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Quantum computations without definite causal structure
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We show that quantum theory allows for transformations of black boxes that cannot be realized by inserting the
input black boxes within a circuit in a predefined causal order. The simplest example of such a transformation is
the classical switch of black boxes, where two input black boxes are arranged in two different orders conditionally
on the value of a classical bit. The quantum version of this transformation—the quantum switch—produces an
output circuit where the order of the connections is controlled by a quantum bit, which becomes entangled
with the circuit structure. Simulating these transformations in a circuit with fixed causal structure requires either
postselection or an extra query to the input black boxes.
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I. INTRODUCTION

The quantum circuit model [1–4] is one of the most popular
models of quantum computation. In this model, information
is encoded into a quantum state that evolves in time under a
sequence of quantum gates. Part of the success of this model is
due to its intuitive way of representing computation and to the
fact that some of the best known quantum algorithms are for-
mulated in the language of quantum circuits (see, e.g., [5–7]).

The processing of quantum states, however, is not the
ultimate physical model of computation that can be conceived
within the quantum framework. A computation transforms an
input into an output, but these do not have to be necessarily
quantum states: One can, e.g., consider a computation where
the input is a physical transformation provided as a black box
and the output is also a transformation, obtained from the input
black box by means of suitable physical operations. Consid-
ering these computations is quite natural from the perspective
of Church’s notion of computation [8], which allows one to
compute functions of functions, rather than only functions
of bits. This type of higher-order quantum computation is
described mathematically by suitable linear maps, introduced
in Refs. [9,10] and studied systematically in Ref. [11]. Clearly,
higher-order quantum computation includes as a special case
the processing of quantum states through time evolution. One
may wonder whether the converse holds, that is, whether every
possible computation on input black boxes can be obtained by
inserting them in a quantum circuit at definite time steps.

In this paper we provide a counterexample, showing that
there exist higher-order computations that are admissible in
principle—i.e., their existence does not lead to any paradoxical
or unphysical effect—and yet cannot be realized by inserting a
single use of the input black box in a quantum circuit with fixed
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causal ordering of the gates. Our counterexample consists of
the execution of the program SWITCH, where a pair of input
black boxes A and B are connected in two different orders
(BA vs AB) conditionally on the value of an input bit. The
impossibility of realizing the switch by simple insertion of the
black boxes A,B in a quantum circuit is based on the fact that
such a realization would be equivalent to the realization of
a time-travel machine and therefore would violate causality.
On the other hand, if we give up the requirement that the
computation be realized by inserting the boxes A,B in a circuit
in a definite order, then there are quite simple ways to realize
the switch in a quantum laboratory, designing quantum circuits
where the geometry of the connections can be entangled with
the state of a control qubit. A similar kind of macroscopic
entanglement is receiving increasing attention thanks to recent
experimental breakthroughs in optomechanics [12–14] and in
quantum optics [15].

The idea that computers operating without a definite causal
structure could offer advantages over conventional computers
was originally suggested by Hardy in Ref. [16]. The first
concrete example of a task that can be accomplished only in the
absence of a predefined causal structure has been the execution
of the program SWITCH, which was introduced in Ref. [17],
of which the present paper is an extended elaboration. It is
important to note, however, that the program SWITCH can
be simulated by using one extra query to the input black
boxes (cf. Sec. V of this paper). This means that quantum
circuits powered by the quantum SWITCH are equivalent to
ordinary quantum circuits in the complexity-theoretic sense.
Nevertheless, having access to the quantum SWITCH offers
advantages in information processing: For example, Ref. [18]
demonstrated such an advantage in a black box discrimination
problem, while Ref. [19] exhibited a task where the use of
the quantum SWITCH provides a quadratic improvement in
the number of queries to the unknown black boxes. Another
concrete advantage coming from undefined causal structure
came shortly after Ref. [17], when Oreshkov, Costa, and
Brukner presented a nonlocal game where a causally unordered
strategy offers an advantage over causally ordered [20]. The
noncausal strategy is described by a legitimate transformation
of boxes of the kind analyzed in this paper, but such strategy
does not have a clear operational interpretation in terms
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of circuits with quantum control on the connections. As
a consequence, it is currently unclear whether the higher-
order transformation of Ref. [20] can be also implemented
by doubling the number of queries to the input boxes.
More generally, the physical realization of the higher-order
computations described mathematically in this paper is an
important open problem for future research. Having such a
characterization is indeed the crucial step needed to assess the
computational power of the higher-order model of quantum
computation.

The paper is structured as follows. In Sec. II we briefly
recall the framework of quantum circuits. In Sec. III we
expose the mathematical framework of higher-order quantum
transformations (a.k.a. supermaps [10,11]), introducing the
notions of transformations on no-signaling channels and
transformations on product channels, and providing as an
example the SWITCH transformation. In Sec. IV we show that
the SWITCH transformation cannot be realized by inserting the
input channels in a circuit, showing that such a realization
would be an equivalent to the realization of a time machine.
In Sec. V we discuss four ways around the no-go theorem:
having access to program states for the black boxes, using
extra queries, having access to closed timelike curves, and
considering probabilistic implementations of the transforma-
tion SWITCH. The possibility of remodeling the resource of two
input black boxes with control on the ordering is discussed
in Sec. VI. Before concluding, in Sec. VII we define the
quantum version of the SWITCH transformation, where the
input channels A and B are transformed in an output quantum
channel implementing a “quantum superposition of the two
circuits” AB and BA. Finally, we summarize the results of the
paper in Sec. VIII, providing a discussion of their implications
and of their relation with other works in the literature.

II. THE FRAMEWORK OF QUANTUM CIRCUITS

In this section we recall a few elementary facts about the
framework quantum circuits, in its version including unitary
transformations as well as noisy channels (see, e.g., [4]).
These facts will be useful to clarify in what sense higher-order
transformations go beyond this model.

In a quantum circuit quantum systems are represented by
wires. The quantum state of the systems evolves through a
sequence of quantum gates, ordered from left to right as in the
following example:

A C
B

f g

.

Here each wire is drawn in space, but, in general, the path from
left to right in the circuit does not represent a path in space:
Instead, it represents the time evolution from a computational
step to the next. In the above example, the boxes f and g

represent transformations of single systems, e.g., unitary gates
or noisy quantum channels. The boxes A, B, and C, instead,
represent joint transformations of two systems.

It is worth stressing that the quantum circuit is a com-
putational circuit, not a physical one: While in the physical
circuit we can have loops (e.g., when a system passes twice

through the same physical device), in the computational circuit
there are no loops (when we apply twice a transformation to
the same system we just draw two times the same box). The
computational circuit represents the actual flow of information
during the run of a “program.” It is also important to make clear
the distinction between program and computational circuit,
the former being a set of instructions to build up the latter.
In the computational circuit the “wires” can never go back-
ward, because this would mean to go backward in time,
whereas in the program code we can have commands pointing
back to a previous instruction.

The framework of quantum circuits is used to evaluate
the amount of computational resources used in an algorithm
(e.g., number of oracle calls, number of qubits, length of the
computation, computational space, etc.). We summarize here a
few basic rules that characterize ordinary quantum circuits and
the associated resource counting. From now on, the expression
computational circuit will refer to a circuit satisfying the
following set of rules:

(1) quantum systems are represented by wires;
(2) a box on a single wire represents a transformation

(quantum channel) on the corresponding system, while a box
on multiple wires generally describes an interaction between
the corresponding systems;

(3) input-output relations proceed from left to right and
there are no loops in the circuit;

(4) each box represents a single use of the corresponding
transformation.

III. HIGHER-ORDER QUANTUM MAPS

In most quantum algorithms the input data are encoded
in the unitary transformation performed by a black box (the
oracle), which represents an unknown channel, called as a
subroutine during the computation. The core of all these
algorithms describes a computation that takes as an input
a certain number of calls to the oracle and returns as an
output some classical data, like the period of a function, or
the prime factors of an integer. From an abstract point of view,
the algorithm implements a higher-order transformation that
transforms the quantum channel performed by the oracle into a
classical output. Generalizing this idea, we are led to consider
higher-order maps where both the input and the output are
quantum channels. These maps transform an input oracle into
a new output oracle.

The simplest example of higher-order transformations is
given by the quantum supermaps introduced in Ref. [10]. We
now review the main ideas in this simple case and set up the
scene for the results of this paper.

