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SUMMARY

The conventional Wilcoxon/Mann-Whitney test can be invalid for comparing treatment

effects in the presence of missing values or in observational studies. This is because the

missingness of the outcomes or the participation in the treatments may depend on certain

pre-treatment variables. We propose an approach to adjust the Mann-Whitney test by

correcting the potential bias via consistently estimating the conditional distributions of the

outcomes given the pre-treatment variables. We also propose semiparametric extensions of

the adjusted Mann-Whitney test which leads to dimension reduction for high dimensional

covariate. A novel bootstrap procedure is devised to approximate the null distribution of

the test statistics for practical implementations. Results from simulation studies and an

economic observational study data analysis are presented to demonstrate the performance

of the proposed approach.

Key Words: Dimension reduction; Kernel smoothing; Mann-Whitney statistic; Missing out-

comes; Observational studies; Selection bias.

1. Introduction

In statistical, epidemiological and economic literature, the average treatment effect is

a widely employed measure to evaluate the impact of a treatment. There has been a re-

cent surge in econometric and epidemiological studies focusing on estimating and comparing

treatment effects under various scenarios; see for example Hahn (1998); Korn and Baumrind

(1998); Hirano et al. (2003) and Imbens (2004). If the outcome distributions are symmetric,

the difference between the average effects is a good measure (Imbens, 2004) for comparison.
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If, in particular, the outcomes are normally distributed with equal variances, the t-test is

preferred for comparing univariate outcomes. However, if the observed outcome distributions

are quite away from the normal distributions, nonparametric Wilcoxon/Mann-Whitney tests

may be the choice.

Missing values are commonly encountered in survey sampling, medical, social and eco-

nomic studies; see Rubin (1976) and Little and Rubin (2002) for comprehensive discussions.

In particular, the outcome variables can be missing, which may be influenced by a set of

covariates. A popular but misguided method is to use only the observed portion of the data.

This method might cause the t-test and the Wilcoxon/Mann-Whitney tests to be invalid if

the missingness is contributed by certain covariate (pre-treatment variables). A similar issue

occurs in observational studies (Rosenbaum, 2002) where the choice of treatment or control

on an individual is not purely random and depends on certain pre-treatment variables.

To obtain a valid test for comparing the treatment outcome distributions, one has to

adjust for the effect of pre-treatment variables on the missing propensity or on the alloca-

tion for treatment and control. Rosenbaum and Rubin (1983) proposed a propensity score

matching method which assigns each individual a propensity score calculated from the base-

line covariates. By grouping the scores of individuals into intervals, individuals with similar

scores are compared. A drawback of this method is the lack of a general guidance on how

the groups should be formed. Inverse probability weighting (Korn and Baumrind, 1998;

Imbens, 2004) based on the approach of Horvitz and Thompson (1952) is a method that

weighs each individual by his or her propensity of treatment or control; see for example

Hirano et al. (2003) and Tsiatis (2006). Another popular approach is based on the so-called

regression method (Matloff, 1981) by assuming a conditional model for the response variable

given the observed covariate, which is efficient provided the underlying model assumption is

correct. Nonparametric methods have been also introduced to bring in robustness for the

regression approach. Kuk (1993) proposed a marginal distribution estimation by averaging

the nonparametrically estimated conditional distribution in finite population sampling prob-

lem. Cheng (1994) proposed using the kernel method to estimate the regression function

first, followed by averaging the estimated regression function to estimate the mean of the

marginal response variable. Cheng’s approach is shown by Hahn (1998) to be semiparametric

efficient. Generalizations of Cheng (1994)’s method to misclassified binary responses were

studied by Chu and Chen (1995). For discrete baseline covariates, Cheung (2005) studied

a test for distributional equivalence based on a version of the Wilcoxon statistic. Similar

statistic was discussed by Bilker and Wang (1996) for truncated semiparametric models. In

the latter two formulations, the baseline covariate information was not fully employed since
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items associated missing values were not utilized. This can lead to a loss of efficiency since

the response variable is correlated with the covariate in general.

In this paper, we propose an adjusted Mann-Whitney test to compare outcome dis-

tributions between treatment and control that can accommodate both missing values and

observational studies. The adjustment is carried out by a nonparametric kernel estimation to

the conditional distributions of the outcomes given the pre-treatment variables. This leads

to estimators of the marginal outcome distributions which then produces a Mann-Whitney

type statistic. Semiparametric adjustments are also proposed which give rise to a general

working model based smoothed Mann-Whitney statistic that reduces the impacts of high di-

mensional covariate. We show that both approaches are model robust and are able to utilize

the data information in the common pre-treatment baseline covariates. The efficiency gains

of both proposed adjustments are quantified by reductions in the variances of the test statis-

tics. How to approximate the null distribution of the adjusted Mann-Whitney statistic is a

challenge in the conditional setting we face. We propose a novel bootstrap approach which

respects the underlying conditional distributions of the outcomes given the pre-treatment

covariates while maintaining the null hypothesis.

This paper is organized as follows. The adjusted Mann-Whitney statistic is proposed

in Section 2, whose asymptotic distribution is evaluated in Section 3. Semiparametric ex-

tensions of the adjusted Mann-Whitney test are discussed in Section 4. Section 5 outlines

and justifies the bootstrap resampling approach in approximating the critical values of the

adjusted test. Results from simulation experiments are reported in Section 6. An empirical

study on a dataset from an economic observational study is presented in Section 7. All the

technical details are relegated to the Appendix.

2. A Covariate Adjusted Mann-Whitney Statistic

We first introduce the proposed adjusted Mann-Whitney statistic when outcome variables

can be missing. Later in this section, we will illustrate how to extend it for observational

studies. In a randomized clinical trial, patients are randomly assigned to a treatment arm and

or a placebo. For each patient, one can observe a d-variate baseline covariate X. This gives

rise to X11, ..., X1n1 for one group and X21, ...., X2n2 for the other. Due to the randomization,

X1i (i = 1, 2, ..., n1) and X2j (j = 1, 2, ..., n2) have the same marginal distribution Fx.

After starting the trial, patients are followed for a period of time, the outcome variables

Y11, ..., Y1n1 and Y21, ...., Y2n2 are respectively observed for the two groups. Let Fm be the

marginal distribution function of Ymi for m = 1, 2, that is assumed to be continuous. We
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are interested in testing

H0 : F1 = F2.

If there is no missing value for the outcome variable Y , one may directly compare the

Y1i’s (i = 1, 2, ..., n1) and Y2j’s (j = 1, 2, ..., n2) distributions to evaluate the treatment effect.

Both the t-test and the Wilcoxon/Mann-Whitney tests are popular methods for this purpose.

However, often in practice some Y s are missing during the follow-up.

Let (Xm1, Sm1, Ym1), ...., (Xmnm , Smnm , Ymnm), for m = 1 and 2, be two independent ran-

dom samples, where the d-variate baseline covariate Xmi is always observed, and Smi is

a retention indicator such that Smi = 1 if Ymi is observed, and 0 otherwise. We assume

completely ignorable missing at random (MAR), a notion introduced in Rubin (1976), such

that

P (Smi = 1|Xmi, Ymi) = P (Smi = 1|Xmi) = πm(Xmi) (1)

where πm(x) is the missing (selection) propensity function in the m-th sample. The MAR

implies that the conditional distribution of Ymi given Xmi and Smi is the same as that of

Ymi given Xmi, which is denoted by Fm(y|x). If one makes inference based only on the

so-called complete data (those with Smi = 1), biased results may occur (Breslow, 2003) since

the distribution of the complete data may have been distorted away from the truth of the

underlying population, which is the case if πm is not a constant function of the covariate Xi.

To avoid this distortion, we propose an approach via estimating Fm(y|x) to filter out the

potential bias caused by Xi.

We propose using the kernel method to estimate the conditional distribution function

Fm(y|x) based on them-th sample {(Xmi, Ymi, Smi)}nm
i=1. Specifically, letK be a d-dimensional

kernel function which is a symmetric (in each dimension) probability density function with

finite second moment σ2
K in Rd and Khm(t) = h−d

m K(t/hm) where hm is a smoothing band-

width. The kernel estimator of Fm(y|x) is

F̂m(y|x) = n−1
m

nm∑
i=1

I(Ymi ≤ y)Khm(Xmi − x)Smi

η̂m(x)
, (2)

where η̂m(x) =
1
nm

∑nm

i=1 SmiKhm(Xmi − x) is a kernel estimator of ηm(x) = πm(x)fx(x) and

fx is the common density of the covariate Xmi. As Fm(y) =
∫
Fm(y|x)dFx(x), Fm(y) can be

estimated by

F̂m(y) =

∫
F̂m(y|x)dFnx(x) =

1

nnm

n∑
j=1

nm∑
i=1

I(Ymi ≤ y)Khm(Xmi −Xj)Smi

η̂m(Xj)
(3)

4



where Fnx is the empirical distribution function based on the pooled covariates {Xi}ni=1 =

(X11, ...X1n1 , X21, ...., X2n2) with n = n1 + n2. The adjusted Mann-Whitney statistic is

Wn =

∫
F̂1(y)dF̂2(y)

=
1

n2n1n2

n∑
l=1

n2∑
k=1

n∑
j=1

n1∑
i=1

I(Y1i ≤ Y2k)Kh1(X1i −Xj)Kh2(X2k −Xl)S1iS2k

η̂1(Xj)η̂2(Xl)
. (4)

To reduce the bias of the kernel estimator, one can also adapt the cross-validated estimator

so that in obtaining η̂m(Xj), the Xj is not used.

