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Abstract. We consider the voter model with flip rates determined by

(µe, e ∈ Ed), where Ed is the set of all non-oriented nearest-neighbour

edges in the Euclidean lattice Z
d. Suppose that (µe, e ∈ Ed) are i.i.d.

random variables satisfying µe ≥ 1. We prove that when d = 2, al-

most surely for all random environments the voter model has only two

extremal invariant measures: δ0 and δ1.
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1. Introduction

The voter model is an interacting particle system, describing the collective

behavior of voters who constantly update their political positions. In this

paper, voters are represented by vertices of the Euclidean lattice Z
d. The

voter at x may hold either of two political positions, denoted by 0 or 1. Let

η(x) be the political position of voter x and the collection η = {η(x);x ∈ Z
d}

be an element of {0, 1}Z
d
. The voter at x updates his political position at a

random time, following the exponential distribution with parameter
∑

z µxz,

where the summation is over 2d nearest neighbors. At the time of update

the voter takes the position of his neighbor y with probability µxy/(
∑

z µxz).

When µe ≡ 1, this is a model well studied in Chapter V of [10].

The voter model can be constructed by the graphical representation, see

§3.6 of [10]. This approach not only works for all positive µxy, but also

clearly exhibits the duality relation which will be used in our proof in §3.

We are interested in the case when (µe, e ∈ Ed) are i.i.d. random variables

satisfying µe ≥ 1, defined on a probability space (Ω,F ,P). There have been

very few literatures about the voter model in random environments. As far

as we know, only the one dimensional voter model in a random environment

has been explored in [8], and a voter model in the supercritical cluster of the

Bernoulli bond percolation is discussed in [3]. As usual, one would like to

identify all invariant measures. When all voters take the same position, there
1
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will be no change thereafter. Therefore the configurations that η(x) ≡ 0 or

1 are traps of the voter model and the measures δ0 and δ1 of point mass

are invariant. With an extra effort, we are able to identify all invariant

measures.

Theorem 1.1. Let d = 1 or 2. Suppose that (µe) are i.i.d. and µe ≥ 1 P-

a.s. There exists Ω0 ⊆ Ω with P(Ω0) = 1. For any ω ∈ Ω0, the voter model

has only two extremal invariant measures: δ0 and δ1.

This extends Corollary 1.13 of Chapter V of [10]. In light of Example 1.5

of Chapter V of [10], the conclusion of the theorem generally does not hold

when d ≥ 3.

The proof of the theorem involves the duality and the dual of the voter

model is a coalescing Markov chain taking values on the set of all finite

set of vertices of Zd. When the initial state is a singleton, the coalescing

Markov chain always takes value on singletons. If we identify singleton {x}

with vertex x, then the coalescing Markov chain is exactly a continuous-

time random walk in a random environment. Intuitively, a walker stays at

x for an exponential time with parameter µx, jumps to a nearest neighbor,

say y, with probability µxy/(
∑

z µxz). This is also called the variable speed

random walk or the random conductance model. There is a large amount of

literatures on random walks in random environments, e.g., [1], [5] and [6].

Let {Xt} and {Yt} be two independent variable speed random walks.

The problem we are interested is reduced to the property that Xt = Yt

infinitely often. More specifically, we say Xt = Yt infinitely often if there

exists an infinite sequence of random times {t1, t2, ...} with t1 < t2 < ... and

limi→∞ ti = ∞, such that X(ti) = Y (ti) for all i ≥ 1.

Theorem 1.2. Let d = 1 or 2. Suppose that (µe, e ∈ Ed) are i.i.d. and µe ≥

1 P-a.s. There exists Ω0 ⊆ Ω with P(Ω0) = 1. Let ω ∈ Ω0 and Pω denote

the probability conditional on the environment. If {Xt} and {Yt} are two

independent variable speed random walks starting from x and y respectively,

then Pω(Xt = Yt infinitely often) = 1.

