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Cold-atom experiments in optical lattices offer a versatile platform to realize various topological quantum
phases. A key challenge in those experiments is to unambiguously probe the topological order. We propose a
method to directly measure the characteristic topological invariants (order) based on the time-of-flight imaging
of cold atoms. The method is generally applicable to detection of topological band insulators in one, two, or
three dimensions characterized by integer topological invariants. Using detection of the Chern number for the
two-dimensional anomalous quantum Hall states and the Chern-Simons term for the three-dimensional chiral
topological insulators as examples, we show that the proposed detection method is practical, and robust to typical
experimental imperfections such as limited imaging resolution, inhomogeneous trapping potential, and disorder
in the system.
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The study of topological phases of matter, such as topolog-
ical band insulators and superconductors, has attracted a lot
of interest in recent years [1–3]. Various topological phases
have been found associated with the free-fermion band theory
and classified into a periodic table according to the system
symmetry and dimensionality [4–6]. The topology of the band
structure is characterized by a topological invariant taking only
integer values, which gives the most direct and unambiguous
signal of the corresponding topological order. To experimen-
tally probe the topological order, it is desirable to have a way
to measure the underlying topological invariant. For some
phase, the topological invariant may manifest itself through
certain quantized transport property or characteristic edge state
behavior [7]. For instance, the quantized Hall conductivity is
proportional to the underlying topological Chern number that
characterizes the integer quantum Hall states [7–9]. For many
other topological phases in the periodic table, it is not clear yet
how to experimentally extract information of the underlying
topological invariants.

Cold atoms in optical lattices provide a powerful experi-
mental platform to simulate various quantum states of matter.
In particular, recent experimental advance in engineering of
spin-orbit coupling and artificial gauge field for cold atoms
[10–15] has pushed this system to the forefront for realization
of various topological quantum phases [16–22]. The detection
method for cold-atom experiments is usually quite different
from those for conventional solid-state materials. A number
of intriguing proposals have been made for detection of
certain topological order in cold-atom experiments, such as
those based on the dynamic response [23–26], the Bragg
spectroscopy [27,28], imaging of the edge states [29], counting
peaks in the momentum distribution [30], or detection of the
Berry phase or curvature [26,31–38]. Most of these proposals
are targeted to detection of the quantum Hall phase. Similar
to solid-state systems, it is not clear yet how to probe the
topological invariants for various other topological phases in
the periodic table.
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In this Rapid Communication, we propose a general method
to directly measure the topological invariants in cold-atom
experiments based on the state-of-the-art time-of-flight (TOF)
imaging. The TOF imaging, combined with the quench dynam-
ics from the Hamiltonian, has been exploited in recent schemes
for detection of the Chern numbers associated with two-band
topological models in one- or two-dimensional optical lattices
[26]. Compared with the previous work, our method has the
following distinctive features: (1) it is applicable to detection of
any topological band insulators with spin degrees of freedom in
one, two, or three dimensions that are characterized by integer
topological invariants in the periodic table. (2) The method
is not limited by the requirement of a two-band structure for
the Hamiltonian [26,31] or occupation of only the lowest band
[33]. Instead, it detects the topological invariants associated
with each band for any multiband Hamiltonians. (3) Our
proposed detection method is very robust to practical experi-
mental imperfections. As examples, we numerically simulate
two experimental detections: one for the Chern number of
the two-dimensional (2D) anomalous quantum Hall phase and
the other for the Chern-Simons term of the three-dimensional
(3D) chiral topological insulator. Both simulations show that
accurate values of the topological invariants can be obtained
experimentally under imaging resolution of a few to a dozen
pixels along each spatial dimension, even with inhomogeneous
traps and random potentials or interactions. The robustness is
also found in Ref. [26] for detection of the Chern number in a
different 2D model using the tomography method.

