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Abstract—Gene regulation is a key factor in gaining a full
understanding of molecular biology. microRNA (miRNA), a
novel class of non-coding RNA, has recently been found to
be one crucial class of post-transactional regulators, and play
important roles in cancer. One essential step to understand the
regulatory effect of miRNAs is the reliable prediction of their
target mRNAs. Typically, the predictions are solely based on
the sequence information, which unavoidably have high false
detection rates. Recently, some novel approaches are developed
to predict miRNA targets by integrating the typical algorithm
with the paired expression profiles of miRNA and mRNA. Here
we review and discuss these integrative approaches and propose
a new algorithm called HCTarget. Applying HCtarget to the
expression data in multiple myeloma, we predict target genes for
ten specific miRNAs. The experimental verification and a loss of
function study validate our predictions. Therefore, the integrative
approach is a reliable and effective way to predict miRNA targets,
and could improve our comprehensive understanding of gene
regulation.

Keywords: miRNA, target prediction, expression profile,
integrative analysis.

I. INTRODUCTION

Discovering gene regulation is one of the main goals in
molecular biology. Specifically, uncovering the mechanisms
underlying the expression of tumor related genes is a key factor
in gaining a full understanding of cancer biology [1], which
is also of great therapeutic significance.

While previously a great deal of study has focused on
transcriptional factors (TFs), one crucial class of regulators
at the transcriptional level, the post-transcriptional regulator
microRNA (miRNA) has arrested much attention recently.
miRNAs are a noval class of endogenous ∼22nt noncoding
RNAs. They down regulate gene expression through the fol-
lowing procedures. First, the primary miRNA are transcribed
from “miRNA genes” or spliced from the intronic regions
of their host genes. Then the primary miRNAs produce the
miRNA precursors, and the final mature miRNAs. These
miRNAs are combined with Argonaute (Ago) proteins to form
RNA-induced silencing complexes (RISCs). RISCSs bind to
the 3’-untranslated region of target mRNAs, which lead to
their translational repression or degradation [2]. Hundreds of

miRNAs have been annotated in human genome, and they are
predicted to regulate up to one third of all protein-coding genes
[3].

Experimental analysis has recognized that miRNAs control
the key cellular processes such as growth, development and
apoptosis [4]. It has been established that miRNAs make
an important contribution to gene regulation in embryonic
development and human disease, especially cancer [5], [6],
[7], [8]. Previous studies have verified that miRNAs can act
as tumor suppressors or oncogenes and their dysregulation is
widely involved in cancer initiation and progression [9], which
enable their inhibition to be a novel therapeutic strategy for
cancer [10].

An essential step and major challenge in understanding
miRNA regulatory function is the identification of their target
genes [11]. Since it is infeasible to carry out high thoughput
experiments, only a small fraction of miRNA targets have
experimental supports [12], [13]. Typically, the target pre-
diction is achieved by computational approaches based on
sequence analysis. A great deal of target prediction programs
have been developed [14], [15], [16], [17], [18]. Among
them, TargetScan [3], [19], PicTar [20] and miRanda [21]
are the most common ones. Generally, they use the following
principles to recognize miRNA targets: 1) seed match: the
6-8nt seed in miRNA 5’ part pair to the 3’UTR region
of their target mRNA; 2) thermodynamic stability: the free
energy of the miRNA-mRNA hybrid is low; 3) conservation:
miRNA target sites are conserved among several species.
However, these sequence based approaches have high false-
positive rate. It has been demonstrated that the false positive
rate of TargetScan prediction is about 22-31% [22]. Since the
seed match complementation could not discern the real targets
effectively, great deals of fake targets are confounded.

With the development of high throughput technology, more
and more miRNA and mRNA expression profiles have been
achieved to investigate miRNA’s role in biological processes,
especially cancer [23], [9]. Previous studies have revealed that
miRNA greatly repress their target mRNAs, and mRNAs have
significant expression changes after miRNA transfection or



inhibition. It has also been verified that the expression of
mRNAs targeted by highly expressed miRNAs are negative
shifted compared with other mRNAs. Therefore, the signif-
icantly negative correlated miRNA-mRNA pairs have high
potential to be the real target pairs [24].

Based on this idea, some novel strategies have been devel-
oped to predict miRNA targets by integrative analysis. They
mainly use the paired miRNA and mRNA expression data,
which profile miRNA and mRNA expression levels simulta-
neously from the same sample, to supplement the sequence
prediction for the detection of actual miRNA targets.

In this article, we review and discuss the most recent
integrative approaches for miRNA target predictions. We also
develop a new method called HCtarget. We apply HCtarget
to the expression data in multiple myeloma and evaluate the
performance of our predictions.

