
Performance Evaluation 91 (2015) 150–169

Contents lists available at ScienceDirect

Performance Evaluation

journal homepage: www.elsevier.com/locate/peva

Receding learning-aided control in stochastic networks
Longbo Huang
IIIS, Tsinghua University, China

a r t i c l e i n f o

Article history:
Available online 3 July 2015

Keywords:
Receding learning-aided control
Detection
Network optimization
Queueing

a b s t r a c t

In this paper, we develop the Receding Learning-aided Control algorithm (RLC) for solving
optimization problems in general stochastic networks with potentially non-stationary
system dynamics. RLC is a low-complexity online algorithm that requires zero a-priori
statistical knowledge. It has three main functionalities. First, it detects changes of the
underlying distribution of systemdynamics via receding sampling. Then, it carefully selects
the sampled information and estimates a Lagrangemultiplier of anunderlying optimization
problem via dual-learning. Lastly, it incorporates the multiplier into an online system
controller via drift-augmentation. We show that RLC achieves near-optimal utility–delay
tradeoffs for stationary systems, while ensuring an efficient distribution-change detection
and a fast convergence speed when applied to non-stationary networks. The results in
this paper provide a general framework for designing joint detection-learning-control
algorithms and provide new understanding about the role-of-information and the power-
of-online-learning in network control.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Weconsider the following constrained network optimization problem.We are given a stochastic networkwith a dynamic
system state that evolves according to some potentially non-stationary probability law. Under each system state, a control
action is chosen and implemented. The action generates traffic into the network queues but also servesworkload from them.
The action also results in a system cost due to resource expenditure. The traffic, service, and cost are jointly determined by
the action and the system state. The objective is to minimize the expected cost given traffic/service constraints. This is a
general framework thatmodels many practical scenarios, for instance, computer networks, supply chains, mobile networks,
and smart grids. Hence, it is one of the central problems in network research to develop efficient control techniques for this
framework. In particular, it is most desirable for the techniques to (i) provide strong explicit utility and delay guarantees,
(ii) possess fast convergence speed, and (iii) be able to quickly detect changes and adapt to the dynamic environment.

However, this is a very challenging problem. First of all, statistical information of the system dynamics is often unknown
a-priori. Hence, in order to achieve optimal performance, algorithms must be able to efficiently learn certain sufficient
statistics of the dynamics. Second, since every time only a single random state will appear, algorithms must be able to
handle individual realization of the system randomness,which often requires algorithms to be incremental. Third, to provide
explicit delay guarantees, algorithms usually need to have explicit queue-like interpretations of the control steps. However,
such algorithms often suffer from a slow convergence speed.

There has been continuous effort in developing algorithms that can achieve good utility and delay performance for
various networks, for instance, wireless networks, [1–3], processing networks, [4,5], cognitive radio, [6], and the smart
grid, [7,8]. However, we notice that most existing algorithms focus on dynamic systems with stationary distributions, and

E-mail address: longbohuang@tsinghua.edu.cn.

http://dx.doi.org/10.1016/j.peva.2015.06.010
0166-5316/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.peva.2015.06.010
http://www.elsevier.com/locate/peva
http://www.elsevier.com/locate/peva
http://crossmark.crossref.org/dialog/?doi=10.1016/j.peva.2015.06.010&domain=pdf
mailto:longbohuang@tsinghua.edu.cn
http://dx.doi.org/10.1016/j.peva.2015.06.010

L. Huang / Performance Evaluation 91 (2015) 150–169 151

they either assume full system statistical information beforehand, or rely on stochastic approximation techniques to avoid
the need of such information. Thus, both approaches ignore the information and system observation aspects. As a result,
they fail to provide deep understanding about the role-of-information in network control and do not explore the power-of-
learning. This ignorance inevitably results in a mismatch between many control algorithms developed in the literature and
control schemes in practical systems, under which system dynamics are often constantly monitored and such information
is explicitly incorporated into control.

In this work, we develop the receding learning-aided control algorithm (RLC). RLC is an online algorithm which requires
zero a-priori statistical knowledge of the system. Instead, it continuously updates its estimates of the underlying distribution
of the dynamics via receding sampling of the observed system history, and efficiently incorporates the information into
the control component via learning an optimal Lagrange multiplier of a carefully constructed optimization problem and
drift-augmentation [9]. The receding learning feature enables a quick self-adaptation to the changing dynamics, while
the learning and augmentation steps explicitly explore the benefits of utilizing historic information in control. By
carefully integrating the components, RLC strikes a good balance among detection speed, learning accuracy, and algorithm
performance. Specifically, we show that RLC guarantees the near-optimal [O(ϵ),O(log(1/ϵ)2)] utility–delay tradeoff (0 <
ϵ < 1)when applied to stationary systemswith discrete action space,while guaranteeing a detection speed ofO(ϵ−2/3) and a
convergence time of O(ϵ−2/3 log(1/ϵ)2) (the time it takes for the algorithm to converge to its optimal operating point) when
the system is non-stationary. For systemswith continuous action sets, we similarly show that RLC achieves the near-optimal
[O(ϵ),O(

√
1/ϵ log(1/ϵ)2)] utility–delay tradeoff for stationary systems, and ensures an O(ϵ−4/3) detection time and an

O(ϵ−4/3 log(1/ϵ)2) algorithm convergence time for the non-stationary counterparts. In both cases, RLC’s convergence times
are better than previous known results, i.e., O(ϵ−1) for discrete systems and O(ϵ−3/2) for continuous systems, respectively,
and it offers explicit distribution change detection results for non-stationary systems.

Closest to our work are two recent works [9,10]. Specifically, [9] explores the possibility of joint learning and control,
but the resulting algorithms only apply to stationary systems. [10] considers an online optimization setting very different
from ours, and proposes a prediction-based algorithm to jointly optimize algorithm competitive ratio and regret. Our
work explicitly considers the non-stationarity in dynamic systems and proposes a learning-aided control algorithm that
quickly learns the underlying distribution and adapts its actions. The results in this paper provide a systematic approach for
designing joint detection-learning-control algorithms for dynamic systems, and offer new insight into understanding the
role-of-information and learning in network control.

The main contributions of the paper are summarized as follows:

• We propose a general framework for joint detection-learning-control algorithm design, and develop the receding
learning-aided control (RLC) algorithm for potentially non-stationary dynamic systems. RLC is an online algorithm that
requires zero a-priori statistical knowledge. It quickly detects changes in systemdynamic statistics via receding sampling,
and efficiently incorporates learned system information into network control via dual learning and drift-augmentation.

• For stationary systems, we show that RLC guarantees a near-optimal [O(ϵ),O(log(1/ϵ)2)] utility–delay tradeoff when
applied to systems with discrete action space (0 < ϵ < 1). For systems with continuous action sets, we show an
achievement of the near-optimal [O(ϵ),O(ϵ−1/2 log(1/ϵ)2)] utility–delay tradeoff.

• For non-stationary systems, we show that RLC guarantees a detection time of O(ϵ−2/3) and an algorithm convergence
time of O(ϵ−2/3 log(1/ϵ)2) for discrete systems, and achieves an O(ϵ−4/3) detection time and an O(ϵ−4/3 log(1/ϵ)2)
convergence time for continuous systems. In both cases, RLC offers novel distribution change detection results and its
convergence times are better than previous known results, i.e., O(ϵ−1) for discrete systems and O(ϵ−3/2) for continuous
systems, respectively.

The rest of the paper is organized as follows. In Section 2, we discuss a few motivating examples in diverse application
fields and the relatedworks.We set up our notations in Section 3, and present the systemmodel and problem formulation in
Section 4. Background information is provided in Section 5. Then, we present RLC in Section 6, and prove its performance in
Section 7 and convergence in Section 8. Simulation results are presented in Section 9, followed by conclusions in Section 10.

2. Motivating examples

In this section, we present a few interesting practical scenarios where our framework can be applied.
Mobile networks: Consider a mobile user sending data to a base-station (BS). The channel condition (state) between the

user and the BS is time-varying, which requires a different amount of power for packet transmission (cost) at different time.
Due to requirements from higher layer applications, the user has to deliver a set of flows at given rates. The objective of
the user is to find a joint power allocation and scheduling policy, so as to minimize the average energy consumption, while
meeting the rate constraints, e.g., [3,6]. This example can be generalized to include other factors such as modulation/coding,
or other objectives.

Crowdsourcing: In a crowdsourcing application, e.g., crowdsourcing map construction [11], tasks enter the system
and are assigned to crowd-workers by a server. Depending on workers’ qualifications, types of jobs, and job requestors’
current requirements, i.e, whether a requestor is in a hurry due to job deadline (state), task requestors receive reward
(utility), e.g., satisfaction, upon job completion, and workers receive payments (cost). The objective of the server is to find
an assignment scheme to maximize the average system utility minus cost.

152 L. Huang / Performance Evaluation 91 (2015) 150–169

Smart grids: Consider a system operator trying to fulfill a set of flexible users’ power demand, e.g., charging an EV, by
allocating available renewable energy, e.g., solar power, or by purchasing power from the grid (cost) if the renewable is
not sufficient. The available renewable energy evolves according to some time-varying process (state), and the power prices
change over time (state). The operator’s objective is to design a joint power procurement and scheduling scheme tominimize
the average expenditure while meeting the average power demand of the users. Other important components in smart grid,
e.g., demand response [12], scheduling of deferrable load [13], and storage management [8], can also be included in this
example.

Cloud computing: Consider an operator, e.g., a dispatcher, trying to assign jobs to servers for processing. The job arrival
process is time-varying (state), and available processing capacities at servers may also be dynamic (state), e.g., due to
background processing. Completing user’s job requests brings the operator reward (utility). The goal is to allocate resources
and balance the loads in such a way that the system utility is maximized. This example can be extended to capture other
factors such as rate scaling [14] and data locality constraints [15].