A. Notation

In the following, we use capital Roman letters A,B, . . . to
describe types of quantum systems, such as qubits, qutrits, and
so on. Every system type A is associated with a Hilbert space
HA having dimension dA. The trivial system type, denoted by
I, will be associated with the trivial quantum system, with one-
dimensional Hilbert space HI = C. The system type AB will
be associated with the tensor product Hilbert space HA ⊗ HB.
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The linear operators from HA to HB are denoted by
Lin(HA,HB) [or by Lin(HA), if HA = HB]. We denote by St(A)
the set of quantum states of system A, i.e., the set of unit
trace non-negative operators in Lin(HA), and by QO(A → B)
the set of quantum operations of type A → B, i.e., the set
of trace-non-increasing completely positive (CP) maps from
Lin(HA) to Lin(HB). Similarly, we denote by QChan(A →
B) the set of quantum channels of type A → B, i.e., the
subset of QO(A → B) consisting of trace-preserving maps.
Quantum operations and quantum channels of type A → B are
elements of the real vector space Herm(A → B), consisting
of Hermitian-preserving linear maps from Lin(HA) to Lin(HB)
(see, e.g., Refs. [11,21]).

B. Deterministic supermaps on quantum channels

Deterministic transformations of quantum channels were
originally defined in Ref. [10]. A concise version of the original
definition is as follows.

Definition 1: Deterministic supermaps on quantum chan-
nels. A deterministic supermap of type QChan(A → A′) →
QChan(B → B′) is a linear map S from Herm(A → A′) to
Herm(B → B′) satisfying the requirement that for every pair
of systems E,E′ and for every input quantum channel C ∈
QChan(AE → A′E′), the output (S ⊗ IE→E′)(C) is a quantum
channel in QChan(BE → B′E′), where IE→E′ is the identity
supermap, sending every quantum operationE ∈ QO(E → E′)
into itself.

Note in particular that for every input quantum operation
A ∈ QO(A → A′) the output S(A) is a quantum operation in
QO(B → B′).

We now introduce the concepts of marginal of a channel
and extension of a set of channels that, besides allowing for an
intuitive reinterpretation of Definition 1, will turn out useful
when introducing supermaps on restricted sets of channels
(in Sec. III C): The marginal on A → A′ of a given channel
C ∈ QChan(AE → A′E′) relative to state σ ∈ St(E) is the
channel Cσ defined by

Cσ (ρ) := TrE′ [C(ρ ⊗ σ )]. (1)

Given a set of channels S ⊆ QChan(A → A′) and a pair
of systems E,E′, the extension of S in QChan(AE → A′E′)
is the set ExtE→E′ (S) ⊆ QChan(AE → A′E′) containing all
channels C such that the marginal Cσ in Eq. (1) is in S for
every σ ∈ St(E). In formula:

ExtE→E′ (S) : = {C ∈ QChan(AE → A′E′)|,
Cσ ∈ S,∀ σ ∈ St(E)}.

Using the notion of extension, Definition 1 can be reformu-
lated as follows.

Definition 2: Deterministic supermaps on quantum
channels—equivalent definition. A deterministic supermap of
type QChan(A → A′) → QChan(B → B′) is a linear map
S from Herm(A → A′) to Herm(B → B′) satisfying the re-
quirement that for every system E,E′ and for every input quan-
tum channel C ∈ ExtE→E′ [QChan(A → A′)] the output (S ⊗
IE→E′)(C) is a quantum channel in ExtE→E′ [QChan(B → B′)].

The equivalence with Definition 1 is obvious from the
fact that the extensions ExtE→E′ [QChan(A → A′)] and in
ExtE→E′ [QChan(B → B′)] coincide with the set of all

bipartite channels QChan(AE → A′E′) and QChan(BE →
B′E′), respectively.

An example of a deterministic supermap is given with the
concatenation S(A) = F(A ⊗ IC)E , depicted as

B S(A) B :=
B

E
A A A

F
B

C
, (2)

where C is a suitable quantum system and E ∈ QChan(B →
AC) and F ∈ QChan(A′C → B′) are suitable quantum chan-
nels. By definition, the transformations of the form of Eq. (2)
are exactly those that can be obtained by inserting a single
use of the input channel A inside a quantum circuit. One
of the results of Ref. [10] is that every linear map satisfying
the requirements of Definition 1 is a concatenation of the
above form: Deterministic supermaps on arbitrary channels
can always be realized by insertion in a suitable quantum
circuit. This means that if we want to find a counterexample
of higher-order transformation that cannot be realized by
insertion in a quantum circuit we have to search in a different
family of supermaps.

C. Generalizations: Hierarchy of higher-order maps
and supermaps on restricted sets of channels

The example of supermaps on quantum channels is the key
for two important generalizations.

(1) Hierarchy of higher-order maps. Lifting Definition 1
to the next level, we can define linear maps that transform
quantum supermaps into quantum supermaps, preserving
normalization when acting locally on one side of a bipartite
input. Iterating this procedure, we then obtain an infinite
hierarchy of higher-order quantum maps.

(2) Supermaps that transform restricted sets of quan-
tum channels. Instead of imposing that every channel is
sent to a channel as in Definition 1, we can define su-
permaps that transform a restricted set of quantum channels
(e.g., the no-signaling ones) to another, sending elements in the
extension of the former into elements in the extension of the
latter.

The complete characterization and the physical interpreta-
tion of these new quantum maps is a difficult open problem.
Regarding generalization (1), part of the hierarchy of higher-
order maps has been characterized in Ref. [11]. Precisely,
Ref. [11] characterized the types of higher-order maps that
can be realized within the quantum circuit framework.

Regarding generalization (2), a more formal definition of
supermaps acting on a restricted set of channels can be given
as follows.

Definition 3: Deterministic supermaps on a restricted
set of quantum channels. Let SA ⊆ QChan(A → A′) and
SB ⊆ QChan(B → B′) be two subsets of quantum channels.
A deterministic supermap of type SA → SB is a linear map
S from Herm(A → A′) to Herm(B → B′) satisfying the
requirement that for every system E,E′ and for every input
quantum channel C ∈ ExtE→E′ [SA] the output (S ⊗ IE→E′)(C)
is a quantum channel in ExtE→E′[SB].

Several results that are useful for the characterization of
supermaps on restricted sets of channels have been recently
found by Jenĉová [22]. However, also in this case the physical
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realizability of these supermaps is an open problem. In this
paper we focus on supermaps on no-signaling channels, which
is one of the most interesting classes of supermaps on restricted
sets of channels.

D. Choi representation of higher-order maps

The simplest way to study higher-order maps is via the Choi
isomorphism, namely the one-to-one correspondence between
quantum operations Q ∈ QO(A → B) and positive operators
Q ∈ Lin(HB ⊗ HA) given by the relations

Q = (Q ⊗ IA)(|IA〉〈IA|),
Q(ρ) = TrA[(IB ⊗ ρT )Q] ∀ ρ ∈ Lin(HA), (3)

where IA denotes the identity map on Lin(HA), H⊗2
A � |IA〉 :=∑dA

n=1 |n〉 ⊗ |n〉, TrA denotes the partial trace on HA, and ρT

denotes the transpose of ρ in the basis {|n〉}dA
n=1 used in the

definition of |I 〉.
Via the Choi isomorphism, we have that a linear map

S : Herm(A → A′) → Herm(B → B′) can be equivalently
represented by a linear map S̃ from Lin(HA′ ⊗ HA) to
Lin(HB′ ⊗ HB), uniquely defined by the relation [10]

B = S(A) ⇐⇒ B = S̃(A) ∀ A ∈ QO(A → A′)
∀ B ∈ QO(B → B′). (4)

Now, the supermaps introduced in Definition 3 are not arbitrary
linear maps: They send quantum channels to quantum channels
also when acting locally on suitable bipartite extensions. This
property of a supermap S forces the complete positivity of
the map S̃ in the Choi representation. This fact is easy to
show when the set of input channels for S contains an internal
channel C0.

Definition 4. A channel C0 ∈ QChan(A → A′) is internal
if for every quantum operation Q ∈ QO(A → A′) there exists
a scaling factor λ > 0 such that the map C0 − λQ is CP.

The completely depolarizing channel, defined by C0(ρ) :=
Tr[ρ] I

dA′ , is an example of internal channel.
With this definition, we are ready to state the property of

complete positivity for supermaps.
Theorem 1: Complete positivity of supermaps. Let SA ⊆

QChan(A → A′) and SB ⊆ Herm(B → B′) be two restricted
sets of quantum channels, with the property that SA contains an
internal channel C0. Let S : Herm(A → A′) → Herm(B →
B′) be a supermap of type SA → SB . Then, in the Choi
representation, the map S̃ is CP.