II. REVIEW OF PREVIOUS APPROACHES

In the recent developed integrative approaches, there are
roughly three ways to incorporate miRNA and mRNA ex-
pression profiles to the sequence predicion (Table I): 1)
directly consider the correlation between miRNA and mRNA
expression; 2)formulate mRNA and miRNA expression with
linear model with latent varialbes 3) use Bayesian network to
model the miRNA-mRNA regulatory network.

A. Correlation based approach

Since miRNA generally repress their target mRNAs, a
straightforward way to validate miRNA targeting mRNAs is
detecting whether their expressions are inversely correlated.
Based on this idea, some recent approaches have been devel-
oped to integrate the correlations between miRNA and mRNA
pairs for the target predictions.

MMIA [25] (miRNA and mRNA Integrated Analysis) is
an integrated miRNA and mRNA analyzing web server. It
incorporates the common miRNA target prediction algorithms
TargetScan, PITA and PicTar, and restricts the predictions on
the significantly up (down) expressed miRNAs and the corre-
sponding down (up) expressed mRNAs. MMIA is a feasible
and simple tool for integrating miRNAs and mRNA expression
profiles. However, it only takes into account the significantly
up and down expression features, and loses the information of
their whole expression patterns and their correlations.

X. Peng et al. [26] develop this approach by considering
the inverse expression relationships between miRNAs and
mRNA. They calculate the Pearson correlations between every
miRNA-mRNA pair, and select the significant inverse expres-
sion pairs to construct a binary miRNA-mRNA correlation net-
work. Meanwhile, they build a miRNA-mRNA target network
based on sequence analysis. Here they relax the prediction
criteria to the seed match principle, without demanding phy-
logenetic conservation or thermodynamic stability, to provide a
larger set of candidate targets. Finally, the correlation network
and the target prediction network are intersected to provide an
integrative miRNA-mRNA regulatory network. This approach
proposes a new point of view for miRNA target prediction,

which replaces some sequence criteria by the inverse expres-
sion relationships.

G. Huang et al. provide mirConnX [27], a web interface for
inferring and displaying mRNA and miRNA regulatory net-
work. It combines five prediction algorithms including PITA,
miRANDA, TargetScan, RNAhybrid and Pictar to achieve
an integrative target prediction score between each miRNA-
mRNA pair. The experimental verified miRNA targets [12]
are also incorporated. Meanwhile, mirConnX integrates the
miRNA-mRNA expression profiles by calculating the correla-
tions (Pearson, Spearman or Kendall) between miRNA-mRNA
pairs. These correlations are converted to the probabilities of
association. The target scores and the association probabilities
are weighted summed to the final prediction scores, with a
user defined weight. mirConnX has two innovations. First,
besides Pearson correlation, it considers the non-parametric
coefficients (Spearman or Kendal) and converts them to prob-
abilities. When the sample size is small or there are outliers in
the expression data, this correlation is more reliable. Second,
the correlation network and the target network are weighted
integrated instead of the simple intersecting.

MAGIA [28] (miRNA and genes integrated analysis) is
a similar web tool for the integrative analysis. It extracts
the target predictions from miRanda, PITA and TargetScan,
and provide four approaches to integrate miRNA and mRNA
expression profiles. 1)Similar to mirConnX, compute the
Pearson or Spearman correlation coefficients between each
predicted miRNA-mRNA pairs, and convert them to a false
discovery rate. 2)Calculate the mutual information between a
miRNA expression and a mRNA expression based on nearest
neighbor distance. It could be regarded as a generalization
of the Pearson correlation. 3)GenmiR++, which would be
described in the following part. 4) Meta-analysis when miRNA
and mRNA profiles are not paired. Users could select one or
several approaches and take the intersection or union to display
the combined regulatory network.

S. Bandyopadhyay et al. propose a new point of view to
integrate the expression data [29]. Their approach TargetMiner
is a support vector machine (SVM) classifier for miRNA target
prediction. It incorporates expression profiles to construct a
reliable training set. Previously, the training set are putatively
extracted from experimentally verified miRNA targets (from
Tarbase [12] and miRecords [13]), or sequence based pre-
dictions (from miRanda, TargetScanS, PicTar and DIANA-
microT). However, the number of verified targets is pretty
small, and the predictions have a significant number of false
positive targets. TargetMiner propose a multi-stage filtering
approach to identify the non-targets in these predictions. It first
identifies tissue specific miRNAs and mRNAs by analyzing
miRNA and mRNA expression profiles across several tissues,
and then selects mRNA as non-targets if it is over-expressed
in the same tissue with its corresponding miRNA. These
candidate non-targets are further filtered by removing mRNAs
with feasible miRNA-mRNA duplex stability or seed-site
conservation. Combining the experimentally verified miRNA
targets, TargetMinner achieve an integrative training data of



miRNA targets and non-targets. A SVM classification model
is built on this data, with 30 features extracted and selected
from sequence site context information. The learned SVM
classifier could efficiently predict miRNA targets. Generally,
TargetMinner provide an integrative training data for learn-
ing a classifier. However, it only considering the expression
pattern in the training procedure, without taking them as the
classification features in the SVM model.

