to P3. In

addition, Pi sends the encoded output translation table
{

(H(oiw,0), H(oiw,1))
}n+q

w=n+q−m+1
to P3.

7. The parties compute ρ← Fcf . Let CC = {i : ρi = 1}, and let EC = {1, . . . , s} \ CC.
8. For j ∈ EC (the evaluation circuits):

For w ∈ {1, . . . , n1}: P1 sends 〈bw〉(1) ⊕ 〈λw,j〉(1) to P2, who reconstructs bw ⊕ λw,j locally. P1 sends
(s1w,bw⊕λw,j ,j , bw ⊕ λw,j) to P3, and P2 sends (s2w,bw⊕λw,j ,j , bw ⊕ λw,j) to P3.

For w ∈ {n1 + 1, . . . , n}: P2 sends 〈bw〉(2) ⊕ 〈λw,j〉(2) to P1, who reconstructs bw ⊕ λw,j locally. P1

sends (s1w,bw⊕λw,j ,j , bw ⊕ λw,j) to P3, and P2 sends (s2w,bw⊕λw,j ,j , bw ⊕ λw,j) to P3.

For w ∈ {1, . . . , n1}: P1 sends k1w,j := ga
1
w,bw

·r1j to P3, who computes s1w,bw⊕λw,j ,j ← H(ga
1
w,bw

·r1j).

For w ∈ {n1 + 1, . . . , n2}: P2 sends k2w,j := ga
2
w,bw

·r2j to P3, who computes s2w,bw⊕λw,j ,j ← H(ga
2
w,bw

·r2j).

P3 evaluates circuit GCj using
{

(s1w,bw⊕λw,j ,j , s
2
w,bw⊕λw,j ,j , bw ⊕ λw,j)

}
w∈{1,...,n}

as inputs.

P3 uses the encoded output translation tables sent in Step 6 to check if he received exactly one valid output
value for each output wire. If not, he stores these outputs as oj0 and oj1 and continues.

9. P1 and P2 construct a circuit C′ as follows:

P1 inputs string x ∈ {0, 1}n1 and strings oiw,0, o
i
w,1 ∈ {0, 1}k, for w ∈ {n + q−m + 1, . . . , n + q}.

P1 inputs string y ∈ {0, 1}n2−n1 and strings o2w,0, o
2
w,1 ∈ {0, 1}k, for w ∈ {n + q−m + 1, . . . , n + q}.

P3 inputs o0, o1 ∈ {0, 1}k.

If there exists some j such that o1j,0‖o2j,0 = oj0 and o1j,1‖o2j,1 = oj1, then P3’s output is x‖y; otherwise P3

receives no output.

The circuit also outputs the values
{
o1w,0, o

1
w,1, o

2
w,0, o

2
w,1

}n+q

w=n+q−m+1
input by parties P1 and P2 above.

The parties run Πm
3PC(P1, P2, P3) on circuit C′ as follows:

P1 inputs her input x = b1 . . . bn1 ; P2 inputs his input y = bn1+1 . . . bn2 .

If P3 received two conflicting outputs o10‖o20 and o11‖o21 for some circuit j ∈ {1, . . . , s} in Step 8, then he
inputs these values; otherwise he inputs garbage.

The garbled circuit uses the same a1w,0, a
1
w,1, a

2
w,0, a

2
w,1 values as in Step 2.

P3 verifies that the values
{
o1w,0, o

1
w,1, o

2
w,0, o

2
w,1

}n+q

w=n+q−m+1
output by C′ match those in the encoded output

translation tables sent in Step 6

10. For j ∈ CC (the check circuits):

Pi, for i ∈ {1, 2}, does the following:

Sends rij to P3, and P3 checks that these values are consistent with the pairs
{

(j, gr
i
j)
}

sent before.

15

For w ∈ {1, . . . , n}: Sends sub-keys siw,0,j and siw,1,j , mask bit share λ
(i)
w,j , and the keys to the

authenticated bits to P3.

Given the above information, P3 reconstructs all input labels and verifies they match with those labels
sent previously. Also, using said labels, P3 verifies that the garbled circuit is correctly constructed.

11. For the cut-and-choose computation from Step 9, let ÊE be the check circuits, let r̂ij be analogous to the rij
values from Step 2, and let k̂iw,j be analogous to the kiw,j from Step 6.
For w ∈ {1, . . . , n1}: P1 and P3 run a zero-knowledge proof-of-knowledge, with P1 proving that there exists

some bw ∈ {0, 1} such that for every j ∈ EE and for every j′ ∈ ÊE , k1w,j = ga
1
w,bw

·r1j and k̂1w,j′ = g
a1w,bw

·r̂1
j′ .

For w ∈ {n1 + 1, . . . , n2}: P2 and P3 run a zero-knowledge proof-of-knowledge, with P2 proving that

there exists some bw ∈ {0, 1} such that for every j ∈ EE and for every j′ ∈ ÊE , k2w,j = ga
2
w,bw

·r2j and

k̂2w,j′ = g
a2w,bw

·r̂2
j′ .

12. P3 either outputs the output received in the evaluation circuits, or, if P3 received any inconsistent inputs in
Step 8, then it locally computes f(x, y, z), where x and y are the inputs P3 received in Step 9, and z is P3’s
own input.

Theorem 2. Let C be an arbitrary polynomial-size circuit and let G be a cyclic group with
prime order. Given access to ideal functionalities Fconst, Fgate, Foshare, Fot, Frand, and Fss,
and assuming that the decisional Diffie-Hellman problem is hard in G, then Πm−lindell

3PC (P1, P2, P3)
securely computes the circuit C in the presence of an adversary corrupting an arbitrary number of
parties.

Proof. See Appendix F.

4.4 Efficiency

We now argue why our 3PC protocol is roughly eight times as expensive in terms of computation
as the underlying 2PC protocol we utilize, and roughly sixteen times as expensive in terms of
communication. Both protocols are very similar to the underlying 2PC protocol they are based on;
the major changes in terms of computation cost are that (1) the cost of encrypting a single row
increases due to the use of the distributed encryption scheme, and (2) P3 needs to do twice the work
(due to needing to communicate with both P1 and P2) as compared to the evaluator in the underlying
2PC protocol. Indeed, it takes about eight PRF calls (where one PRF call equals outputting k
bits) to encrypt a single row of the garbled circuit, and thus the cost and size of a garbled circuit
increases by a factor of eight. The cost for P1 and P2 to distributively garble a circuit is a small
number of OTs per gate, and this can be amortized using OT extension techniques [IKNP03].

In terms of communication cost, both P1 and P2 need to send their half of the distributed
garbled circuit to P3, and the communication cost of actually constructing a distributed garbled
circuit is roughly the cost of a standard garbled circuit. Since each garbled circuit is eight times
larger than in the underlying 2PC protocol, we find that the overall communication size increases
by approximately sixteen.

5 Efficient Instantiations of Necessary Functionalities

In this section, we show how to efficiently instantiate the calls to the two-party functionalities used
in our protocols.

16

Semi-Honest Setting. The hybrids for our semi-honest protocol can be instantiated in the
standard fashion, see Appendix A. For instantiating Foshare, we need a single call to Fot, but
otherwise the protocol is fairly straight-forward; see Appendix B.

Malicious Setting. For the malicious setting we use ideas from the work of Nielsen et al. [NNOB12].
The key notion is that of an (obliviously) authenticated bit, or aBit for short. Namely, for a bit b
authenticated towards Pi, Pi holds both the bit b and a mask Mb, with Pj holding the authentication
key Kb and a global key ∆j such that Mb = Kb ⊕ b∆j . Authenticated bits can be efficiently
constructed in the random oracle model using OT extension [IKNP03, NNOB12]. Besides the
one-time cost of using OT extension, Nielsen et al. [NNOB12] claim a protocol requiring only 8 calls
to the underlying hash function H per aBit.2

In the following, we briefly describe how to instantiate our hybrid functionalities assuming
sufficiently many aBits. We do not discuss Fcf , Fot, and Fzkpok here because they can be
instantiated without using aBits.

Fconst, Fss, Frand, FGgate. These hybrids can be directly instantiated using known proto-
cols [NNOB12] (we assume when using Fgate that only AND and XOR gates are used). We
now describe the cost of these protocols in terms of the number of calls to the underlying hash
function H: Fconst requires no calls to H; Fss requires one aBit and thus 8 calls to H; Frand

requires two aBits and thus 16 calls to H; FXORgate can be computed locally; and FANDgate requires
584 calls to H.

