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Abstract: We study the estimation property of the Elastic Net in high-dimensional

settings where the number of parameters p is comparable to or larger than the

sample size n. In such a situation one often assumes sparsity of the true regression

parameter β∗ ∈ Rp, i.e., assuming that β∗ belongs to an lq-ball Bq(Rq) for some

q ∈ [0, 1]. In this paper we provide an `2-estimation error bound for the Elastic Net

and the naive Elastic Net using a unified framework for high-dimensional analysis

of M -estimators proposed by Negahban et al. (2009). We show that for an exact

sparse linear model, the Elastic Net can get the same convergence rate as the Lasso

by suitably choosing the tuning parameters but under a weaker restricted strong

convexity condition; and for a weak sparse linear models, under the same condition

on design matrix, with suitably chosen tuning parameters, the Elastic Net have

slightly better error bounds.

Key words and phrases: Lasso; naive Elastic Net; Elastic Net; model selection

consistency; estimation consistency

1. Introduction

The literature on high-dimensional statistical inference that deals with mod-

els with the number of parameters (p) comparable to or larger than the sample

size (n) has enjoyed substantial growth over the last few years. Regularization

methods have been shown to have a better accuracy of prediction on future data

(Hoerl and Kennard (1970)). The Lasso (Tibshirani (1996)) which regularizes

with an `1 penalty, can generate sparse models and has been studied in much

of the recent literature; see, e.g., Osborne, Presnell and Turlach (2000), Efron.

Hastie, and Tibshirani (2004), Zhao and Yu (2006), and Wainwright (2007). The

Lasso has the advantage of simultaneously performing model selection and esti-

mation, and has been shown to be effective even in high-dimensional settings. But

it has some limitations, such as it selects at most n variables before it saturates
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in the p > n case and does not perform well when the predictors are highly cor-

related. Zou and Hastie (2005) proposed the Elastic Net, which regularizes with

a combination of the `1- and `2-penalties and also has the property of sparsity,

to solve the above problems. They stated that the Elastic Net “simultaneously

does automatic variable selection and continuous shrinkage, and is able to select

groups of correlated variables” and that “simulation studies and real data exam-

ples show that the Elastic Net often outperforms the lasso in terms of prediction

accuracy”. Jia and Yu (2010) study the model selection of the Elastic Net in the

general case when p (the number of predictors), s (the number of predictors with

non-zero coefficients in the true linear model), and n (the sample size) all go to

infinity. They give a sufficient condition EIC (Elastic Irrepresentable Condition)

to guarantee the Elastic Net’s model selection consistency when Gaussian noise

is assumed.

In this paper, we intend to understand the estimation performance of the

Elastic Net under the unified framework proposed by Negahban et al. (2009),

which can be used for high-dimensional analysis of M -estimators with decom-

posable regularizers. We provide a `2-estimation error bound and show that the

Elastic Net can be estimation consistent in the high-dimensional settings which

allow p� n.

Assume our data is generated by a linear regression model

Y = Xβ∗ + ε, (1.1)

where ε = (ε1, ..., εn)T is a vector of i.i.d. random variables with mean 0 and

variance σ2. Y ∈ Rn is the response vector, and X ∈ Rn×p is the design matrix

which is treated as a deterministic one. β∗ ∈ Rp is the vector of model coefficients.

The model is assumed to be “sparse”, i.e. β∗ ∈ Bq(Rq) (defined below) for some

q ∈ [0, 1]:

Definition 1. The `q-balls for q ∈ [0, 1] is defined as

Bq(Rq) :=

β ∈ Rp : ||β||qq =

p∑
j=1

|βj |q ≤ Rq

 , (1.2)
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where in the special case q = 0, we have the `0-ball

B0(s) := {β ∈ Rp :

p∑
j=1

I[βj 6= 0] ≤ s} (1.3)

corresponding to the set of vectors β with at most s non-zero elements.

The assumption that β∗ ∈ Bq(Rq) with q ∈ (0, 1] is called a week sparsity

assumption and β∗ ∈ B0(s) exact sparsity assumption.

