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Abstract. Uniform design is to seek its design points to be uniformly scattered on the
experimental domain under some discrepancy measure. In this paper all the design points
of a full factorial design can be split into two subdesigns. One is called the complementary
design of the other. The complementary design theory of characterization one design through
the other under the four commonly used discrepancy measures is investigated. Based on this
complementary design theory, some general rules for searching for uniform designs through
their complementary designs are proposed, and so many new uniform or nearly uniform
designs can be obtained via the current small uniform designs. An example is presented to
illustrate the usefullness of the proposed theory.
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1 Introduction

Uniform design has been widely used especially for computer experiments since it was
proposed by Fang (1980) [1] and Wang and Fang (1981) [14]. Its main idea is to seek its design
points to be uniformly scattered on the experimental domain under some discrepancy mea-
sure. The commonly used measures of non-uniformity include the centered L2-discrepancy
(CD for short), the wrap-around L2-discrepancy (WD for short) and the symmetric L2-
discrepancy (SD for short ) introduced by Hickernell (1998a [8], 1998b [9]) and the discrete
discrepancy (DD for short) proposed by Hickernell and Liu (2002) [10]. A comprehensive
discussion about the relationships among them refer to Fang, Li and Sudjianto (2006) [2]. A
design D in a specified design space D is said to be a unform design under some discrepancy
if it minimizes the discrepancy among all designs in D.
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Many methods for the construction of uniform or nearly uniform designs have been
proposed. They are broadly classified into two categories: combinatorial algebra methods
and algorithm optimizations. Based on the techniques of combinatorial algebras and numeric
theories, good lattice method (Fang and Wang, 1994 [7]), Latin square method (Fang, Shiu
and Pan, 1999 [5]) and balanced incomplete block design method (Lu and Meng, 2000
[12]) were introduced. Along the line of algorithm optimizations, the threshold accepting
heuristic (Winker and Fang, 1997 [15]), simulated annealing (Morris and Mitchell, 1995 [13]),
stochastic evolutionary (Jin, Chen and Sudjianto, 2005 [11]) and balance-pursuit heuristic
(Fang, Tang and Yin, 2005 [6]) were adopted. For detailed reviews and discussion of all
kinds of constructions of uniform or nearly uniform designs refer to Fang, Li and Sudjianto
(2006) [2] and the related references therein.

In this paper a full factorial design can be split into two subdesigns according to the
design points. One is called the complementary design of the other. The complementary
design theory of characterization one design through the other under different discrepancy
measures is investigated, and so many new uniform or nearly uniform designs can be obtained
via the current small uniform designs.

The remainder of this paper is organized as follows. Section 2 presents the quadratic
forms of the four discrepancy measures CD, WD, SD and DD. Section 3 establishes some
relationships between the discrepancy measures of one design and its complementary design.
Based on this complementary design theory, some general rules for searching for uniform
designs through their complementary designs are proposed in Section 4. An example is
presented to illustrate the usefulness of the proposed theory. Section 5 concludes this paper
with some reviews.

2 Quadratic forms of discrepancies

Some notations are introduced here. Let A ⊗ B denote the Kronecker product of two
matrices A and B. For any positive integers q, q1, . . . , qm, let Vq = {1, 2, . . . , q}, V m =
Vq1 × · · · × Vqm and N = q1 · · · qm. A mixed-level (or asymmetrical) design of n runs and m
factors with levels q1, . . . , qm, denoted by (n, q1 · · · qm), is a set of n row vectors (or points)
in V m or an n × m matrix in which each row represents a run, each column represents a
factor and the jth column takes values from a set of qj symbols, say, Vqj

. In particular, an
(n, qm)-design is symmetrical. Two designs are called isomorphic if one can be obtained from
the other through permutations of rows, columns and symbols in each column. A design is
called balanced or U-type design if all levels of each factor appear equally often and denoted
by D(n, q1 · · · qm). In this paper, we only consider the balanced designs which are usually
needed in practice. The set of all such balanced designs are denoted by D(n, q1 · · · qm).

