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Abstract

Characterization of qubit couplings in many-body quantum systems is essential for benchmarking
quantum computation and simulation. We propose a tomographic measurement scheme to
determine all the coupling terms in a general many-body Hamiltonian with arbitrary long-range
interactions, provided the energy density of the Hamiltonian remains finite. Different from quantum
process tomography, our scheme is fully scalable with the number of qubits as the required rounds of
measurements increase only linearly with the number of coupling terms in the Hamiltonian. The
scheme makes use of synchronized dynamical decoupling pulses to simplify the many-body dynamics
so that the unknown parameters in the Hamiltonian can be retrieved one by one. We simulate the
performance of the scheme under the influence of various pulse errors and show that it is robust to
typical noise and experimental imperfections.

1. Introduction

Physicists have been striving to understand and harness the power of quantumness since the establishment of
the quantum theory. With the flourishing of quantum information science in recent decades [ 1, 2], numerous
breakthroughs—both in theory and in experiment—helped to frame a clearer goal: it is the entanglement and
the exponentially growing Hilbert space that distinguishes quantum many-body systems from classical systems
[3-5]. To fully leverage the quantum supremacy, a vital step is to verify and benchmark the quantum device. The
standard techniques of quantum state and process tomography [6—11], however, are plagued by the same
exponential growth of dimensions [12]. A related problem is to directly identify Hamiltonians, the generators of
quantum dynamics. They can often be specified by fewer number of parameters that scales polynomially with
the system size.

Hamiltonian tomography for generic many-body systems is nevertheless a daunting task. The way to extract
information of unknown parameters in a Hamiltonian is by measuring certain features of its generated
dynamics. To make this possible, one has to solve the dynamics generated by the Hamiltonian to make a definite
connection between its dynamical features and the Hamiltonian parameters. However, for general many-body
Hamiltonians, their dynamics are extremely complicated and intractable by numerical simulation as the
simulation time increases exponentially with the size of the system. Progress in this direction has mostly be on
small systems [13—17] or special many-body systems which are either exactly solvable due to many conserved
operators, of limited Hilbert space dimensions amenable to numerical simulation, or short-range interacting
systems [18-24].

In this paper, we propose a scheme to achieve Hamiltonian tomography for general many-body
Hamiltonians with arbitrary long-range couplings between the qubits. The key idea is to simplify the dynamics
generated by a general many-body Hamiltonian through application of a sequence of dynamical decoupling
(DD) pulses on individual qubits. DD is a powerful technique that uses periodic fast pulses to suppress noise and

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Schematics for the tomography procedure. (a) To map out the coupling coefficients ];"3, asynchronized DD sequence is
applied to spins 7and j. Both spins will be decoupled from the rest of the system. (b) The XY-8 DD sequence on spins i and j to probe
the parameters of the Hamiltonian in equation (3) . The initial state is for instance prepared to the |00) state for the two spins. (c) To
retrieve information about the local fields b, XY-8 pulse sequences are applied to the environment spins to decouple spin i from the
rest.

average out unwanted couplings between the system and the environment [25-40]. We apply a sequence of
synchronized DD pulses on a pair of qubits, which forms a small target system that has coupling with the rest of
the qubits in the many-body Hamiltonian, the effective environment. The DD pulses keep the desired couplings
within this target system intact while average out its couplings with all the environment qubits. The dynamics
under the DD pulses become exactly solvable, from which we can perform a tomographic measurement to
determine the coupling parameters within this small target system [13—16]. We then scan the DD pulses to
different pairs of qubits to measure all the other coupling terms in the Hamiltonian. We assume the ability to
address individual qubits, which is realistic for many experimental platforms, such as trapped ions [41-43] , cold
atoms [44—46] , and solid-state qubit systems [47—50]. Several features make the scheme amenable to
experimental implementation. First of all, applying the DD pulse sequence is a standard procedure in many
experiments. Post-processing of data is straightforward as it only requires one or two parameter curve fitting. In
addition, we demonstrate with explicit numerical simulation that the scheme is robust to various sources of
errors in practical implementation, such as the remnant DD coupling error, measurement uncertainties, and
different types of pulse errors.