The Lasso estimate β̂(Lasso) is defined by

β̂(Lasso) = argmin
β

{
1

n
||y −Xβ||22 + λ||β||1

}
, (1.4)

where λ ≥ 0 is the tuning parameter which controls the amount of regularization

applied to the estimate. Setting λ = 0 reverses the the Lasso problem to Ordinary

Least Squares which minimizes the unregularized empirical loss. For any vector

a = (a1, ..., am)′ we have adopted the notation ||a||22 =
∑m

i=1 a
2
i , ||a||1 =

∑m
i=1 |ai|,

and ‖a‖∞ = maxi=1,...,m |ai|.
The naive Elastic Net estimate β̂(naive) is

β̂(naive) = argmin
β

{
1

n
||y −Xβ||22 + λ1||β||1 + λ2n||β||22

}
, (1.5)

where parameters λ1 ≥ 0 and λ2n ≥ 0 control the amount of regularization ap-

plied to the estimate. λ2n = 0 leads the naive Elastic Net back to the Lasso

estimate. We refer to naive Elastic Net as naiveEN. Under the exact sparsity

assumption with β∗ ∈ B0(s), the estimation performance of this naiveEN es-

timator has already been considered in Bunea (2008) and Hebiri and Van de

Geer (2011). Bunea (2008) provides an upper bound on the `1-estimation error

||β̂(naive) − β∗||1 under the condition called Condition Stabil. The results in

Hebiri and Van de Geer (2011) are quite close to those in Bunea (2008) except

that the former authors also consider to bound some other forms of error, such

as ‖Xβ̂(naive)−Xβ∗‖2 and ||β̂(naive)− β∗||2.
The Elastic Net estimate β̂(EN) are (1+λ2n)β̂(naive) which select the same

model as the naive Elastic Net and can improve the prediction performance.

Moreover, The correction factor (1 + λ2n) leads to the fact that the Elastic Net

equals the Lasso for the case of orthonormal design where n−1XTX = I and
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Lasso is known to be minimax optimal in this orthonormal design case (Donoho

et al. 1995). It has been shown that the Elastic Net is model selection consistent

(Jia and Bin Yu (2010)) even when p � n under the condition EIC (Elastic

Irrepresentable Condition), and it can select the true model even when the lasso

cannot. Here we study the estimation property of the Elastic Net and show that

in high-dimensional settings and under a weaker condition comparing with Lasso,

both the Elastic Net and naive Elastic Net achieve the same convergence rate as

the Lasso.

The rest of the paper is organized as follows. In section 2, we review a

unified framework proposed in Negahban et al. (2009), which can be used for

high-dimensional analysis of M -estimate with decomposable regularizers, and we

give general `2-estimation error bounds for three estimators: the Lasso, the naive

Elastic Net and the Elastic Net estimators, using this framework. In section 3,

we study error bounds under both exact and weak sparsity assumptions. For

general scaling p and n, conditions on the data matrix X and tuning parameters

λ1, λ2n are given such that the Elastic Net estimator has good `2-estimation error

bound and has estimation consistence property. We conclude in section 4. The

proofs can be found in the Appendix.

2. General Error Bounds

In this section we provide a general bound on `2-estimation error ||β̂−β∗||2,
where β̂ can be the Lasso, naiveEN or Elastic Net estimator. In order to get this

error bound, we use a unified framework proposed by Negahban et al. (2009),

which established general convergence rates for high-dimensional M -estimator.

With the general bound established in this section, we give further analysis and

results on the naiveEN and the Elastic Net estimator for sparsity settings of β∗

in Section 3.

We first review the main results in Negahban et al. (2009) for regularized

M -estimators with a decomposable regularizer. Then we transform the Elastice

Net estimator to regularized M-estimators with a decomposable regularizer and

use the framework from Negahban et al. (2009) to give a general bound on the

`2-estimation error ‖β̂ − β∗‖2.
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2.1. Review of main results in Negahban et al. (2009)

Given n i.i.d observations Zn1 := {Z1, ..., Zn} from some distribution P with

the parameter β∗ ∈ Rp, the regularized M -estimators are defined by

β̂ ∈ argmin
β∈Rp

{L(β;Zn1 ) + λnr(β)} (2.1)

where L is a loss function that assigns a cost to any parameter β ∈ Rp, for a given

set of observations Zn1 , r denotes a regularization function (or regularizor), and

λn ≥ 0 is a tuning parameter. For the ease of notation, we adopt the shorthand

L(β) for L(β;Zn1 ). There are two key conditions to obtain the general bound on

the `2-estimation error: the regularization function r(β) is a decomposable norm

(defined later) and the loss function L(β) satisfies restricted strong convexity

(RSC) condition (defined later).