For a design D = (dij) ∈ D(n, q1 · · · qm), the detailed computational formula of CD2(D),
WD2(D), SD2(D) and DD2(D) were derived by Hickernell (1998a [8], b [9]) and Fang, Lin,
and Liu (2003) [3], respectively. Note that all the four formula can be expressed as the
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following unified form

constant + n−2

N∑
i=1

N∑
j=1

m∏
k=1

f(dik, djk, qk)− 2n−1

N∑
i=1

m∏
k=1

g(dik, qk),

where f(·, ·, ·) and g(·, ·) are different types of functions according to different discrepancies.
For a D(n, q1 · · · qm) design D, let n(i1, . . . , im) denote the number of times that the point

(i1, . . . , im) occurs in D. Then the design D can be uniquely determined by the column vector
of length N given by

yD = (n(i1, . . . , im))(i1,...,im)∈V m , (1)

where all points (i1, . . . , im)’s in V m are arranged in the lexicographical order. In particular,
a full factorial D(N, q1 · · · qm) design corresponds to 1N , the N -vector of ones. By noticing

N∑
i=1

N∑
j=1

m∏
k=1

f(dik, djk, qk) =
∑

(i1,...,im)∈V m

∑
(j1,...,jm)∈V m

n(i1, . . . , im) n(j1, . . . , jm)
m∏

k=1

f(ik, jk, qk)

and
N∑

i=1

m∏
k=1

g(dik, qk) =
∑

(i1,...,im)∈V m

n(i1, . . . , im)
m∏

k=1

g(ik, qk),

the following quadratic forms of CD2(D), WD2(D), SD2(D) and DD2(D) in terms of yD can
be obtained.

Lemma 1. For a design D ∈ D(n, q1 · · · qm), we have

WD2(D) = −
(

4

3

)m

+
1

n2
yT

DWyD, (2)

CD2(D) =

(
13

12

)m

− 2

n
cTyD +

1

n2
yT

DCyD, (3)

SD2(D) =

(
4

3

)m

− 2

n
sTyD +

1

n2
yT

DSyD (4)

and

DD2(D) = −
m∏

j=1

[
a + (qj − 1)b

qj

]
+

1

n2
yT

DEyD, (5)

where for i, j = 1, . . . , qk and k = 1, . . . ,m, W = W1 ⊗ · · · ⊗Wm, Wk = (wk
ij),

wk
ij = 1.5− |i− j|(qk − |i− j|)/q2

k,
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C = C1 ⊗ · · · ⊗Cm, Ck = (ck
ij),

ck
ij = 1 + |2i− 1− qk|/(4qk) + |2j − 1− qk|/(4qk)− |i− j|/(2qk),

c = c1 ⊗ · · · ⊗ cm, ck = (ck
1, . . . , c

k
qk

)T ,

ck
i = 1 + |2i− 1− qk|/(4qk)− |2i− 1− qk|2/(8q2

k),

S = S1 ⊗ · · · ⊗ Sm, Sk = (sk
ij),

sk
ij = 2− 2|i− j|/qk,

s = s1 ⊗ · · · ⊗ sm, sk = (sk
1, . . . , s

k
qk

)T ,

sk
i = 1 + (2i− 1)/qk − (2i− 1)2/(2q2

k),

and E = E1 ⊗ · · · ⊗ Em, Ek = (ek
ij),

ek
ij =

{
a, if i = j,
b, otherwise,

a > b > 0 are two constants used in the definition of the kernel function of the discrepancy
measure DD.

It should be mentioned that the expressions of CD2(D) and WD2(D) were first presented
in Fang and Qin (2003) [4].

