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Room-temperature ultrasensitive mass spectrometer via dynamical decoupling
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We propose an ultrasensitive mass spectrometer based on a coupled quantum-bit-oscillator system. Under
dynamical decoupling control of the quantum bit (qubit), the qubit coherence exhibits a comb structure in
the time domain. The time-comb structure enables high-precision measurements of oscillator frequency, which
can be used as an ultrasensitive mass spectrometer. We show that, in the ideal case, the sensitivity η of the
proposed mass spectrometer has better performance at higher temperature and scales with the temperature T

as η ∼ T −1/2. While taking into account qubit and oscillator decay, the optimal sensitivity reaches a universal
value independent of environmental temperature T . The measurement sensitivity η also shows an improved
dependence on the control-pulse number N as η ∼ N−3/2, in comparison with the N−1/2 scaling in previous
magnetometry studies. With the present technology on solid-state spin qubit and high-quality optomechanical
system, our proposal is feasible to realize an ultrasensitive room-temperature mass spectrometer.
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I. INTRODUCTION

Single quantum objects, such as single atoms and single
photons, have attracted more and more attentions in recent
years. Novel applications, such as quantum information
processing, triggered fast technique development in isolating
single quantum objects from the noisy environment, precisely
controlling their quantum states, and hybridizing different
quantum systems. The technique development, in turn, pro-
vides opportunities of using single quantum objects to design
more distinctive and more powerful tools in various research
fields.

Detection of extremely weak signals, such as magnetic
fields produced by single nuclei [1–5], and tiny mass of
single molecules [6–11], has broad applications in chemistry
and biology. In the past a few decades, detectors based on
single quantum objects were designed, and their sensitivity was
progressively improved. For example, quantum coherence and
quantum lock-in amplification techniques are applied to single
ions to improve the sensitivity of magnetometry [12]. By using
mechanical cantilevers or well-controlled single spins, people
are able to detect and resolve single spins of electrons [13]
and nuclei [1–3]. For mass sensors, the minimum detectable
mass was decreased from femtograms to yoctograms [7–11],
reaching the single-proton limit.

In this paper, we propose an ultrasensitive measurement
scheme based on a coupled quantum-bit-oscillator system.
We show that, with many-pulse dynamical decoupling (DD)
control [14] on the quantum bit (qubit) of the coupled system,
the qubit coherence exhibits periodic sharp peaks, forming a
comb structure in the time domain. The qubit coherence peaks
are synchronized with the oscillator period, and the peak width
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decreases when increasing the measurement resource; namely,
the DD control pulse number. With this time-comb structure of
the qubit coherence, tiny changes of the oscillator frequency,
e.g., due to absorption of a single molecule onto a mechanical
oscillator, can be monitored and precisely determined from the
shift of the coherence peaks.

Two distinctive features allow our proposal to offer
ultrahigh sensitivity and have outstanding performance at
room temperature. First, the measurement sensitivity scales
with the control-pulse number N as ∼N−3/2, which is
different in comparison to the N−1/2 dependence in the
magnetometry schemes using single qubits [15]. The improved
scaling relation enables us reach high sensitivity with less
measurement resource. Second, we show that the optimal
sensitivity is independent of environmental temperature T , and
fewer control pulses are required at high temperature to reach
this optimal sensitivity. For most of the conventional sensing
schemes, low-temperature (e.g., liquid helium temperature) is
required, since measurement sensitivity is usually limited by
thermal fluctuation proportional to

√
kBT (with Boltzmann

constant kB) [16,17]. The temperature-independent feature
of the optimal sensitivity in our proposal allows novel
applications at room temperature.