The test statistic Wn in (4) can be readily modified to compare treatment effects in

observational studies. Our discussion three paragraphs earlier on potential bias induced

by the pre-treatment variables and the need for correction in the context of missing values

remains intact. We can understand an observational study as follows. Let (Y1, Y0, S,X)

be the treatment outcome, control outcome, treatment indicator and baseline covariate,

where Y1 is observed if S = 1 but Y0 is missing, whereas Y0 is observed if S = 0 but Y1

is missing. Clearly, Y1 and Y0 are correlated since they come from the same individual.

The basic assumption in casual inference is that P (S = 1|x, y1, y0) = P (S = 1|x) i.e. the

propensity score only depends on the observable baseline covariate, which is similar to the

notion of MAR in (1). Moreover, the conditional densities of Y1 and Y0 given covariate X

and treatment assignment S satisfy

f1(y1|x, S) = f1(y1|x), f0(y0|x, S) = f0(y0|x).

namely given covariate X, the treatment or control outcomes does not depend on the choice

of treatment or control. Let F1(y) and F2(y) be the marginal distributions of Y1 and Y0

respectively. Since Y1 and Y0 are not available for each individual simultaneously, it is

impossible to estimate the joint distribution of (Y1, Y0). We get around the problem by

adopting our early strategies used in formulating the Wn statistic. Specifically, we treat Y1’s

as missing for those individuals who had made the choice of controls (S = 0), and similarly

Y0’s are regarded as missing for those who had made the choice of ”treatment”. And the

common baseline covariate X is available for each individual. Then, all we need to do is to

change the missing indicator Smi to be the indicator for a treatment, and F1 and F2 represent

the marginal distributions of the two outcome variables.

3. Properties of the Adjusted Test Statistic

To analyze the adjusted Mann-Whitney statistic Wn, we apply the projection method

(Hoeffding, 1948; Serfling, 1980) to approximateWn. Let n = n1+n2 and θ =
∫
F1(y)dF2(y).

Clearly θ = 1/2 under H0 (no treatment effect). The following conditions are assumed:
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C1: The conditional distribution functions Fm(y|x) have continuous second order deriva-

tives with respect to x and y for all (x, y) in their support Sx,y ⊂ Rp+1; the density function

fm(x) of the covariate X and the propensity functions πm(x) have continuous second order

derivatives for all x in its support Sx ⊂ Rp, and are both bounded away from zero.

C2: As min{n1, n2} → ∞, n/n1 → ρ1 and n/n1 → ρ2.

C3: The kernel function K is a symmetric probability density function in Rp such that∫
u2K(u)du <∞ and

∫
K2(u)du <∞; the smoothing bandwidth hm satisfies that hm → 0,

nmh
d
m → ∞ and

√
nmh

2
m → 0 as n→ ∞.

We note that the latter part of Condition C3 prescribes undersmoothing in the kernel

estimation for the purpose of bias reduction. It rules out situations where d ≥ 4, namely X

having four or more covariates. For d ≥ 4, we advocate a semiparametric adjustment that

we will propose in Section 4. Let F̄ (y) = 1− F (y) be the survival function and

ξ1(X) =

∫
F̄2(y)dF1(y|X) and ξ2(X) =

∫
F1(y)dF2(y|X)

be, respectively, the conditional expectations of F̄2(Y1i) and F1(Y2k). Furthermore, define

the conditional variances of F̄2(Y1i) and F1(Y2k)

v21(X) =

∫
F̄ 2
2 (y)dF1(y|X)− ξ21(X) and v22(x) =

∫
F 2
1 (y)dF2(y|X)− ξ22(X). (5)

Let Omi = (Xmi, Ymi, Smi), i = 1, . . . , nm, the following lemma provides an approximation to

Wn − θ by projecting it onto the space of all {Omi}nm
i=1 for m = 1 and 2.

Lemma 1. Under Conditions C1-C3, as min{n1, n2} → ∞,

Wn − θ = n−1
1

n1∑
i=1

[
S1i

π1(X1i)

{
F̄2(Y1i)− ξ1(X1i)

}]
+ n−1

2

n2∑
k=1

[
S2k

π2(X2k)
{F1(Y2k)− ξ2(X2k)}

]
+ n−1

n∑
j=1

{ξ1(Xj) + ξ2(Xj)− 2θ}+ op(n
−1/2). (6)

It can be checked that the first three terms on the right of (6) are mutually un-correlated. The

asymptotic normality of Wn is now readily available by applying the central limit theorem

and the Slutsky’s theorem.

Theorem 1. Under Conditions C1-C3, as min{n1, n2} → ∞,
√
n(Wn − θ)

d→ N{0, v2(θ)}
where

v2(θ) = E
[
ρ1π

−1
1 (X)v21(X) + ρ2π

−1
2 (X)v22(X) + {ξ1(X) + ξ2(X)− 2θ}2

]
. (7)
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Remark 1. Despite the covariates can be multivariate such that d ≥ 1, the kernel smoothing

leaves no first order impacts on the asymptotic distribution of Wn. This is due to the

averaging in Wn with respect to the pre-treatment covariates as well as the under-smoothing

by requiring
√
nh2m → 0.

Remark 2. Let us consider the classical Mann-Whitney test, in the absence of missing

values, defined by

W0n = (n1n2)
−1

n1∑
i=1

n2∑
j=1

I(Y1i < Y2j). (8)

By carrying out similar projection to that in Lemma 1, we have

W0n − θ = n−1
1

n1∑
i=1

{F̄2(Y1i)− ξ1(X1i)}+ n−1
2

n2∑
j=1

{F1(Y2j)− ξ2(X2j)}

+ n−1
1

n1∑
i=1

{ξ1(X1i)− θ}+ n−2
2

n2∑
j=1

{ξ2(X2j)− θ}+ op(n
−1/2). (9)

Hence the asymptotic variance of W0n is

lim
n→∞

nvar(W0n) = E
[
ρ1v

2
1(X) + ρ2v

2
2(X) + ρ1{ξ1(X)− θ}2 + ρ2{ξ2(X)− θ}2

]
. (10)

As ρ−1
1 + ρ−1

2 = 1, (ρ1 − 1)(ρ2 − 1) = 1. Thus, in the absence of missing data,

lim
n→∞

n{var(W0n)− var(Wn)} = E
[√

ρ1 − 1{ξ1(X)− θ} −
√
ρ2 − 1{ξ2(X)− θ}

]2
≥ 0.

This implies thatWn has smaller limiting variance than the classical Mann-Whitney statistic

when all observations are complete. This also illustrates the benefit by incorporating data

information from the covariates. If X is not informative in the conditional expectations

of F̄2(Y1) and F1(Y2) so that ξ1(X) = ξ2(X) = θ, the limiting variances of Wn and W0n

are identical. When ξ1(X) and ξ2(X) are not constant, Wn can improve on W0n, which

demonstrates an advantage of the proposed approach. Our discussion above and elsewhere

in the paper is footed on a fact that is if two test statistics are both asymptotically normal

with the same asymptotic mean, the test based on the statistic with smaller asymptotic

variance is more powerful asymptotically.

Remark 3. We can also compare Wn with

Qn = n−1
1 n−1

2

n1∑
i=1

n2∑
j=1

I(Y1i ≤ Y2j)S1iS2j

π̂1(X1i)π̂2(X2j)
(11)
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which adjusts the Mann-Whitney statistic via the kernel estimated propensity functions

π̂m(x) =
∑nm

j=1Khm(Xmi − x)Si/
∑nm

j=1Khm(Xmi − x). By conducting a similar analysis as

that in Remark 2, we can show that

lim
n→∞

{var(Qn)− var(Wn)} ≥ 0.

This confirms again the benefit of incorporating common covariates in Wn. The covariate

adjusted Mann-Whitney test by parametrically estimating πm(x) will be discussed in the

next section.