The proof for the 2-dimensional case follows a similar idea which is used

in [3] and the key to the proof is the heat kernel estimates obtained by

Barlow and Deuschel [1]. For more references related to collisions of two

random walks, we refer readers to [2] [4] and [9]. Again the conclusion of

the theorem holds trivially in dimension one, and fails in general when the

dimension is 3 or greater.

This paper is organized as follows. In the next section we quote from [1]

the heat kernel bounds as Theorem 2.1, and prove two lemmas that will be

used in the proof of the main theorem. Theorems 1.1 and 1.2 will then be
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proved in §3. Between the two proofs we will review the coalescing Markov

chain and its dual relation with the voter model.

For the typographical reason we write µ(x) instead of µx whenever it is

necessary. [s] stands for the largest integer which is smaller than or equal

to s. |A| means the cardinality of set A. Zd = (Vd, Ed) is the d dimensional

Euclidean lattice. Let |x− y| denote the Euclidean distance between x and

y. Bx(s) = {z : |z − x| ≤ s} is the ball of vertices, centered at x. Note that

this also makes sense when the radius s is a positive number. Therefore we

prefer B(s) over B([s]).

2. Lemmas

Suppose that (µe) are i.i.d. and µe ≥ 1 P-a.s. Let {Xt} be the variable

speed random walk and qωt (x, y) be the heat kernel of {Xt}. Namely,

qωt (x, y) = P x
ω (Xt = y).

Theorem 2.1. (Theorem 1.2 of [1]) Let d ≥ 2 and σ ∈ (0, 1). There exist

random variables Sx, x ∈ Z
d, such that

P(Sx(ω) ≥ n) ≤ c1 exp(−c2n
σ), (2.1)

and constants ci (depending only on d and the distribution of µe) such that

the following hold.

If |x− y|2 ∨ t ≥ S2
x, then

qωt (x, y) ≤ c3t
−d/2e−c4|x−y|2/t when t ≥ |x− y|, (2.2)

qωt (x, y) ≤ c3 exp(−c4|x− y|(1 ∨ log(|x− y|/t))) when t ≤ |x− y|. (2.3)

If t ≥ S2
x ∨ |x− y|1+σ, then

qωt (x, y) ≥ c5t
−d/2e−c6|x−y|2/t. (2.4)

Lemma 2.2. Let An(ω) be the random set defined by

An(ω) = {x : |x| ≤ n, Sx(ω) ≤ 2 log n}.

Then almost surely there exists a finite random variable U(ω) such that

|An(ω)| ≥ c7n
2 for any n ≥ U(ω).

Proof. Set Wn(ω) := |An(ω)| =
∑

|x|≤n 1{Sx(ω)≤2 logn}. By (2.1),

EW2n =
∑

|x|≤2n

(1− P(Sx > n log 4)) ≥ π22n(1− c1 exp{−c2(n log 4)σ}) .

Since 0 ≤ W2n ≤ π22n, it follows that

P(W2n < π22n(1− c1 exp{−
c2
2
(n log 4)σ}) ≤ exp{−

c2
2
(n log 4)σ} .
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By the Borel-Cantelli Lemma, {W2n < π22n(1 − c1 exp{−c2(n log 4)σ/2})}

happens finitely many times almost surely. Then there exists Ω0 ⊆ Ω with

P(Ω0) = 1 and a random variable U(ω) such that U(ω) < ∞ for all ω ∈ Ω0,

and for all n ≥ U(ω),

W2n(ω) ≥ π22n(1− c1 exp{−c2(n log 4)σ/2}) ≥ c82
2n .

For all 2n < k < 2n+1, Wk ≥ W2n ≥ c82
2n ≥ c8k

2/4. �

Lemma 2.3. Let ω ∈ Ω0, and {Xt}, {Yt} be independent variable speed

random walks in Z
2 starting from x and y respectively. Then

Pω(Xt = Yt for some t ≥ 1) ≥ δ > 0,

where δ is a constant independent of ω, x and y.

Proof. Fix ω ∈ Ω0. Recall that Bx(n) = {z : |z − x| ≤ n}, and set

Mω(n) = Bx(n) ∩By(n) ∩An(ω) .