Recent technique development for solid-state qubit and
mechanical oscillator provides the feasibility of our proposal.
Single-spin qubits in solids, such as nitrogen-vacancy (NV)
centers [18,19], have been demonstrated to be well isolated
with long coherence times [20]. Meanwhile, the mechanical
oscillators of micro- or nanosize have been experimentally
fabricated and widely used in detecting weak signals [17,21].
In particular, the recent optomechanical systems [6,22,23],
optically levitated particles [24–27], are believed to reach
high quality factors, up to 1010 [28] or even higher, which
enables such systems to detect novel quantum effects [29–31].
Here, we combine the advanced qubit and optomechanical
systems and propose that hybrid systems such as an optically

1050-2947/2014/90(4)/042118(6) 042118-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.90.042118


NAN ZHAO AND ZHANG-QI YIN PHYSICAL REVIEW A 90, 042118 (2014)

dynamical 
decoupling 
pulses

B gradient

x

trap laser

FIG. 1. (Color online) Schematic of the proposed mass spec-
trometer. A nanodiamond is trapped in a harmonic potential by
counterpropagating laser beams. The nanodiamond (the gray circle)
contains a NV center, which serves as a qubit. With a gradient
magnetic field, the center-of-mass motion of the nanodiamond
couples to the NV-center spin. Under DD control, the qubit coherence
exhibits a time-comb structure, which can be used to measure the
tiny change of the oscillation frequency (thus the mass change) of the
nanodiamond.

levitated nanodiamond with a single NV center [32–34] can
realize a high mass sensitivity of up to 10−22g/

√
Hz at room

temperature (see Fig. 1).

II. ULTRASENSITIVE MASS SPECTROMETER

A. Time-comb under dynamical decoupling

We consider a coupled qubit-oscillator model with the
Hamiltonian [33–35]

H = 1
2ωqσz + ω0b

†b + 1
2λσz(b

† + b), (1)

where ω0 (ωq) is the frequency of the harmonic oscillator
(qubit), and λ is the coupling strength. The qubit is initially
prepared in a superposition state |ψ(0)〉q = (|0〉 + |1〉)/√2,
where |0〉 and |1〉 are the eigenbases of the qubit corresponding
to σz = −1 and +1, respectively. The oscillator is initially
in a thermal equilibrium state ρb = Z−1 exp(−βω0b

†b) with
the partition function Z = Tr[exp(−βω0b

†b)] and the inverse
effective oscillator temperature β = 1/(kBT ), where kB is the
Boltzmann constant.

Since σz is a good quantum number in the Hamiltonian (1),
we focus on the dynamics of the relative phase, or the quantum
coherence [36] between qubit states |0〉 and |1〉 influenced
by the oscillator. Under DD control of the qubit, which flips
the qubit state by a train of π pulses applied at times t̃j for
j = 1,2, . . . ,N , the qubit coherence L(t) is expressed as [37]

L (t) = 〈Tce
−i

∫
c
X̂(t ′)f (t ′)dt ′ 〉, (2)

where the integral is performed on a time contour c :
0 → t → 0, Tc is the contour-time-ordering operator, and
X̂(t) = λ(b†eiω0t + be−iω0t ) is proportional to the oscillator
displacement in the interaction picture. The qubit flipping
by DD control is described by the sign function f (t), which
toggles between +1 or −1 whenever a π pulse is applied.

The Gaussian-statistics nature of the harmonic oscillator
allows the coherence in Eq. (2) to be exactly evaluated [35,38].
In particular, under the N -pulse Carr–Purcell–Meiboom–
Gill (CPMG) sequence [with Nπ pulses applied at t̃j =
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FIG. 2. (Color online) (a) The time-comb structure of qubit
coherence under 100-pulse CPMG control. For ω0t � 1, the comb
period is synchronized with the oscillator period T0 = 2π/ω0.
(b) Closeup of the coherence peaks. A missing peak at ω0t = Nπ

is indicated by the blue dashed line. The peak width is decreasing
when it gets close to the missing one. (c) Closeup of the narrowest
coherence peak, which is centered at tq∗ with width 
q∗ (see
text). The parameters used in this figure are oscillator frequency
ω0/(2π ) = 100 kHz, coupling strength λ = 0.001ω0, temperature
T = 10 K, and 100-pulse CPMG control.