In all aforementioned examples and related works, we note that the state statistics are typically assumed to be given and
fixed (may be unknown), e.g., [3,8]. In practice, however, they are often time-varying and may even be non-stationary. For
instance, in cellular networks, a user’s location may change due to mobility, which affects his channel statistics. In crowd-
sourcing, popularity levels of certain types of jobs affect the satisfaction statistics of task completion. Yet this time-varying
statistics aspect has been largely ignored, resulting in amismatch betweenmany control algorithms developed in the litera-
ture and control schemes in practical system, which often constantly monitor the system dynamics and adapt their actions
when a change is detected.

3. Notations

Rn denotes the n-dimensional Euclidean space. Rn
+

and Rn
−

denote the non-negative and non-positive orthant. Bold
symbols x = (x1, . . . , xn) denote vectors in Rn. The notion w.p.1 denotes ‘‘with probability 1’’. ∥ · ∥ denotes the Euclidean
norm. For a sequence of variables {y(t)}∞t=0, we also use y = limt→∞

1
t

t−1
τ=0 E

y(τ)

to denote its average (when exists).

x ≽ y means that xj ≥ yj for all j.

4. Systemmodel and problem formulation

In this section, we specify the general network model. We consider a network controller that operates a network with
the goal of minimizing the time average cost, subject to the queue stability constraint. The network is assumed to operate
in slotted time, i.e., t ∈ {0, 1, 2, . . .}. We assume there are r ≥ 1 queues in the network (e.g., the amount of data to be
transmitted in cellular networks or the amount of flexible load to be scheduled in a smart grid).

4.1. Network state

In every slot t , we use S(t) to denote the current network state, which indicates the current network parameters, such as
a vector of conditions for each network link, or a collection of other relevant information about the current network channels
and arrivals. We assume that S(t) is i.i.d. over time given the state distribution and takesM different random network states
denoted as S = {s1, s2, . . . , sM}.1 We denote πi(t) = Pr

S(t) = si

the probability of being in state si at time t and denote

π(t) = (π1(t), . . . , πM(t)) the state distribution at time t . We assume that the network controller can observe S(t) at the
beginning of every slot t , but the πi(t) probabilities are unknown.

4.2. The cost, traffic, and service

At each time t , after observing S(t) = si, the controller chooses an action x(t) from a set X(si), i.e., x(t) = x(si) for some
x(si) ∈ X(si). The setX(si) is called the feasible action set for network state si and is assumed to be time-invariant and compact
for all si ∈ S. The cost, traffic, and service generated by the chosen action x(t) = x(si) are as follows:
(a) The chosen action has an associated cost given by the cost function f (t) = f (si, x(si)) : X(si) → R+ (or X(si) → R− in

reward maximization problems);
(b) The amount of traffic generated by the action to queue j is determined by the traffic functionAj(t) = Aj(si, x(si)) : X(si) →

R+, in units of packets;
(c) The amount of service allocated to queue j is given by the rate function µj(t) = µj(si, x(si)) : X(si) → R+, in units of

packets.

Note that Aj(t) includes both the exogenous arrivals from outside the network to queue j, and the endogenous arrivals from
other queues, i.e., the transmitted packets from other queues, to queue j. We assume the functions −f (si, ·), µj(si, ·) and
Aj(si, ·) are time-invariant, their magnitudes are uniformly upper bounded by some constant δmax ∈ (0, ∞) for all si, j, and
they are known to the network operator.

1 The results in this paper can likely be generalized to systems where S(t) evolves according to general time inhomogeneous Markovian dynamics.

L. Huang / Performance Evaluation 91 (2015) 150–169 153

4.3. Problem formulation

Let q(t) = (q1(t), . . . , qr(t))T ∈ Rr
+
, t = 0, 1, 2, . . . be the queue backlog vector process of the network, in units of

packets. We assume the following queueing dynamics:

qj(t + 1) = max

qj(t) − µj(t) + Aj(t), 0

, ∀j, (1)

and q(0) = 0. By using (1), we assume that when a queue does not have enough packets to send, null packets are
transmitted, so that the number of packets entering qj(t) is equal to Aj(t). In this paper, we adopt the following notion
of queue stability [16]:

qav , lim sup
t→∞

1
t

t−1
τ=0

r
j=1

E

qj(τ)

< ∞. (2)

We use Π to denote an action-choosing policy, and use f Π
av to denote its time average cost, i.e.,

f Π
av , lim sup

t→∞

1
t

t−1
τ=0

E

f Π (τ)

, (3)

where f Π (τ) is the cost incurred at time τ under policy Π . We call an action-choosing policy feasible if at every time slot
t it only chooses actions from the feasible action set X(S(t)). We then call a feasible action-choosing policy under which (2)
holds a stable policy.

In every slot, the network controller observes the current network state and chooses a control action, with the goal of
minimizing the time average cost subject to network stability. This goal can be mathematically stated as2:

(P1) min : f 5
av , s.t. (2).

In the following, we call (P1) the stochastic problem. It can be seen that the examples in Section 2 can all be modeled by the
stochastic problem framework, which is the problem formulation we focus on in this paper.

4.4. Discussion of the model

The key difference between our model and those in previous works is that π(t) itself can be time-varying. This is an
important extension, as practical systems often have time-varying distributions for system dynamics. Thus, it is important
to develop efficient techniques to handle network control in this case.Moreover, adopting a time-varying distributionmodel
allows us to explicitly investigate the convergence property and robustness of the resulting algorithms, an aspect often
missing in prior works, where mostly stochastic models with fixed parameters are considered. Focusing on this model also
motivates us to explicitly consider the roles of information and learning in control.

5. Deterministic problem and backpressure

In this section, we review some known results in the literature that will be useful for our algorithm presentation and
analysis later. We first define the deterministic problem and its dual problem. Then, we review the Backpressure algorithm
(BP) developed in [16] for solving the stochastic problem (P1)with fixed π(t) = π.

5.1. The deterministic problem

The deterministic problem is defined as follows [17]3:

min : F(x, π) , V

si

πif (si, x(si)) (4)

s.t. Hj(x, π) ,

si

πi[Aj(si, x(si)) − µj(si, x(si))] ≤ 0, ∀ j,

x(si) ∈ X(si), ∀i = 1, 2, . . . ,M.

2 Whenπ(t) is time-varying, the optimal systemutility needs to be defined carefully in general.Wewill specify it when discussing corresponding results.
3 In stationary systems, it can be shown that if one has all the statistical information, then a ‘‘convexified’’ version of (4) can be solved to obtain the

optimal control policy [18].

154 L. Huang / Performance Evaluation 91 (2015) 150–169

Theminimization in (4) is taken over x ∈

i X
(si), where x = (x(s1), . . . , x(sM))T , and V ≥ 1 is a positive constant introduced

for algorithm design and analysis later. The dual problem of (4) can be obtained as follows:

max : gπ(γ), s.t. γ ≽ 0, (5)

where gπ(γ) is the dual function and is defined as:

gπ(γ) = inf
x(si)∈X(si)

si

πi

Vf (si, x(si)) +

j

γj

Aj(si, x(si)) − µj(si, x(si))

. (6)

Here γ = (γ1, . . . , γr)
T is the Lagrange multiplier of (4) and the subscript π is for specifying the distribution under which

the dual function is defined. It is well known that gπ(γ) in (6) is concave in the vector γ for all γ ∈ Rr [19]. Below, we
use γ∗

π = (γ ∗

π,1, γ
∗

π,2, . . . , γ
∗
π,r)

T to denote an optimal solution of the problem (5) for a given distribution π. For our later
analysis, we also define:

gi(γ) = inf
x(si)∈X(si)

Vf (si, x(si)) +

j

γj

Aj(si, x(si)) − µj(si, x(si))

, (7)

to be the dual function for state si, i.e., when there is only a single state si. It is clear from Eqs. (6) and (7) that:

gπ(γ) =

si

πigi(γ). (8)

In the following, we use f ∗
π and g∗

π to denote theminimum average cost of the system and the optimal dual value of (5) under
distribution π.4 It has been shown in [18] that:

f ∗

π = g∗

π. (9)

That is, g∗
π captures the optimal time average cost of the stochastic problem.

5.2. The backpressure algorithm

Among the many techniques developed for solving the stochastic problem, the Backpressure algorithm has received
much attention because (i) it does not require any statistical information of the changing network conditions, (ii) it has low
implementation complexity, and (iii) it has strong provable performance guarantees. The Backpressure algorithm works as
follows [16].5

Backpressure (BP): At every time slot t , observe the current network state S(t) and the backlog q(t). If S(t) = si, choose
x(si) ∈ X(si) that solves the following:

max : −Vf (si, x) +

r
j=1

qj(t)

µj(si, x) − Aj(si, x)

(10)

s.t. x ∈ X(si). �

Here V is a control parameter offered by BP for trading off system utility and delay. In many problems, (14) can usually be
decomposed into separate parts that are easier to solve, e.g., [21,6]. Also, when the network state process S(t) is i.i.d., it has
been shown in [16] that,

f BPav = f ∗

av + O(1/V), qBP = O(V), (11)

where f BPav and qBP are the expected average cost and the expected average network backlog size under Backpressure,
respectively. The performance results in (11) hold underBPwith any queueing discipline for choosingwhich packets to serve
and for any V . However, we note from (14) that BP completely discards the historic information from system observations
and ignores the potential benefits of learning.

4 If a distribution π is such that there is no feasible solution for (4), in which case one can show that it is impossible to ensure queue stability (2) and the
primal optimal is infinity, we define f ∗

π = g∗
π = ∞.

5 A similar definition of Backpressure based on fluid model was also given in Section 4.8 of [20].

L. Huang / Performance Evaluation 91 (2015) 150–169 155

Fig. 1. Demonstration of RLC. The solid rectangle represents the first frame for initialization. Once RLC detects that the sample distribution is not consistent
with the reference distribution, it moves the reference point forward and re-estimates the Lagrange multiplier that will be used in the controller.

