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We report the first experimental demonstration of distillation of quantum nonlocality, confirming the

recent theoretical protocol [Phys. Rev. Lett. 102, 120401 (2009)]. Quantum nonlocality is described by a

correlation box with binary inputs and outputs, and the nonlocal boxes are realized through appropriate

measurements on polarization entangled photon pairs. We demonstrate that nonlocality is amplified

by connecting two nonlocal boxes into a composite one through local operations and four-photon

measurements.
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The seminal paper by Bell in 1964 reveals that spatially
separated quantum systems can have stronger correlation
impossible to be explained by any local hidden variable
(LHV) theory based on shared randomness [1,2]. This
correlation is known thereafter as quantum nonlocality,
which has been tested by a number of remarkable experi-
ments [3–5]. Quantum nonlocality is not only the critical
concept for foundational research of quantum mechanics,
but also finds important applications in recent development
of quantum information theory. Nonlocality emerges as a
key resource for realization of various quantum informa-
tion protocols, such as device-independent quantum key
distribution [6–8], nonlocal computation [9], and self-
certified random number generators [10,11]. Compared
with entanglement, nonlocality represents a stronger form
of correlation as nonlocality implies entanglement but the
reverse is not true.

Similar to entanglement, nonlocal correlation is more
useful if it gets stronger. Entanglement purification proto-
cols have been proposed [12] and demonstrated by several
experimental groups [13–15]. An interesting question is
whether nonlocality can be distilled. Can we get stronger
nonlocality from local operations on multiple weakly non-
local systems? The answer is far from being obvious as
entanglement purification does not automatically yield
nonlocality distillation. Entanglement purification proto-
cols in general use both local operation and classical
communication [12], while classical communication is
not allowed for distillation of nonlocality as it violates
the locality requirement. Note that nonlocality is a more
stringent resource not directly implied by entanglement
[16]. It is well known that there are entangled states where
the quantum correlation can be described by the LHV
theory with no nonlocality [17]. Because of this difference,
it has been proven that for a large class of nonlocality,
distillation is actually impossible [18,19]. Only until
recently theoretical advance finds examples to show that
certain nonlocality described by correlation boxes can be
distilled through only local operations [18,20].

In this paper, motivated by this intriguing theoretical
advance [18,20], we report the first experimental demon-
stration of distillation of quantum nonlocality using the
photonic system. By controlling the bases of binary
measurements on entangled photon pairs, we realize the
nonlocal boxes proposed by Forster et al. [18] that allow
distillation of nonlocality. The nonlocality is quantified by
its violation of the Clauser-Horne-Shimony-Holt (CHSH)
inequality [2]. We optimize the experimental parameters to
maximize the nonlocality difference between the distilled
box and the original ones. The difference is typically small
(about a few percents) even for the optimized box, so the
experiment needs to be precisely controlled. To measure
nonlocality of the distilled box formed with local operations
on two identical nonlocal boxes, we use linear optical
manipulation of two entangled photon pairs and simulta-
neous detection of four photons through single-photon
detectors. The experimental data unambiguously confirm
the nonlocaly increase of the distilled box compared with
the original individual ones.
The nonlocality revealed by violation of Bell’s inequal-

ity can be described by a correlation box shared between
two parties, typically called Alice and Bob [21]. We
consider a Bell scenario with binary inputs and outputs.
Each party has an input bit, denoted by x, y 2 f0; 1g, that
determines his or her measurement basis, and an output
bit, denoted by a, b 2 f0; 1g, that corresponds to the mea-
surement outcome. Let PðabjxyÞ denote the conditional
probability to get the measurement outcomes a and bwhen
Alice and Bob measure in the bases x and y, respectively.
PðabjxyÞ completely determines the correlation of the box.
Under a given basis (x, y), the correlation of the measure-
ment outcomes (a, b) is described by

CxyðPÞ ¼ Pð00jxyÞ þ Pð11jxyÞ � Pð01jxyÞ � Pð10jxyÞ:
(1)

From this correlation function, one can define the CHSH
nonlocality of the box [2,18,20], which is characterized by
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N ðPÞ¼max
xy

jCxyðPÞþCx �yðPÞþC �xyðPÞ�C �x �yðPÞj; (2)

where �x ( �y) denotes NOT of the binary number x (y), i.e.,
�x ¼ ð1; 0Þ for x ¼ ð0; 1Þ. The algebraic maximum of
N ðPÞ is 4; however, N ðPÞ is bounded by tighter values
for physical theories, and the value of N ðPÞ characterizes
the maximum nonlocality achievable in such a theory. The
LHV theory based on the assumption of local realism
requires that the correlation in PðabjxyÞ is from preshared
randomness, that is, PðabjxyÞ can be written in the form
PðabjxyÞ ¼ R