For n ≥ U(ω) + (|x| ∨ |y|)(1 + 12πc−1
7 ) ,

|Mω(n)| = |Bx(n)|+ |By(n)|+ |An(ω)| − |Bx(n) ∪By(n)| − |Bx(n) ∪An(ω)|

− |By(n) ∪An(ω)|+ |Bx(n) ∪By(n) ∪An(ω)|

≥ |Bx(n)|+ |By(n)|+ |An(ω)| − 2|B0(|x| ∨ |y|+ n)|

≥ πn2 + πn2 + c7n
2 − 2π(|x| ∨ |y|+ n)2

= c7n
2 − 4πn(|x| ∨ |y|)− 2π(|x| ∨ |y|)2

≥ c7n
2 − 6πn(|x) ∨ |y|) ≥

c7
2
n2 . (2.5)

Set T = exp( 2
1+σ log t0), where σ is given in Theorem 2.1, and

t0 = [Sx(ω) ∨ Sy(ω)]
2 + [U(ω) + (|x| ∨ |y|)(1 + 12πc−1

7 )]2.

Define the random variable

H :=

∫ T

t0

1{Xs=Ys∈M(s1/2)} ds .

We shall establish a lower bound of EH and an upper bound of EH2 below

as lemmas.

Lemma 2.4. EωH ≥ c9 log T .

Lemma 2.5. EωH
2 ≤ (4πc23 + 2π2c43/c4)(log T )

2.

Then by the Hölder’s inequality,

Pω(H > 0) ≥
(EωH)2

EωH2
≥

(c9 log T )
2

(4πc23 + 2π2c43/c4)(log T )
2
=

c29c4
4πc23c4 + 2π2c43

.
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It completes the proof by choosing δ to be c29c4/(4πc
2
3c4 + 2π2c43) which is

positive. �

Proof of Lemma 2.4.

EωH =

∫ T

t0

Eω1{Xs=Ys∈M(s1/2)} ds

=

∫ T

t0

∑

z∈M(s1/2)

Pω(Xs = z, Ys = z) ds

=

∫ T

t0

∑

z∈M(s1/2)

qωs (x, z)q
ω
s (y, z) ds .

Since z ∈ M(s1/2), we have |x − z|2 ≤ s ≤ T = exp( 2
1+σ log t0). Thus

s ≥ t0 ≥ S2
x(ω) ∨ |x − z|1+σ . Similarly s ≥ S2

y(ω) ∨ |y − z|1+σ. Hence the

condition of (2.4) is satisfied, and EωH can be bounded below.

EωH ≥

∫ T

t0

∑

z∈M(s1/2)

c25s
−2 exp

(

−c6
|x− z|2

s
− c6

|y − z|2

s

)

ds

≥ c25e
−2c6

∫ T

t0

∑

z∈M(s1/2)

s−2 ds ≥
c25c7e

−2c6

2

∫ T

t0

s−1 ds ≥ c9 log T .

Here we get the first inequality by (2.4), the second inequality by the fact

that |x − z|2 ≤ s for z ∈ M(s1/2), and the third inequality by (2.5) that

|M(s1/2)| ≥ c7s/2 since s1/2 ≥ t
1/2
0 ≥ U(ω) + (|x| ∨ |y|)(1 + 12πc−1

7 ). �

Proof of Lemma 2.5.

EωH
2 = 2Eω

(
∫ T

t0

dt

∫ T

t
1{Xt=Yt∈M(t1/2)}1{Xs=Ys∈M(s1/2)} ds

)

=2

∫ T

t0

dt

∫ T

t
Eω

∑

z∈M(t1/2)

∑

w∈M(s1/2)

1{Xt=Yt=z}1{Xs=Ys=w}ds

=2

∫ T

t0

dt

∫ T

t

∑

z∈M(t1/2)

P (x,y)
ω (Xt = Yt = z)

∑

w∈M(s1/2)

P (z,z)
ω (Xs−t = Ys−t = w)ds

=2

∫ T

t0

dt

∫ T

t

∑

z∈M(t1/2)

qωt (x, z)q
ω
t (y, z)