Decomposability Throughout the paper, let 〈·, ·〉 denote the regular Euclid-

ian inner product.

Definition 2. A norm-based regularizer r is decomposable with respect to the

subspace pair (A,B⊥) of Rp if r(·) is a norm and

r(u+ v) = r(u) + r(v) for all u ∈ A and v ∈ B⊥, (2.2)

where B⊥ is the orthogonal complement of B defined as

B⊥ = {v ∈ Rp : 〈u, v〉 = 0, for all u ∈ B} .

The decomposability property of a regularizer leads to an important conse-

quence. It is shown in Negahban et al. (2009) that under a few mild conditions,

the estimation error vector of the regularized M -estimator (2.1) ∆̂ := β̂ − β∗

belongs to the set

C(A,B, β∗) := {∆ ∈ Rp : r(∆B⊥) ≤ 3r(∆B) + 4r(β∗A⊥)}, (2.3)

where ∆A denote the Euclidean projection of ∆ on subspace A. This conse-

quence plays an essential role in the definition of restricted strong convexity and

subsequent analysis. See Negahban et al. (2009) for more details. Below is one

example of a decomposable norm.
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Example 1. For a subset S ⊆ {1, 2, ..., p} with cardinality s, we define the

subspace

A(S) := {β ∈ Rp : βj = 0 for all j /∈ S}

Let B(S) = A(S), so that the orthogonal complement is given by

B⊥(S) = A⊥(S) = {β ∈ Rp : βj = 0 for all j ∈ S}

Then the `1-norm regularizer r(u) = ||u||1 is decomposable with respect to the

pair (A(S), B⊥(S)). Indeed, by construction of the subspaces, for any u ∈ A(S)

and v ∈ B⊥(S), we have

||u+ v||1 = ||(uS , 0) + (0, vSc)||1 = ||u||1 + ||v||1

Restricted strong convexity

We now move to define the RSC property of the loss function. We know that

convexity, especially strong convexity defined below is very important in convex

optimization problems. We say that loss function L(β) is strongly convex if and

only if there exists a positive number γ,

L(β + ∆)− L(β)− 〈∇L(β),∆〉 ≥ γ||∆||22, for all β and ∆.

The strong convexity makes the solution of minβ L(β) unique and when β̂ is

close to β∗, L(β̂) is close to L(β∗) and vice verser. Unfortunately, when p > n,

it is impossible to guarantee strong convexity for all directions. In fact, based

on the consequence of decomposability of the regularizer r(·), the error belongs

to a restricted set C defined in Equation (2.3), hence it is natural to require

that the strong convexity holds for the restricted set of directions. That is, we

may instead suppose that the loss function satisfies a form of restricted strong

convexity (RSC). Let

K(δ;A,B, β∗) := C(A,B, β∗) ∩ {∆ ∈ Rp : ||∆||2 = δ} (2.4)

where δ > 0 is a tolerance parameter.
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Definition 3. The loss function satisfies the RSC(δ, γ;A,B, β∗) condition if

L(β∗ + ∆)− L(β∗)− 〈∇L(β∗),∆〉 ≥ γ||∆||22 for all ∆ ∈ K(δ;A,B, β∗) (2.5)

With the decomposable regularizer r(·) and a loss function L(β) with re-

stricted strong convexity, we can now introduce the main result in Negahban et

al. (2009). Define

Ψ(B) := inf{c > 0 : r(u) ≤ c‖u‖2, for all u ∈ B},

r∗(v) := sup
u∈Rp\{0}

〈u, v〉
r(u)

.

Theorem 1 (Negahban et al. (2009).). Suppose that the regularizer r(β) is

decomposable with respect to the subspace pair (A,B⊥) with A ⊆ B. Consider

the regularized M -estimator defined in (2.1) with a convex and differentiable loss

function and a strictly positive λn ≥ 2r∗(∇L(β∗)). Define the critical tolerance

δn := inf
δ>0

δ : δ ≥ 2λn
γ

Ψ(B) +

√
2λnr(β∗A⊥)

γ
and (2.5) holds

 (2.6)

then any optimal solution β̂ to the convex program (2.1) satisfies the bound

||β̂ − β∗||2 ≤ δn.

With the tool established above, we are now ready to study the property of

the naiveEN and the Elastic Net estimators.