Pðajx; vÞPðbjy; vÞpðvÞdv, where v is the

hidden random variable with the probability distribution
pðvÞ. With this restriction on the correlation in PðabjxyÞ,
the well-known CHSH inequality shows that the non-
locality measured by N ðPÞ is bounded from above by
N ðPÞ � 2 for any models based on local realism [2].
Quantum mechanics allows stronger correlation, and any
violation of the CHSH inequality with N ðPÞ> 2 is a
signature of nonlocality. However, nonlocality in quantum
mechanics is still bounded by the Tsirelson bound with

N ðPÞ � 2
ffiffiffi
2

p
[22]. It is interesting to note that the non-

signalling condition alone from the relativity theory in
principle could allow even stronger nonlocality. In term
of the correlation matrix PðabjxyÞ, the nonsignalling
condition requires the marginal distribution PðajxyÞ �P

bPðabjxyÞ ¼ PðajxÞ, independent of y, and PðbjxyÞ �P
aPðabjxyÞ ¼ PðbjyÞ, independent of x. This condition

guarantees that two remote parties can not signal (change
the marginal distribution of the other side) by choosing
different measurement bases. With the nonsignalling con-
dition alone, Popescu and Rohrlich (PR) have constructed
a nonlocal box, the so-called PR box, that achieves the
maximum algebraic violation of the CHSH inequality
with N ðPÞ ¼ 4 [21]. The nonlocality in the range of

2
ffiffiffi
2

p
<N ðPÞ � 4, although not attainable by quantum

mechanics, can be discussed in the general framework of
nonsignalling theory [18,20,21,23].

To distill nonlocality shared between two parties using
only local operations, we consider a particular type of
nonlocal correlation boxes proposed in Ref. [18], for which
the conditional probability matrix PðabjxyÞ is parame-
trized in the following way

P �

Pð00j00Þ Pð01j00Þ Pð10j00Þ Pð11j00Þ
Pð00j01Þ Pð01j01Þ Pð10j01Þ Pð11j01Þ
Pð00j10Þ Pð01j10Þ Pð10j10Þ Pð11j10Þ
Pð00j11Þ Pð01j11Þ Pð10j11Þ Pð11j11Þ

0

BBBBB@

1

CCCCCA

¼ 1

2

1� � � � 1� �

1� � � � 1� �

1� � � � 1� �

1� � � � 1� �

0

BBBBB@

1

CCCCCA
; (3)

with 0<�, �<1. It is easy to check that the CHSH non-
locality for this matrix is given byN ðPÞ ¼ 2þ 2�� 6�.

This correlation box is nonlocal when � > 3�. However,
not every box is realizable with a physical system, even

when N ðPÞ � 2
ffiffiffi
2

p
which satisfies the Tsirelson bound.

A necessary and sufficient condition for a set of correlation
functions CxyðPÞ to be attainable by quantum mechanics

has been derived in Refs. [24,25], which implicitly deter-
mine the physical region of �, � [18]. For two nonlocal
boxes characterized by the same conditional probability
matrices Pða1b1jxyÞ and Pða2b2jxyÞ in the form of Eq. (3)
with the same input x, y for the bases of detection but
different measurement outcomes a1, b1 and a2, b2, the
local distillation operation is done through a mod 2 addi-
tion of the measurement outcomes on each side as illus-
trated in Fig. 1, that is, the distilled box is characterized by
the condition probability PdðabjxyÞ, with a ¼ a1 � a2 and
b ¼ b1 � b2 [18]. It is easy to check that the matrix for
PdðabjxyÞ still has the form of Eq. (3), but with �, �
replaced by �0, �0, where

�0 ¼ 2ð�� �2Þ; �0 ¼ 2ð�� �2Þ: (4)