2. Scheme for Hamiltonian tomography

The system we have in mind is the most general Hamiltonian with two-body qubit interactions

H= 3 Julonol + Ybnon, M
a,B3,m<n m,a

where ]2 characterizes the coupling strength between spins 72 and  for the a, 3 components, and b

represents the local field on spin m12; 0 (0/7) are the Pauli matrices along the o (3) direction with

a, B € (x, y, z). Toadopt consistent notations throughout the text, we use m, n to denote a general spin label

and i, j to refer to the specific target spins that we are probing with the DD pulses, calling the rest of the spins as

environment spins. The terms spin and qubit are used interchangeably. Let the energy unit of the Hamiltonian be

J, chosen to be the largest magnitude of all coefficients, so ], /J and b;,/] are bounded between —1 and 1. In

order to map out the coupling coefficient ]g‘ﬂ for the target spins, we propose to decouple these two spins from

the environment spins by a synchronized DD pulse sequence. A synchronized XY-4 sequence applied to both

spins will average out their interactions with other spins while preserving the two-spin coherence (see

figures 1(a) and (b) for the schematic and the pulse sequence). Basically, only those interactions that commute

with the DD sequence will survive. More rigorously, the evolution operator in one period is
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where Uy = e 7, 7is the time interval between two consecutive pulses, and B, the bath, includes all terms of the
Hamiltonian that only acts on environment spins. See appendix for the detailed derivation. To bound the error
term to O (J27%), we assume Zn Jo8% = O(J), i.e., the interaction strength decays rapidly with spin separation
distance so that the energy density of the Hamiltonian is bounded by a constant. This condition is satisfied for
any finite systems as in the experiment with arbitrary interactions. In the thermodynamic limit, itis also a
reasonable assumption for any physical systems whose energy is extensive. It may also be related to the
generalized Lieb—Robinson bound for systems with long-range interactions [51-54]. The XY-8 pulse sequence,
which is the concatenation of XY-4 sequence with its time-reversal, eliminates the error term to the third order
O (J>73). Figure 1(b) shows the XY-8 DD pulse sequence. Hence, in the Hilbert subspace of the target spins, the
effective Hamiltonian is

— X X Y z .z
Hy pin = 60705 + gol o} + ojoj, (3)

whereweuse ¢ = Ji, o = J}, ¢ = J;* to simplify the notation. The effective two-spin unitary evolution after

N, cycles of XY-8 sequence is

cos((qfcz)T) 0 0 sin((qfcz)T)
eic3T jeicsT
+0)T i +)T
, o 0 cos( (ecii(STCz) ) sm( (:4[3;2) ) 0
2-spin 0 sin((cl+cz)T) cos((q+ CZ)T) 0 ’
ie—ir3T e—it3T
sin (cfc)T cos (cfc)T

where T = 8N, 7 is the total time. From the above expression, one may notice that the Hamiltonian parameters
can be retrieved by preparing a particular initial state and measuring its time-evolved output probabilityin a

given basis. In particular, we have
[1 + sin(2(c1 — Cz)T)]

"= i[l + sin(2(c + Cz)T)]

Ployt4) = | (++1 Usrgin (01| = 5[ 1+ sin(2(e = &) T) .

2
P|+I>"|OO> = | <00| UZ—Spin |+I>|

Piin o) = | (10] Up-gpin |+1)

where |[+) = % (10) + |1))and|I) = %(IO) + i|1)) are the rotated basis. The coupling strengths ¢, ¢ and ¢;
can be extracted from the oscillation frequencies of these three sets of measurements at various time points.
These particular sets are not the only suite to extract those parameters. They are chosen for the convenience in
fitting and in state preparation. Only product states of the two target spins, disentangled from the rest, are
required. We also remark that the error incurred is O (N, J>7%), so one needs J7 < 1 for arobust decoupling
scheme. In a similar fashion, one can retrieve all other coupling coefficients. Let us denote the synchronized XY-
8 DD pulse sequence as X;X;-Y; Y;-8 to show explicitly the particular pulses on specific spins. Replacing the
sequence with X;Y;-Y; Z;-8 (Y, X;- Z; Y;-8) pulses, we will be able to extract the coefficients J;, ]; “and Ji

( ]; x, ]5-‘2 and J7?), respectively.

