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Abstract: Tracking mobile targets using low-cost Wireless Sensor Network (WSN) requires not 
only good tracking accuracy but also network longevity. Cluster-based tracking protocols 
leverage the fact that only sensors in the vicinity of the target can contribute to target detection, 
while other sensors should sleep to save energy, which provides good tradeoff between energy 
efficiency and tracking accuracy. However, for the complexity of cluster-based tracking 
protocols, it is challenging to quantify the tradeoff between energy efficiency and tracking 
accuracy. In this paper, a convolution-based method is presented to quantify the relationship 
between the cluster parameters and the energy–quality metrics of the tracking system, which 
provides Pareto optimal parameters to jointly optimise the energy efficiency and the tracking 
accuracy of cluster-based WSN tracking system. The presented results are verified in popular 
cluster-based tracking protocols via extensive simulations, which shows the effectiveness of the 
optimisation framework. 
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1 Introduction 

Wireless Sensor Network (WSN) composed of network  
of distributed smart microsensors is rapidly emerging  
in recent years as a feasible solution to a wide range  
of applications. Among these applications, mobile target 
tracking is the most promising one, which can be widely 
applied in livestock farming, wildlife monitoring, battlefield 
surveillance, etc. 

A typical application scenario of the WSN tracking 
system is to deploy a large amount of micro sensors in the 
Area-of-Interest (AOI) to track the mobile targets, such as 
livestock tracking in the farmland, enemy tracking in the 
battle field, etc. The targets’ positions are estimated by the 
spatially distributed monitoring sensors using range-based 
or range-free localisation techniques. Such target tracking 
systems pose fundamental requirements for energy 
efficiency and tracking accuracy. 

• Since the microsensors are commonly battery powered 
and are difficult to recharge after deployment, 
conserving node energy is the primary requirement. 
Letting sensors work in duty cycling mode is the major 
technique for sensor energy conservation (Demirbas  
et al., 2006; Sharp et al., 2005; Wang et al., 2010), but 
the sensor is dis-functional in ‘sleep’ mode, which 
cannot track the targets. This leaves great challenge for 
sensor scheduling. 

• High-tracking accuracy is always the requirement of a 
tracking system, which generally requires more sensors 
to contribute to the target detection and position 
calculation. It basically contradicts with the energy 
conservation requirement of the sensor network. 

To address these two requirements, cluster-based target 
tracking protocols were proposed as promising solutions. 
They leverage on the fact that the tracking quality is only 
determined by the sensors that are in the vicinity of the 
target, while faraway sensors that cannot detect the target 
should sleep to save energy. Therefore, the networked 
sensors are organised into clusters based on their spatial 

information. When a target is approaching a cluster, sensors 
in this cluster switch to active mode to track the target,  
 
while sensors in other clusters can sleep to save energy. To 
avoid missing target, sleeping sensors are pre-activated 
based on the predicted moving direction of the target. 
Further, the sensors in the active cluster will switch to sleep 
model after the target leave their sensing regions. 

Cluster-based target tracking provides good tradeoff 
between the energy efficiency and the tracking quality.  
But it also introduces complex cluster partition, sensor 
activation and deactivation functionalities, etc. These 
complex sensor network functions make the quantitative 
analysis to the energy and tracking accuracy performances 
very difficult. Heuristics and simulations are currently main 
solutions for the design and evaluation of the cluster-based 
tracking protocols. How to optimise the cluster-based 
tracking system remains as a big challenging problem.  

This paper proposes a novel convolution method to 
quantify the relationship between the clustering parameters 
and the energy–tracking accuracy performances of the 
tracking system. The energy consumption rate and the 
tracking accuracy are derived as functions of the cluster 
size, node density, sensing radius, the activation mechanism, 
etc. The relationship is further utilised to optimise the 
design of the cluster-based tracking system, which provides 
Pareto optimal parameters to jointly optimise the energy 
efficiency and the tracking accuracy. 

The practical effectiveness of the relationship is verified 
in an extensive manner in popular cluster-based tracking 
protocols. In these verifications, realistic conditions such as 
non-uniform sensor deployment, cluster irregularity and the 
target randomness are considered. The results show that the 
relationship can well predict the tracking performances in 
various network scenarios and it can be rather confidently 
adopted as a design guideline for optimising the cluster-
based tracking system.  

The remainder of this paper is organised as follows.  
The cluster parameters and the energy–quality metrics are 
introduced in Section 2. The relationship derivation and 
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Pareto optimisation framework are presented in Section 3. 
Verifications in popular cluster-based tracking protocols  
are presented in Section 4. The related work is  
introduced in Section 5 and the paper is concluded in 
Section 6.  

2 Assumptions and cluster parameters 

2.1 System model 

A cluster-based target tracking system can be characterised 
by a set of parameters. Although it is difficult to 
characterise all the clustering, target movement and 
environment dynamics, some essential behaviours can be 
quantified. 

• Let us consider the AOI is a 2D field, denoted by S.  
N sensors are uniformly deployed in it with density 
ρ = N/S. The positions of these sensors are denoted by 
X = {xi, yi, i = 1, …, N}. 

• Sensors’ communication radius is denoted by r and 
sensing radius is denoted by s. 

• The sensors are assumed organised into n clusters, 
according to their spatial relations. Each cluster covers 
a circular area with radius c, centred at a point 

{ , },h h
j jx y=jh  where j is the index of the cluster. 