6. Receding learning-aided control

In this section, we present the receding learning-aided control technique (RLC), which allows us to simultaneously handle
time-varying distributions of system dynamics and achieve good performance.

Our algorithm works as follows. First, we choose a sampling window size w , V c (c to be specified) and divide time
into frames of w slots each, denoted by {Tk}

∞

k=0 where Tk = [kw, . . . , (k + 1)w − 1]. Then, we fix a detection threshold
α , 8 log(V)

V c/2 and choose a reference starting time tc . We also choose a deviation factor θ and a queue reference point qref (values
to be specified). After that, we periodically compare the recent samples with the historic samples to identify changes of the
distribution, and adjust the sampling window’s starting time once a change is identified. Then, we carry out a step called
dual learning [9] to efficiently incorporate the learned information about the underlying distribution into a Backpressure
controller. Fig. 1 shows how RLCworks. The formal algorithm is below.

Receding Learning-aided Control (RLC): Initialize tc = 0 and γ∗
[0] = θ. Implement:

• Receding Dual learning (performed every frame): At the kth frame with k ≥ 1, let Nci[k] be the number of slots in
[tc, tc + w − 1] during which S(t) = si,6 and let Nsi[k] be the number of slots in [(k − 1)w, kw − 1] during which
S(t) = si, respectively. Form the reference distribution π̂c[k] and the sampling distribution π̂s[k] for frame k by having
π̂ci[k] = Nci[k]/w and π̂si[k] = Nsi[k]/w. Then, perform distribution change detection by checking if the following
condition holds7:

max
i

|π̂ci[k] − π̂si[k]| ≤ α/4. (12)

(i) If yes, complete the learning step and set γ∗
[k] = γ∗

[k − 1].
(ii) If not, set tc = (k − 1)w and let π̂c[k] = π̂s[k]. Then, carry out the dual learning step by solving the following

optimization problem and obtain the optimal solution γ∗
[k]:

max : gπ̂c [k](γ) ,

si

π̂ci[k]gi(γ), s.t. γ ≽ 0. (13)

If the resulting optimal γ∗
[k] is infinite, set γ∗

[k] = V log(V) · 1. Moreover, set q(kw) = qref.
• Online control: At every time t ∈ [kw, (k + 1)w − 1], observe the current network state S(t) and the backlog q(t). If

S(t) = si, choose x(si) ∈ X(si) that solves the following:

max : −Vf (si, x) +

r
j=1

Qj(t)

µj(si, x) − Aj(si, x)

s.t. x ∈ X(si). (14)

6 In actual implementation, one can use all samples in [0, tc + w] for estimating the empirical distribution if it can be assured that the distribution has
not yet changed.
7 Note that π̂c [k] stays the same if tc remains unchanged. Note here that other methods for detecting distribution changes and estimating underlying

distributions can also be applied.

156 L. Huang / Performance Evaluation 91 (2015) 150–169

Here Qj(t) , qj(t) + βj(t) with βj(t) , γ ∗

j [k] − θj is the effective size for queue j at time t .
• Queueing update: Update the queues according to (1). Use Last-In-First-Out (LIFO) for packet scheduling. �

Remarks. (i) RLC does not require any statistical information of the system and retains the low-complexity feature of BP.
By setting w = ∞, RLC reduces to the online learning-aided control 2 (OLAC2) technique developed in [9] for systems
with fixed distributions. (ii) The dual learning step (13) only has to be solved roughly once per distribution change. This
significantly saves computational resources in practice compared to continuous computing, and can avoid reacting too
quickly to temporal random changes. (iii) RLC tries to only utilize the recent historic information by adjusting tc when
it believes there is a change in the distribution. This feature is important and allows RLC to quickly adapt to distribution
changes of the system dynamics. (iv) RLC sets the queue vector to the queue reference value qref. This step readjusts the
backlog starting point to further improve convergence time of the algorithm. It requires adding dummy packets when the
original queue size is smaller and dropping redundant packets when there is more. We will see later that dropping rarely
happens and delay is almost not affected. (v) The reason for using (12) is for screening out estimations πc[k] that are not
accurate enough. This is an important step, as the quality of π̂c[k] affects the estimation accuracy of γ∗

[k], which in turn has
a direct impact on the algorithm performance.

7. Performance analysis

In this section, we carry out the analysis for the RLC algorithm. For ease of presentation, we introduce the distribution
switching time. Specifically, we use {td, d = 0, 1, . . .} to denote the starting point of the dth distribution, i.e., π(t) = πd for
all t ∈ Dd , {td, td+1 − 1}, where Dd is called the dth interval. We also use Dd , td+1 − td to denote the length of Dd.

We now present the assumptions made throughout our analysis. These assumptions are not restrictive and can typically
be satisfied in network optimization problems.8

Assumption 1. For every system distribution πd, there exists a constant ϵd = Θ(1) > 0 such that for any valid state
distribution π′

= (π ′

1, . . . , π
′

M) with ∥π′
− πd∥ ≤ ϵd, there exist a set of actions {x(si)

z }
z=1,2,...,∞
i=1,...,M with x(si)

z ∈ X(si) and some
variables ϑ

(si)
z ≥ 0 for all si and z with

z ϑ

(si)
z = 1 for all si (possibly depending on π′), such that:

si

πdi

z

ϑ (si)
z [Aj(si, x(si)

z) − µj(si, x(si)
z)]

≤ −η, ∀ j, (15)

where η = Θ(1) > 0 is independent of π′. �

Assumption 2. For every system distribution πd, gπd(γ) has a unique optimal solution γ∗

d ≠ 0 in Rr . �

In the existing literature, Assumption 1 ismostly assumedwith ϵd = 0, e.g., [22,23], and is known as the ‘‘slack’’ condition
that is necessary for queue stability. Under this assumption, one can show that there exists a stationary randomized
policy that stabilizes all the queues in the network (where ϑ

(si)
z represents the probability of choosing action x(si)

z when
S(t) = si) [16]. Here with ϵd > 0, we assume that when two systems are relatively ‘‘similar,’’ they can both be stabilized by
some randomized control policy (the policies may be different) that results in the same slack. Assumption 2 holds for many
network utility optimization problems, e.g., [3,17].

Below,we first have twopreliminary lemmas. To present the lemmas,wedefine a Lyapunov function L(t) , 1
2

r
j=1 qj(t)

2

and the one-slot instant Lyapunov drift ∆(t) , Eπ(t){L(t + 1) − L(t) | q(t)}, where the expectation is taken over the distri-
bution π(t). Then, we define:

∆V (t) , ∆(t) + VEπ(t){f (t) | q(t)}. (16)

We then have the following lemma.

Lemma 1. At every time t, we have:

∆V (t) − ∆A(t) ≤ B + VEπ(t){f (t) | q(t)} −

r
j=1

Qj(t)Eπ(t){µj(t) − Aj(t) | q(t)}. (17)

Here ∆A(t) ,

j Eπ(t){βj(t)[µj(t) − Aj(t)] | q(t)} is the drift-augmentation term, B , 2rδ2
max is independent of V , and the

expectation is taken over the distribution π(t) of the states at time t and the possible randomness in the control policy. �

Proof. See Appendix A. �

8 Our results can likely be extended to also handle the case where the assumptions do not hold under some distributions that only last for some finite
time (indeed, if this is also violated, no algorithm can possibly stabilize the system).

L. Huang / Performance Evaluation 91 (2015) 150–169 157

Notice that Lemma 1 indeed holds under any feasible control policies. Also note in (17) that the learned information
about the underlying distribution is incorporated into system control via the term β(t) (recall that Q (t) = β(t)+ q(t)− θ).
Based on this lemma, we obtain the following result regarding the utility performance of RLC.

Lemma 2. For every Dd, we have:

1
Dd

td+1−1
t=td

Eπd{f (t)} ≤ f ∗

πd
+

B
V

+
∆

Dd
A

VDd
+

j

Eπdqj(t − d)2

2VDd
. (18)

Here ∆
Dd
A ,

td+1−1
t=td Eπd{∆A(t)} and f ∗

πd
denotes the optimal system utility when π(t) = πd for all t . �

Proof. See Appendix B. �

From Lemma 2, we see that the key in proving the performance of RLC lies in bounding the term ∆
Dd
A /Dd, which can

be viewed as the temporal price to pay for the inherent inaccuracy in learning due to the finite sample window size and
receding sampling. This is a very challenging task. The main challenges come from the interdependency between control
and learning, i.e., βj(t) andµj(t)−Aj(t), the inaccuracy in learning and estimation, and the fact that β(t) changes from time
to time, which requires a non-asymptotic analysis.

In the following, we carry out our analysis for two system structures that are common in practice. These two structures
were first introduced in [17].

7.1. The polyhedral case

We first consider the case when the system in consideration satisfies the following polyhedral condition:

Definition 1. A system is polyhedralwith parameter ρ > 0 under distribution π if the dual function gπ(γ) satisfies:

gπ(γ∗) ≥ gπ(γ) + ρ∥γ∗

π − γ∥. � (19)

Condition (19) typically holds for systems where control actions are discrete (see [17] for more discussions). In this case,
we first consider the performance of RLC when the distribution is time-invariant. Note that being able to perform well in
stationary systems is an important requirement for any efficient adaptive algorithm. The following theorem shows that RLC
achieves almost the best performance among existing algorithms designed for systems with fixed distributions.