2.2. Elastic Net

The regularizer corresponding to naiveEN defined as (1.5) is r(β) = ||β||1 +
λ2n
λ1n
||β||22, which is not a decomposable norm. Fortunately, we can transform

the naive Elastic Net estimator and Elastic Net estimator to `1 regularized M -

estimators by the following proposition.

Lemma 1. Given data (y,X) and (λ1n, λ2n), the naiveEN and Elastic Net esti-

mators are given by

β̂(naive) = argmin
β

{
βT (

1

n
XTX + λ2nI)β − 2

n
yTXβ + λ1n||β||1

}
, (2.7)

β̂(EN) = argmin
β

{
βT (

1
nX

TX + λ2nI

1 + λ2n
)β − 2

n
yTXβ + λ1n||β||1

}
. (2.8)
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The proof of Lemma 1 can be found in Zou and Hastie (2005), but for

completeness we provide it in the Appendix.

It is easy to see that

β̂(Lasso) = argmin
β

{
βT (

1

n
XTX)β − 2

n
yTXβ + λ1n||β||1

}
. (2.9)

Hence, all these three estimators belong to a special type of M -estimate as follows

β̂ = argmin
β

{
βTWβ − 2

n
yTXβ + λ1n||β||1

}
. (2.10)

Moreover, Proposition 1 interprets the naiveEN and Elastic Net as modified ver-

sions of the lasso. The loss function corresponding to naiveEN and Elastic Net,

βT ( 1
nX

TX +λ2nI)β− 2
ny

TXβ and βT (
1
n
XTX+λ2nI

1+λ2n
)β− 2

ny
TXβ respectively, are

strictly convex, while the loss function of Lasso, βT ( 1
nX

TX)β − 2
ny

TXβ, is not

strictly convex in high-dimensional settings. But the curvature of the loss func-

tion depends on the magnitude of the tuning parameter λ2n; if λ2n is small, the

advantage of Elastic Net over lasso maybe minor for parameter estimation.

General convergence rate for Elastic Net

Since we already transformed the navieEN and Elastic Net problem to the

framework ofM -estimator with a decomposable regularizer, we can apply the tool

described in Section 2.1 to obtain a general result on the bound of estimation

error ‖β̂ − β∗‖2.
Consider problem (2.10) which can be the Lasso, the naiveEN and the Elastic

Net depending on the choice of W . The loss function is L(β) = βTWβ− 2
ny

TXβ,

where W is a nonnegative definite matrix. Observe that this type of loss function

is twice-continuously differentiable and the Hessian is∇2L(β) = 2W . As a result,

the RSC(δ, γ;A,B, β∗) condition defined via (2.5) has the following form

∆TW∆ ≥ γ||∆||22 for all ∆ ∈ K(δ;A,B, β∗). (2.11)

Applying the result of Theorem 1, we have the general convergence rate for

the Elastic Net estimator. Let

Ψ̃(B) := sup
u∈B\{0}

||u||1
||u||2

(2.12)
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Proposition 1. Suppose that the regularizer r(β) = ||β||1 is decomposable with

respect to the subspace pair (A,B⊥) with A ⊆ B. Consider the regularized M -

estimator defined in (2.10) with a nonnegative definition matrix W and a strictly

positive λ1n ≥ 4||Wβ∗ − 1
nX

T y||∞. Define the critical tolerance

δn := inf
δ>0

δ : δ ≥ 2λ1n
γ

Ψ̃(B) +

√
2λ1n||β∗A⊥ ||1

γ
and (2.11) holds

 (2.13)

then any optimal solution β̂ to problem (2.10) satisfies the bound ||β̂ − β∗||2 ≤ δn.

With the general results, we are now ready to establish conditions and dis-

cuss how to choose suitable λ1n and λ2n such that the Elastic Net estimator is

`2 consistent: ||β̂ − β∗||2 → 0 when n→∞.

3. Convergence Rates under Sparsity Assumption

In the high-dimensional setting, i.e., when p� n, the linear regression model

(1.1) is unidentifiable, since the rank of the design matrix X is at most n � p.

In order to obtain an identifiable and interpretable model, we have to impose

additional assumption on the regression coefficients β∗. In this section, we study

the convergence rates of the Elastic Net under two types of sparsity assumption:

(1) exact sparsity, which assumes that β∗ has at most s non-zero coefficients; and

(2) weak sparsity, which assumes that β∗ ∈ Bq(Rq) for some q ∈ (0, 1].

