
Mechanism Design and Implementation for Lung Exchange∗

Suiqian Luo and Pingzhong Tang
Institute for Interdisciplinary Information Sciences,

Tsinghua University, Beijing, China
luosq13@mails.tsinghua.edu.cn, kenshin@tsinghua.edu.cn

Abstract
We explore the mechanism design problem for lung
exchange and its implementation in practice. We
prove that determining whether there exists a non-
trivial solution of the lung exchange problem is NP-
complete. We propose a mechanism that is indi-
vidually rational, strategy-proof and maximizes ex-
change size. To implement this mechanism in prac-
tice, we propose an algorithm based on Integer Lin-
ear Program and another based on search. Both of
our algorithms for this mechanism yield excellent
performances in simulated data sets.

1 Introduction
Barter exchange has been an important aspect of electronic
commerce and multiagent system. Among many forms of
barter exchanges, one major form is live organ exchange.
Over the past decade, organ exchange has become a sub-
ject of intensive study in the AI and EC community, with the
prominent example of kidney exchange [Roth et al., 2004;
Abraham et al., 2007; Awasthi and Sandholm, 2009; Ash-
lagi and Roth, 2011; Dickerson et al., 2012a; 2012b; 2013;
Dickerson, 2014]. Nowadays, transplantation from kidney
exchange accounts for about 10% of all the living donor kid-
ney transplantations in the US [Ergin et al., 2014]. Lately,
such idea has been investigated across multiple different types
of organs, including kidney and liver [Dickerson and Sand-
holm, 2014].

The idea of live organ exchange is as follow: a patient
might be able to find a donor (or several donors) who is will-
ing to donate an organ. Most often, the patient and the donor
may have incompatible blood or tissue type, or fail a cross-
match test [Blum et al., 2013]. As a result, they may seek
to swap organ with other pairs that suffer the same difficulty
(and it is legal in some countries). After the exchange, the
pair donate an organ to help some other compatible patient in
the system, while obtaining a compatible organ in return.

∗This work was supported by the National Basic Research Pro-
gram of China Grant 2011CBA00300, 2011CBA00301, the Natu-
ral Science Foundation of China Grant 61033001, 61361136003,
61303077, a Tsinghua Initiative Scientific Research Grant and a
China Youth 1000-talent program.

In contrast to the rich theory and practice in kidney ex-
change, the exchange of lung, even though introduced two
decades ago, has not been practiced so far [Ergin et al., 2014].

A healthy human has five lung lobes where three lobes are
in the right lung and two lobes are in the left. In a lung ex-
change system, a patient who suffers from lung disease needs
two donors each to donate a lower lobe to replace the pa-
tient’s dysfunctional lungs. Each donor not only need to be
compatible with the patient in blood-type, but also need to do-
nate a lobe which is as heavy (and large) as the patient’s one.
In addition, both operations have to be carried out simultane-
ously so that the two lung donors participate at the same time.
To enter the exchange, each patient comes with two donors.
After the exchange, as argued in [Ergin et al., 2014], each
patient either gets matched with two compatible donors, or
remains unchanged with his own donors. In other words, it is
not feasible for a patient to exchange for only one compatible
donor because he does not meet the requirement for operation
and must wait for a second compatible donor. This might also
block his intended donor to donate for others.

In this paper, we build a model to study lung exchange
from a mechanism design point of view. Our goal is to de-
sign a mechanism that maximizes the size of the exchange,
subject to incentive constraints. We make the following con-
tributions.
• We prove that, given an instance of lung exchange prob-

lem, the problem of deciding if the instance admits a
feasible, non-trivial (different from the instance itself)
exchange is NP-complete.
• We put forward a class of mechanisms, coined the maxi-

mum lexicographical mechanism and prove it is individ-
ually rational, strategy-proof and maximizes exchange
size.
• The description of the mechanism contains an NP-hard

subroutine, thus, does not admit an efficient implemen-
tation. To mitigate this difficulty, we propose two prac-
tical implementations: one via Integer Linear Program-
ming (ILP) and the other via search. In particular, the
search is based on branch and bound and several useful
heuristics.
• We implement the mechanism based on the algorithms

above and test it on simulated data (based on popula-
tion distributions and realistic problem sizes). Each al-

gorithm has its own advantage and both of them run suf-
ficiently fast on these data.