By scanning the DD pulses to different target pairs, the above procedure recovers all the coupling coefficients
J2%  The retrieval of local field coefficients follows a similar approach. We now need to decouple the particular
spin i from the rest without contaminating its own spin term b;” ¢{". Shining a XY-8 DD sequence on spin 7
removes all information about ;" too. Instead, one could address all the environment spins with XY-8 pulses,
and decouple them from spin 7 (alternative schemes are discussed in the appendix). This scheme will be very
robust to pulse errors, since no laser pulses are directly applied to the target spin (figure 1(c)). The effective
single-spin Hamiltonian is thus H,_gi, = b0} + b} 0] + b7 of with a unitary evolution Uy _gpi, = e Hi-spin
executing a spin rotation on the Bloch sphere. Again, by preparing a particular state and measuring its time
evolution, we get Pjg)_jo) = 1 + [(b7/b)* — 1] sin*(bT)and Py 1y = 1 + [(b/b)* — 1] sin*(bT), where
b= \/ )* + (b/)* + (bf)? is the magnitude of the Bloch vector. These two sets of measurements will
determine b, b/ and b} up to a sign. The correct signs from the remaining discrete set can be picked out by
measuring Py, o) and Pj5_, o) at asingle time point (see appendix).

The complete scheme applies to any generic Hamiltonian with interacting qubits. In the most general case,
one needs to determine 9N (N — 1)/2+43N coefficients. However, in many physical systems, the particular
form of the interaction is known and/or the interaction often decays fast enough that one can significantly

T
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Figure 2. Numerical simulation and curving fitting results. (a)—(c) are used to retrieve J75, ¥ and J55 between spins 7 and 9. (d) and (e)
are used to extract b, b and b§ for spin 6. Each measurement data p,,, are drawn from the binomial distribution with the true
probability pas themeanand p(1 — p)/N,, as the variance. The measurement uncertainty of each pointis thus /p, (1 — p,.) /N,
The blue solid lines are the best-fit lines with the simulated experimental data p,,, and red dashed lines are the theoretical ones
generated by the true Hamiltonian parameters. Pulse errors are not included in these plots, so any discrepancies stem from the
remnant DD coupling error and measurement uncertainties. Other parameters used are N=12, 7J = 0.01, N,, = 100, N; = 50.

reduce the number of measurements required. In particular, if ] can be truncated at some spin separation
distance in the case of short-range interactions, the number of measurements will be linear with the system size
N. In the following, we numerically simulate the experimental procedure for the most general Hamiltonian,
taking into account various sources of errors, including the remnant DD coupling error, measurement
uncertainties, and different forms of pulse errors.

3. Numerical simulation

We consider the general Hamiltonian given in equation (1) with coefficients Ji d / J and b /] randomly drawn

from —1to 1. In our finite-system simulation, we ignore the decay of J # with distance, so the system may
include unphysically long-range interactions and could simulate Hamiltonians in any dimensions. To retrieve
Jii*, for example, we start with a product state of all spins, and perform time evolution using the entire
Hamiltonian from equation (1), interspersed with the XY-8 DD pulses on target spins 7 and j. We would like to
emphasize that specific state initialization for the environment spins is not required as long as they are
disentangled from the target pair of qubits at the beginning. After N, cycles of the DD sequence, the environment
spins are traced out and measurements are made on spins i and j. In the simulation, we do not assume the pure
unitary evolution U,_g, as the remnant coupling to the environment spins may entangle the two spins with the
rest. However, any undesired couplings are suppressed to the order of O (J37®) and we do observe that the two-
spin density matrix remains mostly pure (~99.9%) for our chosen parameters.

As the tomography procedure involves measuring the output probability of a certain state, each time point
will be measured N,,, times, which gives an estimate of the probability p,,, in this state. The measurement
uncertainty (standard deviation) willbe ,/p, (1 — p,,)/N,, following the binomial distribution. As discussed
above, to map out ¢, ¢ and ¢;, one needs to measure Py |oo)> Pj+1)—10)and Pjory_|44) for the target spins at
various time points and extract the corresponding oscillation frequencies. Suppose N, different time points are
measured for each set. The oscillation frequencies can be found either by Fourier transform or by curve fitting.
In general, if data show numerous oscillation periods, Fourier transform will be more robust and reliable [ 14—
16]. In our case, however, the long time observations will be undermined by the remnant coupling to the
environment spins and possible pulse error accumulation. Simple curving fitting with fewer oscillation periods,
therefore, appears to be a better solution. In figures 2(a)—(c), we fit the data with the method of least squares with
7] = 0.01, N,, = 100, N; = 50 for spinsi="7 and j =9 ina N = 12 spin system. The blue solid lines are the best-
fitlines, and the red dashed lines are the theoretical lines using the true coupling coefficients. The longest time
period requires 800 pulses, which is well within the current experimental technology without significant pulse
error accumulation. Table 1 compares the true values and the estimated ones of J5g". Uncertainties in the
estimation stem from the curve fitting due to measurement uncertainties. Corresponding results for b¢' of spin
6 are shown in figures 2(d)—(e) and table 1. All estimated parameters are accurate within a few percent.