The topological band insulators are described by effective
free-fermion Hamiltonians, typically with complicated spin-
orbit couplings. We consider a real-space Hamiltonian with N

spin (pseudospin) degrees of freedom, referred to as |m〉 with
m = 1,2, . . . ,N . In the momentum k space, the Hamiltonian
has N bands and is described by an N -by-N Hermitian
matrix H (k). The energy spectrum is obtained by solving the
Schrödinger equation in the momentum space

H (k)|ub(k)〉 = Eb(k)|ub(k)〉, (1)

where b = 1,2, . . . ,N is the band index and |ub(k)〉 denotes
the corresponding Bloch state with eigenenergy Eb(k). For
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simplicity, we assume the bands are nondegenerate. Expressed
in the original spin basis |m〉, the Bloch state has the form

|ub(k)〉 =
N∑

m=1

cbm(k)|m〉, (2)

where cbm(k) is the Bloch wave function with normalization∑
m |cbm(k)|2 = 1.
A topological invariant can be defined for each band, which

usually takes the form of the Chern numbers for even spatial
dimensions and the Chern-Simons terms (or the winding
numbers in certain cases) for odd spatial dimensions. The
Chern numbers (or Chern-Simons terms) can be expressed
as momentum-space integrals of the Berry curvature and
connection associated with the Bloch state |ub(k)〉. For
instance, in 2D (x,y plane), the Chern number Cb for the
band b is defined by

Cb = − 1

2π

∫
BZ

dkxdkyF
(b)
xy (k), (3)

where the Berry curvature F (b)
xy (k) ≡ ∂kx

A(b)
y (k) − ∂ky

A(b)
x (k)

and the Berry connection A(b)
μ (k) ≡ 〈ub(k)|i∂kμ

|ub(k)〉(μ =
x,y), and the integration is over the whole Brillouin zone (BZ)
which forms a compact manifold.

To probe the topological invariant such as the Chern number
in Eq. (3), what we need to measure is the Bloch wave function
cbm(k). The Berry connection and curvature can be obtained
as derivatives of cbm(k) and the Chern number is just a twofold
integration of F (b)

xy (k). For cold atoms in an optical lattice, we
can map out the momentum distribution with the conventional
time-of-flight imaging and separate different spin components
through a magnetic field gradient [39]. Through the band
mapping technique employed in experiments [17], populations
in different bands are mapped to atomic densities in different
spatial regions, so by this measurement we can get information
about nbm(k) = |cbm(k)|2 for all occupied bands. To extract
the wave function cbm(k), it is also crucial to measure the
phase information. For this purpose, we apply an impulsive
pulse right before the flight of atoms to induce a rotation
between different spin components [40]. The rotation should
keep the atomic momentum unchanged but mix their spins. For
instance, a π/2 rotation between spin components m and m′

induces the transition cbm(k) → [cbm(k) + cbm′ (k)]/
√

2 and
cbm′ (k) → [−cbm(k) + cbm′ (k)]/

√
2, which can be achieved

by applying two copropagating Raman beams or a radio
frequency pulse that couples the spin components m,m′
and preserves the momentum k. The pulse is short so
that expansion of the atomic cloud is negligible during the
pulse. For Raman pairs, relative phase coherence is kept
but absolute phase locking is not necessary. The angular
momentum change associated with the spin flip can be
transferred from the Raman pair and selection rules have to
be followed according to the specific atomic levels used. With
this prior π/2 pulse, TOF imaging then measures the densities
|cbm(k) ± cbm′ (k)|2/2, whose difference gives the interference
terms Re[c∗

bm(k)cbm′ (k)]. By the same method but with a
different phase of the π/2 pulse, one can similarly measure
the imaginary part Im[c∗

bm(k)cbm′ (k)] between any two spin
components m and m′. The measurement of the population and
interference terms c∗

bm(k)cbm′ (k) for all m,m′ fully determines

the Bloch wave function cbm(k) up to arbitrariness of an
overall phase cbm(k) → cbm(k)eiϕ(k), where ϕ(k) in general
is k dependent but independent of the spin index.