Sensors located in the circular cluster area belong to the 
corresponding cluster and are managed by an elected 
head of the cluster.  

• The target moves along some unknown trajectory in the 
AOI. Its position at time t is denoted by θt = (θx,t, θy,t). 

• To track target while saving energy, clusters are 
activated and deactivated to track the target.  
We assume that an activated/deactivated cluster will 
activate/deactivate all the sensors in this cluster.  
A sensor can detect the target only if it is active and the 
target is in its sensing range. 

2.2 Parameters to characterise the cluster-based 
tracking scenario 

The above model is general, which is capable of describing 
almost all the cluster-based tracking protocols. The shapes 
of the sensing region and the clusters are not restricted to be 
circles, but can be extended to other irregular shapes. 

Proposition 1: The temporal behaviour of the cluster-based 
tracking system at time t can be characterised by a set of 
parameters: {r, c, s, ρ, N, n, θtAt, H = {h1, h2, …, hn}, X}, 
where At stands for the states of the sensors, i.e., if the ith 
sensor is active at time t, At(i) = 1, otherwise, At(i) = 0.  
H stands for the centres of the cluster areas and X stands 
for the positions of the sensors. This set of parameters is 
called parameters of the cluster-based tracking system. 

Proof of Proposition 1 is straightforward. H determines the 
positions of the cluster areas; c determines the radius of 

cluster areas, so that the n disc-shaped cluster areas are 
uniquely determined in the two-dimensional region. As the 
positions of these N sensors are also known, to which 
cluster a sensor belongs is determined by {H, X, c}. Besides 
this, the states of all sensors can be referred to vector A, and 
whether a sensor can detect the target is determined by the 
condition ||x – θt|| ≤ s, where x stands for the coordinates  
of this sensor. Therefore, from {H, X, c, A, s, θt, n, N},  
we know the distributions of the cluster and we also know 
which sensor is active and which sensor can detect the 
target. � 

In the next section, we will further show that the system 
performance is mainly determined by parameters {r, c, s, ρ, 
n, N}. 

3 Relationship between cluster and system 
performances 

3.1 The tracking quality performance 

Figure 1 shows an instance of the cluster-based tracking 
scenario. An active cluster is shown by a dashed circular 
radius c. The target-detectable area is a circular area centred 
at the target with radius s.  

Figure 1 Cluster-based target tracking scenario. The circular 
area Ca is the active cluster area. Sensors in this area 
are active and sensors outside this area are sleeping.  
D is the target detectable area. Only the sensors in the 
overlapping area of D and Ca are both active and within 
the sensing range of the target. We call the sensors in 
the overlapping area the contributable sensors  
(see online version for colours) 

 

Note that only the sensors located in the overlapping area of 
these two circles can contribute to the target tracking.  
We call these sensors contributable sensors which are 
denoted by ns. Clearly, the number of contributable sensors 
has an important impact on the target tracking accuracy. 
This impact is examined in various target detection 
techniques. The popular target detection techniques can be 
categorised into two classes. 

• Sensors can measure the distance to the target and infer 
the location of target by geometry-based methods 
(Priyantha et al., 2000). 

• Sensor only detects the appearance of the target. It is a 
binary detection. Centroid method (Aslam et al., 2003) 
etc. are needed to estimate the target’s position. 

These two methods differ greatly in hardware, etc. 
However, they are common in the principle for achieving 
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accurate target detection: the more the better. The more 
sensors contribute to the target detection, the more accurate 
the target tracking is. 

Based on such an observation, the tracking quality 
metric can be extracted as the expected number of the 
contributable sensors, Q = E{ns}. It is obvious that ns  
is determined by the expected overlapped area of the  
target-detectable area and the active cluster area. We denote 
this overlapping area as Sd. Therefore, the quality metric can 
be described as: 

( ) ( ).s dQ E n E Sρ= =  (1) 

The validity of this quality metric is easily understood from 
the estimation theory. The standard derivation (confidence 
interval) of the estimation is of the order of magnitude 

( ),O n  where n is the number of contributable sensors in 
this problem. We formulate this statement as a Theorem. 

Theorem 1: If the observations of the sensors are 
independent with each other and the measurement noise is 
irrelevant with the distance between the sensor and the 
target, then the standard derivation of the positioning 
accuracy converges at (1/ ),sO n  where ns is the number of 
the contributable sensors.  

Proof: Theorem 1 can be proved by analysing the 
magnitude of the standard derivation for the different 
detection techniques. Details of the proof for different 
location detection techniques are given in the Appendix.  
A remark is that in the second category, the way to increase 
the tracking accuracy is to increase the nodes density. 
Because the minimum expected error is dominated by the 
inter-node distance in this kind of detection technique. 

3.2 Convolution method to formulate the quality 
metric 

Note that the expected number of the contributable sensors 
is determined by the overlapping area of two circles, i.e., the 
active cluster and the circle centred at the target with radius 
s, respectively. Therefore, convolution-based method can be 
utilised to evaluate the quality metric. If we denote x  
as the distance from the centre of the active cluster area  
to the position of the target, the overlapped area Sd will  
be a function of x, and the expression of Sd(x) can be 
derived. 