An α-level adjusted Mann-Whitney test rejects H0 : F1 = F2 if |
√
n(Wn − 1/2)| ≥

z(1−α)/2

√
v(1/2) where zα is the α quantile of N(0, 1). The power of the test is produced by

the fact that θ ̸= 1/2 if H0 is violated and hence
√
n(Wn − 1

2
) has a mean that diverges to

either +∞ or −∞. Let Φ be the distribution function of N(0, 1). Then Theorem 1 implies

that the asymptotic power of the test is

1− Φ
{√

n(1
2
− θ)v(θ)−1 + v(1

2
)v−1(θ)z(1−α)/2

}
+ Φ

{√
n(1

2
− θ)v(θ)−1 − v(1

2
)v−1(θ)z(1−α)/2

}
which converges to 1 as n → ∞ regardless of θ < 1/2 or θ > 1/2. Hence, the test is

consistent.

4. Semiparametric Extensions to the Multiple Covariate Situation

In the proposed adjusted Mann-Whitney test, the averaging with respect to X as well as

the undersmoothing can alleviate some impacts of the dimensionality of X. However, if the

covariates’ dimensionality is high, a semiparametric extension of (4) will reduce the impacts

of the dimensionality in X and hence improve the performance of the test.

We note that conditioning on πm(Xm), Sm and Ym are independent (Rosenbaum and

Rubin, 1983). Thus, a dimension reduction can be achieved by replacing Xmi by univariate

tmi = πm(Xmi) in the formulation of the adjusted Mann-Whitney test statistic Wn. Suppose

that it is reasonable to assume parametric models πm(x; βm), for instance the logistic models,

for the propensity functions, where βm are unknown parameters. Let β̂m be the maximum

likelihood estimates (MLE) based on the binary log-likelihood

ℓm(βm) =
nm∑
i=1

[
Smi log{πm(Xmi, βm)}+ (1− Smi) log{1− πm(Xmi, βm)}

]
. (12)

Let t̂mi = πm(Xi; β̂m) for pooled covariates {Xi}ni=1 and m = 1, 2 respectively, then a semi-

parametric version of the adjusted Mann-Whitney statistic (4) is

Tn =
1

n2n1n2

n∑
l=1

n2∑
k=1

n∑
j=1

n1∑
i=1

I(Y1i ≤ Y2k)Kh1(t̂1i − t̂1j)Kh2(t̂2k − t̂2l)S1iS2k

η̂1(t̂1j)η̂2(t̂2l)
(13)
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where η̂m(t) = n−1
m

∑nm

i=1 SmiKhm(tmi − t) is a kernel estimator of πm(x)fm(t), fm(t) is the

density of the transformed random variable t = πm(X) and K is now a univariate kernel

function with bandwidth hm. We assume in this section the following condition:

C4: The missing propensity function takes the parametric form P (Smi = 1|Xmi, Ymi) =

πm(Xmi, βm) that is bounded away from 0 and twice continuously differentiable in βm.

We note that theory for maximum likelihood estimate implies that β̂m by maximizing

(12) is
√
n-consistent (Newey and McFadden, 1994). We define two projections of the sec-

ond sample survival function and the first sample distribution function with respect to the

conditional distributions given the propensity functions as

ψ1(X) =

∫
F̄2(y)dF1{y|π1(X; β01)} and ψ2(X) =

∫
F1(y)dF2{y|π2(X; β02)}. (14)

The first order approximation of Tn is presented in the following lemma, which resembles

that in Lemma 1 for Wn.

Lemma 2. Under Conditions C1 - C4, as min{n1, n2} → ∞,

Tn − θ = n−1
1

n1∑
i=1

[
S1i

π1(X1i)

{
F̄2(Y1i)− ψ1(X1i)

}]
+ n−1

2

n2∑
k=1

[
S2k

π2(X2k)
{F1(Y2k)− ψ2(X2k)}

]
+ n−1

n∑
j=1

{ψ1(Xj) + ψ2(Xj)− 2θ}+ op(n
−1/2). (15)

Since Smi and Ymi are conditionally independent given πm(Xmi) (Rosenbaum and Rubin,

1983), all terms in (15) are uncorrelated. Define

u21(X) =

∫
F̄ 2
2 (y)dF1(y|X)− ψ2

1(X) and u22(X) =

∫
F 2
1 (y)dF2(y|X)− ψ2

2(X).

Let

v2p(θ) = E
[
ρ1π

−1
1 (X)u21(X) + ρ2π

−1
2 (X)u22(X) + {ψ1(X) + ψ2(X)− 2θ}2

]
. (16)

The following theorem provides the asymptotic normality of Tn.

Theorem 2. Under Conditions C1-C4, as min{n1, n2} → ∞,
√
n(Tn − θ)

d→ N{0, v2g(θ)}.

We can compare Tn given by (13) to propensity adjusted Mann-Whitney test statistic

Rn = n−1
1 n−1

2

n1∑
i=1

n1∑
j=1

I(Y1i ≤ Y2j)S1iS2j

t̂1it̂2j
. (17)

Though both Tn and Rn utilize estimated propensity functions from parametric models,

they differ substantially in utilizing information in the base-line covariates Xi. Like Wn,
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Tn is more active in pursuing such information, whileas Rn is more passive, only through

the missing propensities. A variance comparison between Rn and Tn is not attainble in the

presence of missing values, sine Rn has a leading variance contribution from the estimated

parameters in the propensity function (Cheung, 2005) while Tn does not have such terms

due to the kernel smoothing. However, a comment can be made in the absence of missing

values, where Rn is equivalent to W0n. By replicating Remark 1 to Theorem 1, we can show

that Tn is more efficient than W0n (Rn when there is no missing data), indicating the benefit

by incorporating common baseline covariate information. The simulation studies reported

in Section 6 contain numerical comparisons between the two tests, which lend support to

this view.

The semiparametric statistic Tn in (13) is attractive in reduced covariate dimensionality,

and hence it overcomes the difficulty of Wn with the dimensionality of X in the presence of

missing values or observational studies. However we note that v2p(θ) ≥ v2(θ) by comparing

(16) and (7), because ξ1(X) and ξ2(X) are the minimum variance unbiased predictors of

F̄2(Y1) and F1(Y2) conditioning on X respectively. This illustrates the connection between

the nonparametric adjusted test (4) and the semiparametric extension (13). Having said

these, we would like to voice caution. It should be emphasized that the result is asymptotic,

for n being sufficiently abundant so that the dimensionality is not an issue for the fully

nonparametricWn. As we will demonstrate in the simulation study, in finite sample situation,

the dimensionality is an issue for the fully nonparametric test based on Wn.

The above discussion suggests room for improving the propensity function based semi-

parametric extension (13). How to obtain a better projection than ψm(x) in (14) motivates us

to consider working towards Fm(y|gm(X; γm)) for a proper general index function gm(X; γm)

with parameter γm. The index function can be a working regression model postulated on

the complete data. We provide examples of such working models in the simulation section.

We note that the idea here is related to approximating conditional distribution function

by dimensional reduction considered in Hall and Yao (2005); see also Hu et al. (2010) and

Hu et al. (2011) for dimensional reduction via the kernel smoothing for inference on the

mean and the distribution function with missing data incorporating parametric models for

the propensities. The parameters γm in the index functions can be estimated based on the

m-th sample via several methods, including the maximum likelihood estimation (Newey and

McFadden, 1994), general methods of moments (Hansen, 1982), and the minimum distance

approach in Hall and Yao (2005).

This leads us to a new semiparametric test statistic by incorporating ẑmi = gm(Xi; γ̂m)

for pooled covariates {Xi}ni=1. Because Ym and Sm are not conditionally independent given
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gm(X; γm), it is necessary to modify the definition (2) with propensity weighting. Let π̂mi =

πm(Xmi, β̂m), then

F̂m(y|z) = f̂−1
m (z)

{
n−1
m

nm∑
i=1

I(Ymi ≤ y)Khm(z − zmi)
Smi

π̂mi

}
(18)

estimates the conditional distribution Fm(y|z) consistently, where f̂m(z) = n−1
m

∑n
i=1K(z −

zmi)Smi/π̂mi. Then following the same steps constructing Wn, we define

Zn = n−2n−1
1 n−1

2

n∑
l=1

n2∑
k=1

n∑
j=1

n1∑
i=1

I(Y1i ≤ Y2k)Kh1(z1i − z1j)Kh2(z2k − z2l)S1iS2k

f̂1(z1j)f̂2(z2l)π̂1iπ̂2k
. (19)

We assume the following additional condition for the general semiparametric extension using.

C5: There exist limits γ01 and γ02 such that the estimator γ̂m based on the m-th sample

is
√
n-consistent to γ0m. And gm(x; γm), m = 1, 2, is continuously twice differentiable in γm

with bounded first partial derivative in a neighborhood of γ0m.