In experiments, one needs to discretize the TOF image
and measure the density distribution at each pixel of the
BZ. The wave function cbm(k) is fixed up to an overall
phase ϕ(k) at each pixel with the above method. This
arbitrary k-dependent phase poses an obstacle to measurement
of the topological invariants. To overcome this difficulty,
we use a different way to calculate the Berry curvature
based on the so-called U (1) link defined for each pixel
kJ of the discrete BZ [41]. The U (1) link is defined
as U (b)

ν (kJ) ≡ 〈ub(kJ)|ub(kJ+ν̂)〉/|〈ub(kJ)|ub(kJ+ν̂)〉|, where
ν̂ = x̂,ŷ,ẑ, a unit vector in the corresponding direction. A
gauge-independent field is obtained from the U (1) link as
[41]

F (b)
μν (kJ) ≡ i ln

U (b)
μ (kJ)U (b)

ν (kJ+μ̂)

U
(b)
μ (kJ+ν̂)U (b)

ν (kJ)
, (4)

where F (b)
μν (kJ) ∈ (−π,π ] corresponds to a discrete version of

the Berry curvature and it reduces to the latter in the large
size limit. F (b)

μν (kJ) can be obtained directly from the TOF
images associated with the pixel kJ of the BZ, independent
of the overall phase factor ϕ(k). The topological invariant can
be calculated from F (b)

μν (kJ) by a direct summation over all
the pixels of the BZ [instead of k integration in Eq. (3)]. This
gives a simple and robust way to experimentally extract the
topological invariant from the TOF images.

The detection method described above is general and
applicable to various topological phases in different spatial
dimensions. To show that the method is robust to experimental
imperfections, in the following we numerically simulate
detection of two kinds of topological invariants: one is the
Chern number associated with the 2D quantum anomalous
Hall effect and the other is the Chern-Simons term associated
with the 3D chiral topological insulator.

2D quantum anomalous Hall (QAH) effect. The conven-
tional quantum Hall effect requires application of a strong mag-
netic field. For the QAH effect, a combination of spontaneous
magnetization and spin-orbit coupling gives rise to quantized
Hall conductivity in the absence of an external magnetic field
[42]. In solid-state systems, a recent experiment has observed
this peculiar phenomenon in thin films of a magnetically doped
topological insulator [43]. A simple square-lattice Hamiltonian
which captures the essential physics of the QAH effect has the
following form in real space:

HQAH = λ
(x)
SO

∑
r

[(a†
r↑ar+x̂↓ − a

†
r↑ar−x̂↓) + H.c.]

+ iλ
(y)
SO

∑
r

[(a†
r↑ar+ŷ↓ − a

†
r↑ar−ŷ↓) + H.c.]

− t
∑
〈r,s〉

(a†
r↑as↑−a

†
r↓as↓) + h

∑
r

(a†
r↑ar↑−a

†
r↓ar↓),

(5)

where a
†
rσ (arσ ) is the creation (annihilation) operator of the

fermionic atom with pseudospin σ = (↑,↓) at site r, and x̂,ŷ

are unit lattice vectors along the x,y directions. The first term in
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the Hamiltonian describes the spin-orbit coupling. The second
and the third terms denote, respectively, the spin-conserved
nearest-neighbor hopping and the Zeeman interaction. It was
proposed recently that HQAH may be realized with cold
fermionic atoms trapped in a blue-detuned optical lattice
[44].

In momentum space, this Hamiltonian has two Bloch bands.
The topological structure of this model is characterized by the
Chern number defined in Eq. (3). Direct calculation shows that
C2 = −C1 = sgn(h) when 0 < |h| < 4t and C2 = −C1 = 0
otherwise. Experimentally, one can measure F (b)

μν (kJ) by our
proposed method to extract the Chern number through Cb ≈
−∑

J F (b)
xy (kJ)/(2π ), where the band index b = 1,2.