2 2 2 2( ) 2 ( ) d .dS x c s xτ τ τ
+∞

−∞
= − − −∫  (2) 

Figure 2 uses two half circles to show how convolution 
works on the two circular areas. The expression of Sd(x) can 
be calculated as a piece-wise function: 
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are used to simplify the expression. We can see the result is 
complex for further use in optimisation. But it can be well 
approximated by another piece-wise linear function ( )dS x  
(shown in the dashed lines in Figure 3):  

2( )                        when 
1( ) ( ) when .
2

( ) 0,                          otherwise

d

d

d

S x s c s x s c

S x s x c s c s x c s

S x

π

π

 = − > > −

 = − − − + > > −

 =

 (4) 

( )dS x  is much simpler, which will greatly simplify the 
derivation of the relationship and further optimisation. 
Before accepting ( )dS x , we compare Sd(x) and ( )dS x  for 
different s and c to check how ( )dS x  approximates Sd(x). 
We normalise s to 1 and vary c and x to calculate the  
bound of ( ) ( ).d dS x S x−  More specifically, we denote three 
functions in the error analysis.  

1delta ( ) max ( ( ) ( ))x d dc S c S c= −  (5) 

2delta ( ) min ( ( ) ( ))x d dc S c S c= −  (6) 

3 1 2delta ( ) delta ( ) delta ( ).c c c= −  (7) 

Figure 2 Illustration of the convolution method 

 

Figure 3 The function curve of Sd(x) (see online version  
for colours) 
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The results of delta1(c), delta2(c) and delta3(c) are plotted  
in Figure 4. They show that for different parameter settings 
of c, s and x, the difference between the upper bound  
and the lower bound of the approximation error is bounded  
and very small. So we are confident to use ( )dS x  to 
represent the overlapping area in the following analysis. 
Therefore, the expected quality metric can be formulated as:  

0
{ } { } ( ) ( ) ( ) d ,

c s

s d d dQ E n E S E S f x S x xρ ρ ρ
+

= = = = ∫  (8) 

where f(x) is the pdf (probability density function) of x.  
To present the relationship theoretically, we discuss two 
kinds of distributions of f(x): uniform and normal. Later in 
Section 6.3, we will show that the relationships are robust  
to the different hypothesis of f(x), which is due to the 
monotone structure of the performance metrics. 

Figure 4 Error analysis of Sd(x) and ( )dS x  (see online version 
for colours) 

 

An assumption of f(x) is that x follows normal distribution 
with parameters (µ, σ). This means that the target has higher 
probability to appear at a normal distance to the cluster 
centre than appear too close or too far. We set µ = (c + s)/2 
and σ = (c + s)/6 so that the probability that 0 ≤ x ≤ c + s is 
equal to P(µ – 3σ ≤ x ≤ µ + 3σ) = 99.73%. Expression of 

( )dE S  can be derived as: 
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where  
2

20 2

1 ( ) 1 1= exp d erf
2 22 22

xC xµ µ
σ σπσ

∞  −  
− = +   
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∫   

is a normalisation constant, and  

2

0
erf ( )

2 exp( ) d
x

x t t
π

= −∫   

is the ‘error function’ encountered in the integration of  
the normal distribution (Medeiros et al., 2008).  

Another reasonable assumption of f(x) is that x is 
uniformly distributed in the close set [0, c + s]. This means 
that the target has the same probability to appear any close 
or any far from the cluster centre within the range [0, c + s]. 
In this case, 2( ) /( ).dE S cs c sπ= +  So that, we have 
formulated how the cluster scheme will affect the tracking 
quality performance. Now let us consider how it affects the 
energy performance.  

3.3 The energy metric 

Sensors sense target generally in discrete time. Therefore, 
we define an energy-metric as the energy consumption of 
sensors for one target detection. The metric is built based on 
the energy models in Sharp et al. (2005), Wang et al. 
(2010), Wang et al. (2006), He et al. (2006) and Wang et al. 
(2004). Sensors consume energy mainly according to four 
kinds of operations: packet transmitting, packet receiving, 
sensing and data processing. It was shown in Heinzelman  
et al (2000) and Wang et al. (2004), if a sender transmits  
a k bytes packet, the energy consumed by it is 

elec amp ,xT E k kdαε= +  where Eelec(nJ/bit) and Eamp(pJ/bit/mα) 
are the energy coefficients of the radio circuit and the 
amplifier; α ∈ [2, 4] is the path loss exponent; d is 
transmission distance. The energy consumed by the receiver 
is independent of the distance, which is modelled as 
R = Eeleck. Energy for sensing is modelled in Sharp et al. 
(2005) as: S = Esensors2, where s is the sensing radius and 
Esensor is the energy coefficient of the sensor. Energy 
dissipation for data processing is assumed proportional  
to the packet length F = Ecpuk, where Ecpu is the energy 
coefficient of the processor. 

