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We establish the ultimate quantum limits to the amplification of an unknown coherent state, both in the

deterministic and probabilistic case, investigating the realistic scenario where the expected photon number

is finite. In addition, we provide the benchmark that experimental realizations have to surpass in order to

beat all classical amplification strategies and to demonstrate genuine quantum amplification. Our result

guarantees that a successful demonstration is in principle possible for every finite value of the expected

photon number.
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Continuous-variable quantum systems, such as coherent
light pulses, are promising information carriers for the new
quantum technology [1,2]. One of the cornerstones of
continuous-variable quantum information is the amplifica-
tion of signals encoded into quantum states of the radiation
field [3,4]. Unlike classical amplifiers, quantum amplifiers
are subject to fundamental limits, typically expressed as a
reduction of the signal-to-noise ratio (SNR) as a function
of the amplification parameter [5–7]. Despite these limits,
quantum amplifiers are an essential piece of technology
[8], for they enable the detection of ultraweak signals—
such as gravitational waves—that would not trigger the
detectors otherwise.

Determining the ultimate quantum limits to amplifica-
tion is both a topic of immediate technological import
and a fundamental chapter of quantum theory, deeply
connected with the no-cloning theorem, the uncertainty
principle, and the quantum-classical transition in the limit
of large amplification. Up to now, however, the perfor-
mances of quantum amplifiers have been discussed mostly
in classical terms (SNR), which are well suited for tasks
such as signal detection, but less suited for applications in
quantum information processing. For example, the role of
the amplifier could be to coherently copy quantum data
[9,10] and to broadcast them to the users of a quantum
internet [11]. For quantum tasks, the most natural figure of
merit is the fidelity between the desired output states and
the states effectively produced by the amplifier, which can
be interpreted operationally as the probability that the
output state passes a test set up by a verifier who knows
the input state.

In the fidelity setting, the works on optimal cloning of
coherent states [12–15] give a first insight in the problem of
optimal amplification, suggesting that two-mode squeez-
ing should be the best deterministic process allowed by
quantum mechanics. If confirmed in a realistic scenario,
this conclusion would be of high practical importance, as it
would allow one to construct the best possible amplifiers
using an optical element that is already in the toolbox of
most laboratories. However, the optimality of two-mode

squeezing, long conjectured, has never been proved
without invoking strong simplifying assumptions, either
on the nature of the amplifier—typically assumed to be
Gaussian—or on the probability distribution of the states to
be amplified—typically assumed to be uniform over all
coherent states. Both assumptions are far from trivial: On
the one hand, it is well known that non-Gaussian opera-
tions often outperform Gaussian ones, even for the
manipulation of coherent states [16]. Hence, there is no
a priori reason to expect that the best amplifier of coherent
states is Gaussian. From a fundamental point of view, any
restriction on the allowed operations can hardly be satis-
factory: if one wants to discover the ultimate quantum
limits, one should not restrict the search to a subset, such
as the subset of Gaussian operations, which has measure
zero in the set of all possible operations. On the other hand,
assuming a uniform distribution over coherent states means
assuming that the expected photon number is infinite, or
equivalently, that there is no bound on the energy of the
source producing the coherent pulses—a quite unphysical
assumption. In a realistic setting one can only have a large
photon number, and in order to know how large this
number should be to be effectively treated as infinite, one
needs to gain first a full grasp of the finite photon number
scenario.
Further motivation to go beyond the assumption of

uniform distribution comes from the recent proposals of
noiseless probabilistic amplifiers [17–22], whose perfor-
mances are almost ideal for low photon numbers but decay
exponentially as the photon number increases. In this case,
it is most natural to test the performances of the amplifier
on input states with low photon number, because these
are the states where the amplifier is expected to work.
Furthermore, in order to claim the demonstration of a
genuine quantum amplifier, a real experiment should
surpass the classical fidelity threshold (CFT) [23–26],
i.e., the maximum fidelity achieved by ‘‘classical’’ ampli-
fiers that produce an estimate of the input state and, condi-
tional to the estimate, reprepare amplified states. In the
case of probabilistic amplifiers, where the photon number
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is necessarily finite, it would be unfair to compare the
experimental fidelity with a lower CFT computed for the
uniform distribution. However, despite the urge to have
suitable criteria to assess the new experimental break-
throughs on probabilistic amplification [19–22], the correct
value of the CFT for probabilistic quantum amplifiers has
never been derived up to now.