∑

w∈M(s1/2)

qωs−t(z, w)q
ω
s−t(z, w)ds

≤2

∫ T

t0

dt
[

∑

z∈M(t1/2)

qωt (x, z)q
ω
t (y, z)

∫ T

0

∑

w∈M((s+t)1/2)

(qωs (z, w))
2ds

]

.
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Since z ∈ M(t1/2), |x − z| ≤ t1/2 ≤ t. Similarly |y − z| ≤ t. Moreover

t ≥ t0 ≥ [Sx ∨ Sy]
2. Thus the condition of (2.2) is satisfied. Hence

qωt (x, z)q
ω
t (y, z) ≤ c23t

−2 .

On the other hand, since z ∈ M(t1/2), z ∈ At1/2(ω). Thus by the defini-

tion of An(ω) we conclude that Sz ≤ log t, and

∫ T

0

∑

w∈M((s+t)1/2)

(qωs (z, w))
2ds

≤ log t+

∫ T

log t

∑

w∈Bz(s)

(qωs (z, w))
2ds+

∫ T

log t

∑

w/∈Bz(s)

(qωs (z, w))
2ds . (2.6)

For w /∈ Bz(s), we have Sz(ω) ≤ log t ≤ s ≤ |z − w|, thus the condition of

(2.3) is satisfied. Hence

∫ T

log t

∑

v/∈Bz(s)

(qωs (z, w))
2ds ≤

∫ T

log t

∑

v/∈Bz(s)

c23 exp(−2c4|z − w|) ds

≤

∫ T

log t

∞
∑

n=[s]

2πnc23 exp(−2c4n) ds ≤ c10 .

For w ∈ Bz(s), s ≥ |z−w| and s ≥ Sz(ω), the condition of (2.2) is satisfied.

Hence

∫ T

log t

∑

w∈Bz(s)

(qωs (z, w))
2 ds

≤

∫ T

log t

∑

w∈Bz(s)

c23s
−2 exp

(

−2c4|z − w|2/s
)

ds

≤

∫ T

log t
[c23s

−2 +

[s]
∑

n=1

c232πns
−2 exp

(

−2c4n
2/s

)

] ds

≤c23(
1

log t
−

1

T
) + 2πc23

[T ]
∑

n=1

n

∫ T

n
s−2 exp

(

−2c4n
2/s

)

ds

≤
c23
log t

+ 2πc23

[T ]
∑

n=1

n

∫ n−1

T−1

exp(−2c4n
2u) du

≤
c23
log t

+ π
c23
c4

[T ]
∑

n=1

n−1 ≤
c23
log t

+
πc23
c4

log T .
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Putting two estimates together into (2.6),
∫ T

0

∑

w

(qωs (z, w))
2ds ≤ log t+ c10 +

c23
log t

+
πc23
c4

log T ≤ (2 +
πc23
c4

) log T.

Therefore,

EωH
2 ≤ 2

∫ T

t0





∑

z∈M(t1/2)

c23t
−2(2 +

πc23
c4

) log T



 dt

≤ 2

∫ T

t0

c23π(2 + πc23/c4) log T

t
dt ≤ (4πc23 +

2π2c43
c4

)(log T )2 .

�

3. Proof of Theorems

Proof of Theorem 1.2. When d = 1, (Xt, Yt) can be viewed as a random

walk in the 2-dimensional lattice with random conductance, and is therefore

recurrent. In particular (Xt, Yt) will certainly hit the diagonal line. Namely,

Pω(Xt = Yt, for some t > 0) = 1.

For d= 2, let δ > 0 be defined in Lemma 2.3. Fix ω ∈ Ω0. By Lemma 2.3,

there exists a function f : V2 × V2 7→ [1,∞), such that for all x, y ∈ V2,

P (x,y)
ω (Xt = Yt for some 1 < t ≤ f(x, y)) ≥

δ

2
. (3.1)

Set x0 = x, y0 = y and t0 = 0. Define xi, yi and ti inductively for i ≥ 1 as

follows. Suppose that xi, yi and ti are already defined. Let {X̃t} and {Ỹt}

be two independent continuous-time random walks starting from xi and yi.

