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Abstract

Let X = (Xt, t ≥ 0;Pµ) be a supercritical, super-stable process corresponding to

the operator − (−∆)α/2 u + βu − ηu2 on IRd with constants β, η > 0 and α ∈

(0, 2], and let ℓ be Lebesgue measure on IRd. Put Ŵt(θ) = e(β−|θ|α)tXt(e
iθ·), which

is a complex-valued martingale for each θ ∈ IRd with limit Ŵ (θ) say. Our main

result establishes that for any starting measure µ, which is a finite measure on IRd

such that
∫
IRd xµ(dx) < ∞, td/αXt

eβt
→ cαŴ (0) ℓ Pµ-a.s. in a topology, termed the

shallow topology, strictly stronger than the vague topology yet weaker than the weak

topology. This result can be thought of as an extension to a class of superprocesses

of Watanabe’s strong law of large numbers for branching Markov processes.
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1 Introduction

We use MF (IR
d) to denote the set of finite measures on IRd. We use µ(f) to denote

∫
fdµ

for a measure µ and integrable function f . It is clear that µ(D) = µ(ID), where ID is the

indicator function of D. Let Cc(IR
d) denote the set of continuous functions on IRd with

compact support.

In 1967, Watanabe [23] first discussed the strong law of large numbers for branching Brownian

motion. Let (Xt, t ≥ 0;Px) be a branching Brownian motion on IRd (d ≥ 1) starting from a

single point x ∈ IRd and corresponding to the operator

1

2
△u+ a(F (u)− u),

where a is a positive constant and F (s) :=
∞∑
n=0

pns
n, s ≥ 0, is the generating function of

the offspring distribution {pn, n ≥ 0}. By explicitly using the Gaussian density, Watanabe

[23] proved in the supercritical case, i.e. β := a(F ′(1) − 1) > 0, that under the condition
∞∑
n=0

n2pn < ∞, it follows that

Xt

eβtt−d/2
→ (2π)−d/2ℓ ·W, Px − a.s. (1)

as t → ∞ in the sense of vague convergence, where ℓ is the Lebesgue measure on IRd and W

is the limit of the martingale Wt := e−βtXt(1). Later, based on the ideas in [23], Biggins [2]
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proved strong law of large numbers for discrete-time branching random walk.

Suppose (Xt, t ≥ 0;Pµ) is a super-Brownian motion on IRd, d ≥ 1, corresponding to operator

1
2
△u + βu − ηu2, where β > 0 and η > 0 are positive constants, and starting from µ ∈

MF (IR
d). It seems that Englander [10] is the first to discuss the law of large numbers for

the supercritical super-Brownian motion (Xt, t ≥ 0;Pµ). It was proved in [10] that for any

f ∈ Cc(IR
d),

Xt(f)

eβtt−d/2
→ (2π)−d/2ℓ(f) ·W, in Pµ-probability, (2)

where W is the limit of the martingale Wt := e−βtXt(1). More recently, Wang [22] improved

the convergence in (2) from “in probability” to “Pµ-a.s.” in the special case that µ = δx,

x ∈ IRd by combining the Fourier analysis used [23] and the uniform convergence discussion

of martingales used in [2]. Wang’s proof depends on the specific density of Brownian motion

and the compact support property of super-Brownian motion starting from a compactly

supported measure. For more path properties of super-Brownian motion, see Dawson, Iscoe

and Perkins [8], Dawson and Perkins [9] and Perkins [19] [20]. But, α-stable processes (α ∈

(0, 2)) do not have specific density expressions. More critically, for any t > 0, the support

of Xt, the super-stable process with index α ∈ (0, 2), is the whole space IRd even when

the starting measure µ has compact support (see Dawson and Perkins [9] or Perkins [20]).

Therefore, the methods in Wang [22] do not transfer over to general µ ∈ MF (IR
d) nor to

super-stable process with index α ∈ (0, 2).

Note that both for branching Brownian motion and super-Brownian motion, the mean of

Xt is described by the linear operator 1
2
△ + β on IRd. The denominator eβtt−d/2 in (1) and

(2) is exactly the growth rate of eβtS
1
2
∆

t , the semigroup corresponding to 1
2
△ + β on IRd,

as t → ∞. In our more general α-stable case, corresponding to the operator −(−△)
α
2 + β,

it will again turn out that the correct scaling, eβtt−d/α, is dictated by the growth rate of

eβtS△α

t , the semigroup corresponding to −(−△)
α
2 + β.
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If 1
2
△ is replaced by a diffusion operator L with spatially dependent coefficients or more

general operator and β is spatially dependent, the strong (or weak) law of large numbers for

branching diffusion (or more general branching Hunt processes) and superdiffusion have been

investigated recently by many papers. See [1] and [6] for branching diffusion, [11] for branch-

ing Hunt processes, and [5] [10] [13] and [14] and [18] (with general branching mechanism)

for superdiffusions. In all of these papers, the mean of the process grows pure exponentially

as eλct with some positive constant λc, usually called the (generalized) principal eigenvalue.