We note that the
√
n-consistency of γ̂m in Condition C4 is a mild requirement that is

satisfied by a range of estimation approaches including the maximum likelihood (Newey and

McFadden, 1994), general methods of moments (Hansen, 1982), and the minimum distance

approach in Hall and Yao (2005). Denote the conditional expectations analogous to (14) by

ϕ1(X) =

∫
F̄2(y)dF1{y|g1(X; γ01)} and ϕ2(X) =

∫
F1(y)dF2{y|g2(X; γ02)}.

The first order approximation of Zn is presented in the following lemma.

Lemma 3. Under Conditions C1 - C5,

Zn − θ = n−1
1

n1∑
i=1

[
S1i

π1(X1i)

{
F̄2(Y1i)− ϕ1(X1i)

}]
+ n−1

2

n2∑
k=1

[
S2k

π2(X2k)
{F1(Y2k)− ϕ2(X2k)}

]
+ n−1

n∑
j=1

{ϕ1(Xj) + ϕ2(Xj)− 2θ}+ op(n
−1/2). (20)

If Smi and Ymi are conditionally independent given gm(Xmi), then all terms in (20) are

uncorrelated. The conditional independence holds when gm(X) is chosen to be the propensity

function (Rosenbaum and Rubin, 1983); otherwise correlations among terms in (20) generally

exist. Define

w2
1(X) = v21(X) + {ξ1(X)− ϕ1(X)}2 and w2

2(X) = v22(X) + {ξ2(X)− ϕ2(X)}2

where v21(X) and v22(X) are given in (5). Let

v2g(θ) = E
[
ρ1π

−1
1 (X)w2

1(X) + ρ2π
−1
2 (X)w2

2(X) + {ϕ1(X) + ϕ2(X)− 2θ}2
]

(21)

+ 2E [{ξ1(X) + ξ2(X)− ϕ1(X)− ϕ2(X)}{ϕ1(X) + ϕ2(X)− 2θ}] .
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The following theorem provides the asymptotic normality of Zn.

Theorem 3. Under the conditions C1-C5, as min{n1, n2} → ∞
√
n(Zn−θ)

d→ N{0, v2g(θ)}.

Comparing the variances v2g(θ) and v
2(θ) given by (21) and (7) respectively, we find that

v2g(θ)− v2(θ) ≥ E
[√

ρ1 − 1{ξ1(X)− ϕ1(X)} −
√
ρ2 − 1{ξ2(X)− ϕ2(X)}

]2
≥ 0. (22)

When gm(X; γm) is appropriately chosen such that ξm(X) = ϕm(X) for m = 1, 2, then

the variance of Zn is minimized. Intuitively it makes sense, because in such case gm(x; γm)

achieves the minimum variance unbiased predictors of F̄2(Y1) and F1(Y2) conditioning on

X respectively. This observation can also be suggested by the fact that the more gm(X)

is relevant to the conditional distribution of Fm(Y ) given X, the more improvement in the

variance of Zn can be achieved. Again, we stress that the variance comparison is only valid

asymptotically and Zn is more advantageous in practice. Therefore, Lemma 3 and Theorem 3

illustrate that Zn successfully combines the merits ofWn and Tn in efficiency and convenience

for multivariate covariates.

5. Bootstrap Calibration

To implement the proposed adjusted Mann-Whitney test based on Wn, we need to ap-

proximate the distributions of Wn, Tn and Zn under H0 : F1 = F2. We will only present the

bootstrap forWn and that for Tn or Zn is available by replacing all the conditioning variables

X to πm(X) or gm(X). One approach is to estimate the asymptotic variance v2(1/2) under

H0. However, v2(1/2) as implied from (7) involves many unknown functions including the

missing propensities π1(x) and π2(x), the marginal distributions F1 and F2, the common

density f of the covariates as well as the conditional distributions F1(y|x) and F2(y|x). This
makes any direct plugging-in estimation of v2(1/2) rather involved and is prone to error.

We consider a bootstrap approximation to the null distribution of Wn. The challenge for

the bootstrap in the current context is how to generate resamples (X∗
i , Y

∗
i , S

∗
i ) which meet

two requirements:

(i) the resampled outcomes Y ∗ under the treatment and control have the same marginal

distribution to satisfy H0;

(ii) the underlying conditional distributions F1(y|x) and F2(y|x), the distribution of the

covariate X and the missing propensities are respected by the resamples.

A seemingly straightforward solution was to pool two samples together and then to

draw resamples with replacement from the combined sample randomly as some conventional

bootstrap approaches do. While this creates a scenario of the null hypothesis, it may fail to

12



respect the conditional distributions Fm(y|x) and the missing propensities πm(x) respectively.

Recall that F̂1 and F̂2 are estimators to the distributions of the outcome variables F1 and

F2 given by (3), and let

Ĝ(y) = n−1
{
n1F̂1(y) + n2F̂2(y)

}
. (23)

The proposed bootstrap procedure consists of the following steps:

1. Obtain (X∗
mi, S

∗
mi, Y

∗
mi) by sampling with replacement in the original sample m for

m = 1, 2 and i = 1, 2, . . . , nm respectively.

2. Let Umi = F̂m(Y
∗
mi) and replace Y ∗

mi by Ỹ
∗
mi = Ĝ−1(Umi) where the inverse function is

defined by Ĝ−1(u) = sup{y : Ĝ(y) ≤ u}.

3. Calculate W ∗
n by (4) based on {(X∗

mi, S
∗
mi, Ỹ

∗
mi)}nm

i=1 for m = 1 and 2.

4. Repeat Steps 1-3 B times for a large integer B, obtain the test statistics based on the

resamples, and order them such that W ∗
n1 ≤ W ∗

n2 ≤ . . .W ∗
nB.

Step 1 draws resamples with replacement from the two original samples respectively. This

maintains the joint distributions of (X,Y, S) and hence the conditional distributions and the

missing mechanisms in the original samples. This step maintains the underlying conditional

distributions Fm(y|x), but F1 and F2 may be different. Step 2 replaces the response variable

by inverting the estimated marginal distribution of Y based on the pooled sample, which

results in Ỹ ∗
mi having the same marginal distribution, and hence having H0 maintained. The

latter is explicitly outlined in Appendix A.4.

Let cα/2 = W ∗
n[Bα/2+1] and c1−α/2 = W ∗

n[B(1−α/2)+1] be, respectively, the α/2 and 1− α/2

level empirical quantiles of the resampled test statistics {W ∗
nb}Bb=1. The proposed bootstrap

test rejects H0 ifWn /∈ (cα/2, c1−α/2). Let Fn be the σ-field generated by {(Xmi, Smi, Ymi)}nmi
i=1

for m = 1, 2. A justification to the bootstrap calibration is provided in the following theorem

whose proof is given in the Appendix.

Theorem 4. Under Conditions C1-C3 and H0, the conditional distribution of
√
n(W ∗

n −
1/2)/v(1/2) given Fn converges in distribution toN(0, 1) almost surely, as min{n1, n2} → ∞.

Theorem 4 confirms the validity of the bootstrap procedure in approximating the limiting

distribution of the test statistic. A similar bootstrap procedure can be applied to the semi-

parametric extensions of the proposed approach to obtain the critical values for implementing

the tests.
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6. Simulation Studies

We conducted extensive simulations to demonstrate the merits of the proposed adjusted

Mann-Whitney test and its semiparametric extensions. The simulations evaluated the per-

formance of the nonparametrically adjusted Mann-Whitney test based on Wn, the semi-

parametrically adjusted tests Tn and Zn with an index function linear in all covariates.

When implementing Tn, parameters in the propensity functions were estimated by maxi-

mizing binary likelihood functions. For parameters in the working linear function in Zn,

least squares estimates were obtained by minimizing
∑n1

i=1 S1i{1 − F̃2(Y1i) − XT
1iγ1 − γ0,1}2

and
∑n2

i=1 S2i{F̃1(Y2i) −XT
2iγ2 − γ0,2}2 respectively for unknown parameters γ0,m and γm =

(γ1,m, . . . γd,m)
T , m = 1, 2. Those initial estimates F̃m(y) in the least squares were obtained

by weighted empirical distributions F̃m(y) = n−1
m

∑nm

i=1 I(Ymi ≤ y)Smi/πm(Xmi; β̂m).

We compared the proposed adjusted tests with two testing procedures in missing data

problems. One is based on the propensity weighted Mann-Whitney statistic Rn in (17),

which is an extension of a method in Cheung (2005). The other is based on the adjusted

mean comparison:

t̃n =
√
n|µ̂1 − µ̂2| (24)

where µ−1
m = n−1

m

∑nm

i=1 Ymi/π̂m(Xmi; βm) is the propensity adjusted estimation for the mean

of Y . Clearly, (24) is an extension of the t-test for missing data with covariates. We chose

the correctly specified parametric model for the missing propensity function for (17) and

(24) so that they would perform under the most ideal conditions. We also obtained results

for two impractical Oracle tests: the classical Mann-Whitney and the two sample t tests by

accessing to the missing values in Y to gain benchmarks for power of the tests.