E.Gammazon et al. develop a new approach ExprTarget
[30] by combining the sequence prediction approach and the
expression features in the classification. Focus on a certain
miRNA, ExprTarget constructs a logistic model as:

logit(pi) = log(
pi

1− pi
) = β0 +βpx

p
i +βtx

t
i +βmxm

i +βex
e
i

Here pi is the probability that mRNA i is a real target.
xp
i , xt

i and xm
i are the target prediction scores of mRNA

i from Pictar, TargetScan and miRanda respectively. xe
i is

expression feature, defined as the p value of the general linear
model between mRNA i and the miRNA. Note that if the
estimated coefficient in the model is positive, xe

i is set to
1. The coefficients β describes the contribution weights of
different prediction algorithms. Extracting the experimental
validate miRNA targets as training data, β could be estimated
using logistic regression. By this means, ExprTarget provide
the target probabilities for each mRNA. ExprTarget extends
TargetMinner by incorporate the expression features in the
classifier. This feature xe

i could be regarded as a generalization
of the Pearson correlation, so ExprTarget is also an extension
of mirConnX, with the weights learned from experimental
validate targets.

Beside the above approaches, there are some other web
tools that combine miRNA-mRNA expression profiles with
their target predictions. miRGator [31] integrates miRanda,
PicTar and TargetScan target predictions, and displays the
expression correlations between miRNA-mRNA pairs. The
rank list of target mRNAs sorted by their correlations with
the corresponding miRNA could also be provided. MirZ
[32] incorporates smiRNAdb, a database containning miRNA
sequencing profiles, and the ElMMo miRNA target prediction
algorithm. It also integrates mRNA expression data and allow
user to restrict the target prediction to specific mRNAs that
expressed in a given cell type. mimiRNA [33] integrates
expression data from human miRNAs and mRNAs across
multiple tissues or cell types. It groups and separates miRNA
or mRNA expression data into several tissues and cell types.
The paired expression data could be visualized. mimiRNA also
incorporates TargetScan , miRBase, RNA22 and PicTar. User
could search the targets and the inverse expressed mRNAs for
a given miRNA.

In addition, when miRNA expression data are not avail-
able, HOCTAR [34] (host gene oppositely correlated targets)
could be employed. It considers that most human miRNAs
are intragenic and are transcribed as part of their hosting
transcription units, so the expression of miRNA host genes
could be used as a proxy of the expression of the miRNA itself.

TABLE I
INTEGRATIVE APPROACH FOR MIRNA TARGET PREDICTION

Name URL Reference

Correlation based approach

MMIA http://cancer.informatics.indiana.edu/mmia [25]

Peng et al. - [26]

mirConnX http://www.benoslab.pitt.edu/mirconnx [27]

MAGIA http://gencomp.bio.unipd.it/magia [28]

TargetMinner http://www.isical.ac.in/ bioinfo miu/ [29]

ExprTarget http://www.scandb.org/apps/microrna/ [30]

miRGator http://genome.ewha.ac.kr/miRGator/ [31]

MirZ http://www.mirz.unibas.ch [32]

mimiRNA http://mimirna.centenary.org.au [33]

HOCTAR - [34]

Linear mode approach

GenmiR++ http://www.psi.toronto.edu/genmir/ [24], [35]

F.Stingo et al. - [36]

J.Li et al. - [37]

L.Lu et al. - [38]

Bayesian network approach

B.Liu et al. - [39]

Based on this idea, HOCTAR extracts a great deal of mRNA
expression profiles and provides an average inverse correlated
score between each mRNA and miRNA host gene pair. These
scores are then integrated with the miRanda, TargetScan, and
PicTar predictions.

B. Linear model approach

The precious approaches only consider the pairwise ex-
pression correlation between miRNA and mRNA. However,
mRNA may be regulated by multiple miRNAs and its ex-
pression is affected synthetically by all the targeting miRNAs.
Based on this idea, some novel methods have been developed
to model miRNA’s combinatorial effect on their target mRNAs.

Among them, GenmiR++ (Generative model for miRNA
regulation) is the most widely used approach [24], [35]. It
characterizes mRNA expressions as a linear combination of the
regulatory effects of their targeting miRNAs, and a variational
Bayesian algorithm is used to learn the latent miRNA target
indicators. It has been successfully applied on the paired
miRNA and mRNA expression data among multiple tissues.