The techniques used in these papers can not be applied to handle the case when the mean of

the process grows in the non-exponential manner f(t)eλct, where, for example, f(t) = t−d/α

as above.

In this paper, we will prove strong law of large numbers for super-stable processes with index

α ∈ (0, 2] corresponding to the operator

− (−∆)α/2 u+ βu− ηu2,

where β and η are positive constants. In the special case α = 2, our results extend the main

result Theorem 3.2 in [22]. In particular, we extend the starting measure δx, x ∈ IRd, in [22]

to any finite µ on IRd satisfying
∫
IRd xdµ < ∞, and the test function f ∈ Cc(IR

d) in [22] to

more general ones (see Theorem 4 below), and moreover, we improve Wang’s result from one

specific f to shallow convergence (see Theorem 8 below), which implies vague convergence.

Our proof depends mainly on Fourier analysis and stochastic calculations, advancing the

methods introduced in [3] in the discussion of Hölder continuity for general measure-valued

Markov processes including superprocesses. Our proofs are simpler and more extendable than

those in [23], [2] and [22]. Indeed, based upon the fundamental role of the Fourier transform

in pde there is reason to be optimistic that our methods can be extended to more general

operators and branching mechanism.

The spine method recently developed for measure-valued Markov processes is a powerful
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probabilistic tool in studying properties of the processes, see [10], [11], [12] [15] and [17] (to

list a few but not all). Englander, Harris and Kyprianou [11] used the martingale change of

measure and spine decomposition to prove the SLLN for branching diffusions. Their proof

depends on how the support of branching diffusion expands (see condition (iii) on page 282

of [11]). But as mentioned above, the support of a super-stable process with index α ∈ (0, 2)

expands to the whole space IRd immediately, so we can not expect to extend the method in

[11] to superprocesses with general underlining processes, like α-stable process. The purpose

of this paper is to generalize Watanabe’s results in [22] from discrete particle systems to

superprocess using techniques from Fourier transform theory and stochastic calculations.

We emphasize that we consider all α ∈ (0, 2] and do not assume our starting measure has

compact support. Our only assumption on µ is that
∫
IRd xµ(dx) < ∞.

2 Notation and Model

Recall that we use µ(f) to denote
∫
fdµ for a measure µ and integrable function f . For

simplicity, we let µr =
∫
|x|r µ (dr) and cosθ denote the function x → cos (θx) below. We also

use the following extended Vinogradov symbol (also used in [16]): Suppose a (n,m) , b (n,m)

are expressions depending upon two sets of variables n,m. Then,

a(n,m)
n
≪ b(n,m) means ∃ cm > 0 such that a(n,m) ≤ cmb(n,m) ∀ n,m.

For clarity, cm depends only on m.

Throughout this paper, we assume µ ∈ MF

(
IRd
)
such that µ0, µ1 < ∞. We consider the

measure-valued Markov process X = (Xt, t ≥ 0;Pµ) on IRd such that

Xt (f) = µ (f) +
∫ t

0
Xs

((
− (−∆)α/2 + β

)
f
)
ds+Mt (f) (3)
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for all f bounded and continuous functions with bounded and continuous partial derivatives

of order k ≤ 2, where Mt(f) is a martingale with quadratic variation

[M (f)] (t) =
∫ t

0
Xs

(
ηf 2

)
ds,

and η > 0 and β > 0 are positive constants. Note that X starts from µ, the particles move

independently according to a symmetric α-stable process on IRd with generator − (−∆)α/2

with α ∈ (0, 2], and the branching mechanism is given by ηz2 − βz. Since β > 0, X is

supercritical.

Substituting f (x) = e−iθx in (3) and using notation X̂ (t, θ) = Xt(cosθ)− iXt(sinθ), we get

X̂ (t, θ) = X̂ (0, θ) +
∫ t

0
(− |θ|α + β) X̂ (s, θ) ds+ M̂ (t, θ) (4)

for all θ ∈ Rd, where M̂ (t, θ) is a complex martingale with quadratic variations and covari-

ations: [
Re M̂ (·, θ)

]
(t) =

∫ t

0
Xs

(
η cos2θ

)
ds;

[
Im M̂ (·, θ)

]
(t) =

∫ t

0
Xs

(
η sin2

θ

)
ds;

[
M̂ (·, 0) ,Re M̂ (·, θ)

]
(t) =

∫ t

0
Xs (η cosθ) ds;

[
M̂ (·, 0) , Im M̂ (·, θ)

]
(t) =

∫ t

0
Xs (η sinθ) ds.

Using variations of constants, we get

X̂ (t, θ) = e(β−|θ|α)tX̂ (0, θ) +
∫ t

0
e(β−|θ|α)(t−s)M̂ (ds, θ) . (5)

Define

Ŵt(θ) = Ŵ (t, θ) = e(|θ|
α−β)tX̂ (t, θ) = e(|θ|

α−β)tXt(e
−iθt). (6)

Then, Ŵ (t, θ) is a complex martingale for any θ ∈ IRd.
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3 Results

Our first result describes the limiting object of our scaled super-stable process in frequency

domain. It will be used in the subsequent results herein.