A d-variate product kernel was employed throughout the simulation when implementing

the proposed fully nonparametric test statistics Wn in (4); and a univariate kernel was

used for the semiparametric statistics Tn and Zn in (13) and (19). The Gaussian kernel was

chosen as the univariate kernel and was used to generate a d-dimensional product kernel. The

bandwidths were chosen by the cross-validation method (Hall et al., 2004) then divided by 2

for undersmoothing. To evaluate the robustness of the test against the choices of bandwidths,

we evaluated the tests statistics at two additional bandwidths, being 10% larger or smaller.

The results were largely similar and hence are not reported here. In the data generating

process, we set n1 = n2 = n without loss of generality, and in particular, n = 50 and 80

respectively. The covariates Xmi = (Xmi,1, . . . , Xmi,d)
T were a d-dimensional random vector

for m = 1, 2. We assigned d from 1 to 4 to examine impacts of covariates’ dimension. In

all simulations the number of replications was 1000 and the bootstrap was repeated for 100

time to obtain the critical values.
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We first experimented Gaussian distribution for the outcome variable Y s. In this ex-

periment, we generated (Ymi, X
T
mi)

T ∼ N(µm,Σ) independently for m = 1, 2, where Σ =

(σij)i,j=1,...,d+1. Here σii = s2 for i = 1, . . . , d + 1, σij = 0.6s2 for i ̸= j, and s = 0.3.

When assessing the sizes of tests, both µ1 and µ2 were set to be 0; and when assessing the

power, µ1 was made zero and µ2 was set to be 0.1 and 0.15 respectively generating two

scenarios, Power1 and Power2 respectively. We then varied the sample size n in combination

with different missing data models. We considered two cases of missing at random: 1) the

propensities functions were the same for both samples (MAR1); and 2) two different propen-

sity functions in the two samples (MAR2). In both mechanisms, the propensity functions

assumed a parametric form

P (S = 1|Y,X) = π(X) = θ0 + θ1X1 + · · ·+ θdXd + θd+1X
2
1

with parameter θ = (θ0, θ1, . . . , θd+1). For MAR1, θ was set to be (1.25, 1/
√
d, . . . , 1/

√
d,−3.0)T

for both samples. For MAR2, θ was set (−0.5, 1/
√
d, . . . , 1/

√
d, 0)T for one sample and for

the other the same as MAR1. We note that dividing
√
d in the parameter values assignments

was to ensure that the missing propensities were at a similar level in average with respect to

different dimensions to allow comparable results across d. In average about 25% responses

under MAR1 were missed, while those for MAR2 were about 60% and 25% respectively.

To gain further empirical evidence, we experimented another simulation design where the

responses between the two samples had different distributions, unlike the previous setting

(Gaussian setting) where both were Gaussian distributed. Under the design, both the covari-

ate and the response in the first sample were kept the same as in the previous Gaussian cases

but with µ = 0; and the missing values were governed by the MAR1 and MAR2 respectively.

In the second sample, the distribution of Xmi and the missing propensity were identical to

the first sample, but Y followed a centralized Gamma distribution with the shape parameter

α = 2.0 and the scale parameter β = 1.6. This was attained by a d+1 dimensional Gaussian

copula such that

P (Y < y,X1 < x1, . . . , Xd < xd) = Φd+1{Φ−1(u1), . . . ,Φ
−1(ud+1); Σ},

where u1 = P (Y < y), u2 = P (X1 < x1), . . . , ud+1 = P (Xd < xd), Φd+1(x1, . . . , xd+1; Σ) was

the same d+ 1 dimensional normal distribution used in the Gaussian setting with the same

covariance Σ used there.

Table 1 reports the mean and standard deviation of the test statistics under H0 for the

Gaussian data. The empirical size and power for the tests with 5% nominal significance are

provided in Tables 2 and 3, respectively alone with the impractical Mann-Whiteney test and
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the two sample t-test by obtaining inside information on the missed Y s. Table 4 contains the

empirical power for the setting where the outcomes were Gaussian and Gamma distributed

respectively. We observe from Table 1 that there was a clear effect of the dimensionality on

Wn with the mean deviating from 1/2 more and the variance increased as d was increased,

which was also the case for the variance of the propensity weighted test staitistic Rn. The

variance of Rn was consistently larger than that of Wn, Tn and Zn. This foreshadowed

a different test performance between the proposed and the propensity weighted tests. In

contrast, the variance of the semiparametric Tn and Zn were not sensitive to d, indicating

the practical merits of the semiparametric extensions.

Table 2 indicates that all the tests considered had reasonable empirical size, which was

especially the case for the two semiparametric tests. The slightly larger size distortion for

the test based on Wn under d ≥ 3 reflected the larger standard deviation in the mean from

1/2 as reported in Table 1. A deeper reason was the curse of dimension as Condition C3

was not met for d = 4 and just barely for d = 3, which was the motivation for proposing the

semiparametric adjustments Tn and Zn. The performance of the semiparametric adjusted

Mann-Whitney tests was very encouraging for both the size and power, and across different

dimensions. We observe from Table 3 that the proposed nonparametric and semiparametric

tests were much more powerful than the direct propensity adjusted Mann-Whitney test

based on Rn and the covariate adjusted t-test for almost all the Gaussian simulation settings

where the covariates and outcomes were all Gaussian, despite the settings were not that

favorable to the proposed Mann-Whitney tests. Table 4 shows that, when the two outcome

distributions were different, the powers of the proposed tests based on Wn, Tn and Zn

were much better than those of the tests based on Rn and t̃n. As expected, both the

adjusted t-test and the impractical Oracle t-test broke down completely. Both Tables 3 and

4 show that the semiparametric test based on Zn (with the working linear function) was

consistently more powerful than that of the test based on Tn using propensity function. And

both semiparametric tests were consistently better than the tests based on Rn and t̃n. Both

Tables 3 and 4 also reveal that the powers from proposed nonparametric and semiparametric

tests were quite reasonable in comparison to the power of the Oracle Mann-Whitney test

based on W0n.

7. A Data Analysis

In this section, we apply the proposed tests to a data set obtained in an economic ob-

servational study, which allowed us to demonstrate how to apply the proposed tests for

observational studies. The original data were considered in Lalonde (1986). We use a subset

of the original data considered in Dehejia and Wahba (1999), Imbens (2004) and Qin et al.
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(2008). Dehejia and Wahba (1999) considered propensity score match for comparison of

two means, and Imbens (2004) conducted inverse probability weighting for the mean differ-

ence. The datasets NSWRE74_CONTROL.TXT and NSWRE74_TREATED.TXT can be obtained at

http://www.nber.org/~rdehejia/nswdata.html. The dataset contains 445 individuals,

185 of whom participated in a training program and 260 did not. We are interested in the

effect of the training program on earning in 1978. The covariates available for both groups

(trained and not trained) include age, years of education, indicators of African-American

and Hispanic-American, marital and degree statuses, and earnings in 1975. A comparison of

the mean earnings of the two groups was considered in Qin et al. (2008). We consider here

testing for the equality of the earning distributions. As advocated at the end of Section 2,

in the formulation of the adjusted Mann-Whitney statistic Wn, we assign S = 1 for all the

185 individuals participated in the training program regarding them as “respondents” while

assigning S = 0 for the rest of 260 individuals regarding them as “non-respondents” (missing

outcomes). Similarly, in the second sample we treat the observations from 260 individuals

not participated in the training program as “respondents” with S = 1 while regarding the

other 185 individuals as “non-respondents” with S = 0.

Figure 1 displays the histograms of the earnings in 1978 for the trained and control groups,

which conveys that both groups have a significant portion of members whose earnings were

0. The percentages of zero earnings were 35.4% and 24.3% in the control and trained groups

respectively, which constitutes a quite sharp difference between the two groups. A direct

application of the naive Mann-Whitney statistic, that ignored the pre-treatment covariates,

on the earnings gave a p-value 0.011 and thus concluded a significant difference in the distri-

butions of the earnings between the two groups. However, conditioning on earnings greater

than zero, the distributions seem to be close to each other in Figure 1. This is confirmed

by an application of the Mann-Whitney statistic on those with earnings greater zero, which

gave a p-value of 0.374. In other words, the latter test could not reject the hypothesis that

the distributions were the same for those with earnings greater than zero. However, both

tests failed to reflect the observational nature of the data. In addition, we also observe from

Figure 1 that the distributions of the earnings in 1978 are clearly not symmetric, indicating

that t test may be less powerful in this case.