Convergence rates under exact sparsity assumption

Let S =
{
j ∈ {1, 2, ..., p} : β∗j 6= 0

}
be the support of β∗, with cardinality

|S| = s. We note that β∗ belongs to subspace A(S) := {β ∈ Rp : βj =

0 for all j /∈ S}. By choosing B(S) = A(S), the restricted set C(A,B, β∗) is

given by

C(A,B, β∗) := {∆ ∈ RP : ||∆Sc ||1 ≤ 3||∆S ||1}. (3.1)

As a consequence, the RSC condition is equivalent to a type of restricted eigen-

value condition on the matrix W ,

∆TW∆ ≥ γ||∆||22 for all ∆ ∈ Rp such that ||∆Sc ||1 ≤ 3||∆S ||1. (3.2)

We still require two additional assumptions to get explicit convergence rates.
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Letting Xj ∈ Rn be the jth column of X, we require

||Xj ||2√
n
≤ 1 ∀j = 1, 2, ..., p (3.3)

In addition, we assume that the noise vector ε ∈ Rn is zero-mean and has sub-

Gaussian tails, i.e., there is a constant σ > 0, such that for any fixed ||u||2 = 1,

P (|〈u, ε〉| ≥ t) ≤ 2 exp(− t2

2σ2
) ∀t > 0 (3.4)

Under these conditions, we can obtain the following corollaries of Proposition 1.

Corollary 1. Consider the linear regression model (1.1) with the true parameter

β∗ ∈ Rp exactly s-sparse and assume the conditions (3.3), (3.4), and the following

conditions (a) and (b) hold.

(a) restricted eigenvalue condition: there exists a constant γ > 0 such that

||Xβ||22/n ≥ (γ − λ2n)||β||22 ∀β ∈ Rp, ||βSc ||1 ≤ 3||βS ||1; (3.5)

(b) the tuning parameters satisfy

λ1n = 8σ

√
log p

n
and 16λ2n(maxj |β∗j |) ≤ λ1n, (3.6)

then with probability at least 1−c1 exp(−c2nλ21,n) for some constants c1 > 0, c2 >

0, the naiveEN β̂ satisfies

||β̂ − β∗||2 ≤
16σ

γ

√
s log p

n
. (3.7)

We point out that Bunea (2008) and Hebiri and Van de Geer (2011) also

have results to bound estimation error of the naiveEN estimator. Bunea (2008)

considers to bound `1 error ‖β̂ − β∗‖1; Hebiri and Van de Geer (2011) considers

to bound `1 error ‖β̂−β∗‖1 and some other forms of error, such as ‖Xβ̂−Xβ∗‖22.
In both papers, restricted eigenvalue condition is a key assumption.

Similarly, for the Elastic Net estimator we have the following result:

Corollary 2. Consider the linear regression model (1.1) with the true parameter

β∗ ∈ Rp exactly s-sparse and assume the conditions (3.3), (3.4), and the following

conditions (a), (b) hold.

(a) restricted eigenvalue condition: there exists a constant γ > 0 such that

||Xβ||22/n ≥ (γ(1 + λ2n)− λ2n)||β||22 ∀β ∈ Rp, ||βSc ||1 ≤ 3||βS ||1 (3.8)
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(b) the tuning parameters satisfy

λ1n = 8σ

√
log p

n
and 16

∥∥∥∥ λ2n
1 + λ2n

(I − 1

n
XTX)β∗

∥∥∥∥
∞
≤ λ1n, (3.9)

then with probability at least 1− c1 exp(−c2nλ21n) for some constants c1 > 0, c2 >

0, the Elastic Net estimator β̂ satisfies

||β̂ − β∗||2 ≤
16σ

γ

√
s log p

n
. (3.10)

The proof of these corollaries can be found in Appendix. We now compare

the results for the Elastic Net with the Lasso. In order to do this comparison,

we present the following known result (see Bickel et al. 2009, Meinshausen and

Yu 2009, and Van de Geer 2007) which is also a corollary of proposition 2.