The remainder of the paper is organized as follows. Sec-
tion 2 gives the definitions and model of lung exchange prob-
lem. Section 3 proves that the problem is NP-complete. Sec-
tion 4 presents the maximum lexicographical mechanism and
proves several desirable properties. Section 5 describes the
two algorithmic implementations and section 6 presents the
experiments on simulated data. Finally, in section 7, we
present our conclusion and suggest directions for future re-
search.

2 Preliminary
In a lung exchange market, each patient comes with two
donors, seeks to swap with other patients [Ergin et al., 2014].
After the exchange, each patient must either be matched with
two compatible donors, or remain staying with its original
donors. In other words, it is infeasible for a patient to ex-
change for one donor.

2.1 The lung exchange problem
We formulate a lung exchange problem as follows.

Definition 1. A lung exchange problem consists of a set of
donor-patient triples:
In = {(p1, d11, d12), (p2, d21, d22), , (pn, dn1, dn2)}
There are n patients and 2n donors in total. Each patient

pi comes with two donors di1 and di2 and seeks for two com-
patible donors. Each patient reports his compatible set Di

of all the donors (may be compatible with one of his own
donors) according to his blood-type and lung size. The out-
come of this problem is also a set of donor-patient triples:
Out = {(p1, r11, r12), (p2, r21, r22), , (pn, rn1, rn2)}
Each patient pi either is assigned with two different com-

patible donors ri1, ri2 ∈ Di, ri1 6= ri2 or remains the same:
ri1 = di1, ri2 = di2. Every donor must be assigned to exactly
one patient.

Definition 2. The exchange size is the number of the patients
who obtain two compatible donors.

Definition 3. We call the outcome with exchange size 0 a triv-
ial solution while the others are called non-trivial solutions,
since all patients remaining unchanged is always a feasible
but trivial outcome.

3 Problem complexity
In this section, we prove that even to decide whether there ex-
ists a non-trivial solution is computationally hard. Note that,
the same problem is clearly in P for kidney exchange. So our
result cannot be implied from the hardness result in [Abraham
et al., 2007].

Theorem 1. Given an instanceG of lung exchange, the prob-
lem of deciding if G admits a non-trivial solution is NP-
complete.

Proof. It is clear that this problem is in NP. For NP-hardness,
we reduce from perfect 3D-Matching problem which is the
problem of given disjoint sets X , Y , Z of size m, and a set

X Y Z

Figure 1: An instance of 3D-Matching problem

X Y Z T

Figure 2: The construction of lung exchange instance. The
red lines indicate that it is compatible with the first donor.
The blue and black lines indicate that it is compatible with the
second donor. The black lines are constructed by the triples
of 3D-Matching.

of triples T ⊆ X × Y × Z as shown in Figure 1, deciding if
there exists a disjoint subset M of T with size m.

We construct a lung exchange instance in the following
way. For each element in X , Y and Z, we construct one
patient as shown in Figure 2. For each triple in T , we also
construct a corresponding patient. The directed edge (a, b, i)
means that patient a is compatible with the ith donor of pa-
tient b (i = 1 or i = 2). In the set X and Y , we construct
two super cycles (xi, xi+1, 1) and (yi, yi+1, 1) which mean
that the patient is compatible with the first donor of the next
patient. For patient zi in Z, we add two edges (xi, zi, 1) and
(yi, zi, 2). For each triple ti = {xa, yb, zc} ∈ T , construct
four edges (zc, ti, 1), (zc, ti, 2), (ti, xa, 2) and (ti, yb, 2). The
construction can be done in polynomial time.