Let yit denote the expression level of mRNA i in tissue t
and zjt denote the expression level of miRNA j in the same
tissue, where i = 1, . . . , N, j = 1, . . . ,M and t = 1, . . . , T .
GenMiR++ take a linear model to formulate the mRNA ex-
pressions and the regulatory effects of their targeting miRNAs.
A latent binary variable R is used to indicate the target
relations, where rij = 1 if mRNA i is targeted by miRNA j,
and 0 otherwise. The relationship between mRNA and miRNA
expressions is formulated as:

yit = µt − γt

M∑
j=1

λjrijzjt + ϵit



or y⃗i = µ⃗−
M∑
j=1

λjrijΓz⃗j + ϵ⃗i, ϵ⃗i ∼ N(0,Σ)

here λj represents the regulatory effects of miRNA j, γt
accounts for the expression scaling in tissue t, and µt is the
background effect of tissue t.

The latent variable R indicates the target relations between
miRNA and mRNA. Integrating the target predictions C from
TargetScan, as cij = 1 if mRNA i is predicted to be targeted by
miRNA j, and 0 otherwise, GenmiR++ assign R a Bernoulli
distribution depend on C. That is rij ∼ bernoulli(π) in the
condition of cij = 1, and rij = 0 when cij = 0.

Assigning the prior as γt ∼ N(1, s2) and λj ∼ exp(α),
GenmiR++ use a variational Bayesian algorithm to estimate
the posterior distribution of rij . Since its form is compli-
cated, instead of learning the real posterior, the variational
Bayesian algorithm provide a factorized variational posterior
for approximation[40]. By this means, the computation is
simplified and the target probability could be achieved.

GenMiR++ has also been developed to GenmiR3 [41],
with an alternative prior distribution and the parameter π is
modified by integrating the sequence information such as the
hybridization energy and context score.

GenMiR++ has been widely used to integrate the miRNA-
mRNA expression data with the target predictions. However, it
has several restrictions. First, originating from the experiments
of different tissues, GenmiR++ characterizes miRNA’s relative
effects among all tissues as a constant. This assumption
may not hold when considering the experiments of different
cancer patients. Since patients have much more varieties, their
miRNA’s relative effects could not be regarded as a constant
anymore. Second, GenMiR++ uses variational Bayesian algo-
rithm to learn the parameters. The variational posterior may
deviated from the real posterior. Its convergence rate is highly
depends on the form of the likelihood and priors and may be
extremely slow.

F.Stingo et. al. [36] propose a similar linear approach.
Different from GenmiR++, they don’t take into account the
tissue effect, and consider that miRNA has distinct regulatory
effect on differet mRNAs. Based on this idea, they propose a
linear model to fomulate miRNA and mRNA expressions:

yi =

M∑
j=1

βijrijzj + ϵi, ϵi ∼ N(0, σ2
i ), i = 1, . . . , N

Here yi is the expression of mRNA i and zj is the expression
of miRNA j. βij represents the effect of miRNA j on mRNA
i, in GenmiR++ this term is uniformed to λj . Meanwhile, the
target indicator rij is assigned with Bernoulli distribution, with
a modified parameter:

πij =
exp[η + τ1c

1
ij + τ2c

2
ij + τ3c

3
ij + τ4c

4
ij + τ5c

5
ij ]

1 + exp[η + τ1c1ij + τ2c2ij + τ3c3ij + τ4c4ij + τ5c5ij ]

where c1ij , c
2
ij , c

3
ij , c

4
ij and c5ij are the prediction scores of

PicTar, miRanda, aggregate TargetScan, total TargetScan and
PITA respectively.

With the prior βij ∼ Gamma(1, cσi) and σ−1
i ∼

Gamma( δ+M
2 , d

2 ), the posterior distribution could be esti-
mated using Metropolis-Hasting algorithm. Thus the posterior
target scores p(rij = 1|data) are achieved to construct miRNA
regulatory network.

However, since β are distinct for different miRNAs and
mRNAs, the model has a great deal of parameters. Therefore,
this approach is limited in high computational complexity.

J.Li et. al. [37] also modify the model. They discretize
mRNA expression to binary value yit = 1 or 0, which
represent high or low expressions, then assume yit follow a
logistic model: let qit = P (yit = 1),

log(
qit

1− qit
) =

M∑
j=1

ϕjrijzjt + ϵt, i = 1, . . . , N

Similar to GenmiR++, rij follow a bernoulli distribution
depend on the TargetScan prediction cij with parameter π.