Foshare. The implementation of Foshare requires calls to an appropriate underlying OT primitive.
To ensure that the sharings are shuffled according to the authenticated bit, we introduce a
primitive called receiver-authenticated string oblivious transfer, or in short, RaOT. As the name
suggests, RaOT receives two input strings s0, s1 ∈ {0, 1}∗ from the sender Pj , and an aBit 〈b〉(i)
from the receiver Pi, and outputs sb to the receiver (i.e., the aBit commits the receiver to his
selection).
A näıve implementation of RaOT can be obtained by using the authenticated OT primitive
from NNOB for each bit of the strings s0 and s1. However, this is a clear overkill as we only
need the bit of the receiver to be authenticated. We have a more efficient implementation of
RaOT which requires one aBit plus four additional calls to H, see Appendix C. Foshare can be
instantiated using two calls to RaOT and a single aBit; again, see Appendix C. Thus, Foshare

requires a total of 32 calls to H.

Acknowledgments

Work of Seung Geol Choi supported in part by the Office of Naval Research under Grant Num-
ber N0001414WX20588. Work of Jonathan Katz supported in part by NSF awards #0964541
and #1111599. Work of Alex J. Malozemoff supported by a National Defense Science and Engineer-
ing Graduate (NDSEG) Fellowship, 32 CFG 168a, awarded by DoD, Air Force Office of Scientific
Research. Work of Vassilis Zikas supported in part by NSF awards #09165174, #1065276, #1118126,
and #1136174, US-Israel BSF grant #2008411, OKAWA Foundation Research Award, IBM Faculty
Research Award, Xerox Faculty Research Award, B. John Garrick Foundation Award, Teradata
Research Award, Lockheed-Martin Corporation Research Award, the Defense Advanced Research
Projects Agency through the U.S. Office of Naval Research under Contract N00014-11-1-0392, and

2The protocol presented by Nielsen et al. [NNOB12] uses 59 calls to H.

17

Swiss National Science Foundation (SNF) Ambizione grant PZ00P2 142549. The views expressed
are those of the authors and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.

References

[AL07] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries: Efficient
protocols for realistic adversaries. In Salil P. Vadhan, editor, TCC 2007: 4th Theory of
Cryptography Conference, volume 4392 of Lecture Notes in Computer Science, pages
137–156, Amsterdam, The Netherlands, February 21–24, 2007. Springer-Verlag. Full
version available at https://eprint.iacr.org/2007/060.

[BCD+09] Peter Bogetoft, Dan Lund Christensen, Ivan Damg̊ard, Martin Geisler, Thomas Jakobsen,
Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt Nielsen, Jakob Pagter,
Michael I. Schwartzbach, and Tomas Toft. Secure multiparty computation goes live.
In Roger Dingledine and Philippe Golle, editors, 13th Intl. Conference on Financial
Cryptography and Data Security, volume 5628 of Lecture Notes in Computer Science,
pages 325–343, Accra Beach, Barbados, February 23–26, 2009. Springer-Verlag.

[BDNP08] Assaf Ben-David, Noam Nisan, and Benny Pinkas. FairplayMP: a system for secure
multi-party computation. In Peng Ning, Paul F. Syverson, and Somesh Jha, editors,
15th ACM Conference on Computer and Communications Security, pages 257–266,
Alexandria, Virginia, USA, October 27–31, 2008. ACM Press.

[BDOZ11] Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic
encryption and multiparty computation. In Kenneth G. Paterson, editor, Advances in
Cryptology—Eurocrypt 2011, volume 6632 of Lecture Notes in Computer Science, pages
169–188, Tallinn, Estonia, May 15–19, 2011. Springer-Verlag. Full version available at
https://eprint.iacr.org/2010/514.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits.
In Ting Yu, George Danezis, and Virgil D. Gligor, editors, 19th ACM Conference on
Computer and Communications Security, pages 784–796, Raleigh, NC, USA, October 16–
18, 2012. ACM Press. Full version available at https://eprint.iacr.org/2012/265.

[BLW08] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for fast
privacy-preserving computations. In Sushil Jajodia and Javier López, editors, 13th
European Symposium on Research in Computer Security (ESORICS), volume 5283 of
Lecture Notes in Computer Science, pages 192–206, Málaga, Spain, October 6–8, 2008.
Springer-Verlag. Full version available at https://eprint.iacr.org/2008/289.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure pro-
tocols (extended abstract). In 22nd Annual ACM Symposium on Theory of Computing,
pages 503–513, Baltimore, Maryland, USA, May 14–16, 1990. ACM Press.

[BSMD10] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas Dimitropoulos. SEPIA:
Privacy-preserving aggregation of multi-domain network events and statistics. In

18

https://eprint.iacr.org/2007/060
https://eprint.iacr.org/2010/514
https://eprint.iacr.org/2012/265
https://eprint.iacr.org/2008/289

Ian Goldberg, editor, 19th USENIX Security Symposium, Washington, D.C., USA,
August 11–13, 2010. USENIX Association.

[BTW12] Dan Bogdanov, Riivo Talviste, and Jan Willemson. Deploying secure multi-party
computation for financial data analysis - (short paper). In Angelos D. Keromytis, editor,
16th Intl. Conference on Financial Cryptography and Data Security, volume 7397 of
Lecture Notes in Computer Science, pages 57–64, Kralendijk, Bonaire, February 27 –
March 2, 2012. Springer-Verlag. Full version available at https://eprint.iacr.org/
2011/662.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal
of Cryptology, 13(1):143–202, 2000. Full version available at https://eprint.iacr.

org/1998/018.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd Annual Symposium on Foundations of Computer Science, pages
136–145, Las Vegas, Nevada, USA, October 14–17, 2001. IEEE Computer Society Press.
Full version available at https://eprint.iacr.org/2000/067.

[CHK+12] Seung Geol Choi, Kyung-Wook Hwang, Jonathan Katz, Tal Malkin, and Dan Rubenstein.
Secure multi-party computation of Boolean circuits with applications to privacy in on-
line marketplaces. In Orr Dunkelman, editor, Topics in Cryptology—CT-RSA 2012,
volume 7178 of Lecture Notes in Computer Science, pages 416–432, San Francisco,
CA, USA, February 27 – March 2, 2012. Springer-Verlag. Full version available at
https://eprint.iacr.org/2011/257.

[DGKN09] Ivan Damg̊ard, Martin Geisler, Mikkel Krøigaard, and Jesper Buus Nielsen. Asyn-
chronous multiparty computation: Theory and implementation. In Stanislaw Jarecki
and Gene Tsudik, editors, 12th International Conference on Theory and Practice of
Public Key Cryptography, volume 5443 of Lecture Notes in Computer Science, pages
160–179, Irvine, CA, USA, March 18–20, 2009. Springer-Verlag. Full version available
at https://eprint.iacr.org/2008/415.

[DI05] Ivan Damg̊ard and Yuval Ishai. Constant-round multiparty computation using a
black-box pseudorandom generator. In Victor Shoup, editor, Advances in Cryptology—
Crypto 2005, volume 3621 of Lecture Notes in Computer Science, pages 378–394, Santa
Barbara, CA, USA, August 14–18, 2005. Springer-Verlag. Full version available at
https://eprint.iacr.org/2005/262.

[DKL+12] Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Christian Miles, and Nigel P. Smart.
Implementing AES via an actively/covertly secure dishonest-majority MPC protocol. In
Ivan Visconti and Roberto De Prisco, editors, 8th International Conference on Security
in Communication Networks, volume 7485 of Lecture Notes in Computer Science, pages
241–263, Amalfi, Italy, September 5–7, 2012. Springer-Verlag. Full version available at
https://eprint.iacr.org/2012/262.

[DKL+13] Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P.
Smart. Practical covertly secure MPC for dishonest majority - or: Breaking the SPDZ

19

https://eprint.iacr.org/2011/662
https://eprint.iacr.org/2011/662
https://eprint.iacr.org/1998/018
https://eprint.iacr.org/1998/018
https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2011/257
https://eprint.iacr.org/2008/415
https://eprint.iacr.org/2005/262
https://eprint.iacr.org/2012/262

limits. In Jason Crampton, Sushil Jajodia, and Keith Mayes, editors, 18th European
Symposium on Research in Computer Security (ESORICS), volume 8134 of Lecture Notes
in Computer Science, pages 1–18, Egham, UK, September 9–13, 2013. Springer-Verlag.
Full version available at https://eprint.iacr.org/2012/642.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty com-
putation from somewhat homomorphic encryption. In Reihaneh Safavi-Naini and Ran
Canetti, editors, Advances in Cryptology—Crypto 2012, volume 7417 of Lecture Notes
in Computer Science, pages 643–662, Santa Barbara, CA, USA, August 19–23, 2012.
Springer-Verlag. Full version available at https://eprint.iacr.org/2011/535.

[DZ13] Ivan Damg̊ard and Sarah Zakarias. Constant-overhead secure computation of boolean
circuits using preprocessing. In Amit Sahai, editor, 10th Theory of Cryptography
Conference, volume 7785 of Lecture Notes in Computer Science, pages 621–641, Tokyo,
Japan, March 3–6, 2013. Springer-Verlag. Full version available at https://eprint.

iacr.org/2012/512.