Let M be a perfect 3D-Matching. We will show the con-
struction admits a non-trivial solution. For all the triple ti
which ti /∈ M , ti will not participate in the exchange as
getting his own donors back. Since the m triples in M are
disjoint, all the remaining vertices will exactly get two com-
patible donors.

Conversely, suppose we have a non-trivial solution in the

construction. It is easy to see that all the vertexes in X , Y
and Z must be in the exchange, for any vertex in X or Y
within the exchange will lead to the super cycles. Since each
donor will be assigned to one patient, there will be exactly
m triples which get all the second donors of X and Y in the
non-trivial solution. Hence, the m triples constitute a perfect
3D-Matching in the original instance.

4 Mechanism design
In this section, we first introduce three desiderata for barter
exchange [Abdulkadiroğlu and Sönmez, 1999; Roth et al.,
2004]. From the perspective of mechanism design, [Sönmez,
1999] searches for the foundations on designing such a mech-
anism that satisfies all the three economic desiderata, and also
provides some positive and negative results. Due to the spe-
cial structure of agents preferences in our model, we can have
and we also propose a mechanism, coined maximum lexico-
graphical mechanism, that satisfies all these desiderata.
Definition 4. [Pareto efficient] An outcome of lung exchange
problem is Pareto efficient if there is no other outcome that
make all patients weakly better off and at least one patient
strictly better off (i.e., from unmatched to matched).
Definition 5. [Individually rational] An outcome of lung ex-
change problem is individually rational if no existing patient
strictly prefers his endowment to his assignment.
Definition 6. [Strategy-proof] A mechanism of lung ex-
change problem is strategy-proof if whenever a patient can
not get two compatible donors by reporting truthfully his
compatible set, he can not get two true compatible donors
by misreporting.

4.1 Maximum lexicographical Mechanisms
We now describe a class of mechanisms that satisfy all
these properties. In such mechanisms, we first generate
all the feasible exchange outcomes. Use the notation o =
(s, a1, a2, , an) to denote an outcome where s repre-
sents the exchange size and ai represents whether patient pi
gets two compatible donors: ai = 1 if yes while ai = 0 if
no. Our mechanism picks the largest outcome with respect
to the lexicographical order defined by o. That is, between
two outcomes, o1 and o2, we first compare their first number
s. If they are the same, then compare the second number, so
on and so forth. In other words, among all the outcomes of
the maximum size, we give priorities to the ones with smaller
indices. Note that, the indices can be any permutations on the
set of agents. So what we describe here is a class of mech-
anisms. Note also that our mechanisms differ from the cel-
ebrated serial dictatorship mechanism [Abdulkadiroğlu and
Sönmez, 1998] in that we first optimize for each agent one by
one, subject to the constraint that the exchange size is maxi-
mized.

We use the following example to illustrate our mechanism.
Example. There are 3 patients with 6 donors. The set
of donor-patient triples is {(1, 1, 2), (2, 3, 4), (3, 5, 6)} which
means that each patient i brings two donors i×2−1 and i×2
to participate in the exchange.

The compatible set for each patient is D1 = {3, 4}, D2 =
{1, 2, 5, 6}, D3 = {3, 4} as shown in Figure 3.

1

2

3

1

2

3

4

5

6

triple1

triple2

triple3

Figure 3: The graph of the example. The black lines represent
the compatibility between patient and donor.

All the feasible outcomes and the corresponding represen-
tation are
t1 = {(1, 1, 2), (2, 3, 4), (3, 5, 6)}, o1 = (0, 0, 0, 0)
t2 = {(1, 3, 4), (2, 1, 2), (3, 5, 6)}, o2 = (2, 1, 1, 0)
t3 = {(1, 1, 2), (2, 5, 6), (3, 3, 4)}, o3 = (2, 0, 1, 1)
With comparison that o2 > o3 > o1, the outcome

{(1, 3, 4), (2, 1, 2), (3, 5, 6)} will the output of this mecha-
nism as patient 1 and 2 swap their donors while patient 3 gets
his own back.