In this Letter we establish the ultimate limits on the
fidelity of quantum and classical amplifiers, treating both
the deterministic and probabilistic case without making
any assumption on the type of amplifying process, and
without making the assumption of infinite expected photon
number. We focus on the realistic scenario where the
coherent states are distributed according to a Gaussian
prior, which is the most studied case for applications in
coherent-state quantum cryptography [27–31], cloning
[15], and teleportation or storage [23]. In the deterministic
case, we show that the maximum quantum fidelity can be
achieved through a two-mode squeezing process with the
amount of squeezing depending critically on the variance
of the prior. In the probabilistic case, the critical behavior
persists, with a dramatic effect: for variances below the
critical value, the optimal amplifier becomes non-Gaussian
and its fidelity can be arbitrarily close to 1.We then provide
the value of the classical fidelity threshold (CFT) that must
be experimentally surpassed in order to demonstrate the
implementation of a genuine quantum amplifier. The value
of the CFT is the same for both deterministic and proba-
bilistic protocols and, luckily, it guarantees that a success-
ful demonstration is possible for every finite value of the
expected photon number. For example, for a gain g ¼ 2
and variance 1=3, the value of the CFT is 50%, while the
fidelity achieved by the optimal deterministic amplifier is
85%. The general techniques developed in this work are
not limited to quantum amplification, but apply more
broadly to the optimization of quantum devices for any
desired quantum task, including, e.g., cloning, time rever-
sal, and purification. At this level, they establish a tight
relation between the demonstration of genuine quantum
processing and the advantage of entanglement in the
maximization of a suitable Bell-type correlation.

Let us start the derivation of our results. We begin from
a general problem: finding the best physical process that
approximates a desired transformation �x � c x, where
f�xgx2X is a set of (possibly mixed) input states, given
with prior probabilities fpxgx2X, and fc x ¼ jc xihc xjgx2X

is a set of pure target states. Finding the best coherent-
state amplifiers is a special case of this problem, corre-
sponding to the input �� ¼ j�ih�j and the output jc �i ¼
jg�i, where g > 1 is the desired gain. To approximate the
transformation �x � c x, we will consider the most
general deterministic process, described by a quantum
channel (completely positive trace-preserving map) C.
The performances of the channel will be ranked by the
average fidelity F ¼ P

x2Xpxhc xjCð�xÞjc xi. In addition

to the deterministic processes we will also consider
probabilistic ones, described by quantum operations
(completely positive trace nonincreasing maps). The
average fidelity of a quantum operation Q, conditional on
its occurrence, is given by F0 ¼ P

x2Xpxhc xjQð�xÞjc xi=
ðPx02Xpx0Tr½Qð�x0 Þ�Þ. The optimal fidelity, defined as the
supremum of the fidelity over all possible deterministic
(probabilistic) processes, will be denoted by Fdet (Fprob).
Theorem 1 ([32–34]) For deterministic processes, the

optimal fidelity for the transformation �x � c x is given by

Fdet ¼ inf
�>0;Tr½��¼1

kA�k1
A� :¼ X

x2X

pxjc xihc xj � ð��1=2�x�
�1=2ÞT; (1)

where kA�k1 denotes the operator norm kA�k1 :¼
supk�k¼1h�jA�j�i, and T denotes the transpose.