Define

xi+1 := X̃(f(xi, yi)), yi+1 := Ỹ (f(xi, yi)), and ti+1 := ti + f(xi, yi).

Define Ei to be the event that Xt = Yt for some t ∈ (ti + 1, ti+1] for i ≥ 0.

By (3.1) and the strong Markov property,

Pω(Ei|Xt, Yt, t ≤ ti) = P (xi,yi)
ω (X̃t = Ỹt for some 1 < t ≤ f(xi, yi)) ≥

δ

2
.

By the second Borel-Cantelli lemma (extended version, see Page 237 of [7]),

Pω(Ei infinitely often)=1. Furthermore,

Pω(Xt = Yt infinitely often) ≥ Pω(Ei infinitely often) = 1 .

Thus we complete the proof of Theorem 1.2. �

As a dual of the voter model, the coalescing Markov chain {At} takes

value on the set of all finite sets of vertices of Zd. Suppose the initial state
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A is a finite set of vertices. Construct At as follows: Image that there is

a particle at each x ∈ A. Each particle performs a variable speed random

walk starting from a point in A, independent of each other until they meet.

Once two particles collide, they coalesce into one particle. Then At is the

set of locations of all particles at time t.

The process {At} can also be constructed by the same graphical repre-

sentation as used in the construction of the voter model. For η ∈ {0, 1}Z
2

and a finite set A ⊆ Z
2, define

H(η,A) = 1{η(z)=1 for all z∈A} .

Then the duality relation holds. That is,

E
η
ωH(ηt, A) = E

A
ωH(η,At).

For the details of the derivation of this equality, see page 230 of [10]. Equiv-

alently,

P
η
ω(ηt(x) = 1 for all x ∈ A) = P

A
ω (η(x) = 1 for all x ∈ At) . (3.2)

Now we are ready to prove that for ω ∈ Ω0, the corresponding voter model

has only two extremal invariant measures: δ0 and δ1.

Proof of Theorem 1.1. The following argument is free of dimension. So we

will only deal with the 2 dimensional case. Suppose that π is an probability

measure on {0, 1}Z
2

and π is invariant for the voter model. Let α(x) =

π(η(x) = 1). Then α is a bounded harmonic function. Namely α satisfies

µxα(x) =
∑

z

µxzα(z).

The fact that the variable speed random walk in Z
2 is recurrent implies that

all bounded harmonic functions are constants. Let α = π(η(0) = 1). We

want to prove by (3.2) that for any finite subset A,

π(η(x) = 1 for all x ∈ A) = α. (3.3)

Let τ be the first time that the coalescing random walk starting from A

coalesces into a singleton. By Theorem 1.2, Pω(τ < ∞) = 1. If t > τ , then

At = {Xt}, where Xt is the variable speed random walk starting from some
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point x ∈ A. By (3.2), for any t

π(η(y) = 1 for all y ∈ A) = P
π
ω(ηt(y) = 1 for all y ∈ A)

=

∫

P
η
ω(ηt(y) = 1 for all y ∈ A)π(dη)

=

∫

P
A
ω (η(y) = 1 for all y ∈ At)π(dη)

=

∫

[PA
ω (η(y) = 1 for all y ∈ At, τ ≤ t)

+ P
A
ω (η(y) = 1 for all y ∈ At, τ > t)]π(dη)

=

∫

[PA
ω (η(Xt) = 1, τ ≤ t) + P

A
ω (η(y) = 1 for all y ∈ At, τ > t)]π(dη)

=

∫

[αPA
ω (τ ≤ t) + P

A
ω (η(y) = 1 for all y ∈ At, τ > t)]π(dη)

=α+

∫

[−αPA
ω (τ > t) + P

A
ω (η(y) = 1 for all y ∈ At, τ > t)]π(dη).

Thus

|π(η(y) = 1 for all y ∈ A)− α| ≤ 2PA
ω (τ > t).

Letting t → ∞, we obtain the desired conclusion (3.3), from which we

conclude that π = αδ1 + (1− α)δ0. �
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