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Local characterization of one-dimensional topologically ordered states
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We consider one-dimensional Hamiltonian systems whose ground states display symmetry-protected
topological order. We show that ground states within the topological phase cannot be connected with each
other through local operations and classical communication between a bipartition of the system. Our claim is
demonstrated by analyzing the entanglement spectrum and Rényi entropies of different physical systems that
provide examples for symmetry-protected topological phases. Specifically, we consider the spin-1/2 cluster-Ising
model and a class of spin-1 models undergoing quantum phase transitions to the Haldane phase. Our results
provide a probe for symmetry-protected topological order. Since the picture holds even at the system’s local
scale, our analysis can serve as a local experimental test for topological order.
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I. INTRODUCTION

Understanding topological order in extended systems is
one of the major challenges in modern physics. Such an
issue has immediate spinoff in condensed-matter physics,1–4

but encompasses important aspects of quantum information
as well.5 Topologically ordered systems are (generically)
gapped systems characterized by a specific degeneracy of the
ground states.4,6 The main attraction for quantum computation
applications relies on the intrinsic robustness of such an
order to external perturbations. Indeed, such a property is
nothing but a rephrasing that no local-order parameter can
be defined to characterize topologically ordered states (Elitzur
theorem). This turns the main virtue of topological phases
into a bottleneck because any search for such kind of order in
actual physical systems is problematic. For the same reason,
also more generic spin liquids, which may not be topologically
ordered but nevertheless possess a gap and no local-order
parameter, are long-sought states in condensed-matter physics
nowadays.3,7

In the last few years, topological order in many-body
systems has been studied using new approaches. It is believed
that topological order can be characterized by the entanglement
encoded in the states of the system.8,9 More precisely, it
is understood that such an order is related to a long-range
entanglement, meaning that topological states cannot be
adiabatically connected to nontopological ones using quantum
circuits made of local (on the scale of the range of interaction
in the underlying Hamiltonian) unitary gates.10 Accordingly,
any observable that, in principle, would be able to detect the
topological order is intrinsically nonlocal.7,11,12

Here we push forward the idea that progress can be
made regarding this aspect by analyzing how topologically
ordered ground states change by varying the control parameter,
within the quantum phase (instead of looking at a single

copy of the ground state corresponding to a fixed value of
the control parameter).13 In particular, we explore whether
the ground-state “evolution,” by changing the Hamiltonian’s
control parameter p, can be achieved by local operations on the
subsystems and classical interparty communication (LOCC),
after having a bipartitioned system. The tool we exploit is
provided by the differential local convertibility:14 A given
physical system is partitioned into two parties, A and B,
limited to LOCC. We comment that the notion of locality
that we refer to does depend on the partition that has been
employed; therefore, the LOCC can indeed involve a portion
of the system that can be very nonlocal on the scale fixed by
the interactions in the Hamiltonian. This should be contrasted
with the protocols defining the topological order in terms of
local unitary transformations mentioned above.10

Assuming that A and B can share an entangled state
(ancilla), the differential local convertibility protocol can be
feasibly expressed through a specific behavior of the Rényi
entropies Sα

.= 1
1−α

log Tr ρα . The differential convertibility
holds if and only if ∂pSα � 0, ∀α or ∂pSα � 0, ∀α.14 In the
present paper, we will be using the latter characterization. Such
an approach was first discussed in the realm of quantum critical
phenomena in Ref. 15. In particular, we note that paramagnets
and phases with nonvanishing local-order parameters are
indeed locally convertible.16

In this paper, we focus on spin systems in one spatial
dimension (1D), where topological order is protected by the
symmetry of the system.17 We shall see that such symmetry-
protected topological phases are not convertible. We shall see
that such property holds on spatial scales that are smaller than
the correlation length of the system.

To address the question, we refer to specific spin systems
providing paradigmatic examples in this context. First we will
consider the cluster-Ising model18,19 (see also Refs. 20 and 21).
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The physical platform for that is provided by cold atoms
in a triangular optical lattice.22,23 The model is particularly
interesting in quantum information since it describes how
the 1D-cluster states are quenched by a qubit-qubit exchange
interaction.24 Our second example is the λ-D model, which
is a well-known model for studying the Haldane order in 1D
quantum magnets.25,26 Quantum computation protocols based
on Haldane-type states have been provided in Ref. 27.