[GMS08] Vipul Goyal, Payman Mohassel, and Adam Smith. Efficient two party and multi
party computation against covert adversaries. In Nigel P. Smart, editor, Advances in
Cryptology—Eurocrypt 2008, volume 4965 of Lecture Notes in Computer Science, pages
289–306, Istanbul, Turkey, April 13–17, 2008. Springer-Verlag.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th
Annual ACM Symposium on Theory of Computing, pages 218–229, New York City,,
New York, USA, May 25–27, 1987. ACM Press.

[Gol09] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications, volume 2.
Cambridge University Press, 2009.

[HEK12] Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are garbled
circuits better than custom protocols? In ISOC Network and Distributed System Security
Symposium—NDSS 2012, San Diego, California, USA, February 5–8, 2012. The Internet
Society.

[HEKM11] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure two-party
computation using garbled circuits. In David Wagner, editor, 20th USENIX Security
Symposium, San Francisco, California, USA, August 8–12, 2011. USENIX Association.

[HKE13] Yan Huang, Jonathan Katz, and David Evans. Efficient secure two-party computation
using symmetric cut-and-choose. In Ran Canetti and Juan A. Garay, editors, Advances
in Cryptology—Crypto 2013, Part II, volume 8043 of Lecture Notes in Computer Science,
pages 18–35, Santa Barbara, CA, USA, August 18–22, 2013. Springer-Verlag. Full
version available at https://eprint.iacr.org/2013/081.

[HKS+10] Wilko Henecka, Stefan Kögl, Ahmad-Reza Sadeghi, Thomas Schneider, and Immo
Wehrenberg. TASTY: tool for automating secure two-party computations. In Ehab
Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov, editors, 17th ACM Conference
on Computer and Communications Security, pages 451–462, Chicago, Illinois, USA,

20

https://eprint.iacr.org/2012/642
https://eprint.iacr.org/2011/535
https://eprint.iacr.org/2012/512
https://eprint.iacr.org/2012/512
https://eprint.iacr.org/2013/081

October 4–8, 2010. ACM Press. Full version available at https://eprint.iacr.org/
2010/365.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers
efficiently. In Dan Boneh, editor, Advances in Cryptology—Crypto 2003, volume 2729 of
Lecture Notes in Computer Science, pages 145–161, Santa Barbara, CA, USA, August 17–
21, 2003. Springer-Verlag.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious
transfer - efficiently. In David Wagner, editor, Advances in Cryptology—Crypto 2008,
volume 5157 of Lecture Notes in Computer Science, pages 572–591, Santa Barbara, CA,
USA, August 17–21, 2008. Springer-Verlag.

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates
and applications. In Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M.
Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP 2008: 35th
International Colloquium on Automata, Languages and Programming, Part II, volume
5126 of Lecture Notes in Computer Science, pages 486–498, Reykjavik, Iceland, July 7–11,
2008. Springer-Verlag.

[KsS12] Benjamin Kreuter, abhi shelat, and Chih-Hao Shen. Towards billion-gate secure compu-
tation with malicious adversaries. In Tadayoshi Kohno, editor, 21st USENIX Security
Symposium, Bellevue, Washington, USA, August 8–10, 2012. USENIX Association. Full
version available at https://eprint.iacr.org/2012/179.

[KSS13] Marcel Keller, Peter Scholl, and Nigel P. Smart. An architecture for practical actively
secure MPC with dishonest majority. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and
Moti Yung, editors, 20th ACM Conference on Computer and Communications Security,
pages 549–560, Berlin, Germany, November 4–8, 2013. ACM Press. Full version available
at https://eprint.iacr.org/2013/143.

[Lin13] Yehuda Lindell. Fast cut-and-choose based protocols for malicious and covert adversaries.
In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology—Crypto 2013, Part
II, volume 8043 of Lecture Notes in Computer Science, pages 1–17, Santa Barbara, CA,
USA, August 18–22, 2013. Springer-Verlag.

[LOP11] Yehuda Lindell, Eli Oxman, and Benny Pinkas. The IPS compiler: Optimizations,
variants and concrete efficiency. In Phillip Rogaway, editor, Advances in Cryptology—
Crypto 2011, volume 6841 of Lecture Notes in Computer Science, pages 259–276, Santa
Barbara, CA, USA, August 14–18, 2011. Springer-Verlag. Full version available at
https://eprint.iacr.org/2011/435.

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In Moni Naor, editor, Advances in Cryptology—
Eurocrypt 2007, volume 4515 of Lecture Notes in Computer Science, pages 52–78,
Barcelona, Spain, May 20–24, 2007. Springer-Verlag.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party
computation. Journal of Cryptology, 22(2):161–188, April 2009.

21

https://eprint.iacr.org/2010/365
https://eprint.iacr.org/2010/365
https://eprint.iacr.org/2012/179
https://eprint.iacr.org/2013/143
https://eprint.iacr.org/2011/435

[LP11] Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-choose
oblivious transfer. In Yuval Ishai, editor, 8th Theory of Cryptography Conference,
volume 6597 of Lecture Notes in Computer Science, pages 329–346, Providence, RI,
USA, March 28–30, 2011. Springer-Verlag. Full version available at https://eprint.

iacr.org/2010/284.

[LPS08] Yehuda Lindell, Benny Pinkas, and Nigel P. Smart. Implementing two-party com-
putation efficiently with security against malicious adversaries. In Rafail Ostrovsky,
Roberto De Prisco, and Ivan Visconti, editors, 6th International Conference on Security
in Communication Networks, volume 5229 of Lecture Notes in Computer Science, pages
2–20, Amalfi, Italy, September 10–12, 2008. Springer-Verlag.

[MF06] Payman Mohassel and Matthew Franklin. Efficiency tradeoffs for malicious two-party
computation. In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors,
9th International Conference on Theory and Practice of Public Key Cryptography,
volume 3958 of Lecture Notes in Computer Science, pages 458–473, New York, NY,
USA, April 24–26, 2006. Springer-Verlag.

[MR13] Payman Mohassel and Ben Riva. Garbled circuits checking garbled circuits: More efficient
and secure two-party computation. In Ran Canetti and Juan A. Garay, editors, Advances
in Cryptology—Crypto 2013, Part II, volume 8043 of Lecture Notes in Computer Science,
pages 36–53, Santa Barbara, CA, USA, August 18–22, 2013. Springer-Verlag. Full
version available at https://eprint.iacr.org/2013/051.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank
Burra. A new approach to practical active-secure two-party computation. In Reihaneh
Safavi-Naini and Ran Canetti, editors, Advances in Cryptology—Crypto 2012, volume
7417 of Lecture Notes in Computer Science, pages 681–700, Santa Barbara, CA, USA,
August 19–23, 2012. Springer-Verlag. Full version available at https://eprint.iacr.
org/2011/091.

[NO09] Jesper Buus Nielsen and Claudio Orlandi. LEGO for two-party secure computation. In
Omer Reingold, editor, 6th Theory of Cryptography Conference, volume 5444 of Lecture
Notes in Computer Science, pages 368–386. Springer-Verlag, March 15–17, 2009. Full
version available at https://eprint.iacr.org/2008/427.

[PSSW09] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. Secure
two-party computation is practical. In Mitsuru Matsui, editor, Advances in Cryptology
– ASIACRYPT 2009, volume 5912 of Lecture Notes in Computer Science, pages 250–
267, Tokyo, Japan, December 6–10, 2009. Springer-Verlag. Full version available at
https://eprint.iacr.org/2009/314.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient
and composable oblivious transfer. In David Wagner, editor, Advances in Cryptology—
Crypto 2008, volume 5157 of Lecture Notes in Computer Science, pages 554–571, Santa
Barbara, CA, USA, August 17–21, 2008. Springer-Verlag. Full version available at
https://eprint.iacr.org/2007/348.

22

https://eprint.iacr.org/2010/284
https://eprint.iacr.org/2010/284
https://eprint.iacr.org/2013/051
https://eprint.iacr.org/2011/091
https://eprint.iacr.org/2011/091
https://eprint.iacr.org/2008/427
https://eprint.iacr.org/2009/314
https://eprint.iacr.org/2007/348

[sS11] abhi shelat and Chih-Hao Shen. Two-output secure computation with malicious adver-
saries. In Kenneth G. Paterson, editor, Advances in Cryptology—Eurocrypt 2011, volume
6632 of Lecture Notes in Computer Science, pages 386–405, Tallinn, Estonia, May 15–19,
2011. Springer-Verlag. Full version available at https://eprint.iacr.org/2011/533.

[sS13] abhi shelat and Chih-Hao Shen. Fast two-party secure computation with minimal
assumptions. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors,
20th ACM Conference on Computer and Communications Security, pages 523–534,
Berlin, Germany, November 4–8, 2013. ACM Press. Full version available at https:

//eprint.iacr.org/2013/196.

[SZ13] Thomas Schneider and Michael Zohner. GMW vs. Yao? efficient secure two-party
computation with low depth circuits. In Ahmad-Reza Sadeghi, editor, 17th Intl. Con-
ference on Financial Cryptography and Data Security, volume 7859 of Lecture Notes in
Computer Science, pages 275–292, Okinawa, Japan, April 1–5, 2013. Springer-Verlag.