Theorem 1 Suppose α ∈ (0, 2] and κ ∈
(
0, β

2

)
. Then, Ŵt(θ) converges almost surely and in

the mean-square sense to limit Ŵ (θ) for each θ ∈ IRd. Moreover, the limit object satisfies

Pµ

[∣∣∣Ŵ (λ)− Ŵ (θ)
∣∣∣2] λ,θ

≪ |θ − λ|1∧α . (7)

for all |λ|α, |θ|alpha ≤ κ.

Proof. Let ϵ = β− 2κ. Note that Ŵt (θ) and Ŵt (θ)− Ŵt (λ) are complex martingales with

quadratic variations satisfying

[
Re Ŵ (θ)

]
(t) =

∫ t

0
e2(|θ|

α−β)(s)Xs

(
η cos2θ

)
ds;

[
Im Ŵ (θ)

]
(t) =

∫ t

0
e2(|θ|

α−β)(s)Xs

(
η sin2

θ

)
ds;[

Re (Ŵ (θ)− Ŵ (λ))
]
(t) =

∫ t

0
e−2βsXs

(
η(e|θ|

αs cosθ −e|λ|
αs cosλ)

2
)
ds;[

Im (Ŵ (θ)− Ŵ (λ))
]
(t) =

∫ t

0
e−2βsXs

(
η(e|θ|

αs sinθ −e|λ|
αs sinλ)

2
)
ds.

By the martingale property of Ŵt(0) = e−βsX̂ (s, 0) = e−βsXs(1), we have for 0 ≤ u < t that

Pµ

[∣∣∣Ŵt (θ)− Ŵu (θ)
∣∣∣2]= ∫ t

u
e2(|θ|

α−β)sηPµ[Xs (1)]ds (8)

= ηµ (1)
∫ t

u
e(2|θ|

α−β)sds

=


ηµ(1)

2|θ|α−β

(
e(2|θ|

α−β)t − e(2|θ|
α−β)u

)
, if 2 |θ|α ̸= β,

ηµ (1) (t− u), if 2 |θ|α = β.

Therefore, letting u = 0, we find 0 < sup
t≥0

Pµ

[∣∣∣Ŵt (θ)
∣∣∣2] < ∞ if 2 |θ|α < β (since Pµ

[∣∣∣X̂ (0, θ)
∣∣∣2] ≤

|µ(sin(θ))|2+ |µ(cos(θ))|2 ≤ µ2
0 < ∞). An application of the martingale convergence theorem
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yields

Ŵ (θ)
.
= lim

t→∞
Ŵt(θ)

exists almost surely and in mean square sense for each θ ∈ IRd.

Next, we show the Hölder continuity in mean property for Ŵ . Ŵt (0) is a non-negative

martingale starting at X̂(0, 0) = µ0 and satisfying

[
Ŵ (0)

]
t
=
∫ t

0
ηe−βsŴs (0) ds.

Hence, we have by the Burkholder-Davis-Gundy inequality that

Pµ

[
sup
u≥0

∣∣∣Ŵu (λ)− Ŵu (θ)− X̂ (0, λ) + X̂ (0, θ)
∣∣∣2]

λ,θ
≪ Pµ

[∣∣∣∣∫ ∞

0
e−2βsXs

(
e2|λ|

αs + e2|θ|
αs − 2e|λ|

αs+|θ|αs cosθ−λ

)
ds
∣∣∣∣]

λ,θ
≪

∫ ∞

0
e−βs

[
(e2|λ|

αs + e2|θ|
αs − 2e|λ|

αs+|θ|αs)Pµ(Ŵs(0))

+ Pµ

∣∣∣e(|λ|α+|θ|α−β)sXs (1− cosθ−λ)
∣∣∣] ds

λ,θ
≪

∫ ∞

0
e−βs(e|λ|

αs − e|θ|
αs)2ds

+
∫ ∞

0
e−ϵse(−|θ−λ|αsPµ

∣∣∣e(|θ−λ|α−β)sXs (1− cosθ−λ)
∣∣∣ ds,

(9)

where in the last inequality we used the facts that ϵ = β − 2κ and |λ|α, |θ|α ≤ κ. However,

Pµ

[∣∣∣e(|θ−λ|α−β)sXs (1− cosθ−λ)
∣∣∣] = µ (1− cosθ−λ) , (10)

Pµ

[∣∣∣X̂ (0, λ)− X̂ (0, θ)
∣∣∣2] λ,θ

≪ µ (1− cosθ−λ) , (11)

and it follows by Taylor’s theorem that

|1− cos ((θ − λ) x)| ≤ |θ − λ| |x| , (12)

and ∣∣∣e|λ|αs − e|θ|
αs
∣∣∣2 s,λ,θ

≪ s2e2κs (|λ|α − |θ|α)2
s,λ,θ
≪ s2e2κs |λ− θ|α (13)
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since if |θ| > |λ|, then |θ|α − |λ|α ≤
(
|θ|2 − |λ|2

)α
2 ≤ 2κ

α
2 |θ − λ|

α
2 .