The distilled box has stronger nonlocality compared with
the original box if N ðPdÞ>N ðPÞ. A necessary condi-
tion for this is that the parameters �, � are in the region
0<�< �=3< 1=6. For experimental implementation of
the nonlocality distillation, it is better to have N ðPdÞ �
N ðPÞ as large as possible. Under the constraint that the
box characterized by the conditional probability in the
form of Eq. (3) is physically attainable, we numerically
maximize the nonlocality increaseN ðPdÞ �N ðPÞ under
different parameters �, � and find that the optimal values
are�o � 0:019 and �o � 0:164. Under this optimal choice
of �, �, the nonlocality increase N ðPdÞ �N ðPÞ �
2:324–2:214 ¼ 0:110, representing about a 5% improve-
ment. As the relative increase in nonlocality is small, the
experiment needs to be done with a good precision for an
unambiguous demonstration of nonlocality distillation.
To experimentally realize distillation of two nonlocal

boxes, we first need to implement a correlation box where
the conditional probability PðabjxyÞ has the form of
Eq. (3) with tunable �, �. We assume Alice and Bob share

FIG. 1 (color online). Illustration of nonlocality distillation of
two correlation boxes. The two boxes share the same input x, y,
and the output a, b of the distilled box is given by the mod-2
addition a ¼ a1 � a2, b ¼ b1 � b2, where a1, b1, a2, b2 deonote
the outputs of the two individual boxes.
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singlet entangled states given by jc�i¼ðj01i�j10iÞ= ffiffiffi
2

p
,

and Alice (Bob) measures a Paul spin �A (�B) along the
n0, n1 (m0,m1) direction when the input bit x ¼ 0, 1 (y ¼
0, 1). The output bit is taken as a ¼ 0, 1 (b ¼ 0, 1) if the
measurement outcome of the Paul spin Ax � nx � �A

(By � my � �B, x, y ¼ 0, 1) is þ1, �1, respectively. In

this implementation, one can check that the conditional
probability PðabjxyÞ has the form of Eq. (3) if n0 �m0 ¼
n0 �m1 ¼ n1 �m0, with � ¼ ð1þ n0 �m0Þ=2 and
� ¼ ð1þ n1 �m1Þ=2. To satisfy this constraint, we take
the directions of n0, n1,m0,m1 as specified by the angle ’
in Fig. 2. In this case, n0 �m0 ¼ n0 �m1 ¼ n1 �m0 ¼
� cosð’Þ and n1 �m1 ¼ � cosð3’Þ. We find that with
’ ¼ 15:95�, this implementation realizes the optimal
choice of �, � with � ¼ ð1� cosð’ÞÞ=2 � 0:019 and
�¼ð1�cosð3’ÞÞ=2�0:164 that maximize the nonlocality
increase for distillation of two nonlocal boxes.

To realize the two nonlocal correlation boxes specified
with the above conditions, we experimentally generate two
pairs of entangled photons through the spontaneous para-
metric down-conversion (SPDC) setup shown in Fig. 3.
Two pieces of the type-II BBO crystals are pumped by
femtosecond laser pulses, generating two pairs of entang-

led photons in the singlet state jc�i¼ðjHVi�jVHiÞ= ffiffiffi
2

p
[26], where jHi and jVi denote horizontal and vertical
polarization of a single photon. After the entangled
photons are generated, Alice (Bob) applies the measure-
ment Ax (By) by using half-wave plates (HWP) to rotate

the polarization of her (his) photons. The angles for the
wave plates HWP5, HWP6, HWP7, HWP8 are specified
in the Supplemental Material corresponding to four differ-
ent inputs ðx; yÞ ¼ ð0; 0Þ, (0, 1) (1, 0) (1, 1) of the correla-
tion box [27]. For the nonlocal boxes 1 and 2, the
measurement outcomes for the conditional probabilities
P1ða1b1jxyÞ and P2ða2b2jxyÞ are recorded in Table I.
From the measurements, we find the CHSH nonlocality

N ðP1Þ¼2:1440�0:0001 and N ðP2Þ¼2:1356�0:0001,
where the error bar accounts for the statistical error
associated with the photon counts under the assumption
of a Poissonian distribution. The realized two nonlocal
boxes are close to the optimal box specified above for
distillation. The small difference is due to the infidelity
of the entangled singlet states as well as the imprecision in
controlling the angles of the wave plates.
To measure the conditional probabilities PdðabjxyÞ for

the distilled box realized in Fig. 3, we note that the mod 2
addition a ¼ a1 � a2 and b ¼ b1 � b2 required in the

FIG. 2 (color online). The directions of the measurements of
the Pauli spins for Alice (n0, n1) and Bob (m0, m1), which
realize the correlation box characterized by the conditional
probabilities in the form of Eq. (3) that is optimal for demon-
stration of nonlocality distillation from two copies.