[Woo07] David P. Woodruff. Revisiting the efficiency of malicious two-party computation. In Moni
Naor, editor, Advances in Cryptology—Eurocrypt 2007, volume 4515 of Lecture Notes in
Computer Science, pages 79–96, Barcelona, Spain, May 20–24, 2007. Springer-Verlag.
Full version available at https://eprint.iacr.org/2006/397.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
27th Annual Symposium on Foundations of Computer Science, pages 162–167, Toronto,
Ontario, Canada, October 27–29, 1986. IEEE Computer Society Press.

23

https://eprint.iacr.org/2011/533
https://eprint.iacr.org/2013/196
https://eprint.iacr.org/2013/196
https://eprint.iacr.org/2006/397

Appendices

A Hybrid Functionalities

Secret Sharing of a Constant Bit. The functionality Fbconst is parameterized by a bit b, and
outputs a sharing (authenticated, in the malicious setting) of that bit.

Functionality Fbconst → 〈b〉

Output: The functionality does the following:

1. Choose bit r←$ {0, 1}.
2. (Semi-honest setting) Output r to Pi and r ⊕ b to Pj .

3. (Malicious setting) Construct authenticated bits ri = 〈r〉(i) and rj = 〈r ⊕ b〉(j), and output ri to party
Pi and rj to party Pj .

In the semi-honest setting, this functionality can be instantiated by having Pi generate a random
bit r and sending r to Pj , who computes r ⊕ b. In the malicious setting we can instantiate this
using the protocol described by Nielsen et al. [NNOB12, Figure 3].

Bit Secret Sharing. The functionality Fss in the semi-honest setting is the standard secret sharing
functionality. In the malicious setting, the functionality creates an authenticated sharing of the
input bit.

Functionality F iss(b)→ 〈b〉

Input: Party Pi inputs a bit b.

Output: The functionality does the following:

1. Select r←$ {0, 1} uniformly at random.

2. (Semi-honest setting) Output r to party Pj , and b⊕ r to party Pi.

3. (Malicious setting) Construct authenticated bits bj = 〈r〉(j) and bi = 〈b⊕ r〉(i), and output bj to party
Pj and bi to party Pi.

Implementing the functionality in the semi-honest setting is trivial. In the malicious setting we can
use the Input protocol described by Nielsen et al. [NNOB12, Figure 6].

One-Out-of-Two Oblivious Secret Sharing. The functionality Foshare is used to share the
sub-keys of the garbled table in an oblivious fashion while preserving consistency with respect to the
circuit such that the circuit evaluation succeeds given the correct input sub-keys. More precisely,
Foshare interacts with two parties, called the sender Pj and the receiver Pi; it expects two inputs,
m0 and m1, from the sender along with a two-out-of-two sharing 〈b〉 of a selection bit b between
the sender and receiver, and outputs a random two-out-of-two sharing [mb] of mb. In the malicious
setting, 〈b〉 is an authenticated bit share. The functionality does not leak any information about b
to the parties. Furthermore, when the sender is honest, it leaks no information on its inputs to the
receiver. However, to ensure simulatability we allow a corrupted sender to choose his output share,
y(j), at will.

24

Functionality F i,joshare(〈b〉(i), (〈b〉(j),m0,m1, y
(j)))→ [mb]

Input: Party Pi inputs share bi = 〈b〉(i). Party Pj inputs share bj = 〈b〉(j) and vector (m0,m1) ∈
{0, 1}k ×{0, 1}k. In the malicious setting, bi and bj are authenticated. Additionally, party Pj input a value
y(j) ∈ {0, 1}k ∪ {⊥}; if Pj is honest he sets y(j) = ⊥, otherwise y(j) can be arbitrary.

Output: The functionality does the following:

1. (Malicious setting) If either 〈b〉(i) or 〈b〉(j) is not a correctly authenticated bit then abort.

2. Compute b = bi ⊕ bj
3. If y(j) = ⊥, then choose y(j)←$ {0, 1}k.

4. Output mb ⊕ y(j) to Pi and y(j) to Pj .

See Appendix B for an instantiation of Foshare in the semi-honest setting, and Appendix C for an
instantiation in the malicious setting.

Oblivious Secret Sharing. The oblivious secret sharing functionality Frand takes no inputs, and
outputs a sharing of a random bit. In the malicious setting, this output sharing is authenticated.

Functionality Frand → 〈r〉

Output: The functionality does the following:

1. Choose bits r, r′←$ {0, 1}.
2. (Semi-honest setting) Output r′ to Pi and r ⊕ r′ to Pj .

3. (Malicious setting) Construct authenticated bits ri = 〈r′〉(i) and rj = 〈r ⊕ r′〉(j), and output ri to
party Pi and rj to party Pj .

In the semi-honest setting, this can be easily instantiated by each party choosing a random bit ri
and letting r = ri ⊕ rj . In the malicious setting we need to construct authenticated shares and thus
need additional machinery: we can utilize the Rand protocol by Nielsen et al. [NNOB12, Figure 6].

Oblivious Gate Evaluation. The functionality FGgate takes as inputs shares of bits a and b, and
outputs a share of G(a, b) for some binary gate G. In the malicious setting, both input and output
shares are authenticated.

Functionality FGgate(〈a〉, 〈b〉)→ 〈G(a, b)〉

Input: The parties input bit shares 〈a〉 and 〈b〉. In the malicious setting, these shares are authenticated.

Auxiliary Input: The description of a binary gate G.

Output: The functionality does the following:

1. (Malicious setting) If any of the shares are not correctly authenticated then abort.

2. Compute a and b from the shares.

3. Compute c = G(a, b) and output a sharing (authenticated in the malicious setting) of c.

As our circuits require only AND and XOR gates, we only consider those choices for G here. In the
semi-honest setting, we can compute XOR gates locally and AND gates using one-out-of-four OT,
as is done in the GMW protocol [GMW87]. In the malicious setting we can efficiently instantiate
the functionality for XOR and AND gates using the XOR and AND protocols by Nielsen et
al. [NNOB12, Figure 6].

Oblivious Transfer. The functionality Fot implements standard oblivious transfer.

25

Functionality F i,jot (b, (m0,m1))→ mb

Input: Party Pi inputs a choice bit b. Party Pj inputs two messages m0 and m1.

Output: The functionality outputs mb to Pi, and ⊥ to Pj .

This can be implemented efficiently in both the semi-honest and malicious setting using known
existing protocols [PVW08].

B Hybrid Implementations for the Semi-Honest Protocol

One-Out-of-Two Oblivious Secret Sharing. The following protocol implements the Foshare
functionality:

Protocol Πi,j
oshare(〈b〉(i), (〈b〉(j),m0,m1,⊥))

Input: Party Pi inputs his share bi = 〈b〉(i) of 〈b〉. Party Pj inputs his share bj = 〈b〉(j) of 〈b〉 along with two
strings m0,m1 ∈ {0, 1}k.

1. Pj chooses r←$ {0, 1}k uniformly at random.

2. Execute Fot with Pj as the sender having inputs (s0, s1) = (m0 ⊕ r,m1 ⊕ r), and Pi as the receiver having
input b′ = 1⊕ bi; denote Pi’s output as yi.

Outputs: Pj outputs yj = ((m0 ⊕m1)� (1⊕ bj))⊕ r and Pi outputs yi.

Lemma 1. The protocol Πi,j
oshare securely implements the functionality F i,joshare in the presence of a

semi-honest adversary in the Fot-hybrid world.

Proof. First, we show correctness; namely, we argue that the output of the protocol is a two-out-of-
two sharing of mb, that is, yi ⊕ yj = mb. Indeed,

yi ⊕ yj = m1⊕bi ⊕ r ⊕ ((m0 ⊕m1)� (1⊕ bj))⊕ r
= m1⊕bi ⊕ ((m0 ⊕m1)� (1⊕ bj)).

Note that if bj = 0, we have

yi ⊕ yj = m1⊕bi ⊕m0 ⊕m1 = mb.

Likewise, if bj = 1, we have
yi ⊕ yj = m1⊕bi = mb.

To prove that the protocol is simulatable, observe that (1) Pj receives no information in the
protocol (which follows from the privacy of OT) and (2) Pi only sees yi, where the value m1⊕bi is

perfectly blinded by r. Hence, similarly to the ideal evaluation of F i,joshare, the values seen by the
parties give them no information. More formally, we consider the following cases:

Pi is corrupted: The simulator, emulating the execution of Fot towards Pi, waits for A to input
his bit 1⊕ 〈b〉(i). The simulator extracts 〈b〉(i), submits it to Foshare, forwards the reply to A,
and halts with A’s output.