Substituting bounds (10)-(13) above into (9), we find by the Burkholder-Davis-Gundy in-

equality that

Pµ

[
sup
u≥0

∣∣∣Ŵ (u, λ)− Ŵ (u, θ)
∣∣∣2] λ,θ

≪ |θ − λ|α + |θ − λ| . (14)

and, letting u → ∞, we get (7).

Next, we convert our “frequency domain” result to a SLLN for super-stable processes. Since

both the limit and prelimit are measures, we introduce test functions f .

Theorem 2 Suppose κ ∈
(
0, β

2

]
and f satisfies

ĉ
.
=
∫
Rd

eϵ|θ|
α
∣∣∣f̂ (θ)

∣∣∣ dθ

(2π)d
< ∞ (15)

for ϵ = β − 2κ. Then, for any δ ∈ (0, βκ− 2κ2) there is a constant c > 0 and a random

variable Cδ > 0 such that

Pµ

 max
nϵ≤t≤(n+1)ϵ

∣∣∣∣∣∣∣
Xt(f)

eβtt−
d
α

−
∫
|θ|α≤κ

e−t|θ|αŴ (θ) f̂ (θ)
dθ(

2πt−
1
α

)d
∣∣∣∣∣∣∣
 ≤ c

√
ne−(βκ−2κ2)n (16)

and ∣∣∣∣∣∣∣
Xt(f)

eβtt−
d
α

−
∫
|θ|α≤κ

e−t|θ|αŴ (θ) f̂ (θ)
dθ(

2πt−
1
α

)d
∣∣∣∣∣∣∣ ≤ Cδe

−δt Pµ-a.s., (17)

where Ŵ is defined in the previous theorem.

Remark 1 This result directly generalizes Wang [22, Theorem 3.1].

Proof. We first note that

Xt(f)

eβt
=

1

(2π)d

∫
IRd e

−|θ|αtŴt (θ) f̂ (θ) dθ.

By Doob’s Lp-inequality

Pµ

[
sup
t>u

∣∣∣Ŵt (θ)− Ŵu (θ)
∣∣∣2] ≤ 4

ηµ (1)

β − 2 |θ|α
e(2|θ|

α−β)u.
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provided 2 |θ|α < β. Letting t → ∞ above, we get

Pµ

[∣∣∣Ŵ (θ)− Ŵu (θ)
∣∣∣2] ≤ 4

ηµ (1)

β − 2 |θ|α
e(2|θ|

α−β)u

if 2 |θ|α < β and combining the last two equations, we get

Pµ

[
sup
t≥u

∣∣∣Ŵ (t, θ)− Ŵ (θ)
∣∣∣2] ≤ 32

ηµ (1)

β − 2 |θ|α
e(2|θ|

α−β)u

provided 2 |θ|α < β. Letting u = nϵ, we get

∫
|θ|α≤κ

√√√√Pµ

(
sup
t≥nϵ

|Ŵt (θ) f̂ (θ)− Ŵ (θ) f̂ (θ) |2e−2t|θ|α
)
dθ

≤
∫
|θ|α≤κ

√√√√Pµ

(
sup
t≥nϵ

|Ŵt (θ)− Ŵ (θ) |2
)
|f̂ (θ) |e−nϵ|θ|αdθ

≤
∫
|θ|α≤κ

4

√√√√ 2ηµ (1)

β − 2 |θ|α
e(|θ|

α−β
2 )nϵ|f̂ (θ) |e−nϵ|θ|αdθ

≤4

√
2ηµ (1)

β − 2κ
e−

β
2
nϵ
∫
|θ|α≤β

2

|f̂ (θ) |dθ

n
≪e

(
−β2

2
+βκ

)
n

since ϵ = β − 2κ. Moreover, by our above bound and Doob’s Lp-inequality

∫
|θ|α>κ

√√√√Pµ

(
sup

nϵ≤t≤(n+1)ϵ
|Ŵt (θ) f̂ (θ) |2e−2t|θ|α

)
dθ

≤
∫
|θ|α>κ

√√√√Pµ

(
sup

nϵ≤t≤(n+1)ϵ

|Ŵt (θ)− Ŵ0 (θ) |2
)
|f̂ (θ) |e−nϵ|θ|αdθ

+
∫
|θ|α>κ

√
Pµ(|Ŵ0 (θ) |2)|f̂ (θ) |e−nϵ|θ|αdθ

≤ 2
∫
|θ|α>κ

√√√√ ηµ (1)

2 |θ|α − β
(e(2|θ|

α−β)(n+1)ϵ − 1)|f̂ (θ) |e−nϵ|θ|αdθ

+µ(1)
∫
|θ|α>κ

|f̂ (θ) |e−nϵ|θ|αdθ
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Using Taylor’s theorem, we continue the above estimate to get