The proof of the theorem is given in Appendix A.
As an immediate implication, Theorem 1 implies that

supermaps on arbitrary quantum channels are represented
by CP maps in the Choi picture (simply because the set of
all quantum channels includes the completely depolarizing
channel). Similarly, all the types of supermaps considered in
this paper will satisfy the hypothesis of Theorem 1 and hence
will be described by CP maps S̃ in the Choi picture.

Like every CP map, a supermap S̃ can be written in the
Kraus form S̃(A) = ∑

n SnAS
†
n. Complete positivity is a very

powerful property, which in certain situations allows one to
define a supermap uniquely by only specifying its action only
on quantum channels.

E. Deterministic supermaps on no-signaling channels

In the rest of the paper we focus on supermaps that
transform a restricted set of quantum channels, namely the set
of (bipartite) no-signaling channels. We recall that a bipartite
channel in QChan(AB → A′B′) is no-signaling if there exist
two channels A ∈ QChan(A → A′) and B ∈ QChan(B →
B′) such that

TrA′[C(ρ)] = B(TrA[ρ]) ∀ ρ ∈ Lin(HA ⊗ HB),

TrB′[C(ρ)] = A(TrB[ρ]) ∀ ρ ∈ Lin(HA ⊗ HB)

(see, e.g., [23]).
Following the general Definition 3, we can define

supermaps on no-signaling channels as follows.
Definition 5. Let NS(AB → A′B′) denote the set of

no-signaling channels in QChan(AB → A′B′). A determin-
istic supermap of type NS(AB → A′B′) → QChan(C → C′)
is a linear map S from Herm(AB → A′B′) to Herm(C → C′)
satisfying the requirement that for every system E,E′ and
for every input quantum channel C ∈ ExtE→E′[NS(AB →
A′B′)] the output (S ⊗ IE→E′)(C) is a quantum channel in
ExtE→E′ [QChan(C → C′)] ≡ QChan(CE → C′E′).

Note that the normalization condition in Definition 5 is
weaker than the one in Definition 1, because the latter requires
the output to be a channel whenever the input is a channel,
while the former requires the output to be a channel only
if the input channel is no-signaling. As a consequence, the
set of supermaps on no-signaling channels is larger than
the set of ordinary supermaps described by Definition 1.
Moreover, since the ordinary supermaps are all and only
those transformations that can be implemented by inserting
the input channel in a suitable circuit [10], all the supermaps
on no-signaling channels which are outside the set of ordinary
supermaps cannot be implemented in the circuit model (that
is, cannot be implemented by inserting one use of the input
channel inside a quantum circuit). An example of this kind is
the switch supermap, introduced in Ref. [17] and discussed
extensively in the next section of this paper. Another example
of supermap that cannot be realized by insertion in a quantum
circuit is given by the map defined by Oreshkov, Costa, and
Brukner [20], whose input is the set of no-signaling channels
in QChan(AB → A′B′), HA � HB � HA′ � HB′ � C2.

In the Choi picture, a supermap S on no-signaling channels
is described by a CP map S̃ . Complete positivity can be easily
proved from Theorem 1, using the fact that the depolarizing
channel is a no-signaling channel.

F. Alternative characterization of supermaps
on no-signaling channels

Supermaps on no-signaling channels can be equivalently
characterized as supermaps on product channels, according to
the following definition.

Definition 6: Supermaps on product channels. Let
PROD(AB → A′B′) = {A ⊗ B,A ∈ QChan(A → A′),B ∈
QChan(B → B′} denote the set of product channels in
QChan(AB → A′B′). A deterministic supermap on product
channels of type PROD(AB → A′B′) → QChan(C → C′)
is a linear map S from Herm(AB → A′B′) to
Herm(C → C′) satisfying the requirement that for
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every system E,E′ and for every input quantum channel
in the extension set C ∈ ExtE→E′ [PROD(AB → A′B′)]
the output (S ⊗ IE→E′ )(C) is a quantum channel in
ExtE→E′ [QChan(C → C′)] ≡ QChan(CE → C′E′).

Obviously, product channels are a special case of
no-signaling channels. Hence, every supermap on no-signaling
channels is also a supermap on product channels. Less trivially,
we now show that also the converse is true: The set of
supermaps on no-signaling channels coincides with the set of
supermaps on product channels. This result is useful because it
is much easier to check that a supermap satisfies the definition
on product channels, instead of the one on general no-signaling
channels.

Theorem 2: Supermaps on no-signaling channels =
supermaps on product channels. The set of determinis-
tic supermaps of type NS(AB → A′B′) → QChan(C → C′)
coincides with the set of deterministic supermaps of
type PROD(AB → A′B′) → QChan(C → C′). Moreover,
the correspondence between elements of the two sets is one to
one: If two supermaps act in the same way on product channels,
then they act in the same way on arbitrary no-signaling
channels.

In order to prove the theorem we need to collect a few
ingredients. The first ingredient is an alternative characteriza-
tion of the set of no-signaling channels as affine combinations
of product channels. Such a characterization can be easily
obtained building on a result of Ref. [24].

Lemma 1: No-signaling channels are affine combinations
of product channels. A quantum channel C ∈ QChan(AB →
A′B′) is no-signaling if and only if it is an affine combination of
the form C = ∑

i λiFi ⊗ Gi , with λi ∈ R, Fi ∈ QChan(A →
A′), Gi ∈ QChan(B → B′) for every i and

∑
i λi = 1.

Proof. Reference [24] proved that C is a no-signaling chan-
nel if and only if C = ∑

i λiFi ⊗ Gi , where Fi ∈ Herm(A →
A′), Gi ∈ Herm(B → B′) are trace-preserving maps and λi ∈
R for every i. Clearly, the trace-preserving property of C,
Fi , and Gi forces the linear combination to be affine, namely∑

i λi = 1. Now to prove our thesis we only need to observe
that every Hermitian-preserving, trace-preserving map is an
affine combination of quantum channels. The proof of this
fact is proven in the following lemma. �

Lemma 2: Hermitian-preserving, trace-preserving maps
are affine combinations of quantum channels. Every
Hermitian-preserving, trace-preserving map L ∈ Herm(A →
A′) can be written in the form L = θC+ + (1 − θ )C−, where
C± ∈ QChan(A → A′) are quantum channels and θ � 0.

Proof. Consider an arbitrary Hermitian-preserving and
trace-preserving linear map L ∈ Herm(C → C′). Write it as
L = L+ − L−, where L± are CP maps in Herm(C → C′).
Since L is trace preserving, we have

Tr[ρ] = Tr[L+(ρ)] − Tr[L−(ρ)] ∀ ρ ∈ St(C). (5)

By defining θ := maxρ∈St(C) Tr[L+(ρ)] we can now introduce
the maps C+ and C− via the relations

θC+(ρ) := L+(ρ) + IC′

dC′
(θ Tr[ρ] − Tr[L+(ρ)]),

(θ − 1)C−(ρ) := L−(ρ) + IC′

dC′
(θ Tr[ρ] − Tr[L+(ρ)]),

for every state ρ ∈ St(C). Using Eq. (5) and the definition of θ

it is immediately obvious that C± are CP and trace preserving,
that is, they are quantum channels. Moreover, by construction
L can be expressed as a linear combination L = θC+ + (1 −
θ )C−, thus proving the thesis. �

Lemma 1 implies the following corollary.
Corollary 1: The action of a linear map on no-signaling

channels is completely identified by its action on product
channels. Let S,S ′ be two linear maps from Herm(AB →
A′B′) to Herm(C → C′). Then, the following condition holds

S(A ⊗ B) = S ′(A ⊗ B),
∀ A ∈ QChan(A → A′)
∀ B ∈ QChan(B → B′)

=⇒ S(C) = S ′(C) ∀ C ∈ NS(AB → A′B′).

Now, to prove Theorem 2 it remains to take care of complete
positivity: We have to ensure that the output of a supermap on
product channels is CP even when the supermap is applied
to a no-signaling channel. In fact, thanks to Theorem 1, we
are in position to prove a much stronger result: Supermaps on
quantum channels produce a CP output even when the input is
an arbitrary CP map.

Lemma 3: Supermaps on product channels are CP. Let S be
a supermap of type Prod(AB → A′B′) → QChan(C → C′).
Then, for every pair of systems E,E′ and for for every quantum
operation Q ∈ QO(ABE → A′B′E′) the map (S ⊗ IE→E′ )(Q)
is CP.