(2j − 1)t/(2N )], the qubit coherence is L(t) = exp[−χ (t)/2]
with [35,38]

χ (t) =
∫ ∞

0

dω

π
S (ω) |F (ωt)|2

= 4λ̃2

ω2
0

(
sec

ω0t

2N
− 1

)2

sin2 ω0t

2

≡ �2 (t) sin2 ω0t

2
, (3)

where S(ω) = λ̃2πδ(ω − ω0) is the noise spectrum of the
oscillator, F (ωt) is the Fourier transform of the modulation
function f (t), λ̃2 = λ2(2nth + 1), and nth ≡ [exp(βω0) − 1]−1

is the thermal occupation number of the oscillator. In the
second line of Eq. (3), �(t) is a slowly-varying-envelope
function. Without loss of generality, we consider even pulse
numbers N � 1 throughout the paper.

The qubit coherence exhibits novel dynamics with many-
pulse DD, as shown in Fig. 2. In the short-time limit (ω0t �
Nπ ), the qubit coherence is well protected (close to unity) by
the DD control. With increasing time t , the qubit coherence
become oscillatory. Furthermore, when �(t) � 1, the qubit
enters a new regime where the coherence almost decays
completely [L(t) ≈ 0], except in the narrow intervals around
the zero points of Eq. (3), i.e., tq = qT0 [for integer q and
q �= (2k + 1)N/2], where T0 = 2π/ω0 is the oscillator period.
In this regime, the qubit coherence forms a comb structure.

In the time-comb regime, the coherence shows sharp peaks
in Gaussian shapes L(t) ≈ e−γ 2

q (t−tq )2/2 [see Fig. 2(c)]. The
peak width decreases when tq approaches an odd multiple of
NT0/2 [i.e., the divergence point of �(t), indicated by the blue
dashed line in Fig. 2(b)]. For a given control-pulse number N ,
the narrowest peak (for q = q∗ ≡ N/2 − 1) appears at tq∗ and
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with peak width 
q∗

tq∗ =
(

N

2
− 1

)
T0,


q∗ ≡ 2
√

2

γq∗
= T0

N�
√

2nth + 1
, (4)

where � = λ/ω0 is the ratio of the coupling strength to
the oscillator frequency. Notice that peak width is inversely
proportional to the control pulse number N and the square root
of the thermal excitation number nth (for nth � 1). Indeed, the
peak-narrowing effect as increasing temperature (increasing
nth) was discovered for the case without DD control [39]. In
the following, we show that increasing the pulse number N or
the temperature T will improve the sensitivity.

B. Mass sensitivity

The unique time-comb structure can have broad appli-
cations in sensing weak signals. Here, we demonstrate the
measurement principle though an example of measuring
tiny mass change of the mechanical oscillator, e.g., due
to absorption of single molecules. For an oscillator with
frequency ω0 = √

k/M (for k and M being the spring constant
and the mass, respectively), a small change δM of the mass M

induces a change δL of the coherence L(t) around the recovery
peak. The relative mass uncertainty is

δM

M
= 2δω0

ω0
= 1

γ 2
q∗ (t − tq∗ )tq∗

δL

L
≈ 1

γq∗ tq∗

δL

L
, (5)

where we have chosen a proper measurement time t close to
the peak time tq∗ so that γq∗ (t − tq∗ ) ≈ 1.

We consider the case where the qubit coherence is obtained
by averaging the output of Nrun independent Bernoulli trials. In
this case, the uncertainty δL comes from the shot noise in the
measurement, i.e., δL/L ≈ N

−1/2
run . For the total measurement

time Ttot = Nruntq∗ , the mass sensitivity ηM , up to a constant
of the order of unity, is

ηM ≡ δM
√

Ttot = M

(2N )3/2 �
√

kBT/h
, (6)

where h is Planck’s constant. Here we have assumed that
N � 1 and nth ≈ kBT/(�ω0) � 1, which is the case for most
practical mechanical oscillator systems.