Theorem 1 (Polyhedral Stationary). Suppose (i) π(t) = π for all t and (ii) gπ(γ) is polyhedral with ρ = Θ(1) > 0. Then, under
RLC with w = V c , θj = qref,j = 2V 1−c/2 log(V)2, q(0) = 0, c ∈ [0, 1], and a sufficiently large V , we have w.p.1 that:

• (Utility) The average cost satisfies:

f RLCav ≤ f ∗

π +
B + O(1)

V
. (20)

• (Delay) For each queue j with an average arrival rate λj > 0, there exists a set of packets with rate λ̃j ≥ (λj −O(log(V)/V 2))+

that experience only O(log(V)2) delay.
• (Packet dropping) The average rate of the dropped packets during queue adjustment is O(1/V 4). �

Proof. See Appendix C. �

Theorem 1 shows that RLC achieves the near-optimal [O(1/V),O(log(V)2)] utility–delay tradeoff (only a log-factor from
the optimal), which is the same compared to the previous algorithms, e.g., OLAC [9] and LIFO-BP [24]. We emphasize that
the analysis of RLC is very different from previous algorithms. The main challenge lies in the fact that the β(t) value is
obtained from fixed size samples. Hence, it changes during algorithm implementation, making it difficult to analyze the
∆

Dd
A term.
Next, we consider the case when π(t) is time-varying. Fig. 2 shows how RLC detects distribution changes. The formal

statement is given in the following lemma.

Fig. 2. RLC detects distribution changes in at most 2w slots.

158 L. Huang / Performance Evaluation 91 (2015) 150–169

Lemma 3 (Efficient Detection). Suppose for some time t, π(τ) = π1 for τ ∈ [t −2w, t −1] and π(τ) = π2 for τ ∈ [t, t +2w],
where π1 ≠ π2.9 Then, under RLC with a sufficiently large V , this distribution change will be detected by time t + 2w with
probability at least 1 − O(2M

V log(V)). �

Proof. See Appendix D. �

Lemma3 shows that RLC guarantees the detection of distribution changeswithin 2w timeslotswith very high probability
(In many cases, it will be detected withinw time), which contributes to guaranteeing a fast convergence speed compared to
existing algorithms (see Theorem 5 and discussions below). This property is particularly useful for non-stationary systems,
as shown in the following theorem.

Theorem 2 (Polyhedral Non-Stationary). Suppose condition (ii) in Theorem 1 holds. Then, under RLC with w = V c , θj =

qref,j = 2V 1−c/2 log(V)2, q(0) = 0, and a sufficiently large V , for each interval Dd with Dd = Θ(V 2+ϵ−c/2) for ϵ > 0 and
c ≤

2+2ϵ
3 , we have with probability 1 − O(M

V log(V)/2) that:

• (Utility) RLC achieves:

1
Dd

td+1−1
t=td

E{f (t)} ≤ f ∗

πd
+

B + O(1)
V

. (21)

• (Queueing) qav = O(V 1−c/2 log(V)2). �

Proof. See Appendix E. �

Theorem 2 provides a non-asymptotic result for RLC’s utility and delay performance. It is important to note that (21) only
requires Dd = Θ(V 2+ϵ−c/2) for some small ϵ > 0. Guaranteeing a similar performance result under BPwill need an Θ(V 2)
time. Also, the O(V 1−c/2 log(V)2) average queue size applies to general Dd sizes. For Dd values larger than Θ(V 2+ϵ−c/2),
most packets will experience only O(log(V)2) delay as in Theorem 1. To further appreciate the result, note that for smaller
Dd values, it is much harder to guarantee results similar to (21), as in this case algorithms will mostly be running at their
transient stages. On the other hand, if π(t) varies in a way that the aggregate frame distribution exhibits stationarity, i.e.,
π[k] , (π(kw), . . . ,π((k + 1)w − 1)) is statistically the same as π[k + 1] for all k, then it can be shown that RLC achieves
an O(1/V) close-to-optimal utility of the system under the frame-based distribution.

7.2. The locally-smooth case

We now consider the case when the system has a locally-smooth structure defined as follows [17].

Definition 2. A system is locally-smoothwith parameters ρ and δ if there exist ρ > 0 and δ > 0, such that when V = 1, for
all γ with ∥γ − γ∗

π∥ ≤ δ, the dual function gπ(γ) satisfies:

gπ(γ∗

π) ≥ gπ(γ) + ρ∥γ∗

π − γ∥
2. � (22)

This structural property is different from the locally polyhedral case and we only require that all the vectors γ with
∥γ − γ∗

π∥ ≤ δ satisfy condition (22). This is due to the fact that f (si, ·), µj(si, ·) and Aj(si, ·) are all upper bounded, which
eventually leads to:

gπ(γ1) − gπ(γ2) ≤
√
B∥γ1 − γ2∥. (23)

That is, this condition indeed only holds locally. In contrast to the polyhedral condition in (19), (22) is typically satisfied
when the action set is continuous, in which case the dual function is mostly continuously differentiable [17]. Similar to the
polyhedral case, we first consider the performance of RLC in locally-smooth systems with fixed distributions.

Theorem 3 (Locally-Smooth Stationary). Suppose (i) π(t) = π for all t and (ii) gπ(γ) is locally-smooth with δ, ρ = Θ(1) > 0.
Then, under RLC with w = V c , θj = qref,j = 2V 3/2−c/2 log(V)2, q(0) = 0, c ∈ [0, 2], and a sufficiently large V , we have w.p.1
that:

• (Utility) RLC achieves f RLCav ≤ f ∗
π + O(1

V).

9 It should be pointed out that the distribution detection component of RLC really only requires the ‘‘frame distributions’’ to be different, i.e., π[k] ,
(π(kw), . . . ,π((k + 1)w − 1)) is different from π[k + 1], which is weaker than the condition used in the lemma. The condition in the lemma is for
convenience in presentation.

L. Huang / Performance Evaluation 91 (2015) 150–169 159

• (Delay) For each queue j with an average arrival rate λj, there exists a set of packets with rate λ̃j ≥ (λj − O(1/V))+ that
experience O(

√
V log(V)2) delay.

• (Packet dropping) The average rate of packets that can potentially be dropped is O(1/V 4).

Proof. See Appendix F. �

Compared to Theorem 1, we notice that the values of θ, qref, and packet delay are all different. This is because under the
smooth structure, drift-based algorithms have loose control whenQ (t) gets close to γ∗

π , resulting in a larger queue deviation
and delay. The following theorem considers the non-stationary case for smooth systems and is similar to Theorem 2.

Theorem 4 (Locally-Smooth Non-Stationary). Suppose condition (ii) in Theorem 3 holds. Then, under RLC with w = V c ,
θj = qref,j = 2V 3/2−c/2 log(V)2, q(0) = 0, and a sufficiently large V , for each Dd with Dd = Θ(V 5/2+ϵ−c/2) for ϵ > 0
and c ≤ 1 + 2ϵ/3, we have with probability 1 − O(M

V log(V)/2) that:

• (Utility) RLC achieves:

1
Dd

td+1−1
t=td

E{f (t)} ≤ f ∗

πd
+

B + O(1)
V

. (24)

• (Queueing) qav = O(V 3/2−c/2 log(V)2). �

Proof. It can be proven almost identically as Theorem 2. Omitted for brevity. �

Similar to the polyhedral case, here BP needs an Θ(V 2) time for achieving the same performance. Hence, by choosing
c > 1, RLC guarantees performance for intervals of similar sizes with much better queue size guarantee (BP needs Θ(V)).
Also, for Dd values that are larger, most packets will experience only O(

√
V log(V)) delay as in Theorem 3.

8. Convergence time analysis

In this section, we look at the convergence time of our algorithms. Convergence time measures how fast an algorithm
reaches its steady-state. Hence, it is an important indicator of the robustness and efficiency of the technique. To formally
state our results, we adopt the following definition of convergence time from [9].

Definition 3. Let ζ > 0 be a given constant and let π be a system distribution. The ζ -convergence time of a control
algorithm, denoted by Tζ , is the time it takes for the effective queue vector Q (t) to get to within ζ distance of γ∗

π , i.e.,

Tζ , inf{t | ∥Q (t) − γ∗

π∥ ≤ ζ }. � (25)

Our definition of convergence time is different from the that in [25,26], where convergence time relates to how fast
the time-average rates converge to the optimal values. Our convergence time definition (25) is motivated by the fact that
both BP and RLC (and many other drift-based algorithms) use the effective queue vector to track γ∗

π , which is the key for
determining the optimal control actions. Hence, the faster the algorithm learns γ∗

π , the faster the system enters the optimal
operating zone.

In the following, we present the convergence results of RLC.

Theorem 5 (Polyhedral Convergence). Suppose condition (ii) in Theorem 1 holds. Then, under RLC with w = V c , θj = qref,j =

2V 1−c/2 log(V)2, and a sufficiently large V , for each Dd with Dd = Ω(V 1−c/2 log(V)2 + V c) and Dd−1 ≥ 2V c , we have with
probability 1 − O(M

V log(V)) that:

E

TGp

= O(V 1−c/2 log(V)2 + V c). (26)

Here Gp = Θ(1) is a system-dependent constant. �

Proof. See Appendix G. �

Choosing c =
2
3 , we see that E

TGp

= Θ(V 2/3 log(V)2). This result is of the same order as the OLAC algorithm’s con-
vergence time, with the key difference that OLAC does not apply to non-stationary systems. This convergence time is much
faster compared to the Θ(V) time of BP (also see simulation).

We then also have the following convergence time result for the locally-smooth case.

Theorem 6 (Locally-Smooth Convergence). Suppose condition (ii) in Theorem 3 holds. Then, under RLC with w = V c , θj =

qref,j = 2V 3/2−c/2 log(V)2, q(0) = 0, and a sufficiently large V , for eachDd with Dd = Ω(V 2−c/2 log(V)2+V c) andDd−1 ≥ 2V c ,

160 L. Huang / Performance Evaluation 91 (2015) 150–169

Fig. 3. A two-queue system. In this system, the queues receive exogenous arrivals and the server allocates power for packet transmission over the time-
varying channels.

we have with probability at least 1 − O(M
V log(V)) that:

E

T RLC
Gs

= O(V 2−c/2 log(V)2 + V c), (27)

where Gs = Θ(
√
V). Also, in this case,

E

T BP
Gs

= O(V 3/2), (28)

where T BP
Gs denotes the convergence time of BP. �

Proof. See Appendix H. �

Optimizing the c value for the locally-smooth case, we see that choosing c = 4/3 leads to T RLC
Gs = Θ(V 4/3), which is

strictly better compared to the T BP
Gs = Θ(V 3/2) convergence time of BP. Here, it is also important to notice the different

convergence times and proximities in the polyhedral case and the locally-smooth case, i.e., Gp = Θ(1) while Gs = Θ(
√
V).