Proof. The set of product channels contains the internal
channel C0 = C0,A ⊗ C0,B , where C0,A(ρ) = Tr[ρ]IA′/dA′ and
C0,B (ρ) = Tr[ρ]IB′/dB′ are depolarizing channels. Hence,
thanks to Theorem 1, the map S̃ is CP. Translating back from
the Choi picture, this means that (S ⊗ IE→E′ ) sends CP maps
to CP maps. �

We can finally conclude with the proof of Theorem 2.
Proof of Theorem 2. Since supermaps on no-signaling

channels are automatically supermaps on product channels,
to prove that the two sets are the same we only need to prove
the converse inclusion: We need to prove that supermaps on
product channels are necessarily supermaps on no-signaling
channels. Let S be a supermap on product channels and let
C ∈ ExtE→E′[NS(AB → A′B′)] be the extension of some no-
signaling (not necessarily product) channel. Then, by Lemma 3
the mapC ′ := (S ⊗ IE→E′ )(C) is CP. We now have to guarantee
that C ′ is trace preserving. To this purpose, note that for every
pair of quantum states ρ ∈ St(AB),σ ∈ St(E) we have

Tr[C ′(ρ ⊗ σ )] = Tr{[S(Cσ )](ρ)},
where we Cσ is the channel defined by Cσ (ρ) := C(ρ ⊗ σ ).
Since C is the extension of a no-signaling channel, the channel
Cσ is no-signaling. Then, by Lemma 1, we can write Cσ as an
affine combination of product channels Cσ = ∑

i λi,σ (Ai,σ ⊗
Bi,σ ). Now, since S is a supermap on product channels,
S(Ai,σ ⊗ Bi,σ ) is a channel for every i, and, in particular,
it is trace preserving. We then conclude

Tr[C ′(ρ ⊗ σ )] =
∑

i

λi,σ Tr{[S(Ai,σ ⊗ Bi,σ )](ρ)}

=
∑

i

λi,σ = 1.
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Since product states are a spanning set, the above equation
proves that C ′ = (S ⊗ IE→E′)(C) is trace preserving. Hence,
we have proved that S is a supermap on no-signaling channels.
Finally, the correspondence between supermaps on product
channels and supermaps on no-signaling channels is 1 to
1: If two supermaps S,S ′ on no-signaling channels satisfy
S(A ⊗ B) = S ′(A ⊗ B) for arbitrary product channels, then
S = S ′. �

G. The switch supermap

Here we show an example of supermap on no-signaling
channels that cannot be realized by inserting the input in
a given quantum circuit. The example is given by the
switch supermap Z , which is defined as a supermap of type
NS(AB → A′B′) → QChan(C → C′) with A = B = A′ =
B′ = C′ = C2 and C = AQ, where Q = C2. The supermap
Z transforms an arbitrary pair of quantum channels A ∈
QChan(A → A′),B ∈ QChan(B → B′) into the classically
controlled channel that performs either the transformation BA
or the transformation AB conditionally on the outcome of a
measurement on the control qubit Q. Precisely, the output of
the supermap is the channel Z(A ⊗ B) ∈ QChan(AQ → A)
defined by

Z(A ⊗ B)(ρ) := BA(〈0|Qρ|0〉Q) + AB(〈1|Qρ|1〉Q), (6)

where 〈i|Qρ|i〉Q is the state of system A conditional to the
outcome i of an orthogonal measurement on the control
qubit Q.

Equation (6) defines the action of the linear map Z on the
set of product channels, and, by linearity, also on the set of no-
signaling channels (cf. Lemma 1 ). IfZ where just a linear map,
then we would be free to choose how to define it outside the
subspace spanned by no-signaling channels. However, since
we require Z to be a supermap on no-signaling channels, Z
has to satisfy the additional constraint of complete positivity.
Surprisingly, it is possible to show that Eq. (6) combined with
complete positivity determines the action of Z on arbitrary
quantum operations.

Lemma 4. The switch supermap Z is uniquely defined by
Eq. (6). In particular, for two arbitrary quantum operations
QA ∈ QO(A → A′) and QB ∈ QO(B → B′) one has

Z(QA ⊗ QB)(ρ) = QBQA(〈0|Qρ|0〉Q) + QAQB(〈1|Qρ|1〉Q).

Proof. Equation (6) is equivalent to

Z(A ⊗ B) = P0 ⊗ Z (0) (A ⊗ B) + P1 ⊗ Z (1)(A ⊗ B), (7)

where Pi(ρ) = 〈i|Qρ|i〉Q, i = 0,1 are the quantum operations
representing the measurement on the control qubit C, andZ (i) :
Herm(AB → A′B′) → Herm(A → A), i = 0,1 are two lin-
ear maps such that

Z (0)(A ⊗ B) = BA, (8)

Z (1)(A ⊗ B) = AB, (9)

for every pair of quantum channelsA ∈ QChan(A → A′) and
B ∈ QChan(B → B′).

Clearly, Z is a supermap on no-signaling channels if and
only if Z (0) and Z (1) are both supermaps on no-signaling
channels. We now show that, due to complete positivity,

Eqs. (8) and (9) are sufficient to identify the supermapsZ (0) and
Z (1) uniquely. To this purpose, we use the Choi representation
of Eq. (4), where eachZ (i) i = 0,1 is represented by a CP linear
map Z̃ (i) : Lin(HA′ ⊗ HA ⊗ HB′ ⊗ HB) → Lin(HA ⊗ HA).

We now show that Eq. (8) completely determines the map
Z̃ (0) (and hence Z (0), since the correspondence Z (0) ↔ Z̃ (0)

is one to one). Let us consider the case where A and B are
both unitary channels. For a unitary channel U(ρ) = UρU †,
the Choi operator is the rank 1 operator |U 〉〈U |, where |U 〉
is the vector defined by |U 〉 := (U ⊗ I )|I 〉. Using Eq. (8) we
then obtain

Z (0)(|U 〉〈U | ⊗ |V 〉〈V |) = |UV 〉〈UV |,
for every unitary operators U and V . Writing the map Z̃ (0) in
the Kraus form Z̃ (0)(C) = ∑

n Z(0)
n CZ

(0)†
n (recall that Z̃0 is CP

by Theorem 1), we then get∑
n

Z(0)
n (|U 〉〈U | ⊗ |V 〉〈V |)Z(0)†

n = |UV 〉〈UV | (10)

for every unitary operator U and V . Hence, for every n we
must have

Z(0)
n |U 〉|V 〉 = α

(0)
n,U,V |UV 〉 (11)

for some complex number α
(0)
n,U,V , which possibly depends on

U and V . Note that Eq. (10) imposes
∑

n |α(0)
n,U,V |2 = 1 for

every unitary U,V .
Applying Eq. (10) in the case where U and V are Pauli

matrices {σμ}3
μ=0, σ0 = I , {σ1,σ2,σ3} ≡ {σx,σy,σz}, we have

Z(0)
n |σμ〉|σν〉 = α(0)

n,μ,ν |σμσν〉. (12)

Now we show that α(0)
n,μ,ν is independent of μ and ν,

say αn,U,V ≡ αn,∀ μ,ν ∈ {0,1,2,3}. To see that that α(0)
n,μ,ν is

independent of μ and ν, consider the unitary U = 1
2

∑
μ ωμσμ,

where ω0 = 1 and ωμ = i for μ = 1,2,3. Equation (11) then
gives

Z(0)
n |σμ〉|U 〉 = α

(0)
n,μ,U |σμU 〉 =

∑
ν

α
(0)
n,μ,Uων

2
|σμσν〉,

whereas linearity and Eq. (12) give

Z(0)
n |σμ〉|U 〉 =

∑
ν

α(0)
n,μ,νων

2
|σμσν〉.

Hence, by comparison we obtain α(0)
n,μ,ν = α

(0)
n,μ,U for every

μ,ν. This shows that α(0)
n,μ,ν cannot depend on ν. Repeating the

same argument for Z(0)
n (|U 〉|σν〉), we can also prove that α(0)

n,μ,ν

cannot depend on μ. In conclusion, we have α(0)
n,μ,ν = α(0)

n for
every n,μ,ν.