For probabilistic processes, the optimal fidelity is
given by

Fprob ¼ kA�k1 � :¼ X
x2X

px�x: (2)

Theorem 1 is a powerful tool for the optimization of
quantum devices: since every quantum state �> 0 gives
an upper bound on the fidelity, finding a channel that
achieves any of these bounds means finding an optimal
channel.
In addition to the performances of the best quantum

processes, it is important to know the CFT for the trans-
formation �x ! c x. The CFT is the maximum fidelity that
can be achieved with a classical, measure-and-prepare
protocol, where the input state is measured with a positive
operator-valued measure fPygy2Y and, conditionally on

outcome y, a state �0
y is prepared. In the deterministic

case, the fidelity of the protocol is the fidelity of the

measure-and-prepare channel ~Cð�Þ ¼ P
y2YTr½Py���0

y. In

the probabilistic case, the positive operator-valued measure
fPygy2Y includes an outcome y ¼ ?, conditionally to which

no output state is produced. The fidelity is then the fidelity

of the measure-and-prepare quantum operation ~Qð�Þ ¼P
y2Y;y�?Tr½Py���0

y. In the following, the CFT will be

denoted by ~Fdet ( ~Fprob) in the deterministic (probabilistic)
case.
Theorem 2 [33] For deterministic protocols, the CFT for

the transformation �x ! c x is given by

~F det ¼ inf
�>0;Tr½��¼1

kA�k�; (3)

where kA�k� denotes the injective cross norm [35]
kA�k� :¼ supk’k¼kc k¼1h’jhc jA�j’ijc i.
For probabilistic protocols, the CFT is given by

~Fprob ¼ kA�k�: (4)

Remark: quantum-classical gap and Bell-type
correlations—.Note that the trace of the separable operator
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A� with a quantum state is a Bell-type correlation.
Remarkably, Eqs. (2) and (4) state that for probabilistic
processes the gap between the quantum fidelity and the
CFT is equal to the gap between the maximum Bell corre-
lation achievable with entangled states and the maximum
Bell correlation achievable with separable states. This
relation establishes a tight connection between the demon-
stration of genuine quantum processing and the violation of
suitable Bell-type inequalities.

We are now ready to tackle the optimal design of quan-
tum amplifiers and to find the corresponding CFT. To
account for the prior information about the input, we
introduce a probability distribution pð�Þ, normalized asRðd2�=�Þpð�Þ ¼ 1. The most popular choice for pð�Þ,
typically considered in the literature [23,27–31], is a
Gaussian distribution with mean �0 and variance V¼1=�.
The idealized ‘‘uniform prior’’ can be retrieved here in the
limit � ! 0. Note that it is not restrictive to consider proba-
bility distributions centred around �0 ¼ 0: indeed, both in
the deterministic and probabilistic case, the fidelity does not
change if one (i) replaces the prior pð�Þ by pð�� �0Þ,
(ii) displaces the input state by ��0, and (iii) displaces the
output of the amplifier by g�0. For �0 ¼ 0, the Gaussian

p�ð�Þ ¼ �e��j�j2 represents the distribution of coherent
states generated by a classical oscillator obeying the
Boltzmann distribution and hni ¼ 1=� is the expected
photon number. A controlled way to generate Gaussian-
distributed coherent states is to prepare a two-mode squeezed
state and perform a heterodyne measurement on one mode.

To determine the optimal deterministic amplifiers, it is
useful to assess first the performances that can be achieved
using two-mode squeezing, i.e., using quantum channels of
the form

Crð�Þ ¼ TrB½erðayby�abÞð� � j0ih0jÞe�rðayby�abÞ�; (5)

where r is the squeezing parameter, a and b are the
annihilation operators of the input mode and of an ancillary
mode, respectively, and TrB denotes the partial trace over
the ancillary Hilbert space. Optimizing the value of the
squeezing parameter, one obtains the fidelity [33]

F
squeez
g;� ¼

8<
:

�þ1
g2

; � � g� 1

�
�þðg�1Þ2 ; � > g� 1:

(6)

Note the discontinuity of the first derivative of the fidelity
at the critical value �det

c ¼ g� 1. This value separates two
different domains: for � � �det

c the optimal amount of
squeezing in Eq. (5) is r ¼ cosh�1ðg=ð�þ 1ÞÞ, while for
all values � > �det

c the optimal value is r ¼ 0, correspond-
ing to no squeezing at all. In other words, when the prior
information about the input state is large (i.e., when the
variance is small), the best amplifying strategy consists in
leaving the state unamplified. In the case of 1-to-2 cloning,
this fact was noted by Cochrane et al. [15], who assumed
from the start cloning processes based on two-mode

squeezing. Armed with Theorem 1, we are now in position
to prove that no deterministic process can beat two-mode
squeezing:
Theorem 3 (optimal design of deterministic amplifiers

[33]) Two-mode squeezing is the best deterministic pro-
cess for the amplification of Gaussian-distributed coherent
states.
For probabilistic amplifiers, however, the situation is

very different. Evaluating Eq. (2) we get [33]

F
prob
g;� ¼

8<
:

�þ1
g2

; � � g2 � 1

1 � > g2 � 1:
(7)

The difference with the deterministic case is dramatic:

above the critical value �
prob
c ¼ g2 � 1, probabilistic pro-

cesses allow for noiseless amplification. Fidelity arbitrarily

close to F
prob
g;� can be reached as follows.

Theorem 4 (optimal design of probabilistic amplifiers
[33]) The best probabilistic amplifier for Gaussian-
distributed coherent states is (i) for � � �det

c , the
two-mode squeezer (5) with squeezing parameter r¼
cosh�1½g=ð�þ1Þ� (ii) for �det

c <���
prob
c , a quantum op-

eration QNð�Þ ¼ QN�QN with QN / P
N
n¼0½ð�þ 1Þ=

g�njnihnj, achieving fidelity F
prob
g;� ¼ ð1þ �Þ=g2 exponen-

tially fast in the limit N ! 1 (iii) for � > �prob
c , a quantum

operation QNð�Þ ¼ QN�QN with QN / P
N
n¼0 g

njnihnj,
achieving the fidelity Fprob

g;� ¼ 1 exponentially fast in the

limit N ! 1. Note that for � > g� 1 the optimal quan-
tum operations are non-Gaussian, whereas for � ¼ 0
(‘‘uniform prior’’) the optimal deterministic and probabi-
listic amplifiers coincide and are Gaussian. Noiseless
amplification is only possible when the expected photon
number is finite.
Suppose now that an experiment aims at demonstrating

quantum amplification—or equivalently, cloning—of a
coherent state. Thanks to Theorem 2, we can easily find
the analytical expression of the CFT, also specifying the
best measure-and-prepare channel. The result applies to
both deterministic and probabilistic protocols, and, as an
extra bonus, provides a concise derivation of the quantum
benchmark for teleportation and storage of coherent states
found by Hammerer et al. [23], which is retrieved here in
the special case of no amplification (g ¼ 1).
Theorem 5 (benchmark for quantum amplifiers [33]) The

CFT for the amplification of Gaussian-distributed coherent
states is given by

~Fg;� ¼ 1þ �

1þ �þ g2
(8)

both for deterministic and probabilistic protocols. The
above value is achieved by a heterodyne measurement
Pð�̂Þd2�̂=� ¼ j�̂ih�̂jd2�̂=� followed by the conditional

preparation of the coherent state j g�̂
1þ�i.
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Equations (6)–(8) represent good news for experimental
demonstrations. They prove that genuine quantum ampli-
fication can be demonstrated for every finite value of
the expected photon number. As an illustration, consider
the demonstration of probabilistic amplification provided
by Zavatta et al. in Ref. [22]. In this case, the amplifier is
designed to achieve gain g ¼ 2. By Eq. (7), noiseless
amplification requires at least � � 3, which is actually a
reasonable value in the experiment (choosing � ¼ 3 puts
the maximum amplitude tested in the experiment,
j�maxj2 � 1:0, at three standard deviations from the mean
photon number hni ¼ 1=3, effectively cutting off the val-
ues j�j> 1). For � ¼ 3, Eqs. (6) and (7) give F