Equation (6) reveals two interesting features of the qubit-
oscillator-based mass spectrometer. First, the scaling relation
of sensitivity to the pulse number N is different than what
appears in magnetometry. In the case of using qubits for mag-
netometry under DD, the sensitivity scales with the control-
pulse number as ∼N−1/2 [15]. In our case, the peak-narrowing
effect when increasing the pulse number N improves the
scaling relation to ∼N−3/2 [see Eq. (4)], which will help
to more quickly achieve the optimal sensitivity. Physically,
the peak-narrowing effect as increasing control-pulse number
arises from the quantum interference between the conditional
coherent evolution paths of the oscillator depending on the
qubit states. In this sense, it is essentially a quantum effect.

Second, and more interestingly, the sensitivity is inverse-
linearly dependent on the square root of temperature, i.e.,
ηM ∼ T −1/2. For traditional oscillator-based sensors, the

sensitivity is usually limited by thermal fluctuations of the
oscillator displacement x, which are characterized by the
root-mean-square amplitude xrms = √

kBT/k. Weak signal
corresponding to a displacement amplitude smaller than
xrms is hardly detected. High temperature would destroy the
sensitivity and prevent the room-temperature applications.
While in our measurement scheme, the measured quantity
ω0 does not directly couple to the oscillator displacement
x and, thus, its uncertainty is independent of the position
thermal fluctuations. Instead, the more thermal phonons at
higher temperature cause stronger effective coupling between
the qubit and oscillator [39], which improves the sensitivity.

III. DISCUSSION

A. Sensitivity limitations

Now we analyze the factors which limit the ideal sensitivity
shown in Eq. (6). The qubit decoherence (including relaxation
and dephasing) and the oscillation dissipation caused by the
inevitable coupling to the environment are the two reasons
which set the lower bound to the sensitivity.

The environmental fluctuation of the qubit, which causes
qubit decoherence, prevents the perfect recovery of coherence
shown in Fig. 2. With both the longitudinal relaxation
process (or T1 process) and transverse relaxation process
(or T2 process), the qubit suffers a background decoher-
ence Lbg(t) in addition to the oscillator-induced periodic
revival peaks. Taking the solid-state spin qubit for example,
the background decoherence can be modelled as Lbg(t) =
exp[−t/T1 − (t/T

(N)
2 )3] [40]. The longitudinal decoherence,

typically caused by phonon scattering, is a Markovian process
(a simple exponential decay) and is hardly corrected by DD.
The the transverse decoherence, usually caused by spin baths,
can be protected by DD with the decay time T

(N)
2 depending

on the DD control-pulse number N as T
(N)

2 = T2N
2/3 [40] (for

T2 being the coherence time for N = 1).
The background qubit decoherence Lbg(t) reduces the

height of the recover peaks. Consequently, the mass sensitivity
is magnified by a factor of L−1

bg (tq∗ ). The balance between the
∼N−3/2 sensitivity scaling and the background decoherence
gives rise to an optimal pulse number to the sensitivity (see
Fig. 3), similar to Ref. [15]. Qubits with long coherence time,
like NV centers in diamond, can be chosen to suppress the
background decoherence Lbg(t) effect. At low temperature,
the T1 time can reach the order of seconds [41], and the T2

time has been demonstrated to be ∼ms or even longer under
DD control [42]. In this case, qubit decoherence becomes
less important, and dissipation of mechanical oscillation is
the dominant mechanism limiting the sensitivity.