To simulate experiments, we consider a finite-size lattice
with open boundary condition. In addition, we add a global
harmonic trap of the form VT = maω

2r2/2 for atoms of
mass ma as in real experiments and use γT = maω

2a2/2t to
parametrize the relative strength of the trap, where a denotes
the lattice constant. To account for possible experimental
noise, we add a random perturbation Hamiltonian of the
following general form

HP = γPt
∑

〈r,s〉,α,β

a†
r,αPrα,sβas,β , (6)

where γP is a dimensionless parameter characterizing the
strength of random perturbation, 〈r,s〉 denotes the neighboring
sites, and P is a random Hermitian matrix with its largest
eigenvalue normalized to unity. We numerically diagonalize
the real-space Hamiltonian on a finite lattice with different
number of sites and calculate the corresponding momentum
density distributions [45]. An an example, in Fig. 1, we show
the reconstructed density distribution in two complementary
bases ({|↑〉,|↓〉}, {|↑〉 ± |↓〉}) under open boundary condition
with a harmonic trap and random perturbations (more detailed
calculation results are shown in the Supplemental Material
[45]). The Chern numbers for each case are calculated and
listed in Table I under choices of different parameters and
system sizes. The extracted Chern numbers exactly equal
the corresponding theoretical values, even under a small
system size and significant disorder potentials. This is so
as Chern numbers characterize the topological property,

FIG. 1. (Color online) Density distributions in momentum space
for the first band of HQAH under two different spin bases with lattice
size 10 × 10 and open boundary condition. The total density at each
k is normalized to unity [e.g., n|↑〉(k) + n|↓〉(k) = 1] corresponding to
the unit filling. The parameters are chosen to be λ

(x)
SO = λ

(y)
SO = h = t ,

γT = 0.01t , and γP = 0.1t .

TABLE I. Simulated detection results of the topological invari-
ants for different lattice sizes under various conditions (periodic
boundary condition, open boundary condition, with trap, with both
trap and perturbation Hamiltonians). For the QAH, the invariant is
the Chern number for the first band (C1), whereas for the CTI, it is
the Chern-Simons term for the middle flat band (CS2/π ). Results for
both the nontrivial phase (h/t = 1 for the QAH and h/t = 2 for the
CTI) and the trivial phase (h/t = 5 for the QAH and h/t = 4 for the
CTI) are presented. The parameters are the same as in Figs. 1 and 2.

h/t Size Periodic Open Trap Pert.+trap

QAH 1 42 −1 −1 −1 −1
1 102 −1 −1 −1 −1
5 102 0 0 0 0

CTI 2 103 1.041 1.056 1.055 1.080
2 123 1.031 1.009 0.981 1.014
4 103 0 −2 × 10−4 1.1 × 10−3 1.2 × 10−3

which does not change under perturbations. Furthermore, our
detection method through measurement ofF (b)

μν (kJ) guarantees
an integer value for the extracted Chern number [41], so
it automatically corrects small errors due to experimental
imperfections. Reference [26] also points out the robustness
of the method of Fukui et al. [41] in computing the Chern
number.

3D chiral topological insulator. Chiral topological insula-
tors (CTIs) are protected by the chiral symmetry (also known
as the sublattice symmetry) and belong to the AIII class in
the periodic table for topological phases [4–6]. A simple
Hamiltonian that supports 3D CTIs has the form [46]

HCTI = t

2

∑
r

3∑
j=1

[ψ†
r (iG3+j − G7)ψr+ej

+ H.c.]

+h
∑

r

ψ†
r G7ψr, (7)

where the operator ψ
†
r = (a†

r,1,a
†
r,2,a

†
r,3) with a

†
r,α (α = 1,2,3)

creating a fermion at site r with spin state α, e1,e2,e3 are
unit vectors along the x,y,z directions, and Gν (ν = 4,5,6,7)
denotes the νth Gell-Mann matrix [45]. In the momentum
space, this model Hamiltonian has three gapped bands, with a
zero-energy flat band in the middle protected by the chiral
symmetry. An experimental scheme has been proposed to
realize this model Hamiltonian with cold fermionic atoms
in an optical lattice [47]. The topological property of this
Hamiltonian can be described by the Chern-Simons term. For
the bth (b = 1,2,3) Bloch band, the Chern-Simons term CSb

takes the form

CSb = 1

4π

∫
BZ

dkεμντA(b)
μ (k)∂kν

A(b)
τ (k), (8)

where A(b)
μ (k) = 〈ub(k)|i∂kμ

|ub(k)〉(μ = x,y,z). Explicit cal-
culations show that CS3 = CS1 = CS2/4 = π�(h)/4 with
�(h) = −2 for |h| < t, �(h) = 1 for t < |h| < 3t , and �(h) =
0 otherwise.