∫
|θ|α>κ

√√√√Pµ

(
sup

nϵ≤t≤(n+1)ϵ
|Ŵt (θ) f̂ (θ) |2e−2t|θ|α

)
dθ

≤
(
2
√
η (n+ 1)µ0ϵ

)
·
[
e−

β
2
(n+1)ϵ

∫
|θ|α≥β

e|θ|
αϵ
∣∣∣f̂ (θ)

∣∣∣ dθ + e−(n+1)ϵκ
∫
κ<|θ|α<β

e|θ|
αϵ
∣∣∣f̂ (θ)

∣∣∣ dθ]

+µ0e
−(n+1)ϵκĉ

n
≪ (

√
n) e−nϵκ.

Hence, by the previous equations and Cauchy-Schwarz’ inequality

Pµ

[
sup

nϵ≤t≤(n+1)ϵ

∣∣∣∣∣Xt(f)

eβt
−
∫
|θ|α≤κ

e−t|θ|αŴ (θ) f̂ (θ)
dθ

(2π)d

∣∣∣∣∣
]

≤ 1

(2π)d

∫
|θ|α≤κ

Pµ

(
sup
t≥nϵ

∣∣∣Ŵt (θ) f̂ (θ)− Ŵ (θ) f̂ (θ)
∣∣∣ e−t|θ|α

)
dθ

+
1

(2π)d

∫
|θ|α>κ

Pµ

(
sup

nϵ≤t≤(n+1)ϵ

∣∣∣Ŵt (θ) f̂ (θ)
∣∣∣ e−t|θ|α

)
dθ

n
≪

√
ne−(βκ−2κ2)n

using ϵ = β−2κ. Then (16) holds. Multiplying both sides by t
d
α and fixing δ ∈ (0, βκ−2κ2),

we get that

∞∑
n=1

Pµ sup
nϵ≤t≤(n+1)ϵ


∣∣∣∣∣∣∣
Xt(f)

eβtt−
d
α

−
∫
|θ|α≤κ

e−t|θ|αŴ (θ) f̂ (θ)
dθ(

2πt−
1
α

)d
∣∣∣∣∣∣∣ eδt

 < ∞.

So there is a random Cδ > 0 such that∣∣∣∣∣∣∣
Xt(f)

eβtt−
d
α

−
∫
|θ|α≤κ

e−t|θ|αŴ (θ) f̂ (θ)
dθ(

2πt−
1
α

)d
∣∣∣∣∣∣∣ ≤ Cδe

−δt Pµ-a.s.

Finally, we can state our first SLLN (not in frequency domain). The following lemma will

be immediately improved by the theorem to follow thereafter.
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Lemma 3 Suppose f has Fourier transform f̂ that satisfies

∫
Rd

eϵ|θ|
α
∣∣∣f̂ (θ)

∣∣∣ dθ < ∞ (18)

for all ϵ < β. Then,

(1) existence of a κ0 <
β
2
such that sup

|θ|α≤κ0

|f̂(θ)| < ∞ implies that

Xt(f)

eβtt−
d
α

− Ŵ (0)
∫
e−t|θ|α f̂ (θ)

dθ(
2πt−

1
α

)d → 0 Pµ-a.s.

(2) continuity at 0 of f̂ implies that

lim
t→∞

t
d
αXt(f)

eβt
→ cα Ŵ (0)f̂(0) Pµ-a.s.,

where cα =
∫
Rd e−|y|α dy

(2π)d
.

Remark 2 1) It is clearly sufficient that

∫
Rd

eβ|θ|
α
∣∣∣f̂ (θ)

∣∣∣ dθ

(2π)d
< ∞.

2) c2 = (2π)−
d
2 .

3) The Fourier transform is defined in a different manner for each Lp(IR
d) with p ∈ [1, 2].

(Each can be thought of as an extension of the Fourier transform on S(IRd), the set of

rapidly decreasing functions (see [21] for definition).) If f ∈ L1(IR
d), then f̂ is continuous

and f̂(0) =
∫
IRd f(x)dx.

Proof. We let ai = i
3α
1∧α

−1 and sn =
n∑

i=1
ai. By (7), we have that Pµ

∣∣∣Ŵ (θ)− Ŵ (0)
∣∣∣ θ
≪ |θ| 1∧α

2

for |θ|α ≤ κ0 so

12



Pµ

 max
sn≤t≤sn+1

∫
|θ|α≤κ

e−t|θ|α
∣∣∣Ŵ (θ) f̂ (θ)− Ŵ (0) f̂ (θ)

∣∣∣ dθ(
2πt−

1
α

)d
 (19)

n,κ
≪ (sn+1)

d
α

∫
|θ|α≤κ

e−sn|θ|αPµ

∣∣∣Ŵ (θ)− Ŵ (0)
∣∣∣ dθ

(2π)d
sup

|θ|α≤κ

|f̂ (θ) |

n,κ
≪ (sn+1)

d
α

∫
|θ|α≤κ

e−sn|θ|α|θ|
1∧α
2

dθ

(2π)d

n,κ
≪
(
sn+1

sn

)d/α

|sn|−
1∧α
2α

for all κ ≤ κ0 and n = 1, 2, ... Moreover, by (18)