The energy consumption is also affected by the working 
states of the sensors. Considering a target tracking instance, 
the energy consumption of the sleeping sensors can be 
omitted. The sensors in the active cluster are in sensing 
mode. Their energy consumption for sensing target is 
S ⋅ nc = Esensors2 πc2ρ. Only the sensors in the overlapped 
area of the active cluster and the target-detectable region 
can actually detect the target. They will send the detected 
information to the cluster head. The energy consumption for 
the packet transmission is Tr ⋅ ns = (Eeleck + εampkrα) ⋅ Sdρ. 
These ns packets will be received by the cluster head. The 
energy consumption by the receiving operations is 
R ⋅ ns = (Eeleck) ⋅ Sdρ. Then, these packets will be processed 
by the cluster head, with additional energy consumption for 
data processing F ⋅ ns = (Ecpuk) ⋅ Sdρ. At last, the processed 
result will be sent to the base station by the cluster head 
with a larger communication radius, which is commonly set 
as c. So the transmission energy consumed by the cluster 
head is Tc = (Eeleck + εampkcα). Without loss of generality, we 
assume k = 1, so the total energy consumption for one target 
detection can be formulised as: 
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2 2
sensor elec cpu

elec amp elec amp

(

) .

c r s s s c

d

E Sn T n Rn Fn T

E s c S E E

E r E cα α

π ρ ρ

ε ε

= + + + +

= + +

+ + + +  (10) 

3.4 Energy–quality tradeoffs 

Based on the quality and energy performance metrics of 
equations (9) and (10), the underlying relationships between 
cluster parameters and system performances can be 
characterised. Looking into the relationship will help us  
to find the key parameters that affect the energy–quality 
tradeoff in cluster-based target tracking.  

It is easy to see that the parameter {r} appears only in 
the energy metric, while the parameters {s, c, ρ} appear in 
both the energy and the quality metrics. Relations (9) and 
(10) are both monotone linear increasing functions of ρ,  
so the energy and the quality metrics are indeed dominated 
by the parameter set {s, c}, i.e., the sensing radius and the 
cluster radius. But in the real applications, the cluster  
radius c is commonly not a decision variable. Instead, it is 
determined by the number of the partitioned clusters (n) 
with the constraint that the AOI is fully covered by the 
cluster areas. As the coverage area of n clusters is nπc2, 
applications commonly require nπc2/S = Or, where Or ≥ 1 is 
the cluster coverage rate. n is the decision variable and c is 
determined by /rc O S nπ= . So the energy–quality 
metrics are indeed dominated by the parameters {n, s}. We 
use the parameter settings in Table 1 to visually show how 
the energy and quality metrics are affected by {n, s}. For 
saving space, we only choose equations (9) and (10) that are 
derived by the normally distributed f(x) to show the 
properties. The results are shown in Figures 5 and 6. 

Table 1 Parameter settings for visualisation of energy–quality 
tradeoff 

 Value Meaning 
Eini 10 J Initial energy of sensor nodes 
Eelec 5.0e-9 Circuitry coefficient 
Ecpu 1.0e-8 CPU coefficient 
ρ 0.1 Sensor density 
α 3 Pass loss exponent 
Qr π/2 Cluster coverage rate 
Esensor 1.0e-10 Sensing coefficient 
Eamp 1.0e-10 Amplifier coefficient 
k 1 Data packet size 
r 10 m Communication radius 
N 1000 Number of sensors 

The range of s is [0, 20] and the range of n is [1, 49] in these 
two figures. The result shows that both the energy 
consumption rate (E) and the tracking quality (Q) are 
increasing functions of the sensing radius (s) and are 
decreasing functions of the number of clusters (n). This 
agrees with our general knowledge. The tracking quality 
will be better if the cluster and the sensing radius are larger, 

but larger cluster and larger sensing radius will consume 
more energy. Minimising the energy consumption 
contradicts with the requirement of maximising the tracking 
quality. This supports the widely adopted tradeoff design of 
the cluster-based tracking protocols (Wang et al., 2004; 
Chen et al., 2004). Therefore, there is no global optimal 
design of n and s. But equations (9) and (10) can help to 
select proper n and s, which can be accomplished by a 
Pareto optimisation method. 

Figure 5 How n and s affect the energy metric (see online 
version for colours) 

 

Figure 6 How n and s affect the quality metric (see online 
version for colours) 

 

3.5 Pareto optimisation 

Pareto optimality is widely applied in multiple objects 
multiple variables optimisation problem for discrete design 
space. Each design is a combination of several discrete 
variables. A design can be considered Pareto optimal if 
there is no other design that performs at least as well on 
every metric and strictly better on at least one metric.  

To visualise the energy–quality tradeoff in Pareto 
optimisation, the quality metric is converted to –Q to work 
as the x-axis; the energy metric works as the y-axis. Every 
design is a combination of {n, s}, which is plotted as a point 
in the scatter-plot with coordinates {–Q, E}. The scatter-plot 
results for the design space of s ∈ [0, 20] and n ∈ [1, 49] are 
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shown in Figure 7. The Pareto-optimal solutions are the 
points in the scatter-plot with no other points better than 
them in both metrics, i.e., no other points are below and left 
to them in the figure. We call the Pareto-optimal solutions 
Pareto Fronts. 

In Figure 7, all the Pareto Fronts are highlighted with  
red circles. If an application preference is given, we only 
need to search among the Pareto Fronts to optimise  
the cluster design. An example is shown in Figure 8.  
The application requires at least five nodes can detect the 
target while reducing the energy consumption as much as 
possible. The optimal (n, s) design is displayed with a star. 
For the small searching space of the Pareto Fronts, the 
optimal (n, s) pair can be found within millisecond. 
Therefore, the derived relationship can not only predict the 
system performances, but also be used to optimise the 
system design. 