As an example application of our general detection method,
here we show how to measure the topological invariant CSb

through the TOF imaging. As shown in Fig. 2(a), we first use
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FIG. 2. (Color online) (a) An illustration to show reconstruction
of the 3D atomic momentum distribution by the TOF imaging. (b)
Momentum distribution in one particular spin basis (other results are
shown in the Supplemental Material [45]) for the middle flat band of
HCTI with open boundary condition under lattice size 12 × 12 × 12.
Layers corresponding to kz = −π, − π/4,π/2 are displayed. The
parameters are h = 2t , γT = 0.001t , and γP = 0.1t .

the TOF imaging to reconstruct the 3D atomic momentum
distribution. After expansion of the atomic cloud, we apply
a pair of copropagating Raman beams focused in the z axis
to transfer a layer of atoms with a fixed z coordinate zi to
another hyperfine or Zeeman level denoted as |r〉. We apply the
imaging laser to couple the atoms only on the |r〉 level, so the
imaging reads out the 2D momentum distribution n(kx,ky,kzi

)
with a fixed kzi

∝ zi . We repeat this measurement by scanning
the coordinate zi so that each image gives a 2D distribution
n(kx,ky,kzi

) with a different kzi
. By this method, we reconstruct

the 3D momentum distribution n(kx,ky,kz), where l images
give l pixels of kz.

To extract the Chern-Simons term CSb, we measure the
3D momentum distribution nbm(kx,ky,kz) in different spin
bases to obtain the Bloch wave function cbm(k). We then use
the measured cbm(k) to calculate the gauge-independent field
F (b)

μν (kJ) defined in Eq. (4). By solving a discrete version of
the equation ∇ × A = F in the momentum space with the
Coulomb gauge ∇ · A = 0, we obtain the Berry connection
A(b)

μ (kJ) from F (b)
μν (kJ). With A(b)

μ , we extract the Chern-
Simons term CSb using Eq. (8).

The Chern-Simons terms extracted from our numerically
simulated experiments are shown in Table I under various
conditions. Different from the Chern number case, extraction
of the Chern-Simons term using Eq. (8) does not guarantee
the result to be an integer, so the calculated values are subject
to the influence of numerical inaccuracies and experimental
noise. Nevertheless, from the results listed in Table I, we see
that the extracted values quickly approach the corresponding
theoretical limits when we take a dozen of the pixels along
each spatial dimension in the time-of-flight imaging and the
detection method remains robust to experimental imperfec-
tions (traps and random perturbation Hamiltonians change the
result by less than 3%).

In summary, we have proposed a general method to
experimentally measure the topological invariants for ultracold
atoms. The method is shown to be robust to various experimen-
tal imperfections through numerically simulated experiments.
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Phys. 83, 1523 (2011).
[15] V. Galitski and I. B. Spielman, Nature (London) 494, 49 (2013).

[16] M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen,
and U. Sen, Adv. Phys. 56, 243 (2007).

[17] I. Bloch, J. Dalibard, and S. Nascimbène, Nat. Phys. 8, 267
(2012).

[18] S.-L. Zhu, H. Fu, C.-J. Wu, S.-C. Zhang, and L.-M. Duan, Phys.
Rev. Lett. 97, 240401 (2006).

[19] S.-L. Zhu, L.-B. Shao, Z. D. Wang, and L.-M. Duan, Phys. Rev.
Lett. 106, 100404 (2011).