With the prior ϕj ∼ exp(ϕ), ϕ ∼ U(0,∞), ϵt ∼
U(−50, 50) and ϕ ∼ beta(1, 1), the posterior could be
estimated using Gibbs sampling. They also apply the similar
approach to study the relation between miRNA expression and
protein abundance.

In this approach, the binary mRNA value lose the informa-
tion of the whole expression profile.

The above approaches use Bayesian methodology for pa-
rameter estimation. On the other hand, Y. Lu et. al.[38]
incorporate a lasso regression model to predict miRNA tar-
gets. Moreover, they pay attention to the role of RISCs and
assume that mRNA expression follow a linear model with its
targeting RISCs. The RISC level could be obtained through the
expression of its comprising miRNA and Ago proteins. There
are four Ago proteins in human, and Ago2 is the essential one.
Therefore, the model is:

yi = βi0 +
M∑
j=1

cijβijzjAgo2 +
M∑
j=1

cijϕijzjAgo134 + ϵi

Here yi is the expression of mRNA i, zj is the expression of
miRNA j, Ago2 is the expression of Ago2 mRNA and Ago134
is the combined expression of Ago1,Ago3 and Ago4 mRNA.
cij indicates the target prediction relation from TargetScan and
PicTar.

Then a multi-run lasso regression procedure is produced,
and miRNAs are ranked by their estimated coefficients. With
these ranked scores, the targeting miRNAs could be achieved.

However, this approach produce lasso regression for each
mRNA separately. It will be time consuming when applying
to a great deal of mRNAs.

C. Bayesian network approach

Beside the linear model approach, some novel studies are
developed to model the whole miRNA-mRNA regulatory net-
work. Bayesian network, a probabilistic graphical model, has
been widely used to discover the structure of gene networks
[42]. It could also be applied to study the regulation between
miRNA and mRNA [43]. Liu et al. [39] develop a new



approach which use Bayesian network to learn the miRNA-
mRNA regulatory network by integrating miRNA target pre-
diction and expression profiles.

Denote miRNA and mRNA as nodes and their target re-
lations as directed edges, the regulatory network could be
modeled as a discrete Bayesian network G. The miRNA and
mRNA expressions X are discretized to binary values 1 and 0,
indicating high and low expressions. Let Nijk be the observed
times that mRNA Xi is in state k (k = 1, . . . , ri, here
ri = 2) with its parent miRNAs in state j (j = 1, . . . , qi),
then X follow a multinomial distribution with parameter
θijk = P (Xi = k|parent(Xi) = j):

p(X|θ,G) ∝
n∏

i=1

qi∏
j=1

ri∏
k=1

θ
Nijk

ijk

Assigning the Dirichlet prior to θ as

p(θ|G) =∝
n∏

i=1

qi∏
j=1

ri∏
k=1

θ
αijk−1
ijk

the Bayesian score of the network P (X|G) is given by [44]:

P (X|G) =
n∏

i=1

qi∏
j=1

Γ(αij)

Γ(Nij + αij)

ri∏
k=1

Γ(Nijk + αijk)

Γ(αijk)

Here Nij =
∑ri

k=1 Nijk, αij =
∑ri

k=1 αijk and αijk =
N/riqi, N is the sample size.

Network with the maximum score is selected as the learned
Bayesian network, which is putatively achieved by exhaustive
searching algorithm such as hill climbing. The searching
space could be reduced by constraining the target relations
within miRBase, PicTar and TargetScan predictions. By this
means, Liu et al. analyze miRNA-mRNA expression profiles
from multiple cell types and build Bayesian network for each
cell type. These networks are then integrated to provide the
significant miRNA-mRNA target relations.

Bayesian network is a reliable and accurate model for
the regulatory network [42]. However, its learning algorithm
has high computational complexity and is time consuming.
Therefore, Bayesian network could not be applied to learn
large-scale networks.

III. HCTARGET METHOD

Based on the above discussion, we propose a new algorithm
called HCtarget (High Confident targets) to integrate expres-
sion and sequence information to detect miRNA targets. Our
approach extends GenMiR++ and overcomes its restrictions
in the following two ways. First, GenmiR++ characterizes
miRNA’s relative effects among all tissues as a constant.
We improved this constrain by re-defining the parameters of
miRNA effects. Second, GenMiR++ uses variational Bayesian
algorithm to approximate of the real posterior. Its convergence
rate may be slow and the estimation is not stable. We use a
classical Markov chain Monte Carlo (MCMC) algorithm to
learn the posterior directly.

A. Model

Incorporating the notations in GenmiR++, we propose a
linear model to formulate the relations between mRNA ex-
pressions and the regulatory effects of their targeting miRNAs
as:

yit = β0t +

M∑
j=1

rijzjtβjt + ϵit, ϵit ∼ N(0, σ2
t )

Here βjt represents the regulatory effects of miRNA j at
sample t (in GenMiR++, this term is factored into the product
of the tissue effect and the miRNA effect γtλj), and β0t is the
background effect of sample t.