Corollary 3. Consider the linear regression model (1.1) with the true parameter

β∗ ∈ Rp exactly s-sparse and assume the conditions (3.3), (3.4), and the following

restricted eigenvalue condition hold.

restricted eigenvalue condition: there exists a constant γ > 0 such that

||Xβ||22/n ≥ γ||β||22, ∀β ∈ Rp, ||βSc ||1 ≤ 3||βS ||1. (3.11)

If we solve the Lasso with λ1n = 8σ
√

log p
n , then with probability at least 1 −

c1 exp(−c2nλ21n) for some constants ci > 0 (i = 1, 2), the Lasso estimate β̂

satisfies

||β̂ − β∗||2 ≤
16σ

γ

√
s log p

n
. (3.12)

Remarks: All three estimators (naiveEN, Elastic Net and the Lasso) have

the same convergence rate. But the conditions for naiveEN and Elastic Net are

a little bit weaker in the sense that when conditions for the Lasso in Corollary 3

hold, conditions for naiveEN or Elastic Net in Corollary 1 and Corollary 2 hold.

This makes sense, because the Lasso can be thought as a model nested in naive

Elastic net or Elastic net model. But if we look more into the conditions, we

find that for the resulting convergence rate, both naiveEN and Elastic Net needs

λ2 small enough, see Conditions (3.6) and (3.9). Both conditions suggest that if

maxj |βj | <∞, λ2n should be chosen in the same order as (or higher order than)

λ1n. Because of this small λ2n, the advantage of the naiveEN or Elastic Net over
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Lasso is minor for parameter estimation. This phenomenon is also found in Jia

and Yu (2010) and Bunea (2008).

From the error bounds obtain in Corollaries 1, 2 and 3, we can have estima-

tion consistency for these estimators in high-dimensional settings: in addition to

conditions in Corollaries 1, 2 and 3 respectively, if we further have s log p
n → 0 then

the three estimators–Lasso, naiveEN, and Elastic Net, are estimation consistence,

i.e. ||β̂ − β∗||2 →p 0, as n→∞.

We’ve discussed convergence rates under exact sparsity assumption. It is

well known that in practice, there is no true model. Even when β∗ is not exact

sparse, sometimes a sparse vector can be used to well approximate it. In this

situation, regularized method could give a good estimator, that is ‖β̂−β∗‖2 → 0.

We next discuss the case when β∗ belongs to an `q ball, for some q ∈ (0, 1].

Convergence rates under weakly sparsity assumption

We now consider a weak sparsity assumption based on imposing a certain

decay rate on the ordered entries of β∗, i.e. β∗ ∈ Bq(Rq) for some q ∈ (0, 1]. One

suitable condition for this case is that there exist constants κ1, κ2 > 0 such that

||Xβ||2√
n
≥
√
κ1||β||2 −

√
κ2 log p

n
||β||1, ∀β ∈ Rp. (3.13)

It has been shown by Raskutti et al. (2011) that, when X has each row drawn

i.i.d. from a N(0,Σ) distribution, then there exist constants κ1 > 0 and κ2 > 0

depending only on Σ such that property (3.13) holds with probability at least

1−c exp(−c′n) for some constants c > 0 and c′ > 0. We point out that Condition

(3.13) in fact implies the RSC condition (see Negahban et al. (2009) and our proof

of Corollary 6 in the Appendix). Now we have the following corollaries derived

from Proposition 1.

Corollary 4. Consider the linear regression model (1.1) with the true parameter

β∗ ∈ Bq(Rq) for some q ∈ (0, 1]. Assume
√
Rq(

log p
n )

1
2
− q

4 = o(1) and conditions

(3.3), (3.4), and (3.13) hold. If we solve the Lasso with λ1n = 8σ
√

log p
n , then

there are universal constants c1, c2 > 0 such that the Lasso estimate satisfies

||β̂ − β∗||2 ≤ 38
√
Rq(

σ2

κ21

log p

n
)
1
2
− q

4 (3.14)

with probability at least 1− c1 exp(−c2nλ21n).
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This result has been obtained in Negahban et al. (2009). We state it here to

compare it with the naiveEN and Elastic Net. For the naiveEN and the Elastic

Net, we have the following results.

Corollary 5. Consider the linear regression model (1.1) with the true parameter

β∗ ∈ Bq(Rq) for some q ∈ (0, 1]. Assume
√
Rq(

log p
n )

1
2
− q

4 = o(1) and conditions

(3.3), (3.4), and (3.13) hold. If we solve the naiveEN with λ1n and λ2n satisfying

λ1n = 8σ

√
log p

n
and 16λ2n(maxj |β∗j |) ≤ λ1n (3.15)

then there are universal constants c1, c2 > 0 such that the naiveEN estimate

satisfies

||β̂ − β∗||2 ≤ 38
√
Rq(

σ2

4γ2
log p

n
)
1
2
− q

4 , (3.16)

with probability at least 1− c1 exp(−c2nλ21,n), where γ = κ1
2 + λ2n.