Theorem 2. The maximum lexicographical mechanism is in-
dividually rational, strategy-proof and maximizes exchange
size (hence Pareto efficient as well).

Proof. It is clear that the mechanism will give one of the out-
come with maximum exchange size which will directly lead
to the Pareto efficient property and the lung exchange prob-
lem guarantees that all patients will get back his own donors
in the worst case by definition, so the mechanism with maxi-
mum size must be Pareto efficient and individually rational.

It remains to show that the mechanism is strategy-proof.
Suppose that patient pi who reports true compatible set
can not get two compatible donors, and the outcome is
o1 = (s, a1, . . . , ai−1, 0, ai+1, . . . , an). If patient pi re-
ports fake compatible set D′i and get two true compatible
donors as a result, we record the new outcome as o2 =
(s′, a′1, . . . , a

′
i−1, 1, a

′
i+1, . . . , a

′
n). First of all, note that o2

is still feasible when patient pi reports truthfully. In other
words, both o1 and o2 are valid candidate outcomes when all
patients are truthful. It is clear that o1 6= o2. If o1 > o2,
then when patient pi reports fake set D′i, o2 could not be the
output which contradicts with the definition of maximum lex-
icographical mechanism. If o1 < o2, then when patient pi
reports real set, o1 could not be the output. Thus, it is im-
possible for patient pi to get two true compatible donors by
misreporting.

5 Algorithms to implement the mechanism
Clearly, in the statement of our mechanism, we access as a
blackbox for generating all feasible exchange outcomes. This
is clearly a computationally infeasible task. In this section,

we propose an ILP algorithm and a search algorithm [Sand-
holm, 2006] to implement the mechanism in practice.

5.1 ILP algorithm
We consider a formulation of the problem as an ILP with one
variable for each edge. Given an instance of lung exchange
In = {(p1, d11, d12), (p2, d21, d22), , (pn, dn1, dn2)},
construct a bipartite graph with one vertex for each pa-
tient, and one vertex for each donor. Add two edge
(pi, di1)1, (pi, di2)1 between each patient and its two own
donors as the red lines, as shown in Figure 3. For each donor
t in the compatible set Di, add an edge (pi, t)2 between pa-
tient pi and the corresponding donor as the black lines. If a
patient is compatible with his donor, there will be two edges
that link him with his compatible donor. All the variables of
edge are binary, taking values in {0, 1}. There are three kinds
of constraints for the graph.

The first is the consistency constraint, for all i ∈ [1, n]

(pi, di1)1 = (pi, di2)1

which means that each patient either gets two compatible
donors or remain matched with his own donors.

The second is the patient constraint, for all i ∈ [1, n]

(pi, di1)1 + (pi, di2)1 +
∑
t∈Di

(pi, t)2 = 2

which means that each patient will get exactly two donors
in any outcome.

The third is the donor constraint, for all i ∈ [1, n]

(pi, di1)1 +
∑
p

(p, di1)2 = (pi, di2)1 +
∑
p

(p, di2)2 = 1

which means that each donor must be assigned to one pa-
tient.

The objective function is the exchange size, formulated as

maxSize = max(n−
n∑

i=1

(pi, di1)1)

The first step of the ILP algorithm is to use the formula-
tion above to figure out the maximum exchange size. The
next step is to figure out the maximum outcome accord-
ing to the lexical order. The method is that we determine,
for the each patient pi, whether he can participate in the
exchange or not. Suppose the current partial outcome is
ocur = (maxSize, a1, . . . , ai−1, ai =?,×, . . . ,×), and all
the variables before ai has been determined. In order to fix
the maximum exchange size and the previous results, we add
the following constraint

n−
n∑

i=1

(pi, di1)1 = maxSize

ak = 1− (pk, dk1)1 for all 1 ≤ k < i

and maximize the new objective function

ai = max(1− (pi, di1)1)

1

2

3

1

2

3

4

5

6

patient1

patient2

patient3

1

2

3

Figure 4: The maximum matching graph of the Example

The number of variables in ILP algorithm is the number
of edges as shown in Figure 3, which is 2n +

∑n
i=1 |Di| =

O(n2), and the number of constraints is 4n + i = O(n).
Running the ILP algorithm for n + 1 times, finally we can
figure out the largest outcome for the instance and return the
corresponding solution.