3 Complementary design theory

Let H = D(N, q1 · · · qm), i.e., the full factorial (N, q1 · · · qm) design. Here we consider
only the designs in D(n, q1 · · · qm) with no repeated points. For a D(n, q1 · · · qm) design D,

let H = (DT , D
T
)T be a row partition of H after several row permutations such that D

consists of the first n runs of H and D consists of the remaining N − n runs. The design D
is called the complementary design of D. Note that yD = 1N − yD. Based on Lemma 1, the
relationships between the discrepancies of design D and its complementary design D can be
obtained and summarized in the following Theorem 1, whose detailed proof is postponed to
Appendix.

Theorem 1. For any design D ∈ D(n, q1 · · · qm), the discrepancies of design D and its
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complementary design D have the following relationships

WD2(D) = −
(

4

3

)m

+
2n−N

n2

m∏
k=1

(
4qk

3
+

1

6qk

)
+

(N − n)2

n2

[
WD2(D) +

(
4

3

)m]
, (6)

CD2(D) =

(
13

12

)m

+
1

n2

(
1T

NC1N − 2ncT1N

)
+

1

n2

[
−2yT

D
(C1N −Nc) + (N − n)2

(
CD2(D)−

(
13

12

)m)]
, (7)

SD2(D) =

(
4

3

)m

+
1

n2

(
1T

NS1N − 2nsT1N

)
+

1

n2

[
−2yT

D
(S1N −Ns) + (N − n)2

(
SD2(D)−

(
4

3

)m)]
, (8)

and

DD2(D) = −
m∏

k=1

[
a + (qk − 1)b

qk

]
+

2n−N

n2

m∏
k=1

[a + (qk − 1)b]

+
(N − n)2

n2

(
DD2(D) +

m∏
k=1

[
a + (qk − 1)b

qk

])
, (9)

where C, c, S and s are defined in Lemma 1.

4 Applications to the search for uniform designs

In this section some effective rules for searching for a uniform design under the foregoing
four uniformity measures through its complementary design are established.

According to the relationships (6) and (9) in Theorem 1, the rules for determining a
uniform design D under the discrepancy measures WD and DD through its complementary
design can be easily obtained.

Theorem 2. Under the discrepancy measure WD or DD, the design D is a uniform design
in D(n, q1 · · · qm) if and only if its complementary design D is a uniform design in D(N −
n, q1 · · · qm).

Based on the relationship (7) in Theorem 1, the similar result to Theorem 2 can be
obtained under a specified condition that the value yT

D(C1N − Nc) is a constant for all
designs in D(n, q1 · · · qm).
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Theorem 3. Under the discrepancy measure CD, if the value yT
D(C1N −Nc) is a constant

for all designs in D(n, q1 · · · qm), then a design D is a uniform design in D(n, q1 · · · qm) if
and only if its complementary design D is a uniform design in D(N − n, q1 · · · qm).

According to the sufficient condition given in Theorem 3, we can obtain the following
three corollaries, whose detailed proofs are postponed to Appendix.

Corollary 1. Under the discrepancy measure CD, if the levels q1, . . . , qm are all odd, then
a design D is a uniform design in D(n, q1 · · · qm) if and only if its complementary design D
is a uniform design in D(N − n, q1 · · · qm).

Corollary 2. Under the discrepancy measure CD, if m = 2, then a design D is a uniform
design in D(n, q1q2) if and only if its complementary design D is a uniform design in D(N−
n, q1q2).

Corollary 3. Under the discrepancy measure CD, if q1 = · · · = qm−1 = 2, then a design D
is a uniform design in D(n, 2m−1qm) if and only if its complementary design D is a uniform
design in D(N − n, 2m−1qm).

When the discrepancy measure SD is used, the similar result to Theorem 3 can be given
in the following Theorem 4.

Theorem 4. Under the discrepancy measure SD, if the value yT
D(S1N − Ns) is a constant

for all designs in D(n, q1 · · · qm), then a design D is a uniform design in D(n, q1 · · · qm) if
and only if its complementary design D is a uniform design in D(N − n, q1 · · · qm).