The goal of our model is to estimate the latent indicators
R. Similarly, it follow a Bernouli distribution depend on the
sequence prediction C. In the following discussion, we focus
on the pair with cij = 1. The likelihood of R is:

p(R|π) ∝
∏
ij

πcijrij (1− π)cij(1−rij)

here π can be regarded as the accuracy of the sequence based
predictions. This assumption enables our model to cut down
the false positive rate of the previous prediction.

Let Bt = (rijzjt), At = [1, Bt], yt = (y1t, . . . , yNt)
T , Z =

(zjt), βt = (β0t, . . . , βMt)
T and ϵt = (ϵ1t, . . . , ϵNt)

T , we
have the vector representation of our model:

Yt = Atβt + ϵt

B. MCMC Algorithm for Statistical Inference

Based on the above model, the likelihood of the observed
data p(Y,Z,C,R|β, σ2, ϕ) is:∏
i,t

e

[
− 1

σ2
t

(yit−
∑M

j=1
zjtrijβjt−β0t)

2
]∏

i,j

πcijrij (1−π)cij(1−rij)

To estimate the parameters θ = (β, σ2, π) and latent vari-
ables R, we apply the Bayesian methodology and a MCMC
algorithm [45]. With proper prior assumptions, the posterior
of R and θ have simple forms and could be directly computed
using a MCMC algorithm as the following iterations [46], [47]:
(i) sample the parameters θ conditional on the updated latent
variable; (ii) sample the latent variable R conditional on the
updated parameters .

1) Updata the parameters:
Given the non-informative prior p(βt, σ

2
t ) ∝ σ−2

t , the
posterior distributions of βt and σt are

βt|σ2
t , Y ∼ N(β̂t, (A

T
t At)

−1σ2
t ), σ2

t |Y ∼ vs2tχ
−2
v (1)

where v = N −M − 1 and

β̂t = (AT
t At)

−1AT
t Yt, Ŷt = AT

t β̂t, s
2
t =

1

v
(Yt−Ŷt)

T (Yt−Ŷt).

While for π, with the conjugate prior π ∼ Beta(a0, b0), the
posterior distirbution is

π ∼ Beta(n1 + a0, n0 + b0) (2)

where n1 =
∑

ij cijrij and n0 =
∑

ij cij(1− rij)



2) Updata the latent variable:
The marginal distribution of the latent variable p(rij |cij =

1, Y, Z, θ) ∝

exp
[
−

T∑
t=1

1

σ2
t

(yit−
∑
k

zktrikβkt−β0t)
2
]
πcijrij (1−π)cij(1−rij)

Since

[yit−
∑
k

zktrikβkt−β0t]
2 = [yit−

∑
k ̸=j

zktrikβkt−β0t]
2+qijtrij

here qijt denotes

z2jtβ
2
jt − 2yitzjtβjt + 2

∑
k ̸=j

zktβktzjtβjtrik + 2zjtβjtβ0t

The first term doesn’t contain rij ,so

(rij |·) ∝ exp(−
T∑

t=1

qijt
σ2
t

rij)π
cijrij (1− π)cij(1−rij)

that is, rij has Bernoulli marginal distribution

p(rij |·) ∼ bernoulli(pij) (3)

with updated probability pij =
( π
1−π )

cij

( π
1−π )

cij + exp(
∑T

t=1
qijt
σ2
t
)

3) The algorithm of HCtarget:
Based on the above discussion, we use a traditional MCMC

approach to estimate the parameters and the latent variable
iteratively:

1) Initial βt, σt, R as βt = 1, σt = 1 and rij |cij = 1 ∼
bernoulli(0.5).

2) Update σ2
t by sampling from vs2tχ

−2
v , update βt by

sampling from N(β̂t, (A
T
t At)

−1σ2
t ) and update π by

sampling from beta(n1 + a0, n0 + b0).
3) Given the updated parameters, sample the latent variable

rij from bernoulli(pij).
4) Repeat the above two steps until convergence. Here the

convergence is evaluated by Gelman and Rubin criteria
[47].

We output pij , which represents the probability that miRNA
j targets mRNA i given the data, for our final prediction.
miRNA-mRNA pairs with pij larger than a certain threshold
are the putative target pairs of our model. In the analysis
of cancer expression data, we specify the threshold as 0.8,
so that our selected miRNA targets covered nearly 50% of
the sequence-based predictions, and they are comparable with
GenMiR++ targets.