26

Pj is corrupted: The simulator receives the messages (m0⊕r,m1⊕r) from A and extracts r, which
is possible due to the semi-honest setting. The simulator then submits (〈b〉(j),m0,m1, y

(j)) to
Foshare, where y(j) = (m0 ⊕m1)� (1⊕ 〈b〉(j))⊕ r, and halts with A’s output.

Noting that each of these simulators perfectly simulates the adversary in the Fot-hybrid world, the
protocol is secure.

C Hybrid Implementations for the Malicious Protocol

In the malicious setting we utilize ideas from the protocol by Nielsen et al. [NNOB12]. In particular,
each party Pi holds a global key ∆i, which they use to construct authenticated bit shares. For
a bit b authenticated towards Pi, Pi holds both the bit b and a MAC Mb, with Pj holding the
authentication key Kb, with the condition that Mb = Kb ⊕ b∆j . To ease notation, in this section we
let 〈b〉(i) = (b,Mb,Kb).

Authenticated Bit. We repeat here the FaBit functionality [NNOB12, Figure 5].

Functionality FaBit → 〈r〉(i)

Auxiliary Input: Party Pj inputs his global key ∆j ← {0, 1}k.

Output:

1. (If Pi is malicious) Set 〈b〉(i) = (b,M,M ⊕ b∆).

2. (If Pj is malicious) Let b←$ {0, 1} and set 〈b〉(i) = (b,K ⊕ b∆j ,K).

3. (If both are honest) Let b←$ {0, 1} and K←$ {0, 1}k, and set 〈b〉(i) = (b,K ⊕ b∆j ,K).

4. Output (b,K ⊕ b∆j) to Pi and (K,∆j) to Pj .

The implementation of FaBit is detailed in the work of Nielsen et al. [NNOB12, Section 4] and not
repeated here. Note that the parties can utilize FaBit to construct a constant bit by Pi setting
M = 0k and Pj setting K = b∆j .

Receiver-Authenticated One-Out-of-Two Oblivious Transfer. We first define the function-
ality for receiver-authenticated oblivious transfer:

Functionality F i,jraot(〈b〉(i), (m0,m1))→ mb

Input: Party Pi inputs an authenticated choice bit b. Party Pj inputs two messages m0 and m1.

Output: The functionality does the following:

1. If Pi’s choice bit b is not correctly authenticated then abort.

2. Output mb to Pi.

In order to efficiently implement Fraot, we need the following functionality:

Functionality Feq(a, b)→ {0, 1}

Input: Party Pi inputs a ∈ {0, 1}k, and party Pj inputs b ∈ {0, 1}k.

Output: The functionality outputs 1 if a = b, and 0 otherwise.

27

This can be instantiated efficiently using two calls to a random oracle H [NNOB12, pg. 7]. We can
thus instantiate Fraot as follows:

Protocol Πraot(〈b〉(i), (m0,m1))

Let 〈b〉(i) = (b,Mb,Kb).

1. The parties compute 〈r〉(i) = (r,Mr,Kr)← F iaBit.

2. Pi computes d = b⊕ r and sends d to Pj .

3. Pi sends Mb ⊕Mr to Feq, and Pj sends (Kb ⊕Kr)⊕ d∆j to Feq, to check the equality of the two values.
If they are not equal, Pj aborts the protocol.

4. The parties then compute 〈d〉(i) ← Fdconst.

5. Let 〈w〉(i) = 〈r〉(i) ⊕ 〈d〉(i). Pj sends X0 = H(Kw)⊕m0 and X1 = H(Kw ⊕∆j)⊕m1 to Pi.

Output: Pi outputs Xw ⊕H(Mw) and Pj outputs ⊥.

Lemma. The protocol Πraot securely implements the functionality Fraot in the presence of a
malicious adversary in the Random Oracle model.

Proof. Noting that w = b in the protocol, correctness is immediate. To prove simulatability, we
consider the following corruption cases:

Pi is corrupted: The simulator S simulating an adversary A corrupting Pi proceeds as follows. S
forwards its input (b,Mb) to A as input to the protocol. If A sends a message v to Feq such
that v 6= Mb ⊕Mr, S aborts the protocol. Otherwise, S sends 〈b〉(i) to the trusted third party,
receiving back mb. S then generates two random bit-strings X0 and X1, and programs H so
that H(Mw) = Xb ⊕mb. Finally, S sends X0 and X1 to A.

Pj is corrupted: The simulator S simulating an adversary A corrupting Pj proceeds as follows.
S forwards its input (m0,m1,Kb) to A as input to the protocol. If A sends a message v to
Feq such that v 6= (Kb ⊕Kr)⊕ d∆j , S aborts the protocol. Next, S waits until Pj sends X0

and X1 to Pi. It then uses its knowledge of 〈r〉(i) and 〈d〉(i) to extract m0 and m1, which it
feeds to the trusted third party.

Noting that each of these simulators perfectly simulate the adversary in the (FaBit, Fconst, Feq)-
hybrid world, the protocol is secure.

One-Out-of-Two Oblivious Secret Sharing. We can instantiate Foshare in the malicious
setting using a protocol similar to Πoshare with the following modifications:

1. We use receiver-authenticated OT in place of standard OT;

2. To ensure that the simulator can extract consistent inputs from a corrupted sender, we do two
invocations of Fraot;

3. In order to extract Pj ’s input in the case Pj is corrupt, we need an addition authentication
check requiring one invocation of FaBit.

28

Protocol Πi,j
oshare−m(〈b〉(i), (〈b〉(j),m0,m1,⊥))

Let 〈b〉(i) = (bi,Mbi ,Kbi) and 〈b〉(j) = (bj ,Mbj ,Kbj).

1. Pj chooses r0, r1←$ {0, 1}k uniformly at random.

2. Execute Fraot with Pj as sender having inputs (s0, s1) = (m0 ⊕ r0,m1 ⊕ r1), and Pi as the receiver having
input 〈1〉(i) ⊕ 〈b〉(i); Pi denotes his output by yi.

3. Execute Fraot with Pj as sender having inputs (s0, s1) = (r0, r1), and Pi as the receiver having input 〈b〉(i);
Pi denotes his output by rbi .

4. Execute 〈r〉(j) = (r,Mr,Kr)← FjaBit. Pj sends (d,Md) to Pi, where d = r⊕ bj and Md = Mr ⊕Mbj , and
Pi checks if (d,Md,Kd ⊕Kr) is a valid authenticated bit, aborting if not.

Outputs: Pj outputs y(j) = ((m0 ⊕m1)� (1⊕ bj))⊕ r0 ⊕ r1 and Pi outputs yi ⊕ rbi .

Lemma. The protocol Πoshare−m securely implements the functionality Foshare in the presence of
a malicious adversary in the (FaBit, Fraot)-hybrid world.

Proof. We first demonstrate correctness. It suffices to show that yi ⊕ yj = mb. Indeed,

yi ⊕ yj = (m1⊕bi ⊕ r1⊕bi ⊕ rbi)⊕ ((m0 ⊕m1)� (1⊕ bj))⊕ r0 ⊕ r1
= m1⊕bi ⊕ ((m0 ⊕m1)� (1⊕ bj)),

and the derivation follows exactly as in the semi-honest case.
To prove that the protocol is simulatable, we consider the following corruption cases:

Pi is corrupted: The simulator S waits for A to input his choice bit 〈b′〉(i) to the first Fraot

invocation. If 〈b′〉 is not a valid authenticated bit, S aborts. Otherwise, S returns to A a
random string y′i. Likewise, in the second Fraot invocation, S retrieves 〈b〉(i) from A, aborting
if the authentication check fails. S then invokes Foshare with 〈b〉(i), receiving Pi’s output yi.
S computes r′i = yi ⊕ y′i and sends r′i to A as the output of the second Fraot. Finally, S acts
as Pj would in Step 4, and halts with A’s output.

Pj is corrupted: The simulator S emulates the two executions of Fraot towards the adversary
A controlling Pj , from which S receives (x0, x1) and (r′0, r

′
1), respectively. In Step 4, S

extracts 〈bj〉(j). S then computes (m′0,m
′
1) = (x0 ⊕ r′0, x1 ⊕ r′1) and submits the message

(〈bj〉(j),m′0,m′1, y(j)) to Foshare, where y(j) = ((m′0 ⊕m′1)� (1⊕ bj))⊕ r′0 ⊕ r′1, and halts with
A’s output.

Noting that each of these simulators perfectly simulates the adversary in the (FaBit, Fraot)-hybrid
world, the protocol is secure.

D 2PC Protocol Using Distributed Garbled Circuits

D.1 The Semi-Honest Setting

We describe a secure two-party computation protocol Π2PC(P1, P2) which uses our two-party
distributed garbling scheme ΠGC(P1, P2) as a sub-protocol to securely compute any polynomial-size
circuit C toward P2; see Figure 3 for the detailed description. The parties first perform a distributed

29

Protocol Π2PC(P1, P2)

Auxiliary Inputs: Security parameter k, circuit (n,m, q, L,R,G)← C.