The main numerical tool for the analysis is the density-
matrix renormalization group (DMRG) technique with matrix
product states (MPS) variational ansatz.28 For both the cluster-
Ising and the λ-D models, we analyze Rényi entropies,
entanglement spectrum, and differential local convertibility.

In Secs. II and III, the differential local convertibility of the
cluster-Ising and λ-D models will be analyzed. The scenario
emerging from our study will be discussed in Sec. IV. In
Appendices A and B, we discuss edge states, correlation
lengths, and string order parameters of the models we deal
with. The differential local convertibility for partition sizes
larger than the correlation length of the system will be
discussed in Appendix C. In Appendix D, we discuss the Rényi
entropy in the large α limit.

II. THE CLUSTER-ISING MODEL

The Hamiltonian we consider is

H (g) = −
N∑

j=1

σx
j−1σ

z
j σ x

j+1 + g

N∑

j=1

σ
y

j σ
y

j+1, (1)

where σα
i , α = x,y,z, are the Pauli matrices and, except where

otherwise stated, we take open boundary conditions σα
N+1 =

σα
0 = 0. The phase diagram of (A1) has been investigated in

Refs. 18 and 19. For large g, the system is an antiferromagnet
with local-order parameter. For g = 0, the ground state is a
cluster state. It results in a correlation pattern characterizing
the cluster state that is robust up to a critical value of the
control parameter, meaningfully defining a “cluster phase”
with vanishing order parameter and string order.18,19 Without
symmetry, the cluster phase is a (nontopological) quantum
spin liquid, since there is a gap and no symmetry is sponta-
neously broken. Protected by a Z2 × Z2 symmetry, the cluster
phase is characterized by a topological fourfold ground-state
degeneracy, reflecting the existence of the edge states (see
Appendix A).18,29 In the DMRG, we resolve the ground-state
degeneracy by adding a small perturbation, σx

1 σ z
2 ± σ z

N−1σ
x
N ,

to the Hamiltonian.
We find that the symmetric partition A|A displays local

convertibility, as shown in Figs. 1(a1) and 1(a2). This is,
indeed, a fine-tuned phenomenon since the cluster phase
results are nonlocally convertible, for a generic block of spins,
both of the type A|B and the B|A|B; see Fig. 1. We remark
that such a property holds even for size region A smaller than
the correlation length (see Appendix C for other partitions).
Indeed, the entanglement spectrum is doubly degenerate in
the entire cluster phase, as far as the size of the blocks A

and B are larger than the correlation length. In contrast, the
antiferromagnet is locally convertible, with a nondegenerate
entanglement spectrum.
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FIG. 1. (Color online) The local convertibility and the entan-
glement spectrum of the cluster-Ising model given by Eq. (A1).
We characterize the differential local convertibility in terms of
the slopes of the Rényi entropies. (a) Bipartition A|A, A = 50.
There is differential local convertibility throughout the two different
phases because for fixed g, ∂gSα does not change sign with α.
(b) Bipartition A|B, A = 3, B = 97. (c) A|B|C, being one blocks
A ∪ C with A = 48, C = 49, and B = 3. In all of these cases,
∂gSα changes sign. (a3), (a4), (b3), (b4), (c3), (c4) The large and
the small eigenvalues of reduced density matrix xn, respectively;
ES

.= {− log xn}. In convertible phases, we observe that the change
in the largest eigenvalues is “faster” than the rate at which the
smallest eigenvalues are populated. In contrast, the nondifferential
local convertibility arises because the sharpening of the first part of
the spectrum is overcompensated by the increasing of the smallest xn.
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III. THE λ-D MODEL

In this section, we study the local convertibility of the λ-D
model Hamiltonian describing an interacting spin-1 chain with
a single ion anisotropy,