Using linearity and the completeness of the Pauli matrices
{σμ}3

μ=0 in the space of linear operators, this implies that

Z(0)
n |A〉|B〉 = αn|AB〉 ∀ A,B ∈ Lin(C2)

and, therefore, Z̃ (0)(|A〉〈A| ⊗ |B〉〈B|) = |AB〉〈AB| for every
A,B ∈ Lin(C2). Finally, using the normalization condition∑

n

∣∣α(0)
n

∣∣2 = 1, we get

Z̃ (0)(|A〉〈A| ⊗ |B〉〈B|) = |AB〉〈AB| ∀ A,B ∈ Lin(C2).

022318-6



QUANTUM COMPUTATIONS WITHOUT DEFINITE CAUSAL . . . PHYSICAL REVIEW A 88, 022318 (2013)

The same argument can be repeated for the map Z̃ (1), for which
we find

Z̃ (1)(|A〉〈A| ⊗ |B〉〈B|) = |BA〉〈BA| ∀ A,B ∈ Lin(C2).

Note that the above equations, along with linearity, define
uniquely the maps Z̃ (0) and Z̃ (1). From these facts we derive the
following conclusions: (i) There exists only one supermap on
no-signaling channels that satisfies Eq. (7), and (ii) Eq. (7) must
hold not only for quantum channels A ∈ QChan(HA → HA)
and B ∈ QChan(HB → HB), but also for arbitrary quantum
operations QA ∈ QO(HA → HA) and QB ∈ QO(HB → HB).
This concludes the proof. �

Remark: Impossibility of switching boxes in dimension d >

2. The impossibility proof uses the properties of Pauli matrices.
With a little amount of extra labor, using the property of the
shift-and-multiply unitaries it is possible to show that the same
impossibility proof holds for the switch supermap defined on
pair of channels in general dimension d > 2.

IV. NO-GO THEOREM FOR THE CLASSICAL SWITCH
OF BLACK BOXES

As anticipated in the previous sections, we now show that
there exist functions of black boxes that are implementable by
means of elementary operations, but cannot be represented by
a circuit obeying rules (1)–(4).

The key counterexample is provided by the switch su-
permap, which corresponds to the following function of two
qubit black boxes f and g and of a classical control bit x:

SWITCH x, f , g =
f g x = 1

g f x = 0

,

.
(13)

The two black boxes f and g —along with the classical
bit x—are the input of the function and must be regarded as
single calls to two different oracles during the computation.
The above example can be generalized in various ways, for
example by putting between f and g a third box Ux that
depends on the value of the bit x, or by leaving between f and
g an open slot in which a third arbitrary transformation can be
inserted.

It is easy to imagine a physical device that implements the
function SWITCH. Consider a machine with two slots in which
the user can plug two variable boxes f and g at his choice,
as in Fig. 1.

f g

FIG. 1. (Color online) A sketch of the ideal machine implement-
ing the SWITCH function on the input boxes f and g .

The machine is programed with the following code:

PROGRAM "SWITCH"

if x = 1
then
do f g

else
do g f

endif

We can imagine that the machine has movable wires inside
that can connect boxes f and g in two possible ways
depending on the value of the classical bit x, thus implementing
the SWITCH function. Ordinary quantum circuits, however, do
not have such movable wires. They can have controlled-SWAP

operations, but once a time ordering between f and g

has been chosen in the circuit, there is no way to reverse it.
Intuitively, if g has been applied after f , the only way to
invert the order is to send information back in time, using a
fictional time machine. We now make this statement rigorous,
proving that if one could implement the SWITCH function by
inserting the boxes f and g in a quantum circuit, then the
same circuit could be used to implement deterministic time
travel. Since deterministic time travel is impossible in standard
quantum mechanics, this fact leads to the following no-go
theorem.

Theorem 3: No classical switch of boxes. The function
SWITCH defined in Eq. (13) cannot be computed determin-
istically by a circuit in which the two unknown oracles
f and g are called a single time in a fixed causal

order.
As anticipated, the proof is by contradiction: We now prove

that if the function SWITCH could be implemented by inserting
the boxes in a circuit, then that circuit could be used to send
qubits back in time.

Proposition 1: Switching boxes in a circuit implies the
deterministic time travel. If the function SWITCH defined in
Eq. (13) could be implemented on an arbitrary pair of black
boxes f and g by inserting f and g in a circuit, then
the same circuit could be used to achieve deterministic time
travel.

Proof. Suppose, by contradiction, that there exists a deter-
ministic circuit performing the program SWITCH using a single
call to f and g . Without loss of generality, let us assume

that in this circuit the oracle f is called before the oracle g .
Then we must have

C1

f
C2

g
C3

|x x|

=
f g x = 1,

g f x = 0.

(14)
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where C1, C2, and C3 are quantum channels (possibly using
ancillary systems).

Now, let S : Herm(AB → A′B′) → Herm(AQ → A) be
the linear map defined by the above circuit, namely, the linear
map defined by

S(A ⊗ B) := C3(B ⊗ I3)C2(A ⊗ I1)C1,

where A ∈ Herm(A → A′) and B ∈ Herm(B → B′) are
generic maps and I1 and I2 denote the identity on the ancillary
qubits at steps 1 and 2, respectively, so that for all channels
A,B it holds that the channel depicted in Eq. (14) is given by
S(A ⊗ B).

By definition, S is a supermap on product channels: It
sends product channels to quantum channels, even when acting
on bipartite product channels (see Definition 6 ). Since the
set of supermaps on product channels coincides with the set
of supermaps on no-signaling channels (Theorem 2 ), S is
also a map on no-signaling channels. Moreover, by hypothesis
[Eq. (14)]Z satisfies Eq. (6). Hence, S is exactly the supermap
Z defined in Sec. III G.

Now, by Lemma 4 we know that Eq. (14) must hold
also when f and g are arbitrary quantum operations. We
now show that this leads to a contradiction. Let us introduce
an additional qubit E. Now, every bipartite channel F ∈
QChan(AE → A′E) can be written as a linear combination
F = ∑

i,j xij fi ⊗ ej , where each xij is a (possibly negative)
real number, fi ∈ QO(A → A′) and ej ∈ QO(E → E) are
suitable quantum operations, and similarly, every bipartite
channel G ∈ QChan(BE → B′E) can be written as G =∑

kl yklgk ⊗ el , with suitable coefficients ykl and suitable
quantum operations gk ∈ QO(B → B′). Hence, by linearity,
we obtain that for x = 0 the fixed circuit locally switches
bipartite boxes; that is, we have for generic two-qubit channels
F and G

C1

F
C2

G
C3|x x|

=

F G
x = 1,

F G
x = 0,

(15)

where the backward line in the x = 0 case is a graphical
notation meaning that the second output of channel G is fed in
the second input of channel F .

Now consider the case of two SWAP channels F = G = E ,
with E(ρ ⊗ σ ) = σ ⊗ ρ. In this case, the output for x = 0
would be a circuit containing a time loop, as represented in the

following diagram:

A1 A2 A3 A4

B1

C1

E
C2

E
C3

B2

|0 0|

=

A2 A3

E E
A4A1

B1 B2

=
A2 A3

A1

E
A

,
4

B1 B2

(16)

where the last equality can be easily verified considering that
the SWAP gate E acts as an identity map from the top left system
to the bottom right, and as an identity from the bottom left to
the top right. The loop on top of the SWAP channel represents an
identity map from a future computational step A3 to a previous
one A2 (in other words, a deterministic time travel). �

Having reduced the circuit realization of the SWITCH

program to the realization of a time-travel machine means
having proved its impossibility. A formal proof is given in the
following.

Proof of Theorem 3. Consider probabilistic teleportation,
represented by the equation

Φ+

E
=

1
4 I , (17)

where 	+ represents the preparation of a maximally entangled
state of two qubits, E represents the outcome of the Bell
measurement corresponding to the projection on 	+, and I
is the identity channel for a single qubit. Multiplying both
members by 4, Eq. (17) becomes a way to represent the identity
channel. For an identity channel from the future to the past,
we have

= 4 Φ+ E
.

Substituting this identity in Eq. (16), we obtain

C1

E
C2

E
C3|0 0|

= 4
.