Inputs: For w ∈ {1, . . . , n1}, P1 has inputs bw; for w ∈ {n1 + 1, . . . , n}, P2 has inputs bw.

1. The parties execute ΠGC(P1, P2).

2. For w ∈ {1, . . . , n1}: The parties execute 〈bw〉 ← F1
ss(bw).

3. For w ∈ {n1 + 1, . . . , n2}: The parties execute 〈bw〉 ← F2
ss(bw).

4. P1 sends GC1 to P2.

5. For w ∈ {1, . . . , n1}: P1 sends (s1w,bw⊕λw , 〈bw〉
(1) ⊕ 〈λw〉(1)) to P2 who reconstructs bw ⊕ λw locally.

6. For w ∈ {n1 + 1, . . . , n}: P2 sends 〈bw〉(2) ⊕ 〈λw〉(2) to P1, who reconstructs bw ⊕ λw locally. P1 then
sends s1w,bw⊕λw to P2.

7. P2 evaluates the garbled circuit using the keys (s1w,bw⊕λw , s
2
w,bw⊕λw) and selector bits bw ⊕ λw, for

w ∈ {1, . . . , n}.

Figure 3: Two-party secure function evaluation.

garbling of the circuit and secret-sharing of their inputs. The parties then exchange input keys as
follows:

For each of P1’s input wires, P1 sends to P2 the appropriate sub-key s1w,bw⊕λw , as well as his share

〈bw〉(1) ⊕ 〈λw〉(1); P2 reconstructs bw ⊕ λw and selects sub-key s2w,bw⊕λw to use for decryption.3

For each of P2’s input wires, we do a similar protocol as for P1’s input wires. Here, P2 sends
〈bw〉(2) ⊕ 〈λw〉(2) to P1, who reconstructs bw ⊕ λw; P1 then sends sub-key s1w,bw⊕λw to P2.

4

Given the “shares” of the garbled circuit and the input keys, P2 can evaluate the garbled circuit to
retrieve the output.

Theorem 3. The protocol Π2PC(P1, P2) securely evaluates the circuit C in the presence of a static,
semi-honest adversary in the (Fconst,Fgate,Foshare,Fot,Frand,Fss)-hybrid world.

Proof. Correctness of the construction can be easily verified by inspection of the protocol. In the
remainder of the proof we describe (black-box straight-line) simulators S1 and S2 which simulate an
adversary corrupting P1 and P2, respectively.

The simulator S1: We simulate adversary P ∗1 corrupting P1 as follows. S1 plays as P2 and follows
the protocol description using 0n−n1 as input. The messages which P ∗1 sees during the simulation are
all shares of random values and input values. Therefore, due to the property of the secret sharing,
the simulation is perfect.

The simulator S2: Simulating adversary P ∗2 corrupting P2 is less trivial. In addition to running
ΠGC, S2 must also simulate sending P1’s share of the garbled circuit along with the correct keys and
mask bits that P1 sends to P ∗2 after the execution of ΠGC. However, S2 does not know the inputs
of P1. Hence, S2 has to come up with a sharing of a “fake” circuit which is indistinguishable from
the original circuit. We handle this as follows. S2 uses 0 for each of P1’s input bits, which would
cause the output to be f(0n1 , y). While this is not necessarily the correct output (as P1’s input

3Note that in the semi-honest setting P1 can in fact just send bw ⊕ λw instead of sending his share; however, when
we discuss malicious security we will find it necessary for P1 to send his share and not bw ⊕ λw. Thus, we include this
slight complication in the semi-honest setting to help ease our transition to malicious security.

4Note that the prior footnote about sending bw ⊕ λw instead of the shares applies in this step as well.

30

could be any x← {0, 1}n1), S2 can correct this by modifying the selection bits on the output gates
of the circuit to contain z = f(x, y) rather than f(0n1 , y). The security of the encryption scheme
guarantees that these modified selection bits do not provide the adversary with any distinguishing
advantage.

More precisely, playing as P1 and emulating the ideal functionalities, S2 proceeds as follows:

1. As S2 does not know P1’s input, it uses 0n1 instead.

2. S2 sends P ∗2 ’s input y to the SFE ideal functionality and receives the function output z = f(x, y)
in return.

3. In performing the distributed garbling, for each of P ∗2 ’s input wires, S2 receives the mask bits
λw (through the calls to Fss), and for each gate Gγ , S2 receives the sub-keys s2γ,0 and s2γ,1
(through the calls to Foshare). S2 chooses all other mask bits uniformly at random except for
the output masks (which S2 sets to 0).

Now, when the output wires are decrypted, P ∗2 expects to receive the correct output z. S2
accomplishes this as follows. Given inputs x and y, S2 can compute, for each gate Gγ , the
expected output zγ of that gate. Thus, for every gate Gγ in the circuit, S2 modifies the
construction of the garbled gate as follows: For each row P [γ, j, k] of the garbled gate, S2
modifies the output of the Fgate calls to output 〈zγ〉 = (〈zγ〉(1), 〈zγ〉(2)) (instead of having
Fgate output 〈σγ,j,k〉). This ensures that irrespective of which row is actually decrypted, the
output of gate Gγ will be zγ as in the ideal computation, and the sub-keys will be consistent
with the selector bit.

This concludes the description of the simulator. We now argue that the simulated transcript
is indistinguishable from the real one. The proof of simulation follows by a hybrid argument. We
assume that all the gates have two inputs and a single output, and are topologically ordered, where
the input gates come first, then the inner gates and finally the output gates.

For i ∈ {0, . . . , q} we define the hybrid Hi as follows: Hi is the protocol execution in which
the garbled gates indexed by n + 1, . . . , n + i are constructed according to the real execution
and the remaining q − i gates constructed according to the simulated execution. Note that H0

corresponds to the real execution, and Hq to the simulated execution. So, it suffices to show that
for i ∈ {0, . . . , q− 1}, the neighboring hybrids Hi and Hi+1 are indistinguishable.

Choose i which maximizes the adversary’s advantage, and let Gγ refer to Gn+i (namely, Gγ is
the gate which is garbled as in the real execution in hybrid Hi but replaced by a simulated gate
in hybrid Hi+1). Denote by α and β the input wires to Gγ and by γ the output wire. In Hi, the
third component of the plaintext in the garbled row P 1[γ, j, k] is 〈σγ,j,k〉(1), whereas in Hi+1 this
component is 〈zγ〉(1). The claim that this does not create a distinguishing advantage follows from
the security of the encryption scheme. The argument is nearly identical to the argument presented
by Lindell and Pinkas [LP09, pp. 183–187], and is thus not repeated.

This completes the proof.

D.2 The Malicious Setting

Intuitively, Π2PC(P1, P2), using the “authenticated” ideal functionalities from Section 3.3, is a
maliciously secure protocol because the adversary is unable to cheat by modifying the authenticated
shared bits. The only alternative is for the adversary to cheat by modifying his sub-keys, which would

31

cause the protocol to abort. However, each garbled gate is permuted according to random shared
bits, and therefore the adversary has no notion of which row will be decrypted on evaluation; if he
corrupts t rows in a given garbled gate, the probability of the protocol aborting is t/4, independent
of each party’s input.

Theorem 4. Let C be an arbitrary polynomial-size circuit. Then the protocol Π2PC(P1, P2), using
authenticated hybrids as described above, securely evaluates the circuit C in the presence of a (static)
malicious adversary in the (Fconst,Fgate,Foshare,Frand,Fss)-hybrid world.

Proof. We construct simulators S1 and S2 which simulate an adversary corrupting P1 and P2,
respectively. In the following analysis, we ignore the negligible probability difference due to the
direct attack on the authentication mechanism.

Simulator S1: We simulate adversary P ∗1 corrupting party P1 as follows. The simulator S1 chooses
0n−n1 as P2’s input and then runs exactly as P2 would. In addition, S1 extracts P ∗1 ’s input x through
the calls to F1

ss and passes x to the ideal SFE functionality.
As S1 acts exactly as P2 does (albeit on a different input), and P ∗1 receives no output, we need

only show that the protocol aborts with equal probability across the two views.
Note that P ∗1 has three possible places in the protocol in which he can try to force the protocol

to abort:

1. Sending an invalid sub-key in Step 5 or Step 6 of Π2PC,

2. Inputting invalid or flipped sub-keys into the calls to Foshare, or

3. Encrypting the incorrect sub-key shares or using some arbitrary string as encryptions.

We claim that the probability of aborting due to any of the above attacks is independent of P2’s
input. Clearly, if P ∗1 sends invalid sub-keys for his own input wires, the probability of aborting is
independent of P2’s input. In the case that P ∗1 sends an invalid sub-key in Step 6 of Π2PC, the
probability of aborting is independent of P2’s input due to the masking by the (uniformly chosen)
mask bit.