H =
∑

i

[(
Sx

i Sx
i+1 + S

y

i S
y

i+1

) + λSz
i S

z
i+1 + D

(
Sz

i

)2]
, (2)

where Su, u = {x,y,z}, are spin-1 operators: Sz|±〉 = ±|±〉
and Sz|0〉 = 0. The Hamiltonian above enjoys several symme-
tries: the well-known Z2 × Z2 and the link inversion symmetry
Su

j → Su
−j+1 (see Appendix B). The phase diagram has been

investigated by many authors30–32 (see Appendix B). Here we
consider λ > 0. For small/large D and fixed λ, the system
is in a polarized state along |+〉 ± |−〉 or |0〉, respectively.
For large λ and fixed D, the state displays antiferromagnetic
order. At intermediate D and λ, the state is a “diluted
antiferromagnet” with strong quantum fluctuations, defining
the Haldane phase, lacking of local order parameters and
string order. For open boundary conditions (which we apply
in the present paper), the Haldane ground state displays a
fourfold degeneracy that cannot be lifted without breaking
the aforementioned symmetry of the Hamiltonian. This is the
core mechanism defining the Haldane phase as a symmetry-
protected topological-ordered phase.33,34 Without symmetry,
the ground state is gapped and no symmetry is spontaneously
broken, making the Haldane phase a quantum spin liquid.

We sweep through the phase diagram in the following two
ways: (1) Fix λ = 1 and change D; the Haldane phase is
approximately located in the range −0.4 � D � 0.8. (2) Fix
D = 0, varying on λ; the Haldane phase is located in the range
0 � λ � 1.1 (see Fig. 2).

FIG. 2. (Color online) We sweep through the phase diagram in
the following two ways: (1) Fix λ = 1 and change D; the Haldane
phase is approximately located in the range −0.4 � D � 0.8. (2)
Fix D = 0, varying on λ; the Haldane phase is located in the range
0 � λ � 1.1.

FIG. 3. (Color online) The local convertibility for the partition
A|B. The sweep (1) through the λ-D phase diagram is considered
(see also Appendix B for the schematic phase diagram). The upper
panel displays the results for the symmetric case A|A. The bottom
panel refers to the antisymmetric case A = 96, B = 4. (a1), (b1) The
Rényi entropies. (a2), (b2) The sign distributions of the derivatives
of the Rényi entropies. (a3), (a4), (b3), (b4) Eigenvalues of reduced
density matrix xn and the entanglement spectrum as in Fig. 1. The
features of differential local convertibility are characterized by the
slopes of the Rényi entropies and correspond to specific features of
the entanglement spectrum, as explained in Fig. 1.

We analyzed all four states separately adding the pertur-
bation to the Hamiltonian ∼(Sz

1 ± Sz
N ) with a small coupling

constant.
We find that the Néel, ferromagnetic, and the large D

phases are locally convertible [see Figs. 3(a1) and 3(a2)].
Consistent with Ref. 35, all of the Haldane ground states are
characterized by a doubly degenerate entanglement spectrum
for the symmetric A|B partitions with A = B, for both
sweep ways [Figs. 3(a3) and 3(a4)] [see (Ref. 36) for a
recent progress on the understanding of double degenerate
entanglement spectrum]. Such a property is not recovered both
in the cases of asymmetric A|B and A|B|A partitions, where
the entanglement spectrum is not found doubly degenerate
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FIG. 4. (Color online) Sweep (1) through the λ-D model: λ = 1,
D ∈ {−1,1} (the schematic phase diagram is reported in Appendix
B). The sign distribution of the derivative of the Rényi entropies ∂DSα

for partitions A|B|A, A = 48 and B = 4 (N = 100) presented in (a2).
The features of differential local convertibility are characterized by
the slopes of the Rényi entropies and correspond to specific features
of the entanglement spectrum, as explained in Fig. 1. The Sα are
presented in (a1) for α = 0.5,100 decreasing from top to bottom.
All such quantities are calculated for the ground state in the S tot

z = 1
sector.

[Figs. 3(b3) and 3(b4)]. See Ref. 37 for the analysis of the
entanglement spectrum close to the quantum phase transitions.