The coupling to the environment of mechanical resonator
causes broadening of the oscillator frequency. In Eq. (3),
with the δ function in the noise spectrum S(ω) replaced
by a Lorentzian spectrum with finite broadening κ = ω0/Q

[i.e., S(ω) = λ̃2κ/[(ω − ω0)2 + κ2], with Q being the quality
factor], the coherence cannot recover perfectly even though the
central oscillation frequency hits the zero points of the filter
function. The overlap between the wings of the Lorentzian
spectrum and the nonzero region of the function F (ωt)
causes the reduction of the height of the coherence recovery
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FIG. 3. (Color online) Mass sensitivity ηM as functions of DD
control pulse number N . Solid curves are the sensitivity at room
temperature T = 300 K, while dashed curves are the sensitivity at
low temperature T = 1 K. The red curves are the ideal sensitivity
according to Eq. (6), which scale as ∼N−3/2. The curves in green,
blue, and orange are the sensitivity taking into account the qubit T1

decay (with T1 = 7 ms), qubit T2 decay (with T2 = 100 μs), and
oscillator finite Q factor (with Q = 109), in turn. The thick black
curves are the sensitivity with all the decay mechanisms included. The
horizontal dotted line indicates the temperature-independent optimal
sensitivity. The other parameters (ω0 and λ) used in this figure are the
same as those in Fig. 2.

peak [see Eq. (3)]. In the low-Q case (e.g., Q ∼ 102 as
demonstrated in Ref. [35]), the oscillator spectrum is too
broad, so the coherence comb structure does not appear. In the
case of Q � N � 1, the function χ (t) around the recovery
time t = tq∗ is calculated as χ (t) ≈ χ (tq∗ ) + γ 2

q∗ (t − tq∗ )2

with χ (tq∗ ) = 4λ̃2N3/(ω2
0Q). Increasing the pulse number N

reduces the recovery height. There exists an optimal control
pulse number Nopt that minimizes the sensitivity in our scheme
(see Fig. 3), which is estimated by considering χ (tq∗ ) ≈ 1 and
gives

Nopt ≈ ω0

2λ

(
�λQ

kBT

) 1
3

. (7)

Substituting the optimal pulse number Nopt into Eq. (6), one
obtains the optimal mass sensitivity of our proposal (up to a
constant of the order of unity):

η
opt
M = M√

f0Q
, (8)

where f0 = ω0/(2π ). In our measurement scheme, the optimal
sensitivity only relies on the properties of the oscillator (i.e.,
f0 and Q) and is independent of the temperature T and of
the qubit-oscillator coupling strength λ. In addition to the
temperature-independent feature, we notice that, at higher
temperature, less-controlled pulses are required to reach the
optimal sensitivity according to Eq. (7) (see Fig. 3). In this
sense, the proposed mass spectrometer has better performance
at high temperature, in sharp contrast to conventional schemes
where low temperature is necessary to reduce thermal fluctu-
ations. The universal form of the optimal sensitivity in Eq. (8)

provides a simple guiding principle to design the system and
to experimentally implement our proposal. The model and the
sensitivity described in Eqs. (1)–(8), indeed, is quite general
and can be realized in different types of systems [43,44]. In the
following, we take the optically levitated nanodiamond with
NV centers as an example to demonstrate the application.

B. Experimental feasibility

As discussed above, solid-state spin with long coherence
time, like nitrogen-vacancies in diamond, serves as a good
candidate for the qubit. The T1 and T2 decoherence has
negligible effect on the sensitivity (see Fig. 3). Meanwhile,
the coherent coupling between NV-center electron spin and
mechanical motion has been demonstrated very recently [35]
with a low-Q mechanical cantilever. Since a high quality
factor Q of the mechanical oscillator is essential for ultimate
sensitivity, we propose that the system of an optically levitated
nanodiamond with a single NV center is a good candidate
for realizing an ultrasensitive mass spectrometer, where the
quality factor can reach ∼1010 or even higher.