Φ+ E

E
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Finally, connecting the top wires gives

C1

E
C2

E
C3|0 0|

= 4
Φ+ E

E

= 4 .E

This is clearly absurd because the first term in the chain
of equalities is trace-preserving, while the last term is not.
In fact, the above equation implies the absurd statement
1 = 4. �

Remark 1: Impossible switches and impossible time travels.
As we saw in Proposition 1, a circuit switching black boxes
would enable a deterministic time travel, where the state
of a qubit on the top is teleported back into the past. It is
worth mentioning that the converse is also true: Having access
to a hypothetical time-travel machine sending qubits from
the future to the past would allow one to build a compu-
tational circuit for the program SWITCH. As in the proof of
Proposition 1, we represent the time-travel machine by a
probabilistic teleportation diagram, suitably rescaled by a
factor 4 [cf. Eq. (16)], following the model of closed timelike
curves considered in Refs. [25–28]. It is known that such an
artificial rescaling of the probability of postselected outcomes
has dramatic computational consequences [29]. In our case, it
would allow one to construct a circuit that realizes the SWITCH

transformation.
Proposition 2: Closed timelike curves enable a circuit

realization of the SWITCH program. If access to a closed
timelike curve were available, then the program SWITCH could
be implemented deterministically by inserting the two black
boxes f and g in a circuit.

Proof. The following equality is immediately discernable

SWITCH x, f , g = 4 ,

• X • Tr

E
g

E

Φ+

f
E

where Tr represents the partial trace, X is the bit-flip chan-

nel X (ρ) = XρX, X = |0〉〈1| + |1〉〈0|, and represents

the control-SWAP channel E(ρ) = UρU †, U = I ⊗ |0〉〈0| +
SWAP ⊗ |1〉〈1|, SWAP|α〉|β〉 = |β〉|α〉. �

Combining Propositions 1 and 2, we then obtain the
following equivalence.

Corollary 2: Switching boxes in a circuit is equivalent
to time travel. The program SWITCH can be implemented
deterministically by inserting the two black boxes f and g

in a circuit if and only if access to a closed timelike curve is
available.

Remark 2 (relation with Church’s λ calculus). The program
SWITCH is the prototype of a higher-order computation of
the kind described in the λ calculus by Church [8]. In this
model, the input and output of a computation can be functions,
instead of blocks of data. Theorem 1 states that there exists
a higher-order computation that cannot be implemented by a
quantum circuit containing only one use of f and g in a
predefined causal order.

The idea to construct a formal language able to encode a
quantum version of Church’s λ calculus has been considered
by several authors in the literature, leading to many different
versions of quantum λ calculi [30–35]. It is interesting to note
that the program SWITCH is an example of the computations
that can be expressed in the version by Selinger and Valiron
[33] of a λ calculus for quantum computations with classical
control. Later in the paper we also consider the quantum
version of the program SWITCH, which is an example of
higher-order computation outside the model of Ref. [33].

Remark 3: Impossibility of switching classical boxes.
The impossibility of implementing the program SWITCH by
insertion of the input boxes in a computational circuit obeying
rules (1)–(4) holds not only in the quantum world, but also in
the classical one. Indeed, the proof given in the quantum case
can be adapted to the classical case by substituting Eq. (17)
with the diagram for classical probabilistic teleportation using
a maximally correlated mixed state.

V. WAYS AROUND THE NO-GO THEOREM

The problem with the realization of the program SWITCH

by insertion in an ordinary circuit is due to four different facts
that are assumed in the hypothesis of the no-go theorem:

(1) the facts that the functions f and g are provided as
black boxes;

(2) the fact that the black boxes can be called only once in
the run of the circuit;

(3) the fact that time loops are forbidden;
(4) the fact that the circuit is required to be deterministic.
We now show that, by relaxing any of these requirements,

one can find a way around the no-go theorem of the previous
section.

A. Implementation of the program SWITCH via access
to program states

The first reason for the impossibility of implementing the
function SWITCH problem arises from the fact that the input
functions f and g are provided as physical machines (black
boxes) inserted in a circuit. This problem would not arise if the
functions f and g were encoded into sets of programming data
defining two subroutines. Indeed, when functions are encoded
into strings of (qu)bits, they can be processed sequentially
by a circuit using controlled operations. More precisely,
suppose that we are given two program states ρf ,ρg ∈ St(P)
(P being the program system) and a programmable channel
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R ∈ QChan(AP → A) such that

A

R
A

ρf
P

= ,f

A

R
A

ρg
P

= .g

In that case, the output of the program SWITCH for the
particular input pair ( f , g ) can be produced as follows:

SWITCH x, f , g = .

R
Rρg

ρf

E

• Tr

However, such a realization is possible only for those black
boxes f and g that can be encoded in the state of the
program system and decoded by a programmable channel R.
In quantum theory, the no-programming theorem [36] states
that it is impossible to encode an arbitrary quantum channel
in the state of a finite quantum system. This is due to the fact
that two unitary channels can be retrieved from their program
states if and only if the program states are orthogonal.

B. Implementation of the SWITCH program with two queries
to the black boxes

Another obstacle to the realization of the SWITCH program
arises from the fact that the oracles f and g are restricted to
be called only once, i.e., that the circuit must contain boxes
f and g only once [rule (4)] and in a definite time order

[rule (3)]. Indeed, a computational circuit that produces the
same output of the program SWITCH actually exists, but it
requires two calls to at least one of the oracles f and g, e.g.,
as

|x • • X • •

E
g ,

E
f

E
g

E
(18)

where is a control-SWAP channel, exchanging the two
input qubits depending on the state of the control qubit, and
X is the bit-flip channel. The above circuit achieves the

desired SWITCH transformation over the qubit in the middle
wire depending on the state of the controlling qubit at the
top wire. This fact is not in contradiction with Theorem 1: If
the input consists of two black boxes f , g , the possibility
of achieving two uses from a single one is ruled out by the
no-cloning theorem for boxes [37]. Again, the limitation due
to the single call constraint is strictly related to the black box
nature of the functions f and g. If we knew what f and g

are, we would be duplicate them, thus making possible the

computation of the function S(x, f , g ) through the circuit
of Eq. (18).

C. Implementation of the program SWITCH through access
to a closed timelike curve

This point was already discussed in Proposition 2 : A circuit
that has access to a closed timelike curve (i.e., an identity
channel from the future to the past) can implement the program
SWITCH deterministically, on arbitrary black boxes, by running
the black boxes only once.

D. Probabilistic simulation of the SWITCH program
with a single query to the black boxes

Another factor that prevents the implementation of the
program SWITCH as a computational circuit is the requirement
that the program succeeds deterministically. Indeed, rules (1)–
(4) do not forbid achieving the task with some probability.
In particular, a computational circuit that uses probabilistic
teleportation succeeds in the task with probability 1/4 is given
by

• X • Tr

E
g

E

Φ+

f
E .

When the outcome E occurs in this circuit, we may say that the
third qubit (from the top) has been teleported from the future
back to the past. In this case it is easy to see that if the control
qubit is in state |1〉 one obtains the sequence “ f followed by

g ” acting on the second input qubit, while if the control qubit
is in state |0〉 the boxes are exchanged. Also, if one puts the
control qubit in the superposition (|0〉 + |1〉)/√2 and omits the
partial trace Tr , one obtains a quantum superposition of
the two orderings of the boxes, namely the output of the circuit
is proportional to (Uf Ug |ψ〉 |1〉 + UgUf |ψ〉 |0〉)/√2, where
|ψ〉 is the input state of the qubit in the second wire, and Uf

and Ug denote the unitary operators corresponding to boxes

f and g , respectively. Note, however, that the probability

of achieving the program SWITCH for f and g transforming

N qubits goes to zero exponentially as 4−N versus the number
N of input qubits for each box. The probability pN = 4−N

is actually the maximum probability that can be achieved in
a probabilistic simulation of the program SWITCH: Indeed,
Proposition 1 implies that any probabilistic simulation of
the program SWITCH with a single query to f and g would
necessarily be a probabilistic simulation of an identity channel
from the future to the past. On the other hand, Ref. [38] shows
that the maximum probability of simulating such an identity
channel for N qubits is 4−N .
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VI. REMODELING OF THE ORACLES IN ORDER
TO ALLOW FOR THE CLASSICAL SWITCH

What rule in the theory of computational circuits can be
modified in order to recover the physical implementation of
the function S(x, f , g ) of Eq. (13), whose computation is
achieved through the program SWITCH? One possibility is to
modify rule (3) and to allow for circuits containing certain
time loops. However, introducing time travels in the model
seems a rather drastic solution. A more moderate approach
is to modify rule (4): In particular, we may assume that the
resource provided by a single call to each of the two physical
oracles—that would be separately described as f and g —
in a causal succession that can be decided by the user, is
described in circuital terms as a single oracle with classical
control:

f/g g/f
,

where the wire on the bottom left denotes the control qubit,
whose general state is |ϕ〉 = α|0〉 + β|1〉 with |α|2 + |β|2 = 1.
The input x is encoded on the state |ϕ〉 as follows: For x = 0 we
prepare |ϕ〉 = |0〉; for x = 1 we prepare |ϕ〉 = |1〉. If the two
qubits on the top lines are in the states ρ1 and ρ2, respectively,
the action of the oracle is given by

Of,g(|ϕ〉〈ϕ| ⊗ ρ1 ⊗ ρ2) = |〈1|ϕ〉|2Uf ρ1U
†
f ⊗ Ugρ2U

†
g

+ |〈0|ϕ〉|2Ugρ1U
†
g ⊗ Uf ρ2U

†
f .