5.2 A search algorithm
Alternatively, we can search the maximum outcome directly.
In the next two sections, we describe our search algorithm. In
this section, we describe how we introduce the basic flow of
the search algorithm and in the next section, we describe our
optimization techniques.

Our idea here is to make a set of decisions for each patient,
deciding whether he is in the solution or not. In principle, the
search algorithm works by simulating all possible ways of
making the decisions using depth-first search. At any node,
the question to branch on is which patient should be in or out.
Once the search reaches a leaf, we use the maximum match-
ing algorithm to verify whether the corresponding solution
exists.

The construction of the graph for maximum matching is
as follows. Given the patients who have been determined to
participate in the exchange, construct a bipartite graph with
two vertexes for each patient, and one vertex for each donor.
Add an edge with weight 0 between each patient and his own
donor as the red lines in Figure 4. At this point, the encod-
ing forms a perfect matching. Now, for each donor t in the
compatible set Di, add two edges with weight 1 between the
vertexes of patient pi to donor t as the black lines.

We use the Kuhn-Munkres algorithm [Mills-Tettey et al.,
2007] to solve the maximum matching. The algorithm as-
signs labels αi to each node in the left side, and labels βi to
each node in the right while maintaining the values for all i, j
that αi + βj ≥ wij . An edge in the bipartite graph is admis-
sible if and only if αi + βj = wij . The subgraph which con-
sists of the currently admissible edges is called the equality
subgraph. Finding the augmenting paths, the algorithm does
not stop adjusting the labels until there exists a perfect match-
ing in the equality subgraph. The perfect matching in equal-

1

2

3

1

2

3

4

5

6

1

2

3

1

2

3

1

2

3

4

5

6

1

2

3

1

2

3

1

2

3

4

5

6

1

2

3

1

2

3

1

2

3

4

5

6

1

2

3
(a) (b)

(c) (d)

0

0

1 1

1 1

+M

1 1

1 1

+M

-M

-M

0

0

1 1
1 1

-M

-M

+M
+M

1 1
1 1

0

0

Figure 5: The graph for weight adjustment. For clarity,
we designate matched edges with solid lines and unmatched
edges with dotted lines. The red lines indicate that the weight
of edge has been adjusted. (a) It is the original graph, which
total weight is 4. (b) Patient 1 is forced to leave, and the total
weight is 2M + 4 so that the upper bound is 2. (c) Patient 1
is forced to participate, and the total weight is 4. (d) Patient 1
is forced to participate while patient 2 is forced to leave. The
total weight is 4, but 4− 2M < 0, so it is impossible to come
out a feasible solution in this case.

ity subgraph is the maximum matching of the original graph.
If the sum of weights in maximum matching is exactly the
number of vertex in each side, it means that all patients can
get two compatible donors successfully. Otherwise, it is im-
possible to satisfy every patient in the exchange. In this way,
since we have found out all the feasible solutions, we com-
pare them in terms of their lexicographical order. We choose
the largest one as the output of the search algorithm.

5.3 Optimization
Upper bound
In the search process, the value of best solution so far is stored
globally. In any search node, if the upper bound of current
solution is not as large as the best solution so far, we prune
the node immediately.