[20] B. Béri and N. R. Cooper, Phys. Rev. Lett. 107, 145301
(2011).

[21] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes,
and I. Bloch, Phys. Rev. Lett. 111, 185301 (2013).

[22] H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Burton, and
W. Ketterle, Phys. Rev. Lett. 111, 185302 (2013).

[23] L. B. Shao, S.-L. Zhu, L. Sheng, D. Y. Xing, and Z. D. Wang,
Phys. Rev. Lett. 101, 246810 (2008).

[24] A. Dauphin and N. Goldman, Phys. Rev. Lett. 111, 135302
(2013).

[25] L. Wang, A. A. Soluyanov, and M. Troyer, Phys. Rev. Lett. 110,
166802 (2013).

[26] P. Hauke, M. Lewenstein, and A. Eckardt, Phys. Rev. Lett. 113,
045303 (2014).

[27] X.-J. Liu, X. Liu, C. Wu, and J. Sinova, Phys. Rev. A 81, 033622
(2010).

041601-4

http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1038/nature08916
http://dx.doi.org/10.1038/nature08916
http://dx.doi.org/10.1038/nature08916
http://dx.doi.org/10.1038/nature08916
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1063/1.3149495
http://dx.doi.org/10.1063/1.3149495
http://dx.doi.org/10.1063/1.3149495
http://dx.doi.org/10.1063/1.3149495
http://dx.doi.org/10.1088/1367-2630/12/6/065010
http://dx.doi.org/10.1088/1367-2630/12/6/065010
http://dx.doi.org/10.1088/1367-2630/12/6/065010
http://dx.doi.org/10.1088/1367-2630/12/6/065010
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1103/RevModPhys.58.519
http://dx.doi.org/10.1103/RevModPhys.58.519
http://dx.doi.org/10.1103/RevModPhys.58.519
http://dx.doi.org/10.1103/RevModPhys.58.519
http://dx.doi.org/10.1038/nature08609
http://dx.doi.org/10.1038/nature08609
http://dx.doi.org/10.1038/nature08609
http://dx.doi.org/10.1038/nature08609
http://dx.doi.org/10.1103/PhysRevLett.102.046402
http://dx.doi.org/10.1103/PhysRevLett.102.046402
http://dx.doi.org/10.1103/PhysRevLett.102.046402
http://dx.doi.org/10.1103/PhysRevLett.102.046402
http://dx.doi.org/10.1103/PhysRevLett.109.095301
http://dx.doi.org/10.1103/PhysRevLett.109.095301
http://dx.doi.org/10.1103/PhysRevLett.109.095301
http://dx.doi.org/10.1103/PhysRevLett.109.095301
http://dx.doi.org/10.1103/PhysRevLett.109.095302
http://dx.doi.org/10.1103/PhysRevLett.109.095302
http://dx.doi.org/10.1103/PhysRevLett.109.095302
http://dx.doi.org/10.1103/PhysRevLett.109.095302
http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1038/nature11841
http://dx.doi.org/10.1038/nature11841
http://dx.doi.org/10.1038/nature11841
http://dx.doi.org/10.1038/nature11841
http://dx.doi.org/10.1080/00018730701223200
http://dx.doi.org/10.1080/00018730701223200
http://dx.doi.org/10.1080/00018730701223200
http://dx.doi.org/10.1080/00018730701223200
http://dx.doi.org/10.1038/nphys2259
http://dx.doi.org/10.1038/nphys2259
http://dx.doi.org/10.1038/nphys2259
http://dx.doi.org/10.1038/nphys2259
http://dx.doi.org/10.1103/PhysRevLett.97.240401
http://dx.doi.org/10.1103/PhysRevLett.97.240401
http://dx.doi.org/10.1103/PhysRevLett.97.240401
http://dx.doi.org/10.1103/PhysRevLett.97.240401
http://dx.doi.org/10.1103/PhysRevLett.106.100404
http://dx.doi.org/10.1103/PhysRevLett.106.100404
http://dx.doi.org/10.1103/PhysRevLett.106.100404
http://dx.doi.org/10.1103/PhysRevLett.106.100404
http://dx.doi.org/10.1103/PhysRevLett.107.145301
http://dx.doi.org/10.1103/PhysRevLett.107.145301
http://dx.doi.org/10.1103/PhysRevLett.107.145301
http://dx.doi.org/10.1103/PhysRevLett.107.145301
http://dx.doi.org/10.1103/PhysRevLett.111.185301
http://dx.doi.org/10.1103/PhysRevLett.111.185301
http://dx.doi.org/10.1103/PhysRevLett.111.185301
http://dx.doi.org/10.1103/PhysRevLett.111.185301
http://dx.doi.org/10.1103/PhysRevLett.111.185302
http://dx.doi.org/10.1103/PhysRevLett.111.185302
http://dx.doi.org/10.1103/PhysRevLett.111.185302
http://dx.doi.org/10.1103/PhysRevLett.111.185302
http://dx.doi.org/10.1103/PhysRevLett.101.246810
http://dx.doi.org/10.1103/PhysRevLett.101.246810
http://dx.doi.org/10.1103/PhysRevLett.101.246810
http://dx.doi.org/10.1103/PhysRevLett.101.246810
http://dx.doi.org/10.1103/PhysRevLett.111.135302
http://dx.doi.org/10.1103/PhysRevLett.111.135302
http://dx.doi.org/10.1103/PhysRevLett.111.135302
http://dx.doi.org/10.1103/PhysRevLett.111.135302
http://dx.doi.org/10.1103/PhysRevLett.110.166802
http://dx.doi.org/10.1103/PhysRevLett.110.166802
http://dx.doi.org/10.1103/PhysRevLett.110.166802
http://dx.doi.org/10.1103/PhysRevLett.110.166802
http://dx.doi.org/10.1103/PhysRevLett.113.045303
http://dx.doi.org/10.1103/PhysRevLett.113.045303
http://dx.doi.org/10.1103/PhysRevLett.113.045303
http://dx.doi.org/10.1103/PhysRevLett.113.045303
http://dx.doi.org/10.1103/PhysRevA.81.033622
http://dx.doi.org/10.1103/PhysRevA.81.033622
http://dx.doi.org/10.1103/PhysRevA.81.033622
http://dx.doi.org/10.1103/PhysRevA.81.033622