(19)

This way of representing the oracle is consistent with the
basic properties that one expects for the resource, namely
that it performs two successive transformations, one being
a call of the box f and the other a call of the box g ,
with the order of such calls being controlled by the variable x

encoded in the state |ϕ〉. During the time interval between the
calls to the oracle, any transformation can happen, including
evolutions transforming the first output into the second input.
Exploiting the latter representation of the oracle one can clearly
implement the program SWITCH just by connecting the output
of the first box with the input of the second one and encoding
the bit x in the state |ϕ〉 as follows:

f/g g/f
.|ϕ

If we assume that the oracle of Eq. (19) translates the resource
provided by a single use of the physical boxes corresponding
to f , g with classical control of the causal ordering, we can

then consider the function S(x, f , g ) as computable by a
quantum circuit exploiting this resource.

Such an oracle can be achieved in practice, for example, by
a physical circuit in which the connections between wires are
movable, as in Fig. 2.

Higher-order functions that transform black boxes with the
assistance of classical control on the connections are described
formally by the quantum λ calculus of Ref. [33].

|0>

f

g

|1>

f

g

FIG. 2. Quantum machine with classical control over movable
wires.

VII. A NEW RESOURCE: THE QUANTUM SWITCH
OF BOXES

While representing automated classical control of causal
sequences of operations allows one to implement the program
SWITCH within the computational circuit model, it leaves unan-
swered the question how quantum control of causal sequences
of operations can be described. We can, of course, imagine
a further generalization of the oracle, allowing for quantum
control, with the control qubit that preserves coherence and
becomes entangled with the causal ordering of boxes f and

g as follows:

f/g g/f
,

When f and g are unitary channels, the unitary channel
describing the oracle with quantum control is Wf,g(ρ) =
Wf,gρW

†
f,g , Wf,g being the control unitary

Wf,g := |0〉〈0| ⊗ Uf ⊗ Ug + |1〉〈1| ⊗ Ug ⊗ Uf . (20)

The above construction can be suitably generalized when f

and g are not unitary boxes, but noisy quantum channels:
In this case, it is enough to use the above formula to define
the Kraus operators of the channel with quantum control in
terms of the Kraus operators of the input channels. Precisely,
if the channels f and g have Kraus forms f (ρ) = ∑

i fiρf
†
i

and g(ρ) = ∑
j gjρg

†
j , respectively, then the channel with

quantum control has Kraus form

Wf,g(σ ) =
∑
i,j

Wfi,gj
σW

†
fi ,gj

,

with the Kraus operators Wfi,gj
given by

Wfi,gj
:= |0〉〈0| ⊗ fi ⊗ gj + |1〉〈1| ⊗ gj ⊗ fi.

Note that the definition of the oracle Wf,g is independent of
the Kraus forms chosen for f and g. The oracle with quantum
control is more general and more powerful than the classically
controlled one introduced in Eq. (19). Indeed, having Wf,g

available one can implement the classically controlled oracle
Of,g by using Wf,g and then discarding the control qubit.

How can we build the controlled oracle Wf,g if we have

available one use of the black boxes f and g ? Again, this is a
question that the circuit model is unable to answer. In principle,
there is no physical reason to forbid the computability of the
higher-order function defined by W : f ⊗ g �→ Wf,g . This
function is defined not only on product boxes, but also on
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|0>+|1>

f

g

FIG. 3. Pictorial representation of a machine with quantum
control over movable wires.

the more general class of nonsignaling bipartite boxes, as we
already discussed. The function W is linear in its argument,
transforms deterministic boxes into deterministic boxes, and
can also be applied locally to multipartite boxes without
giving rise to unphysical effects like negative probabilities. The
computation of this function is then admissible in principle.
However, although the computation of W is compatible with
quantum mechanics, it cannot be implemented by a circuit
with the rules (1)–(4), due to the lack of a predefined causal
ordering. Moreover, it is also possible to prove that no circuit
using the oracle with classical control Of,g can simulate the
oracle with quantum control Wf,g .

To imagine a way to build the controlled gate Wf,g from

the boxes f and g , we need to go beyond the usual
language of quantum circuits and consider also circuits with
movable wires that can be also in quantum superpositions.
For example, we can consider a thought experiment where the
physical circuit with movable wires depicted in Fig. 2 can be
controlled by a qubit in a way that preserves superpositions,
with the control qubit interacting with switches and controlling
them in a correlated way, as represented in Fig. 3. Like
in the Schrödinger cat thought experiment, in this case we
would have a mechanism producing entanglement between a
microscopic system (the control qubit) and a macroscopic one
(the position of the switches).

Remark: Simulating the quantum SWITCH within the circuit
model. The fact that the output of the quantum SWITCH can be
produced by using two queries to the input boxes implies that
a quantum circuit model enhanced with the quantum SWITCH

is computationally equivalent to the ordinary quantum circuit
model: Any oracle computation using the quantum SWITCH

as an extra resource can be simulated with only a slowdown
of a factor 2. From the complexity-theoretic point of view,
the quantum SWITCH does not bring any extra power in the
model. In this sense, the difference between ordinary quantum
circuits and quantum circuits powered by the SWITCH function
is analogous to the difference between quantum circuits
and quantum Turing machines, which provide equivalent
computational models in the complexity-theoretic sense [3],
despite the fact that the simulation of a Turing machine through
a quantum circuit requires a polynomial slowdown.

Although the quantum SWITCH can be simulated with a
polynomial slowdown, there are two important points to be
made.

(1) The quantum SWITCH does not change complexity
classes, but still it offers advantages for information process-
ing. For example, we may consider a problem of channel
discrimination, where we have available only one use of two

black boxes fi and gi , with i = 0 or 1, and our goal
is to find out whether the label is 0 or 1. In this scenario,
being able to implement the quantum SWITCH can increase
the probability of successful discrimination. For example,
Ref. [18] shows an example where the quantum SWITCH

allows one to distinguish perfectly between pairs of channels
that could not be distinguished perfectly by inserting the
corresponding boxes in a circuit in any given order.

(2) Although the quantum SWITCH can be simulated in
an ordinary circuit with only a polynomial slowdown, there
is currently no proof that the same can be done for arbitrary
maps on product channels. The general problem of the physical
implementation of supermaps on product channels—and, more
generally, of higher-order maps—is currently open. For this
reason, the assessment of the the computational power of
higher-order computation is still open.

The two points above suggests two avenues of future
research: (1) investigating the advantages for information-
processing offered by the quantum SWITCH and (2) investi-
gating the computational power of higher-order computation.
Based on the analogy with the classical case, it would be
natural to expect that all quantum circuits and higher-order
computation are equivalent models, up to a polynomial
slowdown. Moreover, if this were not true, the quantum
version of the Church-Turing thesis would be disproved, a
fact that is deemed to be unlikely by most quantum computer
scientists. However, having a clear-cut proof that higher-order
computation is polynomially equivalent to computation in the
circuit model is surely desirable and would probably shed light
on the physical realizability of the hierarchy of higher-order
transformations.

VIII. CONCLUSIONS

Let us start by summarizing the results presented in the
paper. We first analyzed the transformations of no-signaling
channels that are allowed in quantum mechanics. The trans-
formations considered here take an input no-signaling channel
and transform it in a new output channel, respecting convex
combinations and positivity and normalization of probabilities.
First, we showed that transformations of no-signaling channels
involving two parties, A and B, can be equivalently defined
as transformations of product channels A ⊗ B, where A
and B are local channels on A’s and B’s side, respectively.
Then we analyzed in detail a particular example of such a
transformation: the SWITCH transformation, where an arbitrary
pair of channels (A,B) is transformed in either AB or in BA
depending on the state of a control bit.