IV. RESULTS

We applied HCtarget to study miRNA’s role in cancer. The
computational predictions were extracted from TargetScanHu-
man (release 5.1). Several paired miRNA-mRNA expression
datasets, such as breast cancer data (GSE19783), prostate can-
cer data(GSE7055) and multiple myeloma data(GSE17306)
were downloaded from GEO database [48]. Since their results
are similar, we took the multiple myeloma data as an example

in our analysis. It profiled miRNA and mRNA expressions
from 52 patients with multiple myeloma [9].

We selected multiple myeloma related miRNAs and mRNAs
for our predictions. Ten miRNAs with the highest expres-
sion level were picked up, they are: hsa-let-7g, hsa-miR-
142-3p, hsa-miR-148a, hsa-miR-16, hsa-miR-19b, hsa-miR-
21, hsa-miR-26a, hsa-miR-29c, hsa-miR-370 and hsa-miR-
494. Meanwhile 1000 mRNAs were selected, half with the
highest expressions and half with the lowest expressions, since
miRNA putatively repress gene expressions and may have
secondary up-regulatory effects [49].

A. Performance of HCTarget on the simulation data

First, we generated a simulation data to compare the perfor-
mance of GenMiR++ and HCTarget. The ten miRNA expres-
sion data Z were extracted from the real data from patients
with multiple myeloma, where 1000 mRNA expressions Y
were simulated from

yit = β0t +
10∑
j=1

rijzjtβjt + ϵit, i = 1, . . . 1000, t = 1, . . . , 52

here βjt, β0t and ϵ were generated from N(−0.3, 0.1), N(1, 1)
and N(0, 1) respectively. The real target relations rij was
obtained from bernoulli(0.5) conditions on cij = 1, where
cij represents the predictions in TargetScan.

Applying GenmiR++ and HCtarget on the simulation data,
we computed their true positive rate and false positive rate
with different cutoffs. Their ROC (Receiver operating char-
acteristic) curves and AUC (the area under the ROC curve)
values are shown in Figure 1, which indicate that HCTarget
has higher accuracy than GenMiR++.
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Fig. 1. The ROC curves of HCTarget and GenMiR++ for simulation
data. Their AUC values are 0.95 and 0.91 respectively.

B. Predict miRNA targets based on cancer expression data

We then applied our HCtarget approach to the real miRNA-
mRNA expression data to detect miRNA targets in cancer.
TargetScan provides 1401 target pairs for our selected miRNAs



and genes. HCtarget cuts down these predictions to 647, while
699 target pairs are obtained by GenMiR++.

To assess the robustness of HCtarget, we performed a series
of permutation tests [24]. We permuted the gene labels 1000
times and generated 1000 random data sets. In these sets,
the relationship between miRNAs and mRNAs are destroyed
and their predicted target probabilities could be regarded as
background. These permutations allow us to evaluate whether
our model would be affected by introducing a great deal of
fake targets into the candidates. Comparing the predictions of
HCtarget for both permuted and original data, we found the
probabilities leaned from the real data are significantly higher
than the background. The p value of one side wilcoxon test
is 0.1. In addition, the proportion of the probabilities bigger
than 0.8 for the real data (46.2%) is higher than permuted
data (44.1%). It illustrates that HCtarget could successfully
discriminate the real target from the fake ones, which ensures
its robustness in target prediction.

Furthermore, we extracted experimentally supported
miRNA targets from Tarbase (v.5c) [12] to evaluate the
accuracy of our approach. To compare Tarbase with our
predictions, miRNAs were all mapped to miRNA families
using the annotations in miRBase [50]. For the multiple
myeloma related miRNAs and mRNAs, three miRNAs and
their 17 target genes have biological verifications. Nine
of them are detected by HCtarget, while GenMiR++ only
identifies two. The numbers of verified targets predicted
by TargetScan, GenMiR++ and HCTarget as well as their
precisions are listed in Table II, which show that HCtarget
could identify more accurate targets than GenMiR++. For
example, mir-15 has nine supported targets, seven of them are
detected by HCtarget, while GenMiR++ failed to identify any
of them. It also indicates that HCtarget has higher precision
(2.78%, 18 out of 647) than the original TargetScan (2.43%,
34 out of 1401).

TABLE II
COMPARISON WITH TARBASE

miRNA family TargetScan GenMiR++ HCTarget

let-7 7 (3.57%) 2 (2.02%) 2 (2.15%)

mir-15 9 (4.02%) 0 (0) 7 (6.67%)

mir-29 1 (0.51%) 0 (0) 0 (0)

total 17 (2.76%) 3 (0.95%) 9 (3.01%)

C. Validate hsa-miR-16 targets

Previous analysis suggests that hsa-miR-16 can act as a tu-
mor suppressor in multiple myeloma [51]. We extracted a loss
of function study profile of hsa-miR-16 from GEO database
(GSE24522). It provided gene expression levels before and
after hsa-miR-16 deletion [51]. We focused on genes with fold
change larger than 1.5 as different expressed genes. For our
1000 genes, 132 genes were selected.