To gain more insights on the dataset and to reconcile the conflicting testing results

mentioned above, we first apply the kernel estimator (2) to estimate the earning distributions

F1 and F2 in 1978, adjusted with respect to covariate effect and missing values. The kernel

estimates are plotted in Figure 2, where the line between the two estimated distributions of

the two groups is the pooled estimator in (23). From the estimated CDF, we can see that
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almost all quantiles of the trained group are consistently larger than those of the control

group. Then we apply the proposed test statistics with adjustments to the covariate in

comparing the earning distributions. We assume that individuals participated in the training

program with a propensity function that depends on covariates. We use the product Gaussian

kernel for smoothing the continuous covariates: the age, years of education and earnings

in 1975. The bandwidths were chosen by the same approach as in the simulation study.

The proposed bootstrap procedure was implemented to obtain the critical value of the test

statistic with B = 100. The resulting test statistic Wn = 0.397, which was less than the

second smallest value, but greater than the smallest one, of the bootstrapped statistics.

Hence the p-value was between 0.02 and 0.04 for a two sided test.

To apply the semiparametric test based on (13), we use the logistic model for the propen-

sities of both groups. All covariates were included in the model with an additional quadratic

term of age, which is suggested in Dehejia and Wahba (1999). Then we apply (13) to obtain

Tn using the estimated propensity function. The bandwidth was chosen by cross-validation

and then divided by 2. The same bootstrap procedure was applied to calculate the critical

value for Tn. The resulting test statistic Tn = 0.401 and the p-value was between 0.06 and

0.08. We then apply the working linear function approach using the same set of covariates as

in the propensity function to get Zn, and get the test statistic Zn = 0.391 and p-value between

0.02 and 0.04. We find that the conclusions of the proposed tests are largely consistent with

each other. Comparing the p-values of the proposed tests to that of the Mann-Whitney test

that ignored the pre-treatment covariates, we observe substantial differences which clearly

indicates the impact of the adjustment. This suggested that an adjustment to the covariate

effect is important for analyzing data from observational studies.

Acknowledgements

We are very grateful to the Editor, AE, and two referees for their insightful comments

and constructive suggestions that have greatly improved this paper. Chen acknowledges

support from Center for Statistical Science at Peking University, and Tang acknowledges

research support from National University of Singapore Academic research grants.

Appendix: Technical Details

A.1 Proof of Lemma 1

We start with an expansion for the Mann-Whitney statistic Wn which is used in proving

Theorems 1 and 2. The subscriptm in all following expressions takes value 1 and 2, indicating

the first and second sample. Results from kernel regression and density estimation (Härdle,

1990; Fan and Gijbels, 1996) indicate that E{η̂m(x)} = ηm(x) + O(h2m), where hm is the
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bandwidth used in η̂m(x). We recall by its definition ηm(x) = πm(x)f(x). Applying Taylor’s

expansion, we have

1/η̂m(x) = 1/ηm(x)− 1/η2(x){η̂m(x)− ηm(x)}+ op(n
−1/2). (25)

Define πmi = πm(Xmi), α1ik = π−1
1i π

−1
2k ,

α2ik = π−1
2k

{
n−1

n∑
j=1

Kh1(X1i −Xj)η
−1
1 (Xj)− π−1

1i

}
,

α3ik = π−1
1i

{
n−1

n∑
l=1

Kh2(X2k −Xl)η
−1
2 (Xl)− π−1

2k

}
,

α4ik = π−1
2k

{
n−1

n∑
j=1

Kh1(X1i −Xj){η̂1(Xj)− η1(Xj)}η−2
1 (Xj)

}
and

α5ik = π−1
1i

{
n−1

n∑
l=1

Kh2(X2k −Xl){η̂2(Xl)− η2(Xl)}η−2
2 (Xl)

}
.

Then, let Vik = I(Y1i ≤ Y2k)S1iS2k, we have by substituting (25) into Wn defined by (4),

Wn = n−1
1 n−1

2

n1∑
i=1

n2∑
k=1

Vik

{
n−1

n∑
j=1

Kh1(X1i −Xj)η̂
−1
1 (Xj)

}{
n−1

n∑
l=1

Kh2(X2k −Xl)η̂
−1
2 (Xj)

}
=Wn1 +Wn2 +Wn3 −Wn4 −Wn5 + op(n

−1/2) (26)

where Wna = n−1
1 n−1

2

∑n1

i=1

∑n2

k=1 Vikαaik for a = 1, . . . , 5. Here we note that the second

equation is just a re-organization of the terms as two-sample U - or V - statistics, and the

op(n
−1/2) term in (26) is from the approximation (25).

We note that Wn1 is a two-sample U -statistic, while Wn2, . . . ,Wn5 are all related to

two-sample V -statistics (Serfling, 1980) after symmetrizing the summations. Let Omi =

(Xmi, Ymi, Smi) for m = 1, 2 and i = 1, · · · , nm, and define the projected statistic

W̃n1 = E(Wn1) +
2∑

m=1

nm∑
j=1

{E(Wn1|Omj)− E(Wn1)}.

Then by applying the theory of U -statistics (Hoeffding, 1948; Serfling, 1980; Koroljuk and

Borovskich, 1994),

Wn1 − E(Wn1) = {W̃n1 − E(W̃n1)}{1 + op(1)}. (27)

Clearly, E(Wn1) =
∫
F1(y)dF2(y) = θ, and it is straightforward to show that

W̃n1 = θ + n−1
1

n1∑
i=1

{
F̄2(Y1i)S1i

π1(X1i)
− θ

}
+ n−1

2

n2∑
k=1

{
F1(Y2k)S2k

π2(X2k)
− θ

}
(28)
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where F̄ (y) is the survival function defined to be 1− F (y).

As for Wn2, we define two kernels of two sample V -statistics by

h1(O1i, O1j;O2k) = 1/2{Vikπ−1
2k Kh(X1i −X1j)η

−1
1 (X1j) + Vjkπ

−1
2k Kh(X1j −X1i)η

−1
1 (X1i)},

h2(O1i;O2k, O2j) = 1/2{Vikπ−1
2k Kh(X1i −X2j)η

−1
1 (X2j) + Vijπ

−1
2j Kh(X1i −X2k)η

−1
1 (X2k)},

Then the first part of Wn2 can be written as

W
(1)
n2 = n−1n−1

1 n−1
2

{
n1∑
i=1

n1∑
j=1

n2∑
k=1

h1(O1i, O1j;O2k) +

n1∑
i=1

n2∑
j=1

n2∑
k=1

h1(O1i;O2j, O2k)

}
. (29)

By the V -statistics theory (Serfling, 1980), a V -statistic is equivalent in the first order to

the U -statistic with the same kernel. Hence, by the projection method and note that

E{h1(O1i, O1j;O2k)|O2k} =
F1(Y2k)S2k

π2(X2k)
, E{h2(O1i;O2j, O2k)|O1i} =

F̄2(Y1i)S1i

π1(X1i)
,

E{h1(O1i, O1j;O2k)|O1i} = 1/2

{
F̄2(Y1i)S1i

π1(X1i)
+

∫
F̄2(y)dF1(y|X1i)

}
and

E{h2(O1i;O2j, O2k)|O2k} = 1/2

{
F1(Y2k)S2k

π2(X2k)
+

∫
F1(y)dF2(y|X2k)

}
.

Note that E(W
(1)
n2 ) = θ and the projection of the second part of Wn2 is the same as (28).

Applying the same argument on Wn3, we obtain the following approximations to Wn2 and

Wn3,

W̃n2 = n−1

n∑
j=1

{ξ1(Xj)− θ} and W̃n3 = n−1

n∑
j=1

{ξ2(Xj)− θ} . (30)

Applying the same approach for the V -statistics in Wn4 and Wn5, we have the projected

statistics

W̃n4 = n−1
1

n1∑
i=1

{
S1i

π1(X1i)
ξ1(X1i)− θ

}
and W̃n5 = n−1

2

n2∑
k=1

{
S2k

π2(X2k)
ξ2(X2k)− θ

}
. (31)

Then Lemma 1 follows by combining (28), (30) and (31).

A.2 Proof of Lemma 2

For simplicity in presentation, we let β = (βT
1 , β

T
2 )

T to be the combined unknown pa-

rameters in πm(x; β) for m = 1 and 2. Because {Xj}nj=1 = (X11, . . . , X1n1 , X21, . . . , X2n2)

are independent and identically distributed (iid), {t1j}nj=1 and {t2j}nj=1 are also iid. We note

that t̂mj
p→ tij as n→ ∞ and the approximation of t̂mj is given by Taylor’s expansion

t̂mj = πm(Xj; β̂) = πm(Xj, β0) + π′
m(Xj; β̃)(β̂ − β0) = tmj + π′

m(Xj; β̃)(β̂ − β0). (32)
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where β̃
p→ β0 as n → ∞. We now consider generic kernel smoothing taking the following

form with t̂mj as smoother and Ω as a generic observable random variable:

ϕmi = n−1
m

nm∑
j=1

Khm(t̂mi − t̂mj)Ωj = n−1
m

nm∑
j=1

Khm(tmi − tmj + t̂mi − tmi − t̂mj + tmj)Ωj.