In a non-leaf node, the patients are classified into three
classes: there are g patients forced to participate, h patients
forced to leave and the others have not been decided yet. Us-
ing the bipartite graph constructed above, we adjust the edges
with weight 0. We increase the weight of edges between pa-
tient pi and his own donors to a large number M (In imple-
mentation, 2n+ 1 is enough) in order to indicate that patient
pi is forced to get his own donors, and the weight of match-
ing will increase 2g ×M in total. We decrease the weight
to −M so that the patient is forced to participate. Suppose
the sum of weights in the maximum matching is sum. If
sum − 2g ×M < 0, then there is at least a patient, who is

forced to participate, has got his own donor or a patient, who
is forced to leave, has got a compatible donor. There will be
no feasible solution under this search node as shown in Fig-
ure 5(d). Otherwise, the value 1

2 (sum − 2g ×M) is served
as a upper bound of the exchange size.

In the maximum matching, if it happens that no patient
gets one compatible donor and one of his own donor, then
the matching yields a feasible solution with maximum ex-
change size. We compare it to the best solution found so far
and decide whether to update the current solution.

Techniques for deciding which patient to branch on
In the non-leaf node, the question which patient should be
branched on is critical to the efficiency of the search algo-
rithm. We propose three strategies to improve the search al-
gorithm and the simulation confirms that it is very helpful.

1. Invalid patient: We prefer to branch on the patient who
get one compatible donor and one his own at the current
maximum matching. We prefer to eliminate this kind
of patients. The intuition is clear: if there is no such
patients, the maximum matching has already formed a
feasible solution.

2. KM labels: In the Kuhn-Munkres algorithm for solving
maximum matching, each patient has 4 KM labels. We
prefer to choose the one whose sum of the labels is high.
The fact is that, if the patient is forced to leave, the upper
bound will decrease at least for the sum of the labels
according to Theorem 3.

3. Degree: For each patient, we calculate the out-degree of
the patient times the two in-degrees of the donors. We
prefer to branch on the patient with small degree since it
is difficult for him to participate the exchange. Branch-
ing on the small degree nodes first will have the effect
that the maximum matching returns a feasible solution
fast.

Theorem 3. In the Kuhn-Munkres algorithm, suppose that
wij = 0 and αi, βj are the current labels in a maximum
matching. If we adjust the weight of edge wij to a big pos-
itive value M (M > αi + βj), and record the previous and
new total weights of maximum matching as Wold, Wnew re-
spectively, then we have

Wnew −M ≤Wold − (αi + βj)

Proof. In the graph of maximum matching, we first change
the weight wij to αi + βj . This step will not alter the labels
of maximum matching and the total weight. After that, we
change the weight from αi + βj to M . The total weight of
matching will increase at most M − (αi + βj) so we have
Wnew ≤Wold +M − (αi + βj).

SinceWnew−M will be the new upper bound of the search
node and αi+βj ≥ wij = 0, we have successfully decreased
the bound in the searching paths. In the implementation, we
first find out all the invalid patients in the maximum matching.
Then we calculate the sum of labels for each invalid patient
and pick up the highest one. If there is more than one patient,
we finally choose the one with smallest degree and branch on
this patient.

Dynamic Kuhn-Munkres algorithm
In a searching node, once pick up a patient and branch on,
we adjust the weight of two edges in maximum matching and
go into a child searching node. The difference of graphs be-
tween a node and its child node is only the weight of two
edges. The time complexity of Kuhn-Munkres algorithm for
maximum matching is O(n3). Using the dynamic Hungarian
algorithm [Mills-Tettey et al., 2007], we can reduce the time
complexity to O(n2) from the previous matching result.

Once the weight of one edge is changed, at most one
matching edge has been broken up in the equality subgraph.
We adjust the labels of this broken edge, and re-do the process
of finding an augmenting path for another time. If an aug-
menting path is found, we flip the matched and unmatched
edges along this path. After that, we have found the maxi-
mum matching of the new weight. The time complexity of
finding an augmenting path is only O(n2). This technique
has improved the speed of search algorithm significantly.