BBO Half 
BBO 

PBS Mirror 

Filter HWP Fiber Coupler

HWP1 HWP7  

HWP6 HWP8 

HWP9 

HWP10  HWP3 

HWP5 

HWP4 

HWP2 

Alice 

Bob 

BBO 1 BBO 2 

FIG. 3 (color online). The schematic experimental setup to
implement the nonlocality distillation and to measure the
properties of the distilled box. Femtosecond pulses (with the
wavelength at 390 nm and a repetition rate of 76 MHz) from a
frequency-doubled Ti:Sa laser pump two BBO crystals (with
type-II cutting of 2 mm depth) to generate two pairs of photons
with perpendicular polarization. Four additional BBO crystals of
1 mm depth are used to compensate the spatial and temporal
walk-off between the photons, which, together with the four
half-wave plates (HWP1, HWP2, HWP3, HWP4) set at 45�,
prepare the two pairs of photons each in the maximally en-
tangled singlet state jc�i ¼ 1ffiffi

2
p ðjHVi � jVHiÞ. Alice and Bob

then use rotation of HWP5, HWP6, HWP7, and HWP8 to choose
the measurement bases. By measuring the spins along the
directions of n0, n1, m0, m1 specified in Fig. 2, Alice and
Bob realize two correlation boxes which allow maximum dis-
tillation of nonlocality using the protocol illustrated in Fig. 1.
The two polarization beam splitters (PBSs) at Alice’s and Bob’s
sides, together with HWP9 and HWP10, realize effectively the
required mod-2 addition. The output modes of the PBSs are
coupled into single-mode fibers and then detected by four single-
photon detectors. The results are registered through a four-port
coincidence circuit with a 3 ns coincidence window to reduce the
accidental coincidence counts. There is no need of background
subtraction of accidental coincidences for this experiment. The
typical two-photon coincidence rate from each BBO crystal is
about 15 kHz and the four-photon coincidence rate is about
2.2 Hz for this experiment. To reduce the statistical error, we
accumulate the photon counts for 9.3 h for each data point.
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distillation protocol can be simply implemented with a
polarization beam splitter (PBS). A PBS transmits
(reflects) the photon when it is in H (V) polarization. The
outputs of the PBS are coupled into single mode fibers and
detected by single photon detectors. To verify the protocol,
the measurement outcomes from Alice and Bob are
compared through a coincidence circuit to construct the
correlations. When we register a four-photon coincidence
between the two output modes of the PBS on both Alice’s
and Bob’s sides, the photons at the two input modes of each
PBS must have identical polarization, which means a ¼
a1 � a2 ¼ 0 and b ¼ b1 � b2 ¼ 0. The count rate of this
coincidence is therefore proportional to the conditional
probability Pdða ¼ 0; b ¼ 0jxyÞ. To measure other com-
ponents of Pdða; bjxyÞ, we rotate the HWP9 (HWP10) at
Alice’s (Bob’s) side by 45�, which exchanges H and V
and thus flips a1 (b1). With a bit flip on a1, b1, or both, the
coincidence measures the relative conditional probabilities
Pdða¼1;b¼0jxyÞ, Pdða¼0;b¼1jxyÞ, and Pdða¼1;b¼
1jxyÞ, respectively. A technical problem for this measure-
ment is that the four-photon coincidence could also be
caused by the events with two entangled photon pairs
from the same BBO crystal and no photon from the other
crystal [28]. To deduct the coincidence due to these unre-
lated events, we measure their contribution to the four-
photon coincidence rate simply by blocking the down
converted photons from one of the BBO crystals. After
this correction, the four-photon coincidence rate is directly
proportional to the conditional properties Pdða; bjxyÞ for
the distilled box.

The measured conditional probabilities Pdða; bjxyÞ for
the distilled box are shown in Table I. From these data,
we find the CHSH nonlocality N ðPdÞ ¼ 2:206� 0:021.
The error bar gets larger since to measure the properties
of the distilled box we need to record four-photon coinci-
dence, which has a significantly smaller count rate and
thus a larger statistical error. Apparently,N ðPdÞ>N ðP1Þ
and N ðPdÞ>N ðP2Þ, where the nonlocality increases by
more than three times the standard deviation (error bar), so
the experiment unambiguously demonstrate distillation of
quantum nonlocality.

In summary, we have reported the first experimental
demonstration of distillation of quantum nonlocality
through only local operations on two correlation boxes.
The experiment unambiguously confirms that quantum
nonlocality is enhanced without any communication
between the remote parties. Quantum nonlocality has
emerged as a key resource for implementation of self-
certified device-independent quantum information proto-
cols, and an experimental demonstration of nonlocality
amplification provides a useful step for future application
along this direction.
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