Pµ|Ŵ (0)| · max
sn≤t≤sn+1

∫
|θ|α>κ

e−t|θ|α |f(θ)| dθ(
2πt−

1
α

)d n,κ
≪ (sn+1)

d
α

∫
|θ|α>κ

e−sn|θ|α |f(θ)|dθ (20)

n,κ
≪ (sn+1)

d
α e−(sn+ϵ)κ,

here ϵ = β − 2κ as in Theorem 2, and from (16) of Theorem 2 one finds that

Pµ

 max
sn≤t≤sn+1

∣∣∣∣∣∣∣
Xt(f)

eβtt−
d
α

−
∫
|θ|α≤κ

e−t|θ|αŴ (θ) f̂ (θ)
dθ(

2πt−
1
α

)d
∣∣∣∣∣∣∣
 (21)

≤
⌊sn+1/ϵ⌋∑
j=⌊sn/ϵ⌋

Pµ

 max
jϵ≤t≤(j+1)ϵ

∣∣∣∣∣∣∣
Xt(f)

eβtt−
d
α

−
∫
|θ|α≤κ

e−t|θ|αŴ (θ) f̂ (θ)
dθ(

2πt−
1
α

)d
∣∣∣∣∣∣∣


n,κ
≪ (sn+1 − sn)

√
sne

−
(

β2

2
−βκ

)
sn

Therefore, we have by the previous three equations that

∞∑
n=1

Pµ

 max
sn≤t≤sn+1

∣∣∣∣∣∣∣
Xt(f)

eβtt−
d
α

− Ŵ (0)
∫

e−t|θ|α f̂ (θ)
dθ(

2πt−
1
α

)d
∣∣∣∣∣∣∣
 < ∞ (22)

for any κ ≤ κ0 <
β
2
, and so

Xt(f)

eβtt−
d
α

− Ŵ (0)
∫
IRd e

−t|θ|α f̂ (θ)
dθ(

2πt−
1
α

)d → 0 Pµ-a.s. (23)

13



Next, given γ > 0 we have by the continuity of f̂ (θ) at 0 that there is a κ0 ∈ (0, β
2
) satisfying

(18) and sup
|θ|α≤κ0

∣∣∣f̂ (θ)− f̂ (0)
∣∣∣ < γ, which implies that

∫
e−t|θ|α |f̂ (θ)− f̂ (0) | dθ(

2πt−
1
α

)d (24)

=
∫
|θ|α≤κ0

e−t|θ|α|f̂ (θ)− f̂ (0) | dθ(
2πt−

1
α

)d +
∫
|θ|α>κ0

e−t|θ|α |f̂ (θ)− f̂ (0) | dθ(
2πt−

1
α

)d
γ,t
≪ γ + e−(t+ϵ)κ0

∫
|θ|α>κ0

eϵ|θ|
α

|f̂ (θ) | dθ(
2πt−

1
α

)d + |f̂ (0) |
∫
|θ|α>κ0

e−t|θ|α dθ(
2πt−

1
α

)d
and the result follows from the fact that

∫
|θ|α>κ0

e−t|θ|α dθ(
2πt−

1
α

)d =
∫
|y|α>tκ0

e−|y|α dy

(2π)d
→ 0

as t → ∞.

Starting from Watanabe, everybody considered continuous, compactly supported f . It is

interesting to see how far we can relax the assumptions on f .

Theorem 4 Suppose that f is such that its Fourier transform f̂ exists, f̂ is continuous at

0 and there is an ϵ > 0 such that

∫
IRd e

ϵ|θ|α |f̂(θ)|dθ < ∞.

Then,

Xt(f)

eβtt−
d
α

→ cαŴ (0) f̂ (0) , Pµ-a.s.

Remark 3 The Fourier transform is only defined as an element of Lp
(
Rd
)
for some p ∈

[1, 2] and hence almost everywhere, so continuous at 0 should be interpreted as ‘there is

a version that is continuous at zero’. Compared to the previous theorems, ϵ > 0 can be

arbitrarily small.

14



Proof. We define ϕ̂
β
(θ) =


1, |θ|α ≤ β,

eβ(β−|θ|α), |θ|α > β,

and fβ .
= f ∗ϕβ. Hence, we have f̂β = f̂ ϕ̂β

and ∫
Rd

eβ|θ|
α |f̂β(θ)|dθ ≤ eβ

2
∫
|θ|α≤β

|f̂(θ)|dθ + eβ
2
∫
|θ|α>β

|f̂(θ)|dθ < ∞.

Therefore, by Lemma 3, we have that

t
d
αXt(f

β)

eβt
→ cαŴ (0) f̂β (0) = cαŴ (0) f̂ (0) , Pµ-a.s..