To simulate real experiments, one also needs to include possible pulse errors. One possible source of errors is
the finite duration of each control pulse, which limits the minimum cycle time. This is typically not the
dominant source of errors and can often be well-controlled [31, 35, 55-57]. In most experiments, the major
cause of errors is the deviation between the control pulses and the ideal X or Y pulses. These can either arise from
the amplitude error where the rotation angle differs from the ideal 7-pulse or the rotation error where the
rotation axis deviates from the x or y axis. In typical experiments, individual pulse errors may be controlled
within a percent level. In our simulation, we consider three different forms of pulse errors: systematic amplitude
pulse error (SAE), random amplitude pulse error (RAE) and random rotation axis error (RRE). See the caption

4
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Table 1. NPE: no pulse error; SAE: systematic amplitude pulse error; RAE: random
amplitude pulse error; RRE: random rotation axis error; AD: average deviation from
true values. The last digit in bracket for each number quantifies the estimation error
bar due to measurement uncertainties, which is generated by the bootstrapping
method. The percentage values in the brackets denote the amount of errors intro-

T

duced in each pulse. The errors are in the form of: SAE, eii(1 *‘)"1/; RAE, ei%(1 ”)””;

RRE, e'2 ("V““’X*d"y“"’z); where € = 5%, § is randomly chosen from (—1%, 1%),
(a, B, ) isavector with a random direction but fixed magnitude at 1%, and
v = x, y for the Xand Y pulses respectively.

True Estimated parameters
— NPE SAE(5%) RAE(1%) RRE(1%)
Trs —0.378 —0.369(3) —0.377(3) —0.379(4) —0.412(2)
78 0.863 0.856(3) 0.846(3) 0.867(4) 0.836(2)
J7o 0.679 0.669(5) 0.649(5) 0.718(6) 0.611(4)
A 0.334 0.32(1) 0.32(1) 0.32(1) 0.32(1)
B 0.569 0.567(8) 0.567(8) 0.567(8) 0.568(8)
% —0.431 —0.441(8) —0.443(8) —0.441(8) —0.441(8)
AD — 2% 3% 3% 5%

of table 1 for the specific forms of the errors. Moderate systematic errors can be self-compensated by the XY-8
DD sequence. Numerically, we found that 5% of SAE has negligible effect on the parameter estimation. In
addition, we also simulated the cases where each pulse experiences a 1% RAE or RRE. Results are summarized in
table 1. The average deviation from the true parameters are within 5%. Here, we would like to point out a few
features of our scheme that make it inherently robust to errors. First of all, the estimation of the coupling
strength %7 only entails frequency estimation, which could endure large deviations of a few measurement
points. In addition, the single-parameter curve fitting scheme not only makes the estimation robust but is also
more convenient for experiment. Moreover, the retrieval of local fields by, is remarkably tolerant to pulse errors.
Since no pulse is directly applied to the target spin, any pulse errors on the environment spins will only be
propagated via the remnant DD coupling error, which is suppressed to the order of O (J>73). We have
numerically tested that a 10% pulse error of any kind would have negligible effects on the estimation of b;,.
Alternative schemes to extract the local fields are detailed and discussed in the appendix. They are less tolerant to
pulse errors, but may be easier to implement in some experimental setups.

4. Discussion and outlook

We have thus numerically demonstrated that the proposed scheme is robust to various sources of errors present
in real experiments. The measurement uncertainties can be lowered by increasing N,,, and the pulse errors can be
reduced by limiting the maximum number of pulses needed. The optimal strategy involves a delicate balance
between experimental sophistication and error control. For example, by fixing 7J and the total number of
measurements for each set, N, X Nj, one could devise an optimal estimation procedure. In addition, it is also
possible to eliminate the remnant DD coupling error to a higher order with more elaborate pulse sequences such
as the concatenated DD sequence [30, 31] and reduce pulse errors by designing composite pulses or self-
correcting sequences [34, 35, 58, 59]. The scheme can also be extended straightforwardly to qudit systems of
higher spins or to bosonic or fermionic systems.