Two corollaries follow directly from Theorem 4, whose detailed proofs are also postponed
to Appendix.

Corollary 4. Under the discrepancy measure SD, if the levels q1, . . . , qm are all odd, then a
design D is a uniform design in D(n, q1 · · · qm) if and only if its complementary design D is
a uniform design in D(N − n, q1 · · · qm).

Corollary 5. Under the discrepancy measure SD, if q1 = · · · = qm−1 = 2, then a design D
is a uniform design in D(n, 2m−1qm) if and only if its complementary design D is a uniform
design in D(N − n, 2m−1qm).

Example 1. Consider the construction of uniform design D in D(18, 33) under the dis-
crepancy measure CD. From the web site http://www.stat.psu.edu/˜rli/UniformDesign/, it
is known that the following design D is a uniform design in D(9, 33) under the CD.

D =

 1 1 1 2 2 2 3 3 3
1 2 3 1 2 3 1 2 3
1 3 2 3 2 1 2 1 3

T

.
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By the complementary design theory, it is concluded that the design D given by

D =

 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3
1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3
2 3 1 2 1 3 1 2 1 3 2 3 1 3 2 3 1 2

T

is a uniform design in D(18, 33) under the discrepancy measure CD. On the other hand, an-
other uniform design D1 in D(18, 33) can also be found on the web site http://www.stat.psu.edu/
˜rli/UniformDesign/. After rearranging the rows in the lexicographical order, the design D1

is given by

D1 =

 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3
1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3
1 2 1 3 2 3 2 3 1 3 1 2 1 3 2 2 1 3

T

.

Obviously, the design point (3, 2, 2) appears twice in D1. Simple computation gives that
both CD2(D) and CD2(D1) are equal to the same value 0.0325, but WD2(D) = 0.1003 <
WD2(D1) = 0.1004. Therefore, design D is superior to the design D1 provided on the web
site.

5 Concluding remarks

In this paper a full factorial design is split into two subdesigns with no repeated design
points. Some identities relating the discrepancy measures of one subdesign to those of the
other subdesign are derived under the four commonly used discrepancy measures CD, WD,
SD and DD. Based on this complementary design theory, some general rules for searching
for uniform or nearly uniform designs through their complementary designs are established.
They are very powerful to search for a larger uniform design when the corresponding com-
plementary design is smaller. An example shows that the obtained uniform design under
the discrepancy measure CD is superior to the design provided on the web site of uniform
designs, since the new design not only contains no repeated design points, but has a smaller
WD value.

Acknowledgements. The work is supported by NNSF of China Grant 11271032.

Appendix

Proof of Theorem 1
It is easy to check that W1N =

∏m
k=1

(
4qk

3
+ 1

6qk

)
1N . Based on the equation (2) and the
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fact that yT
D
1N = N − n, we have

WD2(D) +

(
4

3

)m

=
1

n2
(1N − yD)TW(1N − yD)

=
2n−N

n2

m∏
k=1

(
4qk

3
+

1

6qk

)
+

(N − n)2

n2

(
WD2(D) +

(
4

3

)m)
.

Similarly, from (3) we have

CD2(D)−
(

13

12

)m

=
1

n2
(1N − yD)TC(1N − yD)− 2

n
cT (1N − yD)

=
1

n2

[
(1T

NC1N − 2ncT1N)− 2yT
D
(C1N −Nc) + (N − n)2

(
CD2(D)−

(
13

12

)m)]
.

According to (4), we can obtain

SD2(D)−
(

4

3

)m

=
1

n2
(1N − yD)TS(1N − yD)− 2

n
sT (1N − yD)

=
1

n2

[
(1T

NS1N − 2nsT1N)− 2yT
D
(S1N −Ns) + (N − n)2

(
SD2(D)−

(
4

3

)m)]
.