This difference is due to the structural properties. In the locally-smooth case, the drift towards γ∗
π decreases as the distance

∥Q (t) − γ∗
π∥ decreases, and Gs is just enough to guarantee an O(1/

√
V) drift. In the polyhedral case, the drift remains

constant as long as Q (t) ≠ γ∗. Hence, a deviation of Gp is enough for guaranteeing a good concentration result.

9. Simulation

We provide simulation results for RLC to demonstrate both the utility–delay performance and the detection and
convergence behavior. We consider a two-queue system depicted in Fig. 3.

We use Ai(t) to denote the number of arriving packets to qi(t) at time t . We assume that Ai(t) is i.i.d. and takes value
either 2 or 0. We use pi = Pr

Ai(t) = 2

and set p1 = 0.15 and p2 = 0.3. We assume that the channel is time-varying and

denote its state at time t by Ci(t), which takes values inC1 = {0, 1} andC2 = {1, 2}. Each channel condition is equally likely
for both channels. At each time t , the queue operator decides howmuch power to allocate for transmission.We denote Pi(t)
the power allocated at time t . Then, the instantaneous service rate is given by:

µi(t) = log(1 + Ci(t)Pi(t)). (29)
The feasible power allocation set P = {0, 1, 2} for the discrete case and P = [0, 2] for the continuous case. The operator’s
objective is to stabilize the queueswithminimumaverage power.We note that though the setting considered here is simple,
it can indeed be used to model many problems in various contexts, e.g., CPU scheduling or mobile user transmission. Also,
it can be verified that Assumptions 1 and 2 both hold for this example.

For comparison, we also simulate the BP algorithm. We choose V = {10, 30, 50, 100, 150} and run each simulation
instance for T = 5 × 105 slots. The left two plots in Fig. 4 present the power and delay performance of RLC compared to
the BP algorithm for the polyhedral case. It can be seen that RLC achieves a much better delay performance compared to
BP, as shown in Theorem 1. The right two plots present the performance of RLC in the locally-smooth case. Similar to the
polyhedral case, RLC achieves a better power–delay tradeoff. Here the empirical delay is much better than O(

√
V log(V)2).

This can be due to the structure of the particular setting. With general settings, the O(
√
V log(V)2) will likely be observed.

Fig. 5 then also shows a convergence example of RLC in the polyhedral case with V = 500. In this case, the packet arrival
probabilities change to p1 = 0.1 and p2 = 0.1 at 1/3 of the simulation time. Throughout the simulation, RLC changes tc
three times, two before the rate change and one after. This shows that RLC is efficient in detecting distribution changes.
It can be seen from the plots that RLC adapts much faster compared to BP. Indeed, the first convergence of RLC happens
at time 1300 while BP converges at time 6000 (4500+ slots faster). The second convergence of RLC is around time 34000
while BP converges at 36000 (2000+ slots faster, change happens at 33333). We also observe that the actual queue size
under RLC, i.e., q1(t) and q2(t), remain stable during the simulation, with only small fluctuations when RLC adjusts tc and
γ∗

[k].

10. Conclusion

In this paper, we develop the Receding Learning-aided Control algorithm (RLC). RLC is a low-complexity online algorithm
that requires zero a-priori statistical knowledge. It efficiently detects distribution changes via receding sampling and

L. Huang / Performance Evaluation 91 (2015) 150–169 161

Fig. 4. (Left-two) Power–delay performance of RLC and BP for the polyhedral case. We see that RLC achieves a similar power performance, while
guaranteeing a much better delay. (Right-two) Performance of RLC in the locally-smooth case (we also simulate V = 300 since BP’s power performance
does not seem to converge at V = 150). The results are similar to those in the polyhedral case.

Fig. 5. (Top) Convergence of RLC. (Middle) Convergence of BP. (Bottom) The actual queue sizes under RLC. We see that RLC converges much faster and
ensures better smoothness of the actual queue sizes.

incorporates learned information into system controller via dual learning and drift-augmentation. We show that RLC
achieves near-optimal utility–delay tradeoffs for stationary systems, while ensuring efficient distribution change detection
and fast convergence when applied to non-stationary networks. The results in this paper provide a general framework for
designing joint detection-learning-control algorithms and provide new understanding about the role-of-information and
the power-of-online-learning in network control.

Acknowledgment

This work was supported in part by the National Basic Research Program of China Grant 2011CBA00300, 2011CBA00301,
the National Natural Science Foundation of China Grant 61033001, 61361136003, 61303195, Tsinghua Initiative Research
Grant, Microsoft Research Asia Collaborative Research Award, and the China Youth 1000-talent Grant.

Appendix A. Proof of Lemma 1

Proof of Lemma 1. Squaring both sides of the queueing dynamics (1), we obtain:

qj(t + 1)2 ≤ qj(t)2 + Aj(t)2 + µj(t)2 − 2qj(t)[µj(t) − Aj(t)].

162 L. Huang / Performance Evaluation 91 (2015) 150–169

Summing it over j = 1, . . . , r , defining B , 2rδ2
max, and taking an expectation over S(t) with distribution π(t) conditioning

on q(t), we have:

∆(t) ≤ B −

j

qj(t)Eπ(t){[µj(t) − Aj(t)] | q(t)}. (30)

Then, by adding to both sides the term VEπ(t){f (t) | q(t)}−∆A(t), and using the definition of ∆A(t), we see that the lemma
follows. �

Appendix B. Proof of Lemma 2

Proof of Lemma 2. First, by comparing (7) and (14), one sees that (17) can indeed be rewritten as:

∆V (t) − ∆A(t) ≤ B + Vgπ(t)(Q (t)). (31)

Using (9) and the fact that gπ(t)(Q (t)) ≤ g∗

π(t), we have:

∆V (t) − ∆A(t) ≤ B + Vf ∗

π(t). (32)

Thus, by taking an expectation over q(t) and carrying out a telescoping sum over t ∈ Dd, and by dividing both sides by VDd,
we obtain:

1
Dd

td+1−1
t=td

Eπd{f (t)} ≤ f ∗

πd
+

B
V

+
1

VDd

td+1−1
t=td

Eπd{∆A(t)} +

j

Eπd{qj(td)
2
}

2VDd
.

Using the definition of ∆Dd
A proves the lemma. �

Appendix C. Proof of Theorem 1

We first have the following lemmas, which will be used in proving the theorem.

Lemma 4. Suppose π(t) = π. Then, for a large V , at every frame k, we have with probability at least ps , 1 −
M

V log(V) that:

max
i

|π̂ci[k] − πi| ≤ α/2, (33)

where α , 8 log(V)

V c/2 is the detection threshold. �

Proof of Lemma 4. Using the proof of Theorem 5 in [9], we see that with probability at least ps = 1−
M

V log(V) , maxi |π̂si[k] −

πi| ≤ α/4. According to the detection rules of RLC, this ensures (33), i.e., either maxi |π̂ci[k] − π̂si[k]| ≤ α/4, which
guarantees maxi |π̂ci[k] − πi| ≤ α/2, or π̂c[k] will be replaced by π̂s[k]. �

Lemma 5. When the system is polyhedral, for a large V , at every frame k, if maxi |π̂ci[k] − πi| ≤ α/2, then:

∥γ∗
[k] − γ∗

π∥ ≤ epmax , b0V 1−c/2 log(V), (34)

where b0 = Θ(1) is a system dependent parameter. �

Proof of Lemma 5. It follows directly from the proof of Theorem 5 in [9]. �

Lemma 6 ([17]). Suppose the conditions in Theorem 1 hold. Then, under BP, there exist constants Gp, ϵ = Θ(1), i.e., both
independent of V , such that whenever ∥q(t) − γ∗

∥ > Gp,

Eπ{∥q(t + 1) − γ∗

π∥ | q(t)} ≤ ∥q(t) − γ∗

π∥ − ϵ. � (35)

We also need the following technical lemmas, whose proofs are given in Appendix I.

Lemma 7. Suppose π(t) = π. Then, for a large V , (i) if maxi |π̂ci[k] − πi| ≤ α/2, RLC declares distribution change with
probability O(M

V log(V)/4), and (ii) if maxi |π̂ci[k] − πi| > α/2, RLC declares distribution change with probability at least
1 −

M
V log(V) . �

L. Huang / Performance Evaluation 91 (2015) 150–169 163

Fig. 6. Under RLC, the timeline consists of intervals that possess correct (maxi |π̂ci[k] − πi| ≤ α/2) and incorrect (maxi |π̂ci[k] − πi| > α/2) estimates of
the distribution.

Lemma 8. For any t1 < t2, we have for each queue qj(t) that:

t2−1
t=t1

[µj(t) − Aj(t)] ≤ qj(t1) − qj(t2) + δmax

1 +

t2−1
t=t1

I[qj(t)≤0]

. � (36)

We now begin the proof for Theorem 1.