Figure 7 Pareto Frontier graph of optimisation model. Each dot 
in the figure is a (n.s) design. Its coordinates in the 
graph is given by its quality and energy metrics  
(–Q, E) (see online version for colours) 

 

Figure 8 Pareto optimisation with application preference.  
The optimal solution (red star) is selected among the 
Pareto Fronts (dot with red circles) based on the 
application requirements (green line) (see online 
version for colours) 

 

4 Evaluation in popular cluster-based tracking 
protocols 

The effectiveness of the relationship is evaluated in popular 
cluster-based tracking protocols. One of the popular cluster-
based target tracking is the overlapping cluster-based 
tracking (OCT) protocol. In the OCT protocol, cluster head 
is generated by ‘Grid Uniform’ algorithm; overlapped 
clusters are partitioned to cover the whole AOI and cluster 
is activated predictively. The performances of the OCT 
protocol for different cluster parameters are evaluated to 
verify the derived relationship. 

4.1 ‘Grid Uniform’ cluster head generation 

The OCT protocol uses fully distributed ‘Grid Uniform’ 
cluster head generation algorithm. The idea is that the 
sensor field is divided into n equal-size imaginary grids, 
where n is the number of the desired clusters. Each grid has 
a ‘Virtual Centre’, which is the geometrical centre of the 
grid. For sensors in each grid, a distributed algorithm is  
run by them to elect the one closest to the ‘Virtual Centre’ 
as the cluster head. As the ‘Virtual Centres’ are evenly 
distributed in the field, the generated cluster heads are 
expected to be evenly distributed. The idea of grid uniform 
cluster head generation is shown in Figure 9. 

Figure 9 ‘Grid Uniform’ cluster head generation. ‘+’ is the 
virtual grid centre. The red circle is the generated 
cluster head (see online version for colours) 

 

4.2 Overlapped circular shape cluster partition 

After cluster head election, the OCT protocol partitions  
the clusters by allowing cluster overlapping. The idea is 
illustrated in Figure 10. Each cluster area is a circular area, 
centred at the generated cluster head, and with cluster  
radius c. Such overlapped cluster can be formed by the  
fully distributed method with localised communication. 
Each cluster head broadcasts cluster partition command 
with communication radius c and then turns to listen.  
If it receives a Reply message, it adds the sender to its  
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member list. Common sensors listen to the channel.  
If it hears a partition command, it adds the sender to its CH 
list and sends a Reply message. For communication 
collision avoidance, cluster heads and member nodes can 
use Collision Avoidance Multiple Access (CSMA) to 
broadcast partition command and Reply message. After 
such a cluster partition process, a sensor may join into 
multiple clusters. We call such kind clusters ‘overlapping 
clusters’. Overlapping clusters partition has two main 
advantages. 

• The number of sensors in a cluster become predictable 
with expected value nc = ρπc2. The cluster size can  
be controlled by adjusting the cluster radius c.  

• Full coverage of the sensor field by the n clusters can 
be guaranteed, which can well approach the assumption 
that the target can always be tracked by an active 
cluster. 

Figure 10 ‘Overlapping’ cluster partition. Cluster head broadcast 
message to form ‘overlapping clusters’. Sensors in 
overlapping areas belong to multiple clusters  
(see online version for colours) 

 

4.3 Predictive cluster switch 

The OCT protocol uses predictive activation to switch 
clusters. Suppose the location of the target is (xi–1, yi–1) at 
time Ti–1, and is (xi, yi) at time Ti. The position of the  
target at time Ti+1 is predicted to be  
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by the current cluster head CHc with a linear predictor. 
Then, the cluster head sends a message to the downstream 
cluster head CHd towards which the target is headed to tell 
the predicted target location. Suppose the location of CHc is 
(xc, yc) and location of the CHd is (xd, yd). The condition to 
trigger the cluster switch is that:  

d 1 d 1 c 1 c 1i i i ix x y y x x y y+ + + +− + − < − + − . (14) 

If the condition is satisfied, the current cluster is deactivated 
and the downstream cluster is activated. CHc broadcasts 
‘sleep’ message and CHd broadcasts ‘awake’ message. This 
switch process is different from the traditional switch 
schemes that the sensors in the overlapping area of CHc and 
CHd will keep active during the cluster switch. In Section 
5.4, we will see this point helps much in reducing the target 
loss probability compared with the non-overlapped cluster 
partition. 

4.4 Performance evaluation of the OCT protocol 
regarding different cluster parameters 

Performances of the OCT protocol are evaluated regarding 
different cluster parameters. We simulated a scenario where 
a target moves randomly within the 200 × 200 (m2),  
two-dimensional sensor field. N sensors are uniformly 
deployed in it and they are partitioned into n overlapping 
clusters. The simulation program is a discrete-event 
simulator developed using Matlab 6.5.  

We firstly evaluate how the analytical relationship 
predicts the quality and energy performances of the OCT 
protocol. When N = 1000, 100 replications of simulation 
were run for every pair of (n, s) to statistically evaluate the 
energy metric and the quality metric of the OCT protocol. 
The average value of simulated energy and quality 
performances for all (n.s) designs are shown in Figure 11(a) 
and Figure 11(b) in the lighter surface. The energy and 
quality metrics are also predicted by the derived 
relationship, which are plotted in the darker surfaces to 
compare with the simulated results. 
We can see that the analytical surfaces coincide well with 
the simulated surfaces. The simulated surfaces are not 
smooth for the randomness of sensors’ deployment and the 
randomness of the target’s movement. We further define a 
Pareto Fronts-based metric quantitatively to check whether 
the Pareto Fronts derived from equations (9) and (10) are 
still Pareto Fronts in the simulation results.  