Now consider the case where P ∗1 corrupts t rows in a given garbled gate. Note that even though
P ∗1 can control which rows in the garbled gate table to corrupt, the probability that any given row
is hit during evaluation is exactly 1/4 (by the security of the point-and-permute method). Thus,
the probability that a given bad row is hit is t/4, independent of the bits on the incoming wires
into the gate. Thus, as the probability of aborting is independent of P2’s input, the two views are
perfectly indistinguishable.

Simulator S2: We simulate adversary P ∗2 corrupting party P2 as follows. The simulator S2 selects
0n1 as the input of P1, and then proceeds to act as P1 in ΠGC. Then, S2 extracts P ∗2 ’s input y
through the calls to F2

ss and passes y to the ideal functionality, receiving back f(x, y). Now, S2
continues executing as P1, except it modifies its share for the output of Fgate on the output gates
so that the selector bits for all rows in the output gates contain the appropriate bit from f(x, y). In
more detail, right before sending its share GC1 at Step 4 of the protocol, S2 does the following:

For each output gate Gγ , let zγ denote the correct output (i.e., the appropriate bit from f(x, y))
of the gate. Now, for each of the four rows of this gate, S2 modifies the original authenticated
sharing (〈zγ,1〉(1), 〈zγ,2〉(2)) into a new sharing (〈z∗γ,1〉(1), 〈zγ,2〉(2)) that would be reconstructed
to zγ . Note that this is possible, since S2 has been emulating the Fgate functionality and has all
the information necessary to construct new authenticated shares. In addition, S2 modifies the
corresponding encryption in the garbled gate accordingly.

32

S2 continues executing as P1, and outputs whatever P ∗2 outputs.

We now prove that the view of the adversary when communicating with S2 versus the view when
communicating with a real P1 is computationally indistinguishable. We show this by constructing a
set of hybrids and proving indistinguishability between them.

H0: The same as the real execution with P1.

H1: The same as H0, except the output of Fgate in each output gate is modified to be equal to
an authenticated sharing of the correct output from f(x, y).

H2: The same as H1, except input 0n1 is used instead of P1’s real input.

We first show that hybrids H0 and H1 are computationally indistinguishable. This follows from
the security of the underlying garbling scheme; the only difference here is that P ∗2 can try to force
the protocol to abort. However, by the security of the authenticated bit sharing scheme, the output
of Fgate towards P ∗2 provides no information about the underlying selector bit’s value, and thus P ∗2
acts independently of the value σγ,i,j .

The indistinguishability between H1 and H2 can be shown similarly to the case in which P1 is
corrupted.

Note that H0 is simply the real execution of the protocol, and H2 is the execution of the simulator
S2. Thus, as each hybrid is (at least) computationally indistinguishable from its neighboring hybrids,
we conclude that the protocol is secure.

E Proof of Theorem 1

Theorem. Let C be an arbitrary polynomial-size circuit and let G be a cyclic group with prime order.
Given access to ideal functionalities Fconst, Fgate, Foshare, Fot, Frand, and Fss, and assuming
that the decisional Diffie-Hellman problem is hard in G, then Πm

3PC(P1, P2, P3) securely computes
the circuit C in the presence of an adversary corrupting an arbitrary number of parties.

Proof (Sketch). The proof is similar to prior work in two-party garbling schemes based on cut-and-
choose [LP07, LP11, sS11].

We make use of the following lemma:

Lemma. Consider garbled gate Gγ with input wires α and β, and let Xw,b = (s1w,b, s
2
w,b, b ⊕ λw),

for w ∈ {α, β} denote the valid keys. Fix a (valid) key Xw,b for some fixed w and b. Let X̄w,b be
equal to Xw,b except that two of the three components (i.e., the sub-keys and selector bit) are altered
arbitrarily. Then using key X̄w,b to decrypt Gγ causes a decryption failure with all but negligible
probability.

Proof. This follows directly from our encryption scheme and garbling scheme.

What this lemma says is that for a given garbled gate, a sub-key / selector bit combo can only
be used correctly on a single row of the garbled table, and modifying some (but not all) of the
components results in a decryption failure; thus an adversary must change both the sub-key and
permutation bit accordingly for the garbled gate to successfully decrypt. Note that in the two-party
secure computation protocol described in Section 3 we enforce the above by authenticating all of the
selector bits (thus preventing any malicious party from altering these). However, the authenticated
sharing protocol only works between two parties, namely the parties doing the distributed garbling.

33

Thus, we need a way for the evaluator to gain confidence in the sub-key / selector bit combos sent
to him by P1 and P2. We do this by utilizing the Diffie-Hellman pseudorandom synthesizer trick of
Lindell and Pinkas [LP11]. This enforces that P1 and P2 are consistent in the sub-keys they send to
P3, and because at least one sub-key is correct, the adversary can at most cause P3 to abort.

There are six possible (interesting) corruption cases. However, due to symmetries, we only need
to consider four of them.

The adversary corrupts parties P1 and P2. We need to construct a simulator S with access
to the adversary A (who controls P1 and P2) and a trusted third party which computes f(x, y, z)
given inputs x, y, and z. The simulator S is constructed as follows: S invokes the adversary A,
and the runs as P3 would until Step 10. Here, S uses the witnesses aiw,bw send by P1 and P2 to
Fzkpok to extract their inputs. S then feeds these inputs to the trusted third party, receiving back
f(x, y, z). S continues to run as P3 would, and halts, outputting whatever A outputs.

We now argue that the adversary’s view in the real and ideal worlds are computationally
indistinguishable. The proof closely follows existing work [LP11, pp. 17–21], and thus we only give
some intuition here.

Note that if A tries to cheat in Step 5, he will get caught in the cut-and-choose step with high
probability. Similarly, if A tries to send different keys in Step 8 (i.e., the “input inconsistency”
attack), he will get caught in Step 10 when proving the consistency of the sub-keys sent.

The adversary corrupts parties P1 and P3. We again demonstrate a simulator, this time with
A controlling parties P1 and P3. This is similar to the two-party case where P2 is corrupted. The
main challenge is that the simulator needs to construct “fake” garbled circuits in order for A to
output the correct output; however, as shown in the proof of our two-party protocol, such a simulator
exists. Thus, the simulator S is constructed as follows: S invokes the adversary A, and runs as P2

would up until Step 6. S can extract both P1’s input x and its mask bits λw,j through P1’s calls to
F1
ss in Step 4 and Step 2. Likewise, in Step 5, S extracts P3’s input z through the calls to Fot. S

then passes x and z to the trusted third party, learning f(x, y, z). In Step 6, S chooses ρ←$ {0, 1}s.
Then for j ∈ {1, . . . , s}, S proceeds as follows: If ρj = 0, S uses the simulator that is known to
exist for the two-party circuit garbling protocol to construct garbled circuits which output f(x, y, z).
Otherwise, S acts as P2 would. S continues to act as P2 would, except that in Step 7 it sets the
output of Fcf to be equal to the ρ chosen above. Finally, S halts, outputting whatever A outputs.

The main intuition here is that, since P1 learns nothing about the portion of the circuit garbled
by P2, this reduces to the two-party setting where P2 is corrupt. Recall that by the security of our
garbling protocol, P1 can only construct circuits that cause the evaluator to abort. If P1 tries to
cheat in Step 5 by exchanging invalid mask shares, P2 will detect this with high probability, and
likewise for Step 8.

The adversary corrupts parties P2 and P3. The analysis here is very similar to the case where
parties P1 and P3 are corrupt.

The adversary corrupts party P1. We construct a simulator S with access to an adversary A
controlling P1 as follows: S invokes the adversary A, and runs as P2 and P3 would, extracting P1’s
input x through the calls to F1

ss in Step 4. S passes x to the trusted third party, learning f(x, y, z),
and halts, outputting whatever A outputs.

As S acts exactly as P2 and P3 would, and A gets no output, we need only show that the
probability that A aborts in both the real and ideal world is identical. In fact, this follows from our
maliciously secure two-party protocol and the security of the input-consistency checks.

34

The adversary corrupts party P2. The analysis here is very similar to the case where party P1

is corrupt.

The adversary corrupts party P3. We construct a simulator S with access to an adversary A
controlling P3 as follows: S invokes the adversary A, and runs as P1 and P2 would, extracting P3’s
input z through the Fot calls in Step 5. S then hands z to the trusted third party, who returns
f(x, y, z). In Step 6, S chooses ρ←$ {0, 1}s, and then for j ∈ {1, . . . , s} S proceeds as follows: If
ρj = 0, S constructs a distributed garbled circuit which outputs f(x, y, z), otherwise S proceeds as
normal. Then, in Step 7, S fixes the output of Fcf to be ρ. For the rest of the protocol, S acts as
P1 and P2 would, and eventually halts, outputting what A outputs.

The analysis is very similar to prior work [LP11, pp. 22–23].

F Proof of Theorem 2

Theorem. Let C be an arbitrary polynomial-size circuit and let G be a cyclic group with prime order.
Given access to ideal functionalities Fconst, Fgate, Foshare, Fot, Frand, and Fss, and assuming that
the decisional Diffie-Hellman problem is hard in G, then Πm−lindell

3PC (P1, P2, P3) securely computes
the circuit C in the presence of an adversary corrupting an arbitrary number of parties.