=n−1
m

nm∑
j=1

{
Khm(tmi − tmj) +K ′

ij(π
′
mi − π′

mj)(β̂ − β0)
}
Ωj.

where K ′
ij = K ′

h{tmi− tmj+τij} with τij
p→ 0 and π′

mi = π′(Xi; β̃) as in (32). Clearly because

the smoothing is targeted at tmi, we have

n−1
m

nm∑
j=1

{
K ′

ij{π′
mi − π′

mj}(β̂ − β0)
}
Ωj = f ′(Xmi)(π

′
mi − π′

mi)(β̂ − β0)E(Ω|tmi){1 + op(1)}.

Because by the assumption C4 that β̂ − β0 is
√
n-consistent, we conclude

ϕmi = n−1
m

nm∑
j=1

Khm(tmi − tmj)Ωj + op(n
−1/2). (33)

In other words, using the estimated covariate as smoother brings in ignorable impact com-

paring to using the corresponding true values. Then the remaining steps of proving Lemma

2 are exactly replicating those in proving Lemma 1 by replacing those Xmj by πm(Xmj, β0).

A.3 Proof of Lemma 3

The proof in A.2 already shows that smoothing at an estimated index value is first order

equivalent to that at the truth. We now show that the impact due to estimating βm in the

propensity function is also negligible in F̂m(y|z).

f̂m(z) = n−1
m

nm∑
i=1

K(z − Zmi)Smiπ
−1
mi{1− π−1

mi (π̂mi − πmi)}+ op(n
−1/2)

= n−1

nm∑
i=1

K(z − Zmi)Siπ
−1
mi − fm(z)π

−1
mi(π̂mi − πmi) + op(n

−1/2)

Let b̂m(y, z) = n−1
m

∑nm

i=1 I(Ymi ≤ y)K(z − Zmi)Smiπ̂
−1
mi and denote its probability limit by

bm(y, z), it follows similarly that

b̂m(y, z) = n−1
m

nm∑
i=1

I(Ymi ≤ y)K(z − Zmi)Smiπ
−1
mi − bm(y, z)π

−1
mi(π̂mi − πmi) + op(n

−1/2).

Then substituting the above expressions into the following expansion,

F̂m(y|z) = b̂m(y, z)f̂
−1
m (z) = b̂m(y, z)f

−1
m (z)[1− f−1

m (z){f̂m(z)− fm(z)}] + op(n
−1/2),
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and note that the π̂m terms exactly cancel each other. We note that this result is similar

to the finding in Wang et al. (1998). The rest proof of Lemma 3 is repeating the proof of

Lemma 1 by replacing Xmi by gm(Xmi; γ0m).

A.4 Proof of Theorem 4

The same projection method as in proving Lemma 1 is applicable to derive the asymp-

totic conditional distribution of W ∗
n , with all the probability limits taken with respect to

the empirical distribution. In particular,
√
n{W ∗

n − E(W ∗
n |Fn)}/v∗

d→ N(0, 1) a.s. where

(v∗)2 = lim
n→∞

nvar(W ∗
n |Fn). Let λ̂m(x) = n−1

∑n
j=1Khm(x − Xj)

η̂∗m(Xj)−η̂m(Xj)

η̂2m(Xj)
, η̂∗m(x) =

n−1
m

∑nm

j=1Khm(x − X∗
mj)S

∗
mj and γ̂m(x) = n−1

m

∑nm

j=1

Khm (x−X∗
mj)

η̂m(X∗
mj)

. By repeating the steps

in proving Lemma 1, we can establish an expansion of W ∗
n resembling (26) given Fn as

W ∗
n = W ∗

n1 +W ∗
n2 +W ∗

n3 −W ∗
n4 −W ∗

n5 + op(n
−1/2) where for m = 1, 2,

W ∗
n1 = n−1

1 n−1
2

n1∑
i=1

n2∑
k=1

I(Ỹ ∗
1i ≤ Ỹ ∗

2k)S
∗
1iS

∗
2k

π̂1(X∗
1i)π̂2(X

∗
2k)

, π̂m(x) = η̂m(x)/f̂m(x),

W ∗
n2 = n−1

1 n−1
2

n1∑
i=1

n2∑
k=1

I(Ỹ ∗
1i ≤ Ỹ ∗

2k)S
∗
1iS

∗
2k

π̂2(X∗
2k)

{
n−1

n∑
j=1

Kh1(X
∗
1i −X∗

j )

η̂1(X∗
j )

− γ̂1(X
∗
1i)

}
,

W ∗
n4 = n−1

1 n−1
2

n1∑
i=1

n2∑
k=1

I(Ỹ ∗
1i ≤ Ỹ ∗

2k)S
∗
1iS

∗
2kλ̂1(X

∗
1i)

π̂2(X∗
2k)

,

and W ∗
3n and W ∗

5n are respectively the second sample version of W ∗
2n and W ∗

4n by switching

indices i and k other than those in the index function.

The crucial implication of the proposed bootstrap procedure is Ĝ(Ỹ ∗
mi) = Umi = F̂m(Y

∗
mi)

for m = 1, 2. The joint distribution of each sample is respected in the following sense,

P (Ỹ ∗
mi ≤ ỹ,X∗

mi < x, S∗
mi = 1) = P (F̂−1

m {Ĝ(Ỹ ∗
mi)} ≤ F̂−1

m {Ĝ(ỹ)}, X∗
mi < x, S∗

mi = 1)

= P (Y ∗
mi < ym, X

∗
mi < x, S∗

mi = 1) for m = 1, 2. (34)

Here ym and ỹ are connected such that ym is the Ĝ(ỹ)-th estimated quantile in the m-th

sample, for every ỹ in its sample space. It is clear that Ỹ ∗
1i and Ỹ

∗
2i follow the same marginal

distribution Ĝ. Under the null hypothesis the joint distribution is exactly preserved because

|ym − ỹ| = |F̂−1
m {Ĝ(ỹ)} − ỹ| p→ |F−1{F (ỹ)} − ỹ| = 0 as nm → ∞.

Then (34) implies as nm → ∞, P (Ỹ ∗
mi ≤ ỹ, X∗

mi < x, S∗
mi = 1)

p→ P (Ymi < y,Xmi < x, Smi =

1). Therefore, as n→ ∞, E(W ∗
n |Fn) = 1/2+o(n−1/2) a.s. It remains to show that under the

null hypothesis, lim
n→∞

nvar(W ∗
n |Fn) → v2(1/2) a.s. This is because conditioning on Fn and

from (34), we have ω∗
2(x) =

∫
F̂1(ỹ)dF̂2(ỹ|x) =

∫
Ĝ(ỹ)dF̂2(ỹ|x) =

∫
F̂1(y1)dF̂2(ỹ|x). As n →

∞, under the null hypothesis ym→ỹ a.s. for m = 1, 2, and hence ω∗
2(x) →

∫
F1(y)dF2(y|x) =

ξ2(x) a.s. Similarly
∫
{1− F̂1(ỹ)}dF̂1(ỹ|x) → ξ1(x) a.s. Theorem 3 then follows similarly as

proving Theorem 1.
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Härdle, W. (1990), Applied Nonparametric Regression, Cambridge: Cambridge University

Press.

Hirano, K., Imbens, G. W., and Ridder, G. (2003), “Efficient estimation of average treatment

effects using the estimated propensity score,” Econometrica, 71, 1161–1189.

Hoeffding, W. (1948), “A class of statistics with asymptotically normal distribution,” The

Annals of Mathematical Statistics, 19, 293–325.

Horvitz, D. G. and Thompson, D. J. (1952), “A generalization of sampling without replace-

ment from a finite universe,” Journal of the American Statistical Association, 47, 663–685.

23



Hu, Z., Follmann, D. A., and Qin, J. (2010), “Semiparametric dimension reduction estima-

tion for mean response with missing data,” Biometrika, 97, 305–319.

— (2011), “Dimension reducted kernel estimation for distribution function with incomplete

data,” Journal of Stat, 141, 3084–3093.

Imbens, G. (2004), “Nonparametric estimation of average treatment effects under exogeneity:

a review,” Review of Economics and Statistics, 86, 4–30.

Korn, E. L. and Baumrind, S. (1998), “Clinician preferences and the estimation of causal

treatment differences,” Statistical Science, 13, 209–235.

Koroljuk, V. S. and Borovskich, Y. V. (1994), Theory of U-Statistics, Kluwer, Dordrecht.

Kuk, A. Y. C. (1993), “A kernel method for estimating finite population functions using

auxiliary information,” Biometrika, 80, 385–392.