A set of Pareto Fronts can be obtained from the 
analytical relationship, i.e., from equations (9) and (10). 
After evaluating the simulation performances, we can  
check whether the performances of the Pareto Fronts are 
still Pareto optimal in the OCT protocol. The percent of the 
coincident Pareto Fronts, i.e. percent of the analytical 
Pareto Fronts that are still Pareto optimal in the 
simulations is used as a criterion. The result is shown in 
Figure 11(c). The analytical Pareto Fronts are indicated by 
the red circles, and their performances in the OCT protocol 
are indicated by their coordinates. Statistical measurement  
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shows that 91.4% analytical Pareto Fronts are still Pareto 
optimal. This indicates that equations (9) and (10) can be 
effectively used as a design guideline for the selection of the 
cluster parameters. 

When N = 200, these verification results are shown in 
Figure 12. The relationship between the energy–quality 
metrics and the cluster parameters is also effectively 
predicted by equations (9) and (10) as shown in Figure 12(a) 
and (b). The percent of the coincident Pareto Fronts  
is measured as 90.7% as shown in Figure 12(c). More 

verification was done for more network settings and 
different target patterns. In these experiments, the 
relationship derived with the uniformly hypothesised f(x) is 
also considered. The results are summarised in Table 2.  
The coincident rate of the Pareto Fronts is larger than 75% 
for the worst case when the target moves in a random walk. 
Relationships derived with normal hypothesis and uniform 
hypothesis provide similar results. The results show that the 
derived relationship can work as an important design 
guideline for the OCT protocol. 

Figure 11 Relationship verification when N = 1000: (a) energy metric; (b) quality metric and (c) How the Pareto Fronts derived from the 
relationship perform in the simulation (see online version for colours) 

 
 (a) (b) (c) 

Figure 12 Relationship verification when N = 200: (a) energy metric; (b) quality metric and (c) how the Pareto Fronts derived from the 
relationship perform in the simulation (see online version for colours) 

 
 (a) (b) (c) 
 
4.5 Verify the relationship in voronoi clusters 
Can the relationship work in more general conditions? With 
this question, we verify its performance in voronoi clusters, 
which is the most popular in cluster-based tracking 
protocols (Chen et al., 2004). To construct voronoi clusters, 
CHs are generated ‘Grid Uniformly’ by Algorithm 1 and 
clusters are partitioned by the vonoroi diagram technique 
(Chen et al., 2004). Figure 13 shows an example of the 
topology of clusters for n = 25 and N = 200, where the 
clusters are in polygon shape. 

In the target tracking scenario with non-overlapping 
clusters, the linear predictor is used to activate the 
downstream cluster. The target moves in the same typical 
trajectory. One hundred replications of simulations were run 
to evaluate the performances of every (n, s) pair. Analytical 
performance metrics are calculated with equations (9)  
and (10). When N = 200, n = 25, how the analytical Pareto 
Fronts perform in the simulations is plotted in Figure 14. 
Totally, 34 (n, s) pairs are found as the analytical Pareto 
Fronts from the relationship, and 28 of them are still Pareto  
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Fronts in the simulations. The coincident rate is 84.8%. 
More verification was done for different network settings 
and different target patterns. The results are summarised  
in Table 3. The coincident rates of Pareto Fronts provided 
by the relationship with uniformly hypothesised f(x) are also 
shown. Although the coincident rate is reduced compared 
with those in the overlapping clusters, the worst case is  
still larger than 60%. They show that the relationship  
can still be adopted as an important design guideline  
for the selection of the cluster parameters even using  
non-overlapping clusters.  

Table 2 Coincident rate of Pareto Fronts in different tracking 
scenarios 

Coincident rate of Pareto fronts

Target pattern 
Network 
setting 

Normally 
hypothesised 

f(x) (%) 

Uniformly 
hypothesised 

f(x) (%) 
Linear motion, 
vx = 1, vy = 1 

N = 1000 97.2 95.1 

Linear in x and sine 
wave in y, vx = 2, 
vy = 2 

N = 200 90.5 89.6 

Directional random 
walk in x and 
random walk in y 

N = 200 78.7 76.1 

Figure 13 Non-overlapping cluster partition with vonoroi diagram 
(see online version for colours) 

 

4.6 Discussion about the relationship effectiveness 

We qualitatively analyse the reason for the high consistency 
between the analytical Pareto Fronts and the simulated 
Pareto Fronts. The main reason is due to the robustness of 
the order, which is an important concept in the ordinal 
optimisation (Ho, 1999). As shown in Figures 5 and 6,  
the quality metric and the energy metric are both monotone 
functions of n and s. The performance orders of the (n, s) 
pairs are more robust than their performance values, 
because small variation only changes their values but cannot 
change their orders. So that, even the conditions in the 
practical protocol are a little different from the ideal 

assumptions, the performance orders of the (n, s) pairs are 
easy to be kept. So that with either normally hypothesised 
f(x) or uniformly hypothesised f(x), the relationship can 
provide rather good Pareto fronts. These verifications 
validate the effectiveness of the derived relationship. 