We find that the Haldane phase is not locally convertible
[see Figs. 3(b1), 3(b2), 4, and 5]. We remark that for both
ways to partition the system, the non-local-convertibility
phenomenon is found even in the case of sizes of B smaller
than the correlation length ξ (see Appendix B for the behavior
of ξ ). As for the model given by Eq. (A1), we find that the
symmetric bipartition A = B displays local convertibility as
a fine-tuned effect, which is broken for generic partitions (see
Appendix C for other partitions).

IV. DISCUSSION

We explored quantitatively the notion of LOCC in 1D
topologically ordered systems. In particular, we analyzed to
what extent different ground states of the Hamiltonian within
the topological phase can be “connected” by (entanglement-
assisted) LOCC between two parts A, B in which the system
has been divided. This issue is analyzed through the notion
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FIG. 5. (Color online) Sweep (2) through the λ-D model: D = 0,
λ ∈ {0,1.5} (see Fig. 2 for a schematic phase diagram). The sign
distribution of the derivative of the Rényi entropies ∂λSα for partitions
A|B|A, A = 48 and B = 4 (N = 100), presented in (a2). The features
of differential local convertibility are characterized by the slopes
of the Rényi entropies and correspond to specific features of the
entanglement spectrum, as explained in Fig. 1. The Sα are presented
in (a1) for α = 100,0.2, increasing from bottom to top. All such
quantities are calculated for the ground state in the S tot

z = 1 sector.

of differential local convertibility that can be expressed in
terms of the properties of the Rényi entropies. With this
tool, we claim that progress can be made to detect quantum
phases without a local-order parameter (contributing to the
long-sought hunt for quantum spin liquids, topologically
ordered or not).13

In the present paper, we specifically analyzed the question
as to whether this method is useful to study topologically
ordered phases assisted by symmetries. To this end, we
considered two very different models that are, at the same
time, paradigmatic for the analysis of the notion of symmetry-
protected topological order: the spin-1/2 cluster-Ising and
the spin-1 λ-D chains. We find that the symmetry-protected
topological phases are characterized by nonlocal convertibility,
meaning that the Hamiltonian is more effective to drive
the system through different topological states than LOCC
between A and B. The phases with the local-order parameter
turn out to be locally convertible.

The convertibility property is encoded in the specific
response of the entanglement spectrum to the perturbation: The
distribution of eigenvalues of the reduced density matrix gets
sharpened in the most represented eigenvalues. This implies
that high α-Rényi entropies can decrease; at the same time, the
spectrum acquires a tail made of small eigenvalues because
more states are involved by increasing the correlation length
[see Figs. 1(c2), 1(c3) and Figs. 3(b2), 3(b3)]. The local
convertibility is achieved when the sharpening is compensated
by the tail of the distribution (see Figs. 1 and 3).38 We note
the counterintuitive phenomenon in which some quantum
correlations encoded in Sα , for certain α, decrease, in spite
of the increase in correlation length (see Appendix B). Indeed,
a similar phenomenon was discovered in the two-dimensional
(2D) toric code,13 corroborating the scenario described in
the present paper. In particular, it was noticed that despite
being nontopological ordered, certain spin liquids are also
nonlocally convertible for specific perturbations. Therefore,
an interesting question arises concerning the “stability” of
the local convertibility by changing the perturbation. We
observe, on the other hand, that spin liquids with some
symmetry protection are, indeed, stable, spanning a well-
defined quantum phase, distinct from a paramagnet. The results
of the present paper indicate that the same symmetry protection
is also able to protect their nonlocal convertibility.

The nonlocal convertibility occurs in the topological phases
even for subsystem sizes smaller than the correlation length
of the system (see Appendices B and A for the behavior of ξ in
the models we analyzed); the degeneracy in the entanglement
spectrum, in contrast, is exhibited when the aforementioned
size is much larger than ξ . Clearly, this paves the way to
experimental tests through local measures on a spatial region of
sizes made of few spins, with the assistance of the protocols to
address the Rényi entropies provided recently.39 Incidentally,
we note that for the symmetric partition A|B, there is
differential local convertibility, but this is a fine-tuned effect
that disappears if the two blocks have different size; see Figs. 1
and 3. Ultimately, the size and type of subsystems A and B on
which the differential local convertibility is displayed depend
on the recombination of the edge states that form at edges
of the bipartition (see Ref. 16 for an extensive discussion of
such edge-state recombination phenomenon). With our results,
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FIG. 6. (Color online) The edge state, correlation length, and string order parameter of the cluster-Ising model. (a1) shows that there is
an edge state in the cluster phase, whereas there is no edge state in the Ising antiferromagnetic phase. (a2) shows the correlation length of
〈σnσn+3〉 − 〈σn〉〈σn+3〉 displaying a critical behavior. (a3) The string order parameter Oz = (−)N−2〈σ y