Lalonde, R. J. (1986), “Evaluating the econometric evaluations of training programs with

experimental data,” American Economic Review, 76, 604–620.

Little, R. and Rubin, D. (2002), Statistical Analysis With Missing Data, Wiley, 2nd ed.

Matloff, N. S. (1981), “Use of regression functions for improved estimation of means,”

Biometrika, 68, 685–689.

Newey, W. K. and McFadden, D. (1994), “Large sample estimation and hypothesis testing,”

Handbook of Econometrics, Vol 4, ed. by R. Engle and D. McFadden. New York: North

Holland.

Qin, J., Shao, J., and Zhang, B. (2008), “Efficient and doubly robust imputation for

covariate-dependent missing responses,” Journal of the American Statistical Association,

103, 797–810.

Rosenbaum, P. R. (2002), Observational Studies, Springer-Verlag: New York.

Rosenbaum, P. R. and Rubin, D. B. (1983), “The central role of the propensity score in

observational studies for causal effects,” Biometrika, 70, 41–55.

Rubin, D. B. (1976), “Inference and missing values (with discussion),” Biometrika, 63, 581–

592.

Serfling, R. J. (1980), Approximation Theorems of Mathematical Statistics, John Wiley.

Tsiatis, A. A. (2006), Semiparametric Theory and Missing Data, Springer-Verlag: New York.

Wang, C. Y., Wang, S., Gutierrez, R. G., and Carroll, R. J. (1998), “Local linear regression

for generalized linear models with missing data,” The Annals of Statistics, 26, 1028–1050.

24



Table 1: Empirical means and standard deviations (SDs) of Rn, Wn, Tn (propensity function

based), Zn (working linear function based), given by (17), (4), (13) and (19) respectively, for

the Gaussian distributed responses under H0.

MAR1 MAR2
n d Rn Wn Tn Zn Rn Wn Tn Zn

1 0.504 0.495 0.490 0.496 0.502 0.495 0.496 0.497
2 0.507 0.487 0.491 0.496 0.504 0.490 0.492 0.499

50 3 Mean 0.497 0.473 0.489 0.491 0.502 0.479 0.488 0.489
4 0.503 0.468 0.488 0.493 0.502 0.466 0.485 0.488
1 0.080 0.070 0.075 0.071 0.084 0.074 0.085 0.076
2 0.087 0.074 0.076 0.071 0.092 0.086 0.086 0.078

50 3 SD 0.088 0.079 0.076 0.071 0.096 0.089 0.087 0.079
4 0.092 0.082 0.077 0.073 0.103 0.091 0.086 0.080

1 0.506 0.496 0.495 0.503 0.505 0.499 0.495 0.499
2 0.507 0.487 0.491 0.495 0.507 0.488 0.491 0.504

80 3 Mean 0.507 0.484 0.490 0.495 0.510 0.482 0.488 0.501
4 0.506 0.478 0.488 0.493 0.503 0.474 0.485 0.495
1 0.051 0.048 0.050 0.046 0.065 0.057 0.063 0.057
2 0.055 0.052 0.049 0.047 0.067 0.063 0.065 0.059

80 3 SD 0.058 0.055 0.052 0.048 0.069 0.065 0.065 0.058
4 0.060 0.056 0.049 0.046 0.072 0.068 0.064 0.057

Table 2: Empirical sizes (×102) of the proposed nonparametrically and semiparametrically
adjusted Mann-Whitney tests based onWn, Tn (propensity function) and Zn (working linear
function), the tests based on the covariate adjusted Rn and t̃n and the Oracle test W0n and
the two sample t test. The outcome distributions are Gaussian and α = 0.05.

n d t W0n Rn t̃n Wn Tn Zn Rn t̃n Wn Tn Zn

5.1 4.9 MAR1 MAR2
1 - - 5.1 4.7 5.2 5.4 4.8 5.8 5.5 5.4 5.2 5.2
2 - - 6.2 6.2 4.4 4.9 5.4 6.0 6.1 3.6 4.9 4.8

50 3 - - 5.7 6.0 4.1 4.5 5.4 6.3 6.5 3.3 5.2 5.3
4 - - 5.9 6.2 3.5 5.4 5.2 6.7 6.9 3.0 4.6 4.5

4.8 5.3 MAR1 MAR2
1 - - 5.4 4.4 4.6 4.4 4.8 5.8 5.7 4.6 4.3 4.6
2 - - 5.4 5.6 4.0 4.6 5.2 5.8 5.4 3.6 4.7 5.4

80 3 - - 6.2 5.9 3.6 4.2 4.9 4.6 5.3 3.5 4.6 5.2
4 - - 5.7 5.8 3.3 4.5 4.9 5.2 5.6 3.1 4.5 5.5
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Table 3: Empirical powers (×102) of the proposed nonparametrically and semiparametrically

adjusted Mann-Whitney tests based onWn, Tn (propensity function) and Zn (working linear

function), the tests based on the covariate adjusted Rn and t̃n and the Oracle test W0n and

the two sample t test. The outcome distributions are Gaussian and α = 0.05.

n d t W0n Rn t̃n Wn Tn Zn Rn t̃n Wn Tn Zn

39.6 38.4 MAR1 MAR2
1 - - 29.8 31.4 36.4 32.1 36.6 21.2 22.4 24.6 23.2 24.8
2 - - 27.3 30.4 34.6 32.4 35.9 18.3 19.9 21.2 24.1 25.8
3 Power1 - - 26.3 31.0 31.4 32.9 36.0 16.1 18.5 20.4 24.6 25.9
4 - - 23.1 23.5 26.9 31.5 35.9 14.2 16.1 17.9 22.2 25.3

50 72.0 70.6 MAR1 MAR2
1 - - 53.6 58.8 68.4 62.2 68.1 34.8 40.2 48.2 45.3 48.2
2 - - 56.5 57.4 65.4 62.0 67.8 34.9 41.1 41.2 45.1 48.1
3 Power2 - - 56.5 59.0 60.2 62.9 68.3 33.6 39.8 40.1 44.7 48.1
4 - - 53.9 54.7 58.2 63.7 68.7 32.0 32.4 37.3 43.7 48.2

55.4 53.2 MAR1 MAR2
1 - - 46.4 48.6 52.4 50.8 52.6 36.1 38.0 39.8 37.8 39.6
2 - - 46.6 46.8 50.4 49.8 52.4 34.4 34.8 35.6 37.0 38.9
3 Power1 - - 41.4 43.6 44.8 48.9 52.1 32.2 32.8 31.4 37.6 39.2
4 - - 39.6 43.8 41.4 48.2 52.6 27.3 29.7 29.0 37.2 39.4

80 87.8 85.2 MAR1 MAR2
1 - - 77.0 78.0 82.6 79.6 82.6 52.6 60.0 67.2 64.2 67.8
2 - - 76.0 78.4 81.0 78.8 82.8 53.8 60.6 62.6 64.9 67.9
3 Power2 - - 76.8 77.2 76.8 77.9 82.5 53.6 61.0 56.8 63.9 67.8
4 - - 75.9 76.9 72.1 77.1 81.9 52.9 59.8 55.2 63.0 68.1

Table 4: Empirical powers (×102) the proposed nonparametrically and semiparametrically
adjusted Mann-Whitney tests based onWn, Tn (propensity function) and Zn (working linear
function), the tests based on the covariate adjusted Rn and t̃n and the Oracle test W0n and
the two sample t test. The outcome distributions are Gaussian and Gamma, and α = 0.05.

n d t W0n Rn t̃n Wn Tn Zn Rn t̃n Wn Tn Zn
4.8 33.2 MAR1 MAR2

1 - - 19.4 8.8 27.8 23.6 28.1 16.4 4.6 22.1 17.7 23.6
2 - - 17.5 7.6 24.9 22.2 27.8 15.4 4.8 19.0 17.9 22.9

50 3 - - 15.3 5.1 20.9 24.1 27.9 14.7 6.3 16.7 17.7 23.3
4 - - 13.6 3.0 17.8 23.8 27.7 13.1 3.9 15.9 17.5 23.2

5.3 42.6 MAR1 MAR2
1 - - 25.6 5.6 37.4 35.6 38.6 24.2 4.8 35.6 32.6 36.1
2 - - 24.4 4.4 37.0 35.9 39.1 21.4 4.2 33.4 33.6 36.2

80 3 - - 23.0 7.2 33.4 35.9 38.3 17.6 4.0 30.2 35.1 37.2
4 - - 21.2 7.7 29.1 34.2 38.9 17.5 3.8 28.9 34.1 37.0
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Figure 1: Histograms of the earnings in 1978
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Figure 2: The estimated CDFs of the earnings in 1978 for the trained group, control group
and the pooled samples.
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