Let ai =
1√
i
and sn =

n∑
i=1

ai so sn ↗ ∞. Then, we also have that

(2π)dPµ

[
sup

sn≤t≤sn+1

∣∣∣∣ t dαXt(f−fβ)
eβt

∣∣∣∣
]

= Pµ

[
sup

sn≤t≤sn+1

∣∣∣∣∣t d
α

∫
|θ|α>β

e−|θ|αt(Ŵt − Ŵ0) (θ)
(
f̂ − f̂β

)
(θ) dθ

∣∣∣∣∣
]

+Pµ

[
sup

sn≤t≤sn+1

∣∣∣∣∣t d
α

∫
|θ|α>β

e−|θ|αtŴ0 (θ)
(
f̂ − f̂β

)
(θ) dθ

∣∣∣∣∣
]
.

For the first term, we find by Doob’s Lp-inequality, (8) and Taylor’s theorem (in the second

last inequality) that

Pµ

[
sup

sn≤t≤sn+1

∣∣∣∣∣t d
α

∫
|θ|α>β

e−|θ|αt(Ŵt − Ŵ0) (θ)
(
f̂ − f̂β

)
(θ) dθ

∣∣∣∣∣
]

≤ (sn+1)
d
α

∫
|θ|α>β

e−|θ|αsnP
1
2
µ

[
sup

sn≤t≤sn+1

∣∣∣Ŵt − Ŵ0

∣∣∣2 (θ)] ∣∣∣f̂ − f̂β
∣∣∣ (θ) dθ

≤ 2
√
ηµ0(sn+1)

d
α

∫
|θ|α>β

e−|θ|αsn

√√√√e(2|θ|α−β)sn+1 − 1

2|θ|α − β

∣∣∣f̂ − f̂β
∣∣∣ (θ) dθ

≤ 2
√
ηµ0(sn+1)

d
α
+ 1

2 e−
β
2
sn+1

∫
|θ|α>β

ean|θ|
α
∣∣∣f̂ − f̂β

∣∣∣ (θ) dθ
n
≪ (sn+1)

d
α
+ 1

2

√
e−βsn+1 .

(Here, we used the fact that an ≤ ϵ for large n in the last bound.) For the second term, we

find
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Pµ

[
sup
t≥sn

∣∣∣∣∣t d
α

∫
|θ|α>β

e−|θ|αtŴ0 (θ)
(
f̂ − f̂β

)
(θ) dθ

∣∣∣∣∣
]

≤ sup
t≥sn

∣∣∣∣∣t d
α e−βt

∫
|θ|α>β

µ
(
eiθ·(·)

) (
f̂ − f̂β

)
(θ) dθ

∣∣∣∣∣
≤ s

d
α
n e−βsnµ2

0

∫ (
1− ϕ̂

β
) ∣∣∣f̂ (θ)

∣∣∣ dθ
for large enough n. Combining the previous three equations, we find

∞∑
n=1

Pµ

 sup
sn≤t≤sn+1

∣∣∣∣∣∣t
d
αXt(f − fβ)

eβt

∣∣∣∣∣∣
 < ∞,

which implies that t
d
αXt(f−fβ)

eβt
→ 0 Pµ-a.s. (since sn → ∞) and therefore

t
d
αXt(f)

eβt
→ cαŴ (0) f̂ (0) , Pµ-a.s.

Now that we removed the β-dependence on the decay on f̂ , we can easily generalize Wang’s

and Watanabe’s works from a single continuous, compactly supported function to vague

convergence and beyond. We start by considering the case where f ∈ L1. (Until now, we

only assumed existence of the Fourier transform.)

Let

Gα =
{
g : g ∈ L1(IRd) such that

∫
eϵ|θ|

α

ĝ (θ) dθ < ∞ for some ϵ > 0
}

For any g ∈ Gα, it follows that the Fourier transform ĝ, is continuous by the L1-property.

Corollary 5 Suppose ℓ is Lebesgue measure, that f ∈ L1 and, for each ϵ > 0, there exists

f1, f2 ∈ Gα such that f1 ≤ f ≤ f2 and ℓ (f2 − f1) < ϵ. Then,

t
d
αXt(f)

eβt
→ cαŴ (0)

∫
IRd f (x) dx Pµ-a.s.
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Proof. By Theorem 4, we have that

t
d
αXt(fi)

eβt
→ cαŴ (0)λ(fi) Pµ-a.s.

for i = 1, 2. However, this then implies

cαŴ (0) ℓ(f1) ≤ lim inf
t→∞

t
d
αXt(f)

eβt
≤ lim sup

t→∞

t
d
αXt(f)

eβt
≤ cαŴ (0) ℓ(f2)

and the Corollary follows.

A further useful corollary follows:

Corollary 6 For any f ∈ Cc

(
Rd
)
, it follows that

t
d
αXt(f)

eβt
→ cαŴ (0)

∫
IRd f (x) dx Pµ-a.s.