Proof of Theorem 1 (Utility).We first prove the utility performance. By taking a limit asDd → ∞ in (18) andusingπ(t) = π
and q(0) < ∞, we get:

f RLCav ≤ f ∗

π +
B + ∆

∞

A

V
. (37)

Here ∆
∞

A = limDd→∞ ∆
Dd
A /Dd. It remains to show that ∆

∞

A = O(1), i.e.,

lim
D0→∞

1
D0

D0−1
t=0

j

Eπ{βj(t)[µj(t) − Aj(t)]} = O(1), (38)

where we use D0 as we only have one distribution throughout.
Under Assumption 1, we see that for a large enough V , with probability 1, we have γ∗

[k] = Θ(V) for each k (Lemma 1
in [17]). Now let us divide the frames into disjoint intervals such that during each interval π̂c remains unchanged (henceβ(t)
stays constant). Then, we say that (i) the reference distribution π̂c[k] is correct if maxi |π̂ci[k]−πi| ≤ α/2 (event denoted by
E[k]), or (ii) the reference estimation π̂c[k1] is incorrect if maxi |π̂ci[k1]− πi| > α/2 (event denoted by E[k]c). This is shown
in Fig. 6. Note that in both cases, β(t) remains constant throughout the interval.

Denote Il , [klw, kl+1w − 1] the lth interval during which β(t) stays constant. We rewrite ∆∞

A as:

∆∞

A ,

l

t∈Il

j

Eπ{βj(t)[µj(t) − Aj(t)]} =

∞
l=0

kl+1w−1
t=klw

j

Eπ{βj(t)[µj(t) − Aj(t)]}.

Note that by the rules of RLC, we always have |βj(t)| ≤ b1V log(V) for some constant b1 = Θ(1).
Consider one interval [k1w, k2w − 1] with k2 > k1 and look at

k2w−1
t=k1w

Eπ{βj(t)[µj(t) − Aj(t)]}. We start with the first
case where the reference is incorrect, i.e., E[k1]c happens. In this case, using Lemma 7, we see that at most with probability

M
V log(V) a change will not be declared. Therefore,

Pr

k2 − k1 ≥ l

≤

2M

V log(V)

l−1

, ∀ l ≥ 1. (39)

Hence, conditioning on E[k1]c and using the fact that |βj(t)| ≤ b1V log(V), we have:

E

k2w−1
t=k1w

Eπ{βj(t)[µj(t) − Aj(t)]} | E[k1]c

≤ w
b1V log(V)δmax
1 −

2M
V log(V)

2 ≤ 2b1V 1+c log(V)δmax. (40)

We also note that the probability for E[k1]c to happen is O(M
V log(V)).

Now consider the second case when E[k1] takes place, i.e., the reference is correct. Using Lemma 7 again, we have that:

Pr

k2 − k1 > V 2

≥ 1 −
2MV 2

V log(V)/4
≥ 1 −

2M
V 4

. (41)

Conditioning on E1 = {k2 − k1 ≤ V 2
}, which happens with probability at most 2M

V4 , one has:

E

k2w−1
t=k1w

Eπ{βj(t)[µj(t) − Aj(t)]} | E1, E[k1]

≤ b1V 3+c log(V)δmax. (42)

164 L. Huang / Performance Evaluation 91 (2015) 150–169

On the other hand, when k2 − k1 > V 2, which happens with probability at least 1 −
2M
V4 , βj(t) remains constant for at least

V 2+c slots. Lemma 9 at the end of this appendix shows that, during this period,

k2w−1
t=k1w

Pr

qj(t) ≤ δmax

≤ b2[k2w − k1w + 1]/V log V . (43)

Here b2 = Θ(1) is some system-dependent parameter. Thus, using Lemma 8 and (43), we get:

E

k2w−1
t=k1w

Eπ{[µj(t) − Aj(t)]} | E c
1 , E[k1]

≤ E

qj(k1w) − qj(k2w − 1) | E c

1 , E[k1]

+ δmax + b2δmaxE

k2w − k1w + 1 | E c

1 , E[k1]

/V log V . (44)

Lastly, note that we set q(k1w) = qref = 2V 1−c/2 log(V)2. Thus, combining (40), (42) and (44), we have:
k2w−1
t=k1w

j

Eπ{βj(t)[µj(t) − Aj(t)]}

≤ r

2b1V 1+c log(V)δmax ·

M
V log(V)

+
2M
V 4

· b1V 3+c log(V)δmax + psb1V log(V)2V 1−c/2 log(V)2

+ psb1V log(V) · b2δmaxE

|I| | E c

1 , E[k]

/V log V

+ psδmaxV log(V)

= O(V 2−c/2 log(V)3). (45)

Here |I| denotes the length of the interval.
Finally, to complete the analysis, recall that under RLC, the timeline is divided into intervals shown in Fig. 6. We define

Il as the lth such interval and rewrite ∆
∞

A as follows:

∆
∞

A = lim
l→∞

l

t∈Il

j

Eπ{βj(t)[µj(t) − Aj(t)]}
l

E

|Il|
 . (46)

From (41), we get that for each Il,

E

|Il|

≥ V 2/2. (47)

Also, using the fact that Pr

E1

≤
2M
V4 , it can be shown that E

|I| | E c

1 , E[k]

≤ 2E

|I|

. Combining this with (45)–(47), we

conclude that:

∆
∞

A = O(1).

Plugging this into (37), we see that the utility result follows.
(Delay) Nowwe look at the delay performance. From the argument above, we see that the frames with correct reference

distribution dominate the intervals. Hence, we focus on showing thatmost packets experience very small delay during these
intervals.

Consider one such interval [k1w, k2w − 1]. Using Lemma 7 again, we can see that for a large V ,

Pr

k2 − k1 > V 5

≥ 1 −
2MV 5

V log(V)/4
≥ 1 −

2M
V 2

. (48)

Indeed, using (39), we see that the expected number of packet arrivals during an interval with an incorrect reference is no
more than 2V cδmax, while the expected number of arrivals during a correct frame is Ω(λjV 5/2).

According to Lemmas 5, 6, and (54) in the proof of Lemma 9, we see that when the distribution is correct,

∥γ∗
[k1] − γ∗

π∥ = O(V 1−c/2 log(V)). (49)

Define θ̂ = θ+γ∗
π −γ∗

[k1]. We see from Lemma 6 that whenever ∥q(t)− θ̂∥ > Gp, which is equivalent to ∥Q (t)−γ∗
π∥ > Gp,

E

∥q(t + 1) − θ̂∥ | q(t)

≤ ∥q(t) − θ̂∥ − ϵ,

for the same Gp, ϵ = Θ(1) in Lemma 6. Using (49) and θ = 2V 1−c/2 log(V)2, we see that θ̂ = Θ(V 1−c/2 log(V)2). Therefore,
by invoking Theorem 4 from [9], we have:

E

TGp(q(t))

≤ O(V 1−c/2 log(V)/ϵ). (50)

L. Huang / Performance Evaluation 91 (2015) 150–169 165

Here TGp(q(t)) , inf{t : ∥q(t) − θ̂∥ ≤ Gp}. Thus,

Pr

TGp(q(t)) > V 3−c/2

≤ O(log(V)/V 2). (51)

Now focus on the event {TGp(q(t)) ≤ V 3−c/2
} and denote t∗ the first time Y (t) , ∥q(t)− θ̂∥ ≤ Gp. Following an argument

almost identical to the proof of Theorem 1 in [17], one can show that:

k2w−1
t=t∗

νϵ

2
E

eνY (t)

≤ (k2w − 1 − t∗)e2ν
√
rδmax + eνY (t∗). (52)

Here ν , ϵ

δ2max+δmaxϵ/3
= Θ(1). Hence, by denoting b3 = 2e2ν

√
rδmax/νϵ = Θ(1) and b4 = eνY (t∗)

≤ eνGp = Θ(1) and by

choosingm = log(V)2, we get from (52) that:

1
(k2 − k1)w

k2w−1
t=k1w

Pr

Y (t) > Gp + m

≤ b3e−νm

+ (b4 + b3(t∗ − k1w))/(k2 − k1)w = O

V 3−c/2

V 5

= O(1/V 2).

Thus, the fraction of time {∥q(t) − θ̂∥ ≥ Gp} happens is only O(log(V)/V 2), implying that at most O(λj log(V)/V 2) amount
of packet will enter and depart from qj(t) when ∥q(t) − θ̂∥ > Gp.

Summarizing the above, we see that all but an O(log(V)/V 2) fraction of the traffic (due to cases when k2 − k1 < V 5 and
TGp(q(t)) > V 3−c/2) enter and depart when qj(t) ∈ [θ̂j − Gp − log(V)2, θ̂j + Gp + log(V)2]. This implies that their delay in
the queue is O(log(V)2).

(Dropping) We see from (48) that the frequency of dropping is no more than once every V 5+c slots with probability
larger than 0.9. Each case we drop no more than O(V) packets on average (Theorem 1 in [17]). Hence, the overall dropping
rate is O(1/V 4). �

Lemma 9. Suppose the conditions in Theorem 1 hold. Then, under RLC, given E[k1], we have for each j that:

k2w−1
t=k1w

Pr

qj(t) ≤ δmax

≤ b2[k2w − k1w + 1]/V log(V). (53)

Here b2 = Θ(1) is a system-dependent constant. �

Proof of Lemma 9. First, we see that with a large V , V 1−c/2 log(V)2 ≥ 2epmax = 2b0V 1−2/c log(V). Thus, using Lemma 5 and
that θj = 2V 1−c/2 log(V)2, we have that given E[k1], at every frame k ∈ [k1, k2],

βj(t) ∈

γ ∗

πj −
3
4
θj, γ

∗

πj −
1
4
θj

. (54)

It means that whenever qj(t) < qp , 1
4V

1−c/2 log(V)2, Qj(t) = qj(t) + βj(t) < γ ∗

πj −
1
4V

1−c/2 log(V)2, which implies
∥γ∗

π −Q (t)∥ > Gp when V is large. Denote Ej(t) the event that qj(t) < qp − δmax. Lemma 6 then shows that given E[k1], we
have for every t ∈ [k1w, (k1 + 1)w − 1] that:

Eπ{∥q(t + 1) − θ̃∥ | q(t), Ej(t)} ≤ ∥q(t) − θ̃∥ − ϵ, (55)

for some θ̃ with θ̃j ≥
1
8θ for all j.