Figure 14 How the Pareto Fronts derived from the relationship 
perform in the simulation (see online version  
for colours) 

 

Table 3 Percent of coincident Pareto Fronts in different 
tracking scenarios 

Coincident rate of Pareto fronts

Target pattern 
Network 
setting 

Normally 
hypothesised 

f(x) (%) 

Uniformly 
hypothesised 

f(x) (%) 

Linear motion, 
vx = 1, vy = 1 

N = 1000 90.5 88.2 

Linear in x and 
sine wave in y, 
vx = 2, vy = 2 

N = 200 85.5 82.6 

Directional 
random walk in 
x and random 
walk in y 

N = 200 64.7 61.9 

5 Related works 

5.1 Wireless Sensor Network target tracking systems 

WSN target tracking system has attracted great research 
attentions. In Demirbas et al. (2006), a sensor network 
system for vehicle tracking and autonomous interception 
was developed. In the system, an uncooperated agent called 
the evader runs freely, and an autonomous robot called 
pursuer is guided by a sensor network system to capture the 
evader. They studied the leader election, routing, network 
aggregation and closed loop control problems. In our 
previous work (Wang et al., 2006), we have developed a 
sensor network system for vehicle tracking. A test bed with 
30 sensors was deployed in our campus to track the fast 
moving mobile bicycles to study the multiple target 
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tracking, dynamic clustering and routing. In Kwong et al. 
(2009), a cattle monitoring system using WSN was 
developed. The wireless sensors were used to continuously 
access the condition of the mobile individual animal, 
aggregating and reporting these data to the farm manager. 
Tracking position of the cattle is an important application in 
their system. In Wang et al. (2006), sensor networks were 
developed for farming application. In addition to the 
moisture sensor to monitor the soil condition, electronic tag 
readers, up to 40 sensors were used to track the cattle 
movements. Their sensors were solar powered and the test 
results of six months were reported. In Kwong et al. (2009), 
a sensor network system, called VigilNet, was developed to 
acquire and verify the information about enemy capabilities 
and positions of hostile targets. The middleware and 
integrated system of a network of 70 MICA2 motes were 
developed to track the positions of moving vehicles in an 
energy-efficient and stealthy manner. In Sikka et al. (2006), 
a virtual patrol system was developed to further improve the 
energy efficiency of the sensor network surveillance system. 
Coverage-based patrol and on-demand patrol were designed 
for energy-efficient node scheduling. Some other target 
tracking applications are summarised in He et al. (2006). 

5.2 Node energy conserving and cluster schemes 

As discussed in Kwong et al. (2009), Sikka et al. (2006) and 
He et al. (2006), energy efficiency is one of the most 
important requirements for the WSN tracking system. In 
Sharp et al. (2005) and Chen et al. (2004), it was reported 
that putting sensors into sleep mode could save energy up to 
three magnitudes, which is the most effective energy saving 
method compared to others (data aggregation, etc.). So with 
joint consideration of the distributed sensor organisation, 
cluster methods became a promising solution for energy-
efficient sensor network design. LEACH (Heinzelman et al., 
2000) proposed a hierarchical clustering scheme for 
information collection of sensor networks. By randomised 
cluster head erection and data aggregation, a factor of  
7–8 improvement of the system lifetime was achieved 
compared with the non-clustering schemes. Our previous 
work proposed the energy-driven adaptive clusters (Wang  
et al., 2004) to solve the energy over-deplete problem of the 
cluster heads. It achieved a factor of 1–2.5 improvement of 
the system’s lifetime than LEACH. In Younis and Fahmy 
(2004), hybrid energy-efficient distributed clustering was 
proposed to periodically select cluster heads according to a 
hybrid of the node residual energy and a secondary 
parameter, such as node proximity to its neighbours or node 
degree. It showed energy efficiency and scalability in data 
aggregation. PEGASIS (Lindsey and Raghavendra, 2002) 
proposed line-structure clusters, which achieved energy 
efficiency by hop by hop data aggregation. Geographical 
information of nodes was used in Xu and Heidemann (2001) 
to form the grid-based clusters and to activate the  
least number of nodes in each grid to meet the demand  
of communication. The neighbour coordination-based 
clustering scheme was proposed in SPAN (Chen et al., 
2001), where only the required number of nodes was 

activated to assure the connectivity. Energy-aware 
management was proposed in Younis et al. (2003) to 
dynamically set routes and arbitrate medium access in the 
cluster to maximise the system’s lifetime. These results 
focus on the energy efficiency of the cluster formation, 
which forms basics of the cluster-based target tracking 
protocols. 