To validate our prediction, we compared our detected targets
with these different expressed genes. TargetScan identifies 224
targets for hsa-miR-16, 34 of them have different expression

levels when hsa-miR-16 is deleted (the p value of hyper-
geometric test is 0.14). HCtarget, which cuts down the target
genes to 105, provides 22 validated targets (p = 0.006)
(Figure 2). This represents that HCtarget has more confirmed
targets than TargetScan. In addition, GenmiR++ only detects
11 different expressed genes (p = 0.72), which also validates
the accuracy of HCtarget.

Fig. 2. Venn diagram. It shows the overlap of different expressed genes
with the predicted targets of targetScan and HCtarget.

D. Gene Ontology enrichment analysis

To have further investigation of our predicted targets, we an-
alyzed their function annotations in Gene Ontology (GO)[52],
[53]. For each miRNA target set detected by TargetScan and
HCtarget respectively, we computed its GO enrichment p value
using hyper geometric test. Considering multiple testing prob-
lems, these p values were corrected using FDR modification.
For TargetScan, we found 107 (2.5%) functional target sets
(with FDR<0.1). While there are 135 (3.1%) functional sets of
GenmiR++ and HCtarget increases the number to 158 (3.7%).
The comparison exhibits that the targets of HCtarget have
significantly more consistent functional annotations.

Meanwhile, we selected the GO functions that signif-
icantly enriched (FDR<0.01) in hsa-miR-19b, which has
been experimentally verified to be a key regulator in
multiple myeloma [54]. They are: GO0034612 (response
to tumor necrosis factor), GO0000723 (telomere mainte-
nance), GO0006289 (nucleotide-excision repair), GO0006302
(double-strand break repair) and GO0045732 (positive regu-
lation of protein catabolic process). The first annotation is
significantly associated with multiple myeloma, the latter three
ones are crucial functions in cell division, a key cellular
process in cancer, while the last one is putative important in
metabolism. These findings demonstrate that HCtarget could
successfully identify the functional miRNA targets.

E. Example

Based on the above findings, we further focused on a
specific target pair to discover miRNA’s role in multiple
myeloma. hsa-miR-19b was selected, and one of its targets
detected by HCtarget is SULF1, which has been found to
be a potent inhibitor of myeloma tumor growth [55]. We
focused the patients with higher hsa-miR-19b expressions



(with expression level larger than average), and discovered
that the expression levels of SULF1 are significantly lower
in these patients than in the other ones (the p values of the
one side wilcoxon test is 0.1). Their cumulative distributions
(Figure 3) displays that the expression of SULF1 is negatively
shifted when hsa-miR-19b is highly expressed. This example
further confirms the significant down regulatory effects of hsa-
miR-19b, and provides us a reliable target gene SULF1. We
believe that this target pair plays a crucial role in multiple
myeloma and could be served as effective candidates for the
therapeutic treatment.
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Fig. 3. The down regulatory effect of hsa-miR-19b on SULF1. The
cumulative distributions of the expression levels of SULF1 in the sample with
or without highly expressed hsa-miR-19b (red solid line and blue dashed line
respectively).

V. CONCLUSION

In this paper, we review and discuss the integrative approach
that predict miRNA target genes by combining the sequence
information and expression profiles.

We also propose a new algorithm, HCtarget. The simulation
study and the robustness assessment confirm the accuracy of
our approach. The investigations of the expression profiles
in multiple myeloma also exhibit the well performance of
HCtarget. Our model affords reliable targets of miRNA, which
improve our understanding of miRNA’s roles in cancer. Such
as the disease related target pair, hsa-miR-19b and SULF1, is
beneficial for the further discovery and clinical treatment of
multiple myeloma. Furthermore, selecting some other proper
miRNA and mRNA expression profiles, HCtarget could be
generalized to provide miRNA’s whole genome target predic-
tions, which is helpful for the comprehensive discovering of
miRNA’s regulatory effects.

Generally, the integrative approaches improve miRNA target
predictions. They could be directly generalized to detect the
target genes of TFs. In addition, previous studies demonstrated
that TFs, or their cis-regulatory modules, have widely cooper-
ation with miRNAs. Their combinatorial regulatory modules
play important parts in gene regulation [56]. With accurate

target predictions of miRNAs and TF, the integrative ap-
proaches could effectively construct gene regulatory network,
which helps us to uncover the mechanisms underlying gene
expression.
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