1

∏N−1
j=1 σ z

j σ
y

N 〉.

we can claim that the local convertibility can characterize the
phase, independently of the way the system is partitioned. We
believe that such a scenario provides valuable assistance to
standard routes in experimental solid-state physics to disclose
topological order in the system.

Our work opens several questions that will be the subject
of future investigation. In particular, it is important to estab-
lish the precise relation between the ground-state adiabatic
evolution and the differential local convertibility.10 Another
interesting question is the role of differential convertibility in
2D symmetry-protected topologically ordered systems, such
as topological insulators.
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APPENDIX A: STRING ORDER PARAMETERS,
CORRELATION LENGTH, AND EDGE STATES

IN CLUSTER-ISING MODEL

The cluster-Ising Hamiltonian is

H (g) = −
N∑

j=1

σx
j−1σ

z
j σ x

j+1 + g

N∑

j=1

σ
y

j σ
y

j+1. (A1)

Without symmetry, the cluster phase in the cluster-Ising model
is a (nontopological) quantum spin liquid, since there is a
gap and no symmetry is spontaneously broken. Protected
by a Z2 × Z2 symmetry, the cluster phase is characterized
by a topological fourfold ground-state degeneracy in open
boundary conditions, reflecting the existence of the edge states.
Such a degeneracy fans out from g = 0, where four Majorana
fermions are left free at the free ends of the chain. The
cluster phase can be characterized via a string order. The two

phases are separated by a continuous quantum phase transition
with central charge c = 3/2. Indeed, the Hamiltonian (A1) is
equivalent to three decoupled Ising chains.18,19

After the Jordan-Wigner transformation σ+
k = c

†
k

∏
j<k σ z

j ,

σ−
k = ck

∏
j<k σ z

j , σ z
k = 2c

†
kck − 1, the Hamiltonian of the

cluster-Ising model can be written as

H (g) = −i
∑

k

[
f

(2)
k f

(1)
k+2 − gf

(1)
k f

(2)
k+1

]
, (A2)

where f
(1)
k = ck + c

†
k and f

(2)
k = −i(ck − c

†
k) are two different

Majorana fermion operators.
Although local-order parameters do not exist to characterize

the topological phase, the topological order in the cluster-
Ising model (see Fig. 6) can be detected by the edge states
[Fig. 6(a1)] and string order parameters [Fig. 6(a3)].

APPENDIX B: STRING ORDER PARAMETERS,
CORRELATION LENGTH,

AND EDGE STATES IN λ-D MODEL

The λ-D Hamiltonian is

H =
∑

i

[(
Sx

i Sx
i+1 + S

y

i S
y

i+1

) + λSz
i S

z
i+1 + D

(
Sz

i

)2]
. (B1)

The Hamiltonian above enjoys several symmetries, including
the time reversal Sx,y,z → −Sx,y,z, parity Sx,y → −Sx,y ,
Sz → Sz generating Z2 × Z2, and the link inversion symmetry
Su

j → Su
−j+1. For small/large D and fixed λ, the system is in a

polarized state along |+〉 ± |−〉 or |0〉, respectively. For large
λ and fixed D, the state displays antiferromagnetic order. At
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FIG. 7. (Color online) The edge states, correlation lengths, and
string order parameters of the λ-D model. The sweep (1) through the
λ-D phase diagram is considered (see text). (a1) The Haldane phase
edge states; we do not find edge states in the other phases. (a2) The
string order parameters Ou = (−)N−2〈Su

1

∏N−1
j=1 e

iπSu
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We characterize the differential local convertibility in terms of the
slopes of the Rényi entropies. ∂gSα changes sign in the cluster phase.
(a3), (a4) The large and the small eigenvalues of reduced density
matrix xn, respectively; ES