Proof. Let M = sup
x

|f (x)|, K = sup{|x| : f(x) ̸= 0} and ϵ ∈ (0, 1). Then, by uniform

continuity there is a δ > 0 (with δ < K) such that |f (x)− f (y)| < ϵ
8
for all |x− y| < δ and

an r ∈ (0, 1) such that 2M
∫
B(0,δ)c

ϕrδ (y) dy <
ϵ

8
, where ϕp (y) =

1

(
√
2πp)

d e
− |y|2

2p2 . Finally, there

is an n > 1 such that
∫
B(0,nK)

ϕrδ (x− y) dy >
1

2
for all |x| ≤ K. Now, we define

f2 (x) =
∫
B(0,nK)

(
ϵ

2
+ f (y)

)
ϕrδ (x− y) dy

f1 (x) =
∫
B(0,nK)

(
f (y)− ϵ

2

)
ϕrδ (x− y) dy

Then, noting

f(x) =
∫
IRd f(x)ϕrδ(x− y)dy

=
∫
B(0,nK)

f(x)ϕrδ(x− y)dy +
∫
B(0,nK)c

f(x)ϕrδ(x− y)dy,

17



we have

f2 (x)− f (x)

=
ϵ

2

∫
B(0,nk)

ϕrδ(x− y)dy +
∫
B(0,nk)∩B(x,δ)

(f(y)− f(x))ϕrδ(x− y)dy

+
∫
B(0,nk)∩B(x,δ)c

(f(y)− f(x))ϕrδ(x− y)dy −
∫
B(0,nk)c

f(x)ϕrδ(x− y)dy

≥ ϵ

4
−
∫
B(x,δ)

|f (y)− f (x)|︸ ︷︷ ︸
< ϵ

8

ϕrδ (x− y) dy − 2M
∫
B(x,δ)c

ϕrδ (x− y) dy

>0.

Similarly we have f1 ≤ f . By construction, we have that f1, f2 ∈ Gα, f1 ≤ f ≤ f2 and

ℓ (f2 − f1) < ϵ. Hence, this corollary follows from the previous one.

We will use the following lemma to go from single f convergence to vague convergence and

beyond by setting M to be a countable subset of Cc

(
Rd
)
that generates the Borel topology

on Rd. In what follows, (E, T ) will denote a topological space, and B(E) and C(E) will

denote the bounded Borel measurable and the bounded continuous IR-valued functions on

E, respectively.

Lemma 7 Suppose that (E, T ) is a topological space with a countable base, and {µt} ∪ {µ}

are (possibly non-finite) Borel measures; f ∈ B (E) satisfies 0 < µ (f) < ∞; M ⊂ B(E)

strongly separates points, is countable and is closed under multiplication; and

µt (gf) → µ (gf)

for all g ∈ M∪ {1}. Then,

µt (gf) → µ (gf)

for all g ∈ C(E).

Proof. We define the probability measures by

νt (g) =
µt(gf)
µt(f)

and ν (g) = µ(gf)
µ(f)

18



for all g ∈ B (E) and find by hypothesis that νt (g) → ν (g) for all g ∈ M. Now, it follows

from Blount and Kouritzin [4, Theorem 6] that

νt → ν weakly as t → ∞

or, equivalently µt (gf) → µ (gf) as t → ∞, for all g ∈ C(E).

Definition 1 We call H = {h ∈ C(IRd) : ∃ϵ > 0 so that sup
x∈IRd

eϵ|x|
2 |h(x)| < ∞} the swiftly

decreasing functions on IRd and say Borel measures {µt} converge shallowly to Borel measure

µ if µt (h) → µ (h) as t → ∞ for all h ∈ H.

Theorem 8
t
d
αXt

eβt
→ cαŴ (0) ℓ, Pµ-a.s. in the shallow topology, where ℓ is Lebesgue mea-

sure.

Proof. Let fn (x) =
(

1√
πn

)d
e−

|x|2
n so f̂n(θ) = e−n|θ|2 and

t
d
αXt(fn)

eβt
→ cαŴ (0) ℓ(fn) Pµ-a.s.

by Theorem 4. Moreover, Cc

(
Rd
)
is an algebra that strongly separates points. Therefore,

it follows by Blount and Kouritzin [4, Lemma 2] that there is a countable subcollection M

that strongly separates points and is closed under multiplication. From Corollary 6, we have

that

t
d
αXt(gfn)

eβt
→ cαŴ (0) l(gfn) Pµ-a.s.

for all g ∈ M. Fix an ω such that convergence takes place for all fn and g ∈ M. Now, it

follows by Lemma 7 that

t
d
αXt (gfn)

eβt
→ cαŴ (0) l (gfn) for all g ∈ C(E) and n = 1, 2, ..., Pµ-a.s.

The theorem follows.

An immediate corollary of this Theorem is the following analog of Watanabe’s result:
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Corollary 9
t
d
αXt

eβt
→ cαŴ (0) ℓ Pµ-a.s. in the vague topology, where ℓ is Lebesgue measure.
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