In conclusion, we have proposed a general scheme to achieve full Hamiltonian tomography for generic
interacting qubit systems with arbitrary long-range couplings. The required number of measurements scales
linearly with the number of terms in the Hamiltonian, and the scheme is robust to typical experimental errors or
imperfections.
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Appendix A. Dynamical decoupling

The most general Hamiltonian with two-body qubit interactions can be written as

H= >} JB oo ol 4 > boo. (Al)
m, o

a,fB,m<n

The energy unit of the Hamiltonian is taken to be J such that J, af /] and by, /] are bounded between —1 and 1.

mn

The symmetric XY-4 DD sequence on both spins i and j produces

Uy = Ué/z(afaj-‘ anfa}c)(aizai anfaj)(aiyay aniyay) U2, (A2)

where Uy = e~ and 7 is the time interval between consecutive pulses. We can decompose H into two parts

H = H, + Hy, (A3)

XX X X ZZ zZ z
Ho = Jjoio} + Jj ol o’ + Jioi o5, (A4)

Xy x Xz X .z yX Yy __x vz _y _z ZxX _Z _X zy _z
Hy=Jjojoj+Jjoio;+Jjoio;+Jjoio+Jjoio;+Jjoio;
+ 0iB + o/B] + 0iB{ + 0B + o/B/ + 03B + B, (A5)

where Bf* includes the local field on the ith spin and interacting terms between the ith spin and all other spins

other than the jth spin, i.e., B = b® + >_. . J® ¢/ Thebath term Bincludes all the environment
Byn=i,jlin n

operations, i.e., all operators that does not act on spins i and j. We define other Hamiltonian part as

ojoiHojoj = Hy+ H,, o]o}Holo} = Hy+ H;, ojojHojio5 = Hy+ Hy, (A6)
where

_ Xy _x _y Xz X _z X Y X vz y _z X __z _X zy _z Yy
Hy=—Jjoio; —Jioio; —Jjojo;+]Jjojo;—Jjoio;+ Jjoio;

X X z z X px z z
_ Xy _x ¥ Xz X _z VX _y _x ¥z y _z ZX __Z X zy __z Yy
H3—_]l]0'10']+1]0'10']_]l] 0'10']_]1] 0-10-]+l]0-10-]_]10-10-]

X pRX YRy Znz X px YRy zZnpz

_ Xy _x _y Xz X _zZ Xy __x vz _y _z X _z X zy _z Y
Hy=+]Jjoio; = Jjoio;+Jjojo; —Jjojo; —Jjoio; —Jjoio;

— 0fB} — o!/B} + 0iBf — 0B — J;-'B]’-' + 03B + B. (A9)

Basically, each term will either commute or anticommute with the operator o7 0. Those commuting with it will
be leftinvariant, and those anticommuting will have a flipped sign. H, and B commute with each operator o7’ 0,
so they are left unchanged. Now we can see explicitly that H, + H, + Hs + Hy = 4B, which is why the DD
sequence effectively decouples the two spins i and j with the rest of the spins. To estimate the error, we combine
the unitary evolution for a period and repeatedly make use of the formula

eAeTB — orA+7B+ir2[AB]+O(r?) (A10)
Ignoring 73 and higher-order terms, we find
U = efi‘r/z(HngHl)e—iT(H0+Hz)e—ir(H0+H4)e—iT(H0+H3)efir/2(Hg+Hl)
— o4 (HotB)+C (A11)

where the remnant coupling noise term is

— 172[ZHy + LH + Hy + Hy + Hy Ho + H ] + 0()

_ { [Ho Hs — ]+ 2[ H — Hy B + 2 1 H3]} +0(7). (A12)

In the error term C, the biggest contribution comes from termslike [B, oy, B, ]. Our aim is to show that the error
does not scale with the system size N, i.e., C = O (J?72). Let us consider one such term and write it out explicitly

(suppressing the a, § summation):
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b?unttzgﬁott

Figure B1. Alternative scheme to map out the local fields b;". A global pulse imposes the XY-8 pulse sequence on all spins and a focused
pulse is in addition applied to spin i to cancel the DD sequence on that single spin.

X pXx X af __a Xy X af 7xy 6
[B, oiB: |~ of| 3 Jndonol, S IR a | ~of S Jaili ool (A13)
m<n Pii,]' m<n
m,n=i,j m,n=1i,j

Since ]2 and J;7 are rapidly decaying functions of the separation distance, for a fixed site i,

> Jod Tl = O(J?). Note that this differs from the scaling of the Hamiltonian, H ~ > J+7 = O(N]).
All the other terms in C are either smaller or contribute to the same order as the above term. Therefore, we have
C = O(J?72). To be able to neglect the error terms, one needs to fulfill the condition J7 < 1.