RAPID COMMUNICATIONS

DIRECT PROBE OF TOPOLOGICAL ORDER FOR COLD ATOMS PHYSICAL REVIEW A 90, 041601(R) (2014)

[28] N. Goldman, J. Beugnon, and F. Gerbier, Phys. Rev. Lett. 108,
255303 (2012).

[29] N. Goldman, J. Dalibard, A. Dauphin, F. Gerbier, M. Lewen-
stein, P. Zoller, and I. B. Spielman, Proc. Natl. Acad. Sci. USA
110, 6736 (2013).

[30] E. Zhao, N. Bray-Ali, C. J. Williams, I. B. Spielman, and I. I.
Satija, Phys. Rev. A 84, 063629 (2011).

[31] E. Alba, X. Fernandez-Gonzalvo, J. Mur-Petit, J. K. Pachos, and
J. J. Garcı́a-Ripoll, Phys. Rev. Lett. 107, 235301 (2011).

[32] H. M. Price and N. R. Cooper, Phys. Rev. A 85, 033620 (2012).
[33] X.-J. Liu, K. T. Law, T. K. Ng, and P. A. Lee, Phys. Rev. Lett.

111, 120402 (2013).
[34] D. A. Abanin, T. Kitagawa, I. Bloch, and E. Demler, Phys. Rev.

Lett. 110, 165304 (2013).
[35] M. Atala, M. Aidelsburger, J. T. Barreiro, D. Abanin,

T. Kitagawa, E. Demler, and I. Bloch, Nat. Phys. 9, 795 (2013).
[36] N. Goldman, E. Anisimovas, F. Gerbier, P. Öhberg, I. B.
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