squeez
g¼2;�¼3 ¼

85% and ~Fg¼2;�¼3 ¼ 50% for the fidelity of the best de-

terministic amplifier and for the CFT, respectively [36].
The average of the experimental fidelities Fexp �
0:99=0:91=0:67, corresponding to the amplitudes j�j �
0:4=0:7=1:0, gives a value that is well above the benchmark
for genuine quantum processing, but also very close to the
value that can be achieved by deterministic amplifiers.
One should observe, however, that the small number of
values of j�j probed in the experiment precludes an accu-
rate data analysis, as the average over few values of � is
very sensitive to statistical fluctuations. Our analysis sug-
gest that, although the available data show a neat
quantum advantage over measure-and-prepare strategies,
further experimental investigations would be desirable to
enable a statistically significant analysis of the advantage
of probabilistic amplifiers. To guarantee a fair sampling,
the ideal setup would be to test the amplifier on Gaussian-
distributed coherent states generated randomly by a
heterodyne measurement on one side of a two-mode
squeezed state.

The classical limit of quantum amplifiers.—For � �
g� 1, the gap between the quantum fidelity and the CFT
is equal to the gap between entangled and separable states
in the Bell correlation hA�i. The gap vanishes in the limit
g ! 1, and the fundamental reason is that an amplifier
with infinite gain is classical, like a cloning device
producing infinite clones [37–39]. This point is made

very clear by our results: denoting by Cg;� and by ~Cg;�
the optimal quantum amplifier and the optimal measure-
and-prepare amplifier, for � � g� 1 we have the remark-

able relation [33] ~Cg;� ¼ A
g=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2þð�þ1Þ2

p C ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2þð�þ1Þ2

p
;�
,

where A� is the attenuation channel transforming the

coherent state j�i into j��i, � � 1. In words, the best
measure-and-prepare strategy with gain g is equivalent to

the best quantum strategy with gain g0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ ð�þ 1Þ2p

,

followed by an attenuation of � ¼ g=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ ð�þ 1Þ2p

that
reduces the gain from g0 to g. When the desired gain is
large compared to the prior information available (g � �)

we have g0 � g and � � 1, which imply ~Cg;� � Cg;�.
In conclusion, we established the ultimate quantum

limits to the deterministic and probabilistic amplification

of Gaussian-distributed coherent states, without making
any assumption on the nature of the amplifier and without
making the unrealistic assumption of uniform distribution
over coherent states. For probabilistic amplifiers, we dis-
covered the presence of a critical value of the expected
photon number, below which noiseless amplification
becomes possible. Furthermore, we provided the quantum
benchmark that has to be surpassed in order to establish
the successful experimental demonstration of a genuine
quantum amplifier. Our results show an intriguing link
between genuine quantum amplification and the maximi-
zation of a suitable Bell-type correlation, and, in addition,
they guarantee that a successful demonstration is possible
for any finite value of the expected photon number.
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[22] A. Zavatta, J. Fiurášek, and M.A. Bellini, Nat. Photonics
5, 52 (2011).

[23] K. Hammerer, M.M. Wolf, E. S. Polzik, and J. I. Cirac,
Phys. Rev. Lett. 94, 150503 (2005).

[24] G. Adesso and G. Chiribella, Phys. Rev. Lett. 100, 170503
(2008).

[25] M. Owari, M. B. Plenio, E. S. Polzik, A. Serafini, and
M.M. Wolf, New J. Phys. 10, 113014 (2008).

[26] J. Calsamiglia, M. Aspachs, R. Muñoz-Tapia, and E.
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