Proof (Sketch). The analysis here is nearly identical to the proof in Appendix E as well as the proof
for the two-party case [Lin13], and thus we just present the simulators for each corruption case.

The adversary corrupts parties P1 and P2. The simulator S is constructed as follows: S
invokes the adversary A, and the runs as P3 would, using input 0n−n2 , until Step 11. Here, S uses
the witnesses aiw,bw send by P1 and P2 for the zero-knowledge proof-of-knowledge to extract their
inputs. S then feeds these inputs to the trusted third party, receiving back f(x, y, z). S continues
to run as P3 would, and halts, outputting whatever A outputs.

The adversary corrupts parties P1 and P3. The simulator S is constructed as follows: S
invokes the adversary A, and runs as P2 would up until Step 6. S can extract both P1’s input
x and its mask bits λw,j through P1’s calls to F1

ss in Step 2 and Step 4. Likewise, in Step 5, S
extracts P3’s input z through the calls to Fot. S then passes x and z to the trusted third party,
learning f(x, y, z). In Step 6, S chooses ρ←$ {0, 1}s. Then for j ∈ {1, . . . , s}, S proceeds as follows:
If ρj = 0, S uses the simulator that is known to exist for the two-party circuit garbling protocol to
construct garbled circuits which output f(x, y, z). Otherwise, S acts as P2 would. S continues to
act as P2 would, except that in Step 7 it sets the output of Fcf to be equal to the ρ chosen above.
Finally, S halts, outputting whatever A outputs.

The adversary corrupts parties P2 and P3. The analysis here is exactly the same as the case
where parties P1 and P3 are corrupt.

The adversary corrupts party P1. We construct a simulator S with access to an adversary A
controlling P1 as follows: S invokes the adversary A, and runs as P2 and P3 would, extracting P1’s
input x through the calls to F1

ss in Step 4. S passes x to the trusted third party, learning f(x, y, z).
For the rest of the protocol, S acts as P2 and P3 would, and eventually halts, outputting whatever
A outputs.

The adversary corrupts party P2. The analysis here is exactly the same as the case where party
P1 is corrupt.

35

Step Exponentiations Hybrids Calls Symmetric Ops

1
2 4`+ 2(3s) (2` · Fss + (`′ + q) · Frand + 4` ·H) · (3s)
3 (4q · Fgate + 8q · Foshare) · (3s) 8(3s)q
4 2` · Fss

5 (2`′ · Fot) · (3s)
6
7 Fcf

8
9 3s 4(3s)q
10 (2` ·H + 2` · Fzkpok) · (3s)
11 (3s)q

Table 1: Computational cost for each step of Πm
3PC(P1, P2, P3).

The adversary corrupts party P3. We construct a simulator S with access to an adversary A
controlling P3 as follows: S invokes the adversary A, and runs as P1 and P2 would, extracting P3’s
input z through the Fot calls in Step 5. S then hands z to the trusted third party, who returns
f(x, y, z). In Step 6, S chooses ρ←$ {0, 1}s, and then for j ∈ {1, . . . , s} S proceeds as follows: If
ρj = 0, S constructs a distributed garbled circuit which outputs f(x, y, z), otherwise S proceeds as
normal. Then, in Step 7, S fixes the output of Fcf to be ρ. For the rest of the protocol, S acts as
P1 and P2 would, and eventually halts, outputting whatever A outputs.

G Concrete Efficiency of the 3PC Protocol

For simplicity we assume each party’s input has length `. Since we apply the XOR-tree technique to
P3’s input, we let `′ = max{4`, 8s} be the new input length. Finally, we redefine s in this section to
be the statistical security parameter; namely, the adversary can succeed in cheating with probability
at most 2−s.

Protocol Based on Cut-and-Choose. Table 1 details the specific computational cost of each
step for Πm

3PC(P1, P2, P3). Note that these numbers are across all parties; the actual per-party cost
is less. Each of the hybrid calls can be instantiated efficiently using known techniques: Fcf can be
instantiated very efficiently in the random oracle model requiring only three oracle calls, Fzkpok

can be instantiated using 3s/2 + 18 exponentiations [LP11, pg. 36], and Fot can be computed using
three exponentiations [PVW08].

Protocol Based on Lindell’s Protocol. The concrete computational cost for this protocol are
similar to the ones above, except s in this case is smaller to achieve the same level of security.
However, we must run the above protocol as a sub-protocol. See Table 2 for the concrete efficiency
counts.

Comparison with SPDZ. We compare our three-party protocol with the SPDZ protocol [BDOZ11,
DPSZ12, DKL+12, DKL+13, KSS13], an efficient MPC protocol which works for n parties and
arbitrary corruptions over arithmetic circuits, and follows the preprocessing paradigm. SPDZ
represents the state-of-the-art at the time of writing in terms of efficiency in the multi-party setting.
Here we focus on the differences between both SPDZ and our protocol, and discuss their strengths
and weaknesses. Due to the different characteristics of each protocol (e.g., arithmetic versus boolean,

36

Step Exponentiations Hybrids Calls Symmetric Ops

1
2 4`+ 2s (2` · Fss + (`′ + q)Frand + 4` ·H) · s
3 (4q · Fgate + 8q · Foshare) · s 8sq
4 2` · Fss

5 (2`′ · Fot) · s
6 (2m ·H) · s
7 Fcf

8 ((2`+ m) ·H) · s sq
9 — Cost of running Πm

3PC(P1, P2, P3) on circuit of size roughly O (`+ m) —
10 s 4sq
11 (2` · Fzkpok) · s
12

Table 2: Computational cost for each step of Πm−lindell
3PC (P1, P2, P3).

linear versus constant round, etc.), these protocols are somewhat “incomparable”. However, we
hope to give a general idea of the efficiency trade-offs of both protocols.

There are several key differences between the SPDZ protocol and our own. For one, SPDZ
works over arithmetic circuits, whereas our protocol works over boolean circuits.5 In terms of
communication, the SPDZ protocol requires rounds linear in the depth of the circuit, whereas
our protocol is constant-round. While it is difficult to compare the impact of this without an
implementation and experiments, it seems intuitive that as the latency between machines increases,
the cost of each additional communication round increases as well; this intuition has been backed
up by experiments in the semi-honest setting [SZ13].

Finally, we consider the start-to-finish execution time (i.e., including the cost of preprocessing)
for running an AES circuit. The preprocessing in our protocol is basically that found in the
TinyOT protocol [NNOB12], and, using the numbers presented there, is fairly efficient (around 1
minute [NNOB12, Figure 21]). Efficiency comes from the fact that the preprocessing is only between
two parties, namely, the circuit generators. The on-line running time is conjectured to be around
that of maliciously secure two-party protocols using cut-and-choose.

The SPDZ protocol, on the other hand, has a very efficient (information-theoretic) online phase
but a much costlier offline phase (around 17 minutes for three parties [DKL+12, Table 2]). In
addition, it has a one-time setup phase which is very costly: the parties need to execute an MPC
protocol for a circuit which generates a key pair with the secret key secret-shared among the parties.
Executing this on its own would likely eclipse the running time of our protocol.6 Thus, given
preprocessing, it seems likely that SPDZ would out-perform our protocol; however, in the setting of
executing the protocol from start to finish, we conjecture that our protocol would be more efficient.

Finally, our protocol is most efficient in the random oracle model, whereas SPDZ works in the
standard model.

5Damg̊ard and Zakarias [DZ13] develop a SPDZ-like protocol for Boolean circuits; however, its practical efficiency
is unclear.

6We note that the work of Damg̊ard et al. [DKL+13] presents an efficient protocol for this one-time setup phase in
the weaker covert security model [AL07].

37

Changelog

– Version 1.1 (June 27, 2014)

– Corrected computation/communication costs.

– Cleaned up some writing.

– Updated motivation for 3PC.

– Version 1.0 (February 19, 2014)

– First release.

38

	Introduction
	Preliminaries
	Two-Party Distributed Garbling Scheme
	Single-Party Garbling Scheme
	Distributing the Garbling Scheme Between Two Parties
	Achieving Malicious Security

	Three-Party Computation from Cut-and-Choose
	Preliminaries
	Achieving Malicious Security for Three Parties
	Adapting Lindell's Protocol to the Three-Party Setting
	Efficiency

	Efficient Instantiations of Necessary Functionalities
	Hybrid Functionalities
	Hybrid Implementations for the Semi-Honest Protocol
	Hybrid Implementations for the Malicious Protocol
	2PC Protocol Using Distributed Garbled Circuits
	The Semi-Honest Setting
	The Malicious Setting

	Proof of [thm:3pc-m]Theorem 1
	Proof of [thm:3pc-m-lindell]Theorem 2
	Concrete Efficiency of the 3PC Protocol