Search twice
In the searching process, we need to figure out the maximum
exchange size as well as the largest outcome. Separating the
two targets can reduce the number of searching nodes. We
divide the search into two steps. In the first step, we focus
on finding the maximum exchange size so that we can prune
in the search when the upper bound of current exchange size
is not greater than the best size found so far and we reduce
the time of searching the largest outcome. In the second step,
since we have already known the best exchange size, we focus
on finding the solution with the largest outcome so that we
can prune the search when exchange size is smaller than the
best. This time, we have reduced the time for searching the
maximum exchange size. This technique also has improved
the searching speed significantly.

6 Experimental results
In this section, we implement the ILP algorithm and search
algorithm proposed in the previous section.

6.1 Experiments setup
All our experiments are performed in Linux (openSUSE
13.1), using a PC with four 3.2GHz Intel i5-3470 processors,
and 4GB of RAM. We use the CPLEX12.6 software which
can take benefit of multiple processors to serve as an ILP
solver in our experiment. The running time is recorded as the
time actually passed instead of the total time of which the four
processors use. In the search algorithm, we just use one pro-
cessor to implement and run our algorithm. Our experimental
data is carefully simulated based on the statistics of US pop-
ulations. Live donor lobar transplantation is especially com-
mon for these who suffer from cystic fibrosis or pulmonary
hypertension [Ergin et al., 2014]. Based on this, we simulate
all the patients come from these two classed with ratio 2.66
to 1, according to the statistics. The patient blood type dis-
tribution in total is 45.7% O, 40.4% A, 10.5% B, 3.4% AB.
The donor blood type distribution is 44% O, 42% A, 10% B,
4% AB. We generate the lung size of each patient uniformly.
Compatibility test is based on the blood type compatibility
and size compatibility. Besides the donation can be between

0 5 10 15 20
n=50

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

T
h
e
 r

u
n
n
in

g
 t

im
e
 (

se
co

n
d
s)

0 5 10 15 20
n=100 (3 cases unfinished in Search)

0

20

40

60

80

100

120

140

T
h
e
 r

u
n
n
in

g
 t

im
e
 (

se
co

n
d
s)

Search
ILP

0 5 10 15 20
n=150 (5 cases unfinished in Search)

0

50

100

150

200

250

T
h
e
 r

u
n
n
in

g
 t

im
e
 (

se
co

n
d
s)

0 5 10 15 20
n=200 (6 cases unfinished in Search)

0

100

200

300

400

500

600

T
h
e
 r

u
n
n
in

g
 t

im
e
 (

se
co

n
d
s)

Figure 6: The test results of ILP and search algorithm

the same blood-type, blood-type O can donate to any type
and blood-type AB can accept any type. The size compati-
bility is that a patient can only receive from a donor as heavy
as himself. After the generation of patients and donors, we
randomly group them into n donor-patient triples.

6.2 Experimental results
For n = 50, 100, 150, 200, we randomly generate 20 copies
of simulated instance and test on them the ILP algorithm and
search algorithm respectively. The running time is shown in
Figure 6 in which the test case is ordered by the running time
of search algorithm. There is a fraction of cases which does
not finish searching on different size. The ILP algorithm is
very stable and finish in all cases within a reasonable time.
In more than half of the cases, the search algorithm is much
faster than ILP algorithm and finishes in just a few seconds.

Our overall recommendation is that, first run the search al-
gorithm, if it does not return a solution in reasonable amount
of time, switch to the ILP algorithm. Since the search algo-
rithm runs faster than the ILP algorithm in a majority of cases,
this method can speed up for solving lung exchange problem.

7 Conclusion and future research
We have proposed a mechanism that is optimal, individually
rational and strategy-proof for the lung exchange problem.
Since the problem is NP-hard, we present two practical im-
plementation of our mechanism: one based on ILP formula-
tion and the other on search. Both algorithms are carefully
designed to speed up the search. Our experiments show that
the algorithms scale up to reasonably large instances and each
algorithm has its own advantages.