.= {− log xn}. In convertible phases, we
observe that the change in the largest eigenvalues is “faster” than the
rate at which the smallest eigenvalues are populated. In contrast, the
nondifferential local convertibility arises because the sharpening of
the first part of the spectrum is overcompensated by the increasing of
the smallest xn.

intermediate D and λ, the state is a “diluted antiferromagnet”
with strong quantum fluctuations, defining the Haldane phase.
There are also no local-order parameters to characterize the
Haldane phase in the λ-D model. With symmetry protection,
the topological order in the Haldane phase can be detected
by the edge states and string order parameters defined in
Fig. 7 (see Ref. 40). Without symmetry, the ground state is
gapped and no symmetry is spontaneously broken, making the
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FIG. 9. (Color online) Sweep (1) through the λ-D model: λ = 1,
D ∈ {−1,1}. The sign distribution of the derivative convertibility of
the Rényi entropies ∂DSα for partitions A|B|A, A = 45 and B =
10 (N = 100), presented in (a2). The features of differential local
convertibility are characterized by the slopes of the Rényi entropies
and correspond to specific features of the entanglement spectrum,
as explained in Fig. 1. The Sα are presented in (a1) for α = 1,100
decreasing from top to bottom. All such quantities are calculated for
the ground state in S tot

z = 1 sector.
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FIG. 10. (Color online) Sweep (2) through the λ-D model: D =
0, λ ∈ {0,1.5}. The sign distribution of the derivative of the Rényi
entropies ∂λSα for partitions A|B|A, A = 45 and B = 10 (N = 100),
presented in (a2). The features of differential local convertibility are
characterized by the slopes of the Rényi entropies and correspond to
specific features of the entanglement spectrum, as explained in Fig. 1.
The Sα are presented in (a1) for α = 100,1 increasing from bottom
to top. All such quantities are calculated for the ground state in the
S tot

z = 1 sector.

Haldane phase a quantum spin liquid. In Fig. 2, we display the
schematic phase diagram of the λ-D.

APPENDIX C: DIFFERENTIAL LOCAL CONVERTIBILITY
WITH SUBSYSTEM SIZE LARGER THAN OR

COMPARABLE TO THE CORRELATION LENGTH

In the main text, we have shown that the differential local
convertibility method works well with subsystem size smaller
than the correlation length. In this section, we present the
results of subsystem size larger or equivalent to the correlation
length (Figs. 8–10).

APPENDIX D: LARGE α LIMIT OF RÉNYI ENTROPY
AND LOCAL CONVERTIBILITY

In the main text, by calculating the Rényi entropies with
different parameters, we have generally shown that with
fixed bipartition of the spin chain, states with symmetry-
protected topological order cannot convert to each other via
LOCC (assisted by entanglement), which is different from
the statistics with local order. Indeed, to arrive at such a

0 1 2
0.4

0.6

0.8

1

g

x 1

FIG. 11. (Color online) Cluster-Ising model, 90|10 bipartition.
The left panel is the sign distribution of the Rényi entropy derivative
which characterizes the region with nonlocal convertibility. The right
panel is the largest eigenvalue, whose slope has the opposite sign with
the Rényi entropy derivative in the large α limit. Comparing the two
panels, we can see that our conclusion is still correct even if we go to
infinite α.
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conclusion rigorously, we have to calculate infinite Rényi
entropies with α from 0 to ∞. From the definition of Rényi
entropy Sα

.= 1
1−α

log Tr ρα = 1
1−α

log
∑

i x
α
i , we can see that

if we directly calculate the Rényi entropy with very large α

numerically, then the numerator and denominator are both
infinitely large such that a computer cannot give correct

results. Therefore, in the α → ∞ limit, we can apply the
l’Hôpital’s rule to obtain S∞ = − log x1, where x1 is the largest
eigenvalue. Notice that the Sα is a smooth and monotonic
function of α, therefore we can arrive at the rigorous conclusion
numerically by going to the numeric limit of α assisted with
the verification by x1; see Fig. 11.
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