In most cases, the mechanical quality Q of the oscillator
is limited by the residual-gas–molecule collisions. In high
or ultrahigh vacuum, the molecular mean-free path is larger
than the diameter of the nanodiamond. The background
gas induces a damping with rate γg = (16/π )(P/vrρ) [25],
where P is the gas pressure and v = √

8kBT /(πma) is the
mean speed of the molecule with ma being the mean mass
of the molecule. In ultrahigh vacuum, the background-gas
molecules are almost all hydrogen with mass ma = mH2 =
3.3 × 10−24 g. For a nanodiamond of diameter 50 nm and mass
density ρ = 3.5 g/cm3, the damping rate is γg/(2π ) = 7.0 ×
10−6 Hz. With the oscillator frequency ω0/(2π ) = 100 kHz,
the mechanical quality factor due gas-molecule collisions is
Qg = ω0/γg = 1.4 × 1010. The strength of the gas-molecule
collision effect is characterized by the average number N

(g)
osc

of coherent oscillations before an oscillator energy quanta
(a phonon) is created due to molecular collisions, i.e.,
N

(g)
osc = ω0τg/(2π ) with τg = �ω0/(γgkBT ). A greater average

oscillation number N
(g)
osc implies a weaker collision effect. At

room temperature T = 300 K, the average oscillation number
is N (sc)

osc ≈ 37.
As another possible damping mechanism, the photon-recoil

effect is usually much weaker than molecular collisions.
Photon scattering will heat the center-of-mass motion of the
nanodiamond. We use the dipole approximation and calculate
the photon-scattering rate when the nanodiamond is trapped in
the Lamb–Dicke regime 
x � 1/k, where 
x is the position
fluctuations of the nanodiamond, and k is the wave number of
the trapping laser. The recoil heating rate for the phonon mode
is

γsc = 4π2ω0

5

ε − 1

ε + 2

(
V

λ3

)
,

which depends on the ratio between the volume of the
nanodiamond and the cube of the wavelength. Similar to N

(g)
osc,

the photon-recoil strength is characterized by the average
oscillation numbers before a phonon is created by photon
scattering: N (sc)

osc = ω0τsc/(2π ) ∝ λ3/V with τsc = γ −1
sc . In
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order to reduce the recoil heating effect, the laser wavelength
should be much longer than the nanodiamond diameter. With
a laser wavelength of 1.5 μm and the relative permittivity of
diamond ε = 5.5, the recoil heating rate γsc/(2π ) = 9.2 Hz,
and N (sc)

osc = 1.7 × 103 � N
(g)
osc, which indicates that, for the

condition discussed above (P = 10−8 Torr, λ = 1.5 μm, T =
300 K, and Q ∼ 1010), the photon-recoil effect is less impor-
tant and the oscillator damping is dominated by collisions with
background-gas molecules.

The mechanical quality factor Q can be further increased by
decreasing the gas pressure. For example, if the background-
gas pressure is reduced to P ′ = 10−10 Torr, the damping rate
becomes γ ′

g/(2π ) = 7.0 × 10−8 Hz, which corresponds to a
quality factor as high as Q′

g = 1.4 × 1012. However, if the
trapping-laser wavelength is kept unchanged (λ = 1.5 μm)
and so is the recoil heating rate γsc, in this case, the coherent
oscillation number due to collisions, N

′(g)
osc = 3.7 × 103, be-

comes larger than that due to photon recoil, N (sc)
ocs . In order to

maintain the nanodiamond in the trap, the laser wavelength
should be increased to 10 μm. The recoil heating rate is
decreased by more than two orders to γ ′

sc/(2π ) = 0.03 Hz,
corresponding to N ′(sc)

osc = 5.0 × 105. In this case, the collision
with gas molecules is still the dominating damping mechanism
of the oscillator. We should note that the laser with 10 μm
wavelength could melt the silica nanoparticles at high power,
as discussed in Ref. [25]. However, the photon absorption rate
of diamond is more than two orders lower than that of silica at
the wavelength of 10 μm [34] and can afford much stronger
laser power.