The SWITCH transformation can be considered as the
mathematical description of a quantum computation of higher
order, where the input of the computation is a subroutine
provided as a black box. Such computations are the kind
of computations that would have be included in a complete,
quantum version of Church’s λ calculus (cf. Refs. [30–35]
for an overview of the different extensions of Church’s λ

calculus from the classical to the quantum case). An important
fact of higher-order computations is that, in general, they
cannot be implemented by inserting the input black boxes
inside an ordinary quantum circuit. We illustrated this fact in
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the specific example of the SWITCH transformations, showing
that no quantum circuit containing a single call to the black
boxes A and B can implement the transformation SWITCH

deterministically. The reason of the impossibility is the fact that
the transformation SWITCH is incompatible with any choice of
a causal ordering between boxes A and B. In fact, in the paper
we showed that realizing the SWITCH transformation by simple
insertion of the boxes in a given order in a circuit would be
equivalent to realizing a time machine, thus violating causality.

Subsequently, discussed four ways around the no-go theo-
rem: (1) allowing access to program states, (2) allowing two
queries to the input black boxes, (3) allowing access to closed
timelike curves, and (4) considering probabilistic simulations.
Moreover, we discussed a minimal change of the rule for
describing the oracle access to the black boxes A and B,
introducing classical control of causal sequences of operations
in such a way that the computation of the class of higher-order
functions including the SWITCH can be expressed in circuital
terms.

Finally, we considered the quantum version of the SWITCH

transformation, which can be implemented if we allow for
quantum control of causal sequence of operations. A complete
physical theory of higher-order computation has not been
developed yet; we expect it to reveal unexplored aspects of
quantum theory in a nonfixed causal framework. The quantum
switch of boxes is a new primitive that enables computations
where the causal structure of the connections can be in a
quantum superposition. A quantum computational model in
which the states of quantum systems can control the structure
of a causal network suggests a fascinating analogy with a
quantum gravity scenario, in which the space-time geometry
can be entangled with the state of physical systems.

We believe that exhaustive analysis of higher-order trans-
formations in quantum mechanics will provide some new
insight for the formulation of a theory of quantum gravity,
within a framework similar to the causaloid framework
of Ref. [39]. The physical implementation of higher-order
functions discussed here also has an interesting relation to the
paradigm of the universe as a quantum computer [40]. Indeed,
one can wonder what kind of quantum computer the universe
is: It could be a gigantic quantum circuit where information is
encoded in the state of many qubits and is processed in time
from one spacelike surface to the next, or it could be a quantum
Turing machine, or a higher-order computer, that processes
information encoded in transformations (e.g., in scattering
amplitudes) rather than in states. Even if these three models
turn out to be equivalent from an abstract computational point
of view, they would nevertheless remain very different from
the physical one, as they are based on different physical
mechanisms. Moreover, as we already mentioned, the third
model has yet to be completely formulated: What is presently
lacking is a complete physical theory that characterizes all
transformations of boxes that are possible in nature. A piece
of quantum theory has yet to be explored.
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APPENDIX A: PROOF OF THEOREM III D

Here we provide the proof details for Theorem 1.
Proof. Let HC be an arbitrary Hilbert space and

Q ∈ Lin(HA′ ⊗ HA ⊗ HC) be an arbitrary positive operator.
We want to show that (S̃ ⊗ IC)(Q) is positive.

This fact can be proved as follows: Up to a rescaling, Q is
the Choi operator of a quantum operationQ ∈ QO(A → A′C).
Since C0 is an internal channel, up to rescaling we also have
that

Q � C0 ⊗ ρ0, (A1)

where ρ0 ∈ St(C) is an arbitrary full-rank state. Consider a
purification of C0 ⊗ ρ0, given by a Hilbert space HD and a
vector |V 〉 ∈ HA′ ⊗ HA ⊗ HC ⊗ HD such that

C0 ⊗ ρ0 = TrD[|V 〉〈V |].

By construction, |V 〉〈V | is the Choi operator of the channel V
defined as V(ρ) := TrA[(IA′ ⊗ ρT ⊗ IC ⊗ ID)|V 〉〈V |] and the
channel V is an extension of C0:

C0(ρ) = TrCD[V(ρ)] ∀ ρ ∈ St(A).

In other words, defining HE := C and HE′ := HC ⊗ HD as
have V ∈ ExtE→E′ [C0]. Since S is a supermap of type SA →
SB we must have that (S ⊗ IE→E′)(V) is a quantum channel.
In the Choi representation, this means

(S̃ ⊗ IE′ ⊗ IE)(|V 〉〈V |) � 0. (A2)

Now, since |V 〉 is a purification of C0 ⊗ ρ0, Eq. (A1) implies
that there exists a positive operator P ∈ Lin(D) such that Q =
TrD[(IA′AC ⊗ P )|V 〉〈V |]. We can then conclude

(S̃ ⊗ IC)(Q) = (S̃ ⊗ IC) {TrD[(IA′AC ⊗ P )|V 〉〈V |]}
= TrD{(IB′BC ⊗ P )(S̃ ⊗ IC ⊗ ID)[|V 〉〈V |]}
� 0,

the last inequality following from the relation (S̃ ⊗ IC ⊗
ID)[|V 〉〈V |] ≡ (S̃ ⊗ IE′ ⊗ IE)[|V 〉〈V |] � 0 [cf. Eq. (A2)].�
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APPENDIX B: ALTERNATIVE PROOF
OF THE IMPOSSIBILITY OF A CIRCUIT REALIZATION

OF THE SWITCH SUPERMAP

Here we give an alternative proof of Theorem 3,
based on the formalism of quantum combs [9,11]. The
proof is extremely short once the basic facts about quan-
tum combs are assumed. We include this short proof
as an illustration of the power of the quantum comb
formalism.

The formalism of quantum combs consists of a re-
cursive application of the Choi isomorphism. As already
mentioned, in the Choi representation any supermap S
of type QChan(A → A′) → QChan(B → B′) is in 1-to-
1 correspondence with a CP map S̃ : Lin(HA′ ⊗ HA) →
Lin(HB′ ⊗ HB). Applying the Choi isomorphism once more,
the CP map S̃ is in 1-to-1 correspondence with a
positive operator S ∈ Lin(HB′ ⊗ HB ⊗ HA′ ⊗ HA). In par-
ticular, this construction associates a supermap S of
type Prod(AB → A′B′) → QChan(C → C′) to a positive
operator

S ∈ Lin(HC′ ⊗ HC ⊗ HA′ ⊗ HA ⊗ HB′ ⊗ HB).

Reference [11] gives necessary and sufficient conditions for
the realization of the supermap S in a circuit with fixed causal
structure: Precisely, the mappingS : A ⊗ B �→ S(A ⊗ B) can
be implemented by a deterministic circuit with A preceding
B, namely,

C S(A⊗ B) C

= C

C1

A A A

C2

B B B

C3

C

if and only if there exist positive operators T ∈ Lin(HB ⊗
HA′ ⊗ HA ⊗ HC) and U ∈ Lin(HA ⊗ HC) such that

TrC′[S] = IB′ ⊗ T , TrB[T ] = IA′ ⊗ U, TrA[U ] = IC.

(B1)

Similarly, the mappingS : A ⊗ B �→ S(A ⊗ B) can be imple-
mented by a deterministic circuit with B preceding A, namely,

C S(A⊗ B) C

= C

C1

B B B

C2

A A A

C3

C

if and only if there exist positive operators T̃ ∈ Lin(HA ⊗
HB′ ⊗ HB ⊗ HC) and Ũ ∈ Lin(HB ⊗ HC) such that

TrC′[S] = IA′ ⊗ T̃ , TrA[T̃ ] = IB′ ⊗ Ũ , TrB[Ũ ] = IC.

(B2)

Once these facts are known, the proof becomes very quick.
Proof of Theorem 3. Denoting by E the rank 1 operator

E := |I 〉〈I |, where |I 〉 := ∑
n |n〉|n〉, and suitably reordering

the Hilbert spaces, the switch supermap S has Choi operator

S = P0Q ⊗ Z0 + P1Q ⊗ Z1,

with Z0 and Z1 being the Choi operators of the supermaps Z0

and Z1 defined in Eqs. (8) and (9)

Z0 := EC′B′ ⊗ EBA′ ⊗ ECA,

Z1 := EC′A′ ⊗ EAB′ ⊗ ECB.

Now Z0 satisfies the condition (B1) and Z1 satisfies the
condition (B2), but their sum S = P0Q ⊗ Z0 + P1Q ⊗ Z1 does

not satisfy any of these conditions. Hence, the supermap S
cannot be realized by inserting A and B in a quantum circuit
in a definite order. �
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