The above discussion is pertinent to the XY-4 pulse sequence. We can cancel the second order contribution
by using the XY-8 pulse sequence as U, = U, UR, where U is just the time-reversed sequence of Uj. It can be
readily seen that the error terms C and CR will cancel each other to the second order O (72), since CR contains
the same terms as in C only with the role of H, and H; interchanged. Therefore, the remnant coupling error of

the XY-8 pulse sequence is O (J37%) as discussed in the main text.

Appendix B. Local field retrieval

In the main text, we proposed a scheme to retrieve the local fields b;" by shining the XY-8 pulse sequences on all
the environment spins. Here, we provide more details and outline alternative schemes that may in some
experimental setups be easier to implement. By decoupling the environment spins with spin i as illustrated in
figure 1(c) of the main text, we have the effective single-spin Hamiltonian H, g, = b0 + b} o) + biof. The
time evolution operator is
z X
cos 0Ty — il sin o1y — B8 G oy
Ul—spin = e_iHl-SPinT = b)’ D b b2 , (Bl)
% sin (bT) cos (bT) + if sin (bT)

where b = \/ (b)* + (b))* + (bf)?* is the magnitude of the Bloch vector. By measuring
Pt = 1+ [ (2/0) = 1]sim? @) (B2)
2 .
Py =1+ [(b,?‘/b) - 1] sin2(bT) (B3)

at various time points, we could determine |b;*|, |/ |, |b{|. To pin down the correct signs, one can supplement
the above two sets of measurements with another two measurement points:

1 2bFb7 . b/ .
Piy—io) = | (O] Uigin 14)|* = 5(1 + =y sin? T — —=sin ZbT) (B4)
1 2b7b7 br .
Piy_joy = ‘ (0] Ut-spin |I)|2 = 5(1 + 1;2 sin? bT + 71 sin 2bT). (B5)

Only one time point is needed to determine the signs. For example, one could take measurements at bT = 7/4
and use Pjy_,joyand P50 to pick out the correct signs.

The above procedure requires applying the DD sequences to all spins other than the target spin. In some
experimental setting, it may be easier to apply a global DD sequence to all spins and add another individually
addressed beam on spin i to cancel the DD sequence on that single spin. See figure B1 for illustration. For
instance, one could apply synchronized Xy Ya;-8 global pulses and in addition X; Y;-8 focused pulses on spin i.
In this way, spin i effectively experiences no pulses at all time. The effective Hamiltonian again reduces to the
same H_gpin as above. However, this scheme is not very robust to pulse errors. Any deviation from the ideal pulse
will be doubled on spin i and accumulate. The pulse error will affect the single-spin coherence and obscure b;*
too. We have tested it numerically that the pulse errors have to be controlled within 0.5% for the scheme to be
feasible. So it can be used in some setups where pulse errors are not an issue or the total number of pulses can be

7
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Figure C1. Numerical simulation and curving fitting results with a random rotation axis error (RRE) for each pulse. The RRE is of the
form e'2 (”V+°”x+*a”y+7'”z), where («, 3, ) isavector with arandom direction but fixed magnitude at 1%. (a)—(c) are used to retrieve
J75, % and J55 between spins 7 and 9. (d) and (e) are used to extract b, b and b for spin 6. The blue solid lines are the best-fit lines with
the simulated experimental data, and red dashed lines are the theoretical ones generated by the true Hamiltonian parameters. Other

parameters are the same as in figure 2 of the main text.

reduced. One may also use this scheme and modify the sequence by designing composite pulses or self-
correcting sequences to reduce pulse errors.

Appendix C. Pulse errors

In the main text, we discussed different types of pulse errors. In our numerical simulation, we considered SAE,
RAE and RRE. The fitting curves in figure 2 of the main text do not take into account of pulse errors. Here, we
include the figures (figure C1) for the case with a 1% RRE. We can see, for example in figure C1(a), that the
frequency estimation is still very accurate while some measurement points may have a notable mismatch. We
may also notice that the estimation of b;" is exceptionally robust to pulse errors since no pulse is applied to spin i
in the scheme. Other pulse errors have similar effects on the estimation of parameters.
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