As for the discrepancy measure DD, by noting that E1N =
∏m

k=1[a + (qk − 1)b]1N , we
have

DD2(D) +
m∏

k=1

[
a + (qk − 1)b

qk

]
=

1

n2
(1N − yD)TE(1N − yD)

=
2n−N

n2

m∏
k=1

[a + (qk − 1)b] +
(N − n)2

n2

(
DD2(D) +

m∏
k=1

[
a + (qk − 1)b

qk

])

The proof of Theorem 1 is complete.

Proof of Corollary 1
Note that when q1, . . . , qm are all odd, Ck1qk

= qkck, for k = 1, . . . ,m. Then we have
C1N = Nc. So the proof of Corollary 1 is complete.

Proof of Corollary 2
It can be easily verified that

Ck1qk
− qkck =

1

8qk

1qk
I{qk is even} for k = 1, . . . ,m,
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where I{·} is the indicator function. By using these equations, we have

C1N −Nc

=

(
q1c1 +

1

8q1

1q1 I{q1 is even}

)
⊗
(

q2c2 +
1

8q2

1q2 I{q2 is even}

)
−Nc

=
q2

8q1

1q1 ⊗ c2 I{q1 is even} +
q1

8q2

c1 ⊗ 1q2 I{q2 is even} +
1

64q1q2

1N I{both q1 and q2 are even},

Since the three values yT
D1N = n, yT

D(1q1 ⊗ c2) and yT
D(c1 ⊗ 1q2) are all constants for all

designs in D(n, q1q2), Corollary 2 follows directly from Theorem 3.

Proof of Corollary 3

By noting that ck = 35
32

12 for k = 1, . . . ,m − 1, we have c =
(

35
32

)m−1
12m−1 ⊗ cm. Note

that Ck12 = 9
4
12 for k = 1, . . . ,m − 1 and Cm1qm − qmcm = 1

8qm
1qm I{qm is even}. Combining

the above equations, we obtain

C1N −Nc =

((
9

4

)m−1

12m−1

)
⊗ (Cm1qm)−Nc

=

(
qm

(
9

4

)m−1

−N

(
35

32

)m−1
)

12m−1 ⊗ cm +

(
9

4

)m−1
1

8qm

1N I{qm is even},

Since the two values yT
D1N = n and yT

D(12m−1 ⊗ cm) are all constants for all designs in
D(n, 2m−1qm), Corollary 3 follows directly from Theorem 3.

Proof of Corollary 4
It is easy to check that

Sk1qk
− qksk =

1

2qk

1qk
for k = 1, . . . ,m.

By using these equations, we have

S1N −Ns =

(
q1s1 +

1

2q1

1q1

)
⊗
(

q2s2 +
1

2q2

1q2

)
−Ns

=
q2

2q1

1q1 ⊗ s2 +
q1

2q2

s1 ⊗ 1q2 +
1

4q1q2

1N .

Since the three values yT
D1N = n, yT

D(1q1 ⊗ s2) and yT
D(s1 ⊗ 1q2) are all constants for all

designs in D(n, q1q2), Corollary 4 follows directly from Theorem 4.

Proof of Corollary 5

By noting that sk = 11
8
12 for k = 1, . . . ,m − 1, we have s =

(
11
8

)m−1
12m−1 ⊗ sm. Note

that Sk12 = 312 for k = 1, . . . ,m − 1 and Sm1qm − qmsm = 1
2qm

1qm . Combining the above
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equations, we obtain

S1N −Ns = (3m−112m−1)⊗
(

qmsm +
1

2qm

1qm

)
−Ns

=

(
qm3m−1 −N

(
11

8

)m−1
)

12m−1 ⊗ sm +
3m−1

2qm

1N .

Since the two values yT
D1N = n and yT

D(12m−1 ⊗ sm) are all constants for all designs in
D(n, 2m−1qm), Corollary 5 follows directly from Theorem 4.
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