With the above discussions, we consider a nanodiamond
of 50 nm in diameter (corresponding to a mass M = 2.3 ×
10−16 g) which is optically trapped in a harmonic potential with
center-of-mass (c.m.) oscillating frequency f0 = 100 kHz
(see Fig. 1). In a gradient magnetic field, the c.m. motion
of the nanodiamond couples to the NV-center electron spin in
the nanodiamond in the manner described in Eq. (1). With the
magnetic-field gradient Gm = 200 T/m, the coupling strength
is ∼100 Hz. With the quality factor Q = 109, the system
can reach a mass sensitivity of the order ∼10−22 g/

√
Hz. In

practical experiments, the efficiency of the optical readout of
the spin state of the NV center is limited by the spin-selective
fluorescence contrast and the photon collection efficiency.
This gives rise to a technique factor 1/C ≈ 10−2 ∼ 10−1,
unfavourable for the sensitivity [45]. However, even though
the technique factor may deteriorate, the sensitivity by one
or two orders of magnitudes, the temperature-independent
feature of our proposed system will be still attractive for a
room-temperature sensor.

C. Comparison with oscillator under classical driving

Before concluding this paper, we compare our proposal
with the classical mass-sensing scheme in Ref. [16]. In
particular, we focus on the effects of thermal fluctuation on
measurement sensitivity.

Thermal fluctuations are one of the most significant noise
sources limiting the measurement sensitivity in the traditional
scheme. In order to suppress the thermal-noise effect, one can
drive the oscillator with an amplitude much larger than that

of the thermal fluctuations. As shown in Ref. [16], the mass
sensitivity under classical driving is

ηM = δM√

f

= 2M

√
Eth

Edr

1

Qω0
, (9)

where 
f is the measurement bandwidth, and Eth = kBT and
Edr = Mω2

0x
2
dr are the thermal energy at temperature T and the

driving energy corresponding to an amplitude xdr, respectively.
In order to suppress the thermal fluctuations (Edr > Eth), the
driving amplitude should be

xdr >
√

2nth
x, (10)

where 
x = √
�/(2Mω0) is the zero-point-fluctuation am-

plitude. The large driving amplitude means injection of a
large amount of energy into the system, which may limit the
application of this technique if the oscillator cannot be driven
so hard.

In contrast, making use of quantum coherence of the qubit,
our proposal converts the thermal fluctuations into a useful
measurement resource. Notice that, in Eq. (6) of the main text,
the mass sensitivity is proportional to T −1/2. Large thermal
fluctuations at high temperature improve the sensitivity. This
counterintuitive temperature dependence arises from the fact
that, in our proposal, the oscillator-frequency change is
monitored by the qubit coherence instead of by directly
measuring the oscillator variables. In this sense, the quantum
nature of the measurement principle causes the distinguishing
feature in our proposal.

Furthermore, we consider the energy injected into the oscil-
lator system during the mass-sensing process. The amplitude
of the oscillator driven by the qubit-state-dependent force is

x (t) = 2λ
x

ω0

(
sec

ω0t

2N
− 1

)
sin

ω0t

2
. (11)

Using the parameters in Fig. 3 (i.e., the coupling strength
λ = 0.001ω0 and the control-pulse number N ∼ 102 to 103),
the maximum amplitude

xmax = 2Nλ

ω0

x (12)

is much smaller than the thermal-fluctuation amplitude, i.e.,
xmax � √

2nth
x. In other words, during the mass-sensing
process, the oscillator state, which is perturbed by the
qubit, only slightly deviates from the thermal-equilibrium
state. Thus, our proposal provides a different measurement
principle for mass sensing at low excitation power, which is
complementary to the existing techniques in different practical
situations.

IV. CONCLUSION

In this paper, we propose an ultrasensitive measurement
scheme based on a coupled qubit-oscillator system. By using
the many-pulse DD technique, the qubit coherence exhibits a
time-comb structure, which enables the precise measurement
of the oscillator frequency. The combination of advanced
techniques on NV centers in diamond and optically levitated
nanoparticles, which serve as long-lived qubits and high-
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quality oscillators, respectively, makes the room-temperature
ultrasensitive mass spectrometer ready to be realized.
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