There are a number of future directions to expand the cur-
rent research. First, we would like to further speed up our
search algorithm. Ideas include branching on a set of patients
simultaneously. Second, we would also like to take into con-
siderations chains and sensitivity of the patients. Last but not
least, we would like to consider dynamic version of the prob-
lem and design desirable mechanisms for the dynamic set-
tings.

References
[Abdulkadiroğlu and Sönmez, 1998] Atila Abdulkadiroğlu

and Tayfun Sönmez. Random serial dictatorship and the
core from random endowments in house allocation prob-
lems. Econometrica, pages 689–701, 1998.

[Abdulkadiroğlu and Sönmez, 1999] Atila Abdulkadiroğlu
and Tayfun Sönmez. House allocation with existing ten-
ants. Journal of Economic Theory, 88(2):233–260, 1999.

[Abraham et al., 2007] David J Abraham, Avrim Blum, and
Tuomas Sandholm. Clearing algorithms for barter ex-
change markets: Enabling nationwide kidney exchanges.
In Proceedings of the 8th ACM conference on Electronic
commerce, pages 295–304. ACM, 2007.

[Ashlagi and Roth, 2011] Itai Ashlagi and Alvin Roth. Indi-
vidual rationality and participation in large scale, multi-
hospital kidney exchange. In Proceedings of the 12th
ACM conference on Electronic commerce, pages 321–322.
ACM, 2011.

[Awasthi and Sandholm, 2009] Pranjal Awasthi and Tuomas
Sandholm. Online stochastic optimization in the large:
Application to kidney exchange. In IJCAI, volume 9,
pages 405–411, 2009.

[Blum et al., 2013] Avrim Blum, Anupam Gupta, Ariel D.
Procaccia, and Ankit Sharma. Harnessing the power of
two crossmatches. In ACM Conference on Electronic
Commerce, EC ’13, Philadelphia, PA, USA, June 16-20,
2013, pages 123–140, 2013.

[Dickerson and Sandholm, 2014] John P. Dickerson and
Tuomas Sandholm. Multi-organ exchange: The whole is
greater than the sum of its parts. In Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelligence,
July 27 -31, 2014, Québec City, Québec, Canada., pages
1412–1418, 2014.

[Dickerson et al., 2012a] John P. Dickerson, Ariel D. Pro-
caccia, and Tuomas Sandholm. Dynamic matching via
weighted myopia with application to kidney exchange. In
AAAI, 2012.

[Dickerson et al., 2012b] John P. Dickerson, Ariel D. Pro-
caccia, and Tuomas Sandholm. Optimizing kidney ex-
change with transplant chains: theory and reality. In AA-
MAS, pages 711–718, 2012.

[Dickerson et al., 2013] John P Dickerson, Ariel D Procac-
cia, and Tuomas Sandholm. Failure-aware kidney ex-
change. In Proceedings of the fourteenth ACM conference
on Electronic commerce, pages 323–340. ACM, 2013.

[Dickerson, 2014] John P. Dickerson. Robust dynamic opti-
mization with application to kidney exchange. In Interna-
tional conference on Autonomous Agents and Multi-Agent
Systems, AAMAS ’14, Paris, France, May 5-9, 2014, pages
1701–1702, 2014.

[Ergin et al., 2014] Haluk Ergin, Tayfun Sönmez, and
M UtkuUnver. Lung exchange. Technical report, 2014.

[Mills-Tettey et al., 2007] G Ayorkor Mills-Tettey, Anthony
Stentz, and M Bernardine Dias. The dynamic hungarian
algorithm for the assignment problem with changing costs.
2007.

[Roth et al., 2004] Alvin E Roth, Tayfun Sönmez, and
M Ünver. Kidney exchange. The Quarterly Journal of
Economics, 119(2):457–488, 2004.

[Sandholm, 2006] Tuomas Sandholm. Optimal winner deter-
mination algorithms. Combinatorial auctions, pages 337–
368, 2006.

[Sönmez, 1999] Tayfun Sönmez. Strategy-proofness and es-
sentially single-valued cores. Econometrica, 67(3):677–
689, 1999.