Having established (55), define Y (t) = ∥q(t + 1)− θ̃∥− δmax. We see then qj(t) < θ̃ − δmax implies Y (t) > 0. From (55),
we see then:

Eπ{Y (t + 1) | Y (t) > 0} ≤ Y (t) − ϵ. (56)

Define an exponential Lyapunov function L̃(t) , eνY (t) and ∆̃(t) , E

L̃(t + 1) − L̃(t) | q(t)

. It was shown in [17] that by

choosing ν =
ϵ

δ2max+δmaxϵ/3
= Θ(1), we get:

∆̃(t) ≤ e2νδmax −
νϵ

2
eνY (t). (57)

Let t∗ be the first time after k1w that qj(t) ≤ θ̃ − δmax. We see then 0 ≤ Y (t∗) ≤ δmax. By taking expectation on both sides
of (57) and carrying out a telescoping sum from t = t∗ to k2w − 1, we obtain:

k2w−1
t=t∗

νϵ

2
E

eνY (t)

≤ [k2w − 1 − t∗]e2νδmax + E

eνY (t∗)

.

166 L. Huang / Performance Evaluation 91 (2015) 150–169

Using E

eνY (t)

≥ eνm Pr

Y (t) > m

and the fact that qj(t) ≤ δmax implies Y (t) ≥ θ̃ − 2δmax, we have:

k2w−1
t=t∗

Pr

qj(t) ≤ δmax

≤

k2w−1
t=t∗

Pr

Y (t) ≥

1
4
V 1−c/2 log(V)2 − 2δmax

≤ b2[k2w − t∗]e−νV1−c/2 log(V)2/4

+ eν

δmax−

1
4 V

1−c/2 log(V)2+2δmax

.

Here b2 , 2
νϵ

= Θ(1). Using Pr

qj(t) ≤ δmax

= 0 for t ∈ [k1w, t∗], we see that the lemma follows. �

Appendix D. Proof of Lemma 3

Proof of Lemma 3. Since π2 is different from π1, there exists at least one coordinate j such that |π1j − π2j| > ϵ = Θ(1).
Denote by k the frame t belongs to. We see then frame k − 1 has π(t) = π1. Hence, we have that with probability of at

least 1 −
M

V log(V) , max |π̂ci[k − 1] − π1i| ≤ α/2. Note that this holds regardless of π̂c[k − 1] being updated at frame k − 1 or
not. Since π(τ) = π2 for τ ∈ [t, t + 2w], we see that at least frame k + 1 has a distribution very different from π̂c[k − 1].
Thus, a change will be declared at (k + 2)w. This is so because with probability 1 −

M
V log(V) , max |πsi[k + 1] − π2i| ≤ α/2.

Thus, (12) will be violated at (k + 2)w with probability at least 1 −
2M

V log(V) , if it is not yet violated at time (k + 1)w (this is
possible because w = V c . If t is close to kw, then the sample distribution is not very different from π1). �

Appendix E. Proof of Theorem 2

Proof of Theorem 2 (Utility). Using Lemma 4, we see that with probability at least 1 −
M

V log(V) , maxi |π̂ci[0] − πi| ≤ α/2.

In this case, we see that when Dd = Θ(V 2+ϵ−c/2), with probability 1 −
MV3

V log(V) ≥ 1 −
M

V log(V)/2 , β(t) remains unchanged
throughout the interval.

Conditioning on this event and using the same argument as in the utility proof of Theorem 1, we have ∆
Dd
A /Dd = O(1)

(Eq. (45)). Moreover, Lemma 3 shows that the true distribution will be detected in 2w = 2V c time with probability
1 − O(2M

V log(V)). Thus, choosing c such that 2 + ϵ − c/2 > c + 1, i.e., c < (2 + 2ϵ)/3, ensures that the detection period
contributes only O(1/V) of the cost. Plugging the above into (18) and using the fact that qref,j = 2V 1−c/2 log(V)2 prove (21).

(Queueing) To show the queue performance, we note that (54) also holds in this case. Thus, there exists θ̃ with θ̃j ≤
3
4θ ,

such that whenever ∥q(t) − θ̃∥ > Gp,

E

∥q(t + 1) − θ̃∥|q(t)

≤ ∥q(t) − θ̃∥ − ϵ, (58)

for some ϵ = Θ(1). Using an argument similar to the proof of Theorem 1 in [17], one can show that qav = O(3r
4 V 1−c/2

log(V)2). �

Appendix F. Proof of Theorem 3

We prove Theorem 3 here. First we have the following lemma, whose proof is given in Appendix J.

Lemma 10. When the system is locally-smooth, for a large enough V , at every frame k, if maxi |π̂ci[k] − π̂i| ≤ α/2, then:

∥γ∗
[k] − γ∗

π∥ ≤ esmax , b5V
3−c
2 log(V), (59)

where b5 = Θ(1) is a system-dependent constant. �

We similarly have the following lemma regarding the drift of the queue vector towards γ∗
π under BP.

Lemma 11 ([17]). Suppose the conditions in Theorem 3 hold. Then, under BP, there exists a constant Gs = Θ(
√
V), such that

whenever ∥q(t) − γ∗
∥ > Gs,

Eπ{∥q(t + 1) − γ∗

π∥ | q(t)} ≤ ∥q(t) − γ∗

π∥ −
1

√
V

. � (60)

Now we prove Theorem 3.

L. Huang / Performance Evaluation 91 (2015) 150–169 167

Proof of Theorem 3 (Utility). First, one can check that Lemmas 7 and 8 still hold in this case, since they only involve the
underlying distribution and sample path queueing. Lemma 9 can also be verified to hold. In particular, (57) holds with
ϵ = 1/

√
V and ν = Θ(1/

√
V). In this case, we can define qs , 1

4V
(3−c)/2 log(V)2 and Yj(t) = max[qs − qj(t) − δmax, 0].

Then, the proof of Lemma 9 for the locally-smooth case follows exactly as in the polyhedral case.
Therefore, one can verify that (40)–(44) still hold, while (45) becomes (recall qref,j = 2V

3−c
2 log(V)2):

t∈Il

j

Eπ{βj(t)[µj(t) − Aj(t)]}

≤ r

2b1V 1+c log(V)δmax ·

M
V log(V)

+
2M
V 4

· b1V 3+c log(V)δmax + psb1V log(V)2V (3−c)/2 log(V)2

+ psb1V log(V) · b2δmaxE

|I| | E c

1 , E[k]

/V log V

+ psδmaxV log(V)

= O

V

5−c
2 log(V)2

. (61)

Having established (61), the rest of the proof goes exactly the same as in the proof of Theorem 1.
(Delay) We use a similar argument as in the polyhedral case. In particular, using Theorem 6, we have:

E

TGs(q(t))

≤ O(V 2−c/2 log(V)2), (62)

for some Gs = Θ(
√
V), and that:

Pr

TGs(q(t)) > V 4−c/2

≤ O(log(V)2/V 2). (63)

Here we have ignored the V c term in Theorem 6 as there is only one distribution. Following the argument as in the proof of
Theorem 1 and using the fact that k2 − k1 ≥ V 5, we see that:

1
(k2 − k1)w

k2w−1
t=k1w

Pr

Y (t) > Gs + m

= O(1/V).

Using Theorem 3 in [17] and (63), we see that for each interval, with probability 1 − O(
log(V)

V2), most packets will enter and
leave the queue when qj(t) ∈ [Gs −

√
V log(V)2,Gs +

√
V log(V)2]. Thus, all but an O(1/V) fraction of the traffic only

experience O(
√
V log(V)2) delay.

(Dropping): The proof is the same as in Theorem 1. �

Appendix G. Proof of Theorem 5

Proof of Theorem 5. First of all, we have from Lemma 3 that with probability at least 1 − O(2M
V log(V)), the new distribution

πd will be detected after 2w = 2V c time. Moreover, with probability 1 − O(M
V log(V)), (54) holds, in which case we have:

∥Q (t) − γ∗

π∥ = ∥β[k] + q(t) − γ∗

π∥ = O(V 1−c/2 log(V)2). (64)

Lemma 5 in [9] then shows that the expected time for Q (t) to get to within Gp of γ∗
π is O(V 1−c/2 log(V)2). Combining it with

the time to detect the distribution change, we see that the theorem follows. �

Appendix H. Proof of Theorem 6

Proof of Theorem 6. First, from Lemma 10, we have with probability of at least 1 − O(M
V log(V)) that:

∥γ∗
[k] − γ∗

π∥ ≤ b5V
3−c
2 log(V). (65)

Using Lemma 11, (65), and Lemma 5 in [9], we conclude that after getting the correct estimation of the underlying
distribution, the expected time to get to within Gs distance is O(V 2−c/2 log(V)2). Combining it with Lemma 3, which states
that O(V c) time is sufficient for detecting distribution change, we obtain (27).

(28) follows by noticing that after the distribution change, we have ∥q(t)−γ∗
∥ = Θ(V). This is so because q(t) now has

to move towards a different optimal multiplier, which has difference Θ(V) from the current one (Lemma 1 in [17]). Hence,
repeating the above argument, we obtain (28). �

168 L. Huang / Performance Evaluation 91 (2015) 150–169

Fig. 7. A queue process with busy–idle intervals.

Appendix I. Proof of supporting lemmas

This appendix presents the proofs of supporting Lemmas 7, 8 and 10.

Proof of Lemma 7. We first consider case (ii). Since maxi |π̂ci[k] − πi| > α/2, RLC will declare distribution change if
maxi |π̂si[k] − πi| ≤ α/4, because then maxi |π̂si[k] − π̂ci[k]| > α/4. Using Lemma 4, we see that this happens with prob-
ability at least 1 −

M
V log(V) .