5.3 Cluster-based target tracking 

The cluster-based target tracking protocols utilise the fact 
that only the sensors located in the vicinity of the mobile 
target can contribute to target detection. So they organise 
the sensors into dynamical clusters or static clusters, and do 
cluster-based sensor scheduling during target tracking.  
In DCTC (Zhang and Cao, 2004a), a dynamic convey tree-
based collaboration scheme was proposed to dynamically 
construct a tree-structured cluster to track the target.  
The tree was rooted at the node closest to the target and was 
reconfigured when the distance from the target to the root 
exceeded a predetermined threshold. In Zhang and Cao 
(2004b), the tree reconfiguration problem was further 
formalised into a min-cost convey tree problem. In Chen  
et al. (2004), a cluster-based acoustic target tracking 
protocol was proposed. When an acoustic target moved in 
the sensing area, a cluster was dynamically constructed 
based on the captured acoustic energy of the sensors. This 
one-level cluster was dynamically reconfigured by the 
voronoi diagram method. Possible problems of these 
dynamical cluster-based tracking protocols are the frequent 
cluster reconfigurations, which may consume considerable 
amount of energy and may introduce overhead in tracking 
target. Static cluster is another approach. In Medeiros et al. 
(2008), for improving tracking accuracy and energy 
efficiency, distributed Kalman filter was developed in 
cluster-based target tracking in camera sensor networks.  
An adaptive distributed multi-sensor scheduling  
approach for target tracking in WSN was proposed  
in Lin et al. (2009). The optimal sampling interval  
for cluster activation is calculated. An energy-efficient  
prediction-based clustering algorithm is proposed in  
Deldar and Yaghmaee (2010) for optimising cluster 
activation. An ultrasound-based target tracking algorithm 
and its application in physical security are presented in 
Wang et al. (2009). A cluster partition and sensor network 
configuration algorithm are presented in Wang et al. (2005). 
A location-based vehicle movement prediction model for 
wireless communication is presented in Wu and Hsieh 
(2012). These cluster-based target tracking protocols were 
proposed almost with the same motivation that the cluster 
schemes can well trade-off between the energy efficiency 
and the tracking quality. A probabilistic model for studying 
the relationships of cluster-based fault tolerant target-
tracking protocol was reported in Bhatti et al. (2012). 
However, such protocols have not quantitatively divided the 
underlying relationship between the clustering schemes and 
the system performances. The lack of deep understanding to 
this relationship leaves great difficulty for the tracking 
system design and optimisation. 
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6 Conclusion 

In this paper, a novel convolution-based method is  
proposed to study the underlying relationship between the 
clustering schemes and the energy–quality performances of 
the cluster-based WSN tracking systems. This study is 
based on the fact that the various clustering schemes can be 
characterised by a set of cluster parameters, and the energy 
metric and the quality metric of the tracking systems are 
also dominated by these parameters. By proposing the 
number of contributable sensors as a novel quality metric, 
the relationship between tracking quality and cluster 
parameters was derived in closed form. With this result, 
how the cluster parameters affect the tracking system 
performances has been analysed, and the functions are used 
to optimise the design of the cluster-based tracking 
protocols by Pareto optimisation.  

This derived relationship has been verified in an 
extensive manner in an OCT protocol and in a voronoi 
cluster-based tracking protocol. The result shows that the 
derived relationship can well predict the performances of 
the tracking protocol and can be used as a design to 
optimise the cluster parameters. The reason for the high 
effectiveness is also qualitatively discussed, which is mainly 
due to the robustness of the order. 

Further study will focus on the network optimisation 
problem based on the performance constraints. More 
energy-efficient node scheduling, multiple channel access 
for fast-response target tracking, recovery scheme for target 
loss and dynamic cluster formation will be our future topics. 
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Appendix 

In the first kind of detection schemes, each 
contributable sensor can give an independent estimation 
to the target’s position. Suppose the number of the 
contributable sensors is n and the ns estimations are 

ˆ ˆ ˆ{ }
s1 2 nθ ,θ , ...,θ  with Gaussian white noise. Denote the  

 
 
 
 
 
 
 
 
 
 
 
 

estimated position of the target as θ̂ . With estimation 
theory, we have  

1

1ˆ ˆvar( ) var( ).
sn

nsn =

= ∑ iθ θ   

The estimation variance is of magnitude (1 ).sO n  

• In the second kind of schemes, the estimation variance 
can also be proved in the magnitude of (1 ).sO n  The 
position of target can be determined by at least three 
contributable sensors. Suppose the coordinates of these  
sensors are (x1, y1), (x2, y2), (x3, y3), respectively, and 
they are not on the same line. We denote the actual 
position of the target as (xa, ya) and denote its estimated 
position as (xe, ye). For every sensor, its measured  
distance to the target is denoted by ˆ .id  where i = 1, 2, 3 
is the number of sensors. If the variance of the 
measured distance is σd, the actual position of the target 
should be located within a ring around the sensor, with 
mean distance ˆ

id  and variance σd. Let αi denote the  
angle from the x-axis to the line /i iy y x x=  
(i = 1, 2, 3). As the real position of the target is within 
the overlapping area of the three rings, the variance of 
the estimated position is bounded by 

1 2 3

1 2 3

cos cos cos 3 ,
sin sin sin 3 ,

x d d d d

y d d d d

σ σ α σ α σ α σ
σ σ α σ α σ α σ

≤ + + ≤
≤ + + ≤

  

where σx and σy are the variances of the estimation in 
the x and y directions. We denote σ as the variance of 
the estimated position, then even in the worst case, it is 
bounded as 3 2 .dσ σ≤  So that the variance of the 
estimation is of magnitude (1 3 2 ),sO n  which is 
also (1 ).sO n  

• In the third kind of schemes, locations of the sensors 
are used as the independent observations of the target’s 
position in the centroid method. If ns contributable 
nodes are within the target-detectable region, similarly 
like in the first scheme, the variance of the estimation is 
of magnitude (1 ).sO n  The difference between this 
scheme and the first scheme is that in order to improve 
the estimation accuracy, this scheme has to increase the 
node density, while the first scheme can only increase 
the frequency of the observations. 