Now consider case (i), i.e., maxi |π̂ci[k] − πi| ≤ α/2. In this case, RLC only declares distribution change when (12) is
violated. We show that given maxi |π̂ci[k] − πi| ≤ α/2, this is very unlikely. To see this, denote tc the reference time for
frame k and let k′ be the index of the frame tc belongs to. Then, we have:

Pr

max

i
|π̂ci[k′

] − πi| ≤ α/8 | max
i

|π̂ci[k′
] − πi| ≤ α/2

=

Pr

max

i
|π̂ci[k′

] − πi| ≤ α/8

Pr

max

i
|π̂ci[k′] − πi| ≤ α/2

≥ Pr

max

i
|π̂ci[k′

] − πi| ≤ α/8

≥ 1 − MV− log(V)/4.

The last inequality holds since π̂c[k′
] is formed by the sample distribution in frame k′. Given this, we see that RLC declares

distribution change only if maxi |π̂si[k] − πi| > α/8, which happens only with probability 1 − MV− log(V)/4. Thus, RLC does
not claim distribution change with probability at least 1 − 2MV− log(V)/4. �

Proof of Lemma 8. To prove this result, let us look at a queue process example shown in Fig. 7. We see that during any
busy interval [t1i, t2i], i.e., qj(t) > 0 for t ∈ [t1i, t2i] but qj(t) = 0 for t = t1i − 1 and t2i + 1, one must have

t2i−1
t=t1i−1[µj(t) −

Aj(t)] ≤ 0.
Thus, if we start from a time t∗1 when qj(t∗1) = 0, then

t2−1
t=t∗1

[µj(t) − Aj(t)] ≤ δmax
t2−1

t=t∗1
I[qj(t)≤0]. Now choose t∗1 to be

the first time after t1 such that qj(t) = 0 and denote t∗2 the last time before t2 that qj(t) = 0. We see then the lemma follows

as
t∗1−1

t=t1 [µj(t) − Aj(t)] ≤ qj(t1) + δmax and
t2

t=t∗2
[µj(t) − Aj(t)] ≤ −qj(t2). �

Appendix J. Proof of Lemma 10

Proof of Lemma 10. To start, we recall the following inequality from [9], which states that for all γ ≠ γ ∗
π ,

gπ(γ∗

π) − gπ̂c [k](γ
∗
[k]) ≤ 2max

i
δi[k]M(Vfmax + rξB). (66)

Here δi[k] , |πi − π̂∗
ci [k]| is the distribution estimation error and ξ = Θ(V).

Given (22) and the concavity of gπ(γ), [17] shows that there exists Gs = Θ(
√
V), such that whenever ∥γ∗

π − γ∥ > Gs,

gπ(γ∗

π) ≥ gπ(γ) +
1

√
V

∥γ∗

π − γ∥. (67)

Combining (67) with (66), we conclude that with probability 1 −
M

V log(V) , max δi[k] ≤
log(V)

V c/2 . Hence, when c ∈ [0, 2],

∥γ∗
[k] − γ∗

π∥ ≤ b5V
3−c
2 log(V), (68)

for some constant b5 = Θ(1). �

L. Huang / Performance Evaluation 91 (2015) 150–169 169

References

[1] M. Gatzianas, L. Georgiadis, L. Tassiulas, Control of wireless networks with rechargeable batteries, IEEE Trans. Wireless Commun. 9 (2) (2010).
[2] D.I. Shuman, M. Liu, Energy-efficient transmission scheduling for wireless media streaming with strict underflow constraints, in: WiOpt, 2008.
[3] A. Eryilmaz, R. Srikant, Fair resource allocation in wireless networks using queue-length-based scheduling and congestion control, IEEE/ACM Trans.

Netw. 15 (6) (2007) 1333–1344.
[4] H. Zhao, C.H. Xia, Z. Liu, D. Towsley, A unified modeling framework for distributed resource allocation of general fork and join processing networks,

in: Proc. of ACM Sigmetrics, 2010.
[5] L. Jiang, J. Walrand, Stable and utility-maximizing scheduling for stochastic processing networks, in: Allerton Conference on Communication, Control,

and Computing, 2009.
[6] R. Urgaonkar, M.J. Neely, Opportunistic scheduling with reliability guarantees in cognitive radio networks, IEEE Trans. Mob. Comput. 8 (6) (2009)

766–777.
[7] H. Su, A. El Gamal, Modeling and analysis of the role of fast-response energy storage in the smart grid, in: Proc. of Allerton, 2011.
[8] M.J. Neely, R. Urgaonkar, B. Urgaonkar, A. Sivasubramaniam, Optimal power cost management using stored energy in data centers, in: Proceedings of

ACM Sigmetrics, June 2011.
[9] L. Huang, X. Liu, X. Hao, The power of online learning in stochastic network optimization, in: Proceedings of ACM Sigmetrics, 2014.

[10] N. Chen, A. Agarwal, A. Wierman, S. Barman, L.L.H. Andrew, Online convex optimization using predictions, in: Proceedings of ACM Sigmetrics, 2015.
[11] Waze. https://www.waze.com/.
[12] L. Huang, J. Walrand, K. Ramchandran, Optimal smart grid tariff, in: Information Theory and ApplicationsWorkshop, ITA, Invited, San Diego, February

2012.
[13] M.J. Neely, A.S. Tehrani, A.G. Dimakis, Effficient algorithms for renewable energy allocation to delay tolerant consumers, in: Proceedings of IEEE

SmartGridComm, October 2010.
[14] Y. Yao, L. Huang, A. Sharma, L. Golubchik, M.J. Neely, Data centers power reduction: A two time scale approach for delay tolerant workloads, IEEE

Trans. Parallel Distrib. Syst. (TPDS) 25 (1) (2014) 200–211.
[15] W. Wang, K. Zhu, Lei Ying, J. Tan, L. Zhang, Map task scheduling in mapreduce with data locality: Throughput and heavy-traffic optimality, IEEE/ACM

Trans. Netw. to appear.
[16] L. Georgiadis, M.J. Neely, L. Tassiulas, Resource allocation and cross-layer control in wireless networks, Found. Trends Netw. 1 (1) (2006) 1–144.
[17] L. Huang,M.J. Neely, Delay reduction via Lagrangemultipliers in stochastic network optimization, IEEE Trans. Automat. Control 56 (4) (2011) 842–857.
[18] L. Huang, M.J. Neely, Max-weight achieves the exact [O(1/V),O(V)] utility-delay tradeoff under Markov dynamics, 2010. arXiv:1008.0200v1.
[19] D.P. Bertsekas, A. Nedic, A.E. Ozdaglar, Convex Analysis and Optimization, Athena Scientific, Boston, 2003.
[20] Sean Meyn, Control Techniques for Complex Networks, Cambridge University Press, 2007.
[21] L. Huang, M.J. Neely, The optimality of two prices: Maximizing revenue in a stochastic network, IEEE/ACM Trans. Netw. 18 (2) (2010) 406–419.
[22] L. Ying, S. Shakkottai, A. Reddy, On combining shortest-path and back-pressure routing over multihop wireless networks, in: Proceedings of IEEE

INFOCOM, April 2009.
[23] L. Bui, R. Srikant, A. Stolyar, Novel architectures and algorithms for delay reduction in back-pressure scheduling and routing, in: Proceedings of IEEE

INFOCOMMini-Conference, April 2009.
[24] L. Huang, S. Moeller, M.J. Neely, B. Krishnamachari, LIFO-backpressure achieves near optimal utility-delay tradeoff, IEEE/ACM Trans. Netw. 21 (3)

(2013) 831–844.
[25] B. Li, A. Eryilmaz, R. Li, Wireless scheduling for utility maximization with optimal convergence speed, in: Proceedings of IEEE INFOCOM, Turin, Italy,

April 2013.
[26] M. Neely, Energy-aware wireless scheduling with near optimal backlog and convergence time tradeoffs, in: Proceedings of IEEE INFOCOM, 2015.

Longbo Huang received the B.E. degree from Sun Yat-sen University, Guangzhou, China in June 2003, the M.S. degree from
Columbia University, New York City, in December 2004, and the Ph.D. degree from the University of Southern California in
August 2011, all in Electrical Engineering. He thenworked as a postdoctoral researcher in the Electrical Engineering and Computer
Sciences department at University of California at Berkeley from July 2011 to August 2012. Since August 2012, Dr. Huang joined
the Institute for Interdisciplinary Information Sciences (IIIS) at Tsinghua University (Beijing, China) as an assistant professor. His
current research interests are in the areas of learning and optimization for networked systems, data center networking, smart grid
and mobile networks.

http://refhub.elsevier.com/S0166-5316(15)00058-9/sbref1
http://refhub.elsevier.com/S0166-5316(15)00058-9/sbref2
http://refhub.elsevier.com/S0166-5316(15)00058-9/sbref3
http://refhub.elsevier.com/S0166-5316(15)00058-9/sbref6
https://www.waze.com/
http://refhub.elsevier.com/S0166-5316(15)00058-9/sbref14
http://refhub.elsevier.com/S0166-5316(15)00058-9/sbref16
http://refhub.elsevier.com/S0166-5316(15)00058-9/sbref17
http://arxiv.org/1008.0200v1
http://refhub.elsevier.com/S0166-5316(15)00058-9/sbref19
http://refhub.elsevier.com/S0166-5316(15)00058-9/sbref20
http://refhub.elsevier.com/S0166-5316(15)00058-9/sbref21
http://refhub.elsevier.com/S0166-5316(15)00058-9/sbref24

	Receding learning-aided control in stochastic networks
	Introduction
	Motivating examples
	Notations
	System model and problem formulation
	Network state
	The cost, traffic, and service
	Problem formulation
	Discussion of the model

	Deterministic problem and backpressure
	The deterministic problem
	The backpressure algorithm

	Receding learning-aided control
	Performance analysis
	The polyhedral case
	The locally-smooth case

	Convergence time analysis
	Simulation
	Conclusion
	Acknowledgment
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1
	Proof of Lemma 3
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of supporting lemmas
	Proof of Lemma 10
	References