Corollary 6. Consider the linear regression model (1.1) with the true parameter

β∗ ∈ Bq(Rq) for some q ∈ (0, 1], and Assume
√
Rq(

log p
n )

1
2
− q

4 = o(1) and condi-

tions(3.3), (3.4), and (3.13) hold. If we solve the Elastic Net with λ1n and λ2n

satisfying

λ1n = 8σ

√
log p

n
and 16|| λ2n

1 + λ2n
(I − 1

n
XTX)β∗||∞ ≤ λ1n (3.17)

then there are universal constants c1, c2 > 0 such that the Elastic Net estimate

satisfies

||β̂ − β∗||2 ≤ 38
√
Rq(

σ2

4γ2
log p

n
)
1
2
− q

4 (3.18)

with probability at least 1− c1 exp(−c2nλ21n), where γ = κ1/2+λ2n
1+λ2n

From these results for weak sparsity assumption, we see that for suitable

choice of λ2n, the naive Elastic Net and the Elastic Net have the same conver-

gence rate as the Lasso. Compare the error bounds (3.16) and (3.18) with (3.14),

we see that for the naiveEN and Elastic Net, the error bounds are better than

that of the Lasso. Once again, because the scale of λ2n is the same order as (or

higher order) than λ1n, the advantages over the Lasso is minor.

4. Conclusion
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We have discussed the estimation performance of the Elastic Net in high-

dimensional settings under the unified framework proposed by Negahban et

al. (2009). More precisely, we provide the `2-estimation error bounds for the

naiveEN and Elastic Net for exact and weak sparse linear models. For exactly

sparse linear models, we show that under a key assumption of restricted eigen-

value condition and some other minor conditions, with suitable choices of λ1n

and λ2n, all three estimators–the Lasso, naiveEN and the Elastic Net are all es-

timation consistency. Results also show that the conditions for the naiveEN and

the Elastic Net are slightly weaker than that needed for the Lasso. For weakly

sparse linear models, the key condition is

||Xβ||2√
n
≥
√
κ1||β||2 −

√
κ2 log p

n
||β||1, ∀β ∈ Rp.

This condition is not strong. Since for a design matrix X with each row drawn

i.i.d. from a N(0,Σ) distribution, there exist constants κ1 > 0 and κ2 > 0 de-

pending only on Σ such that the above property holds with probability at least

1− c exp(−c′n) for some constants c > 0 and c′ > 0 (Raskutti et al. (2011)). We

also find that under the same conditions, with suitable choices of λ2n, the Elastic

Net estimator can have better upper error bounds than the Lasso estimator.

Acknowledgment The authors are very grateful to Professor Bin Yu for many
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manuscript. This research is partially supported by a grant from MSRA.

Appendix: Proofs

Proof of Lemma 1

By definition (1.5) and simple algebraic calculation we have

β̂(naive)

= argmin
β
{ 1

n
||y −Xβ||22 + λ1n||β||1 + λ2n||β||22}

= argmin
β
{ 1

n
yT y − 2

n
yTXβ + βT (

1

n
XTX)β + λ2nβ

T Iβ + λ1n||β||1}

= argmin
β
{βT (

1

n
XTX + λ2nI)β − 2

n
yTXβ + λ1n||β||1}
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and

β̂(EN) = (1 + λ2n)β̂(naive)

= (1 + λ2n) argmin
β
{βT (

1

n
XTX + λ2nI)β − 2

n
yTXβ + λ1n||β||1}

= argmin
β
{( β

1 + λ2n
)T (

1

n
XTX + λ2nI)(

β

1 + λ2n
)− 2

n
yTX

β

1 + λ2n
+ λ1n||

β

1 + λ2n
||1}

= argmin
β
{βT (

1
nX

TX + λ2nI

1 + λ2n
)β − 2

n
yTXβ + λ1n||β||1}

Proof of Proposition 1

By definition (2.10), we have

β̂ = argmin
β
{βTWβ − 2

n
yTXβ + λ1n||β||1}

= argmin
β
{L(β) + λ1n||β||1}

where L(β) = βTWβ − 2
ny

TXβ is obvious a convex and differentiable function

and ∇L(β) = 2(Wβ − 1
nX

T y), then

L(β∗ + ∆)− L(β∗)− 〈∇L(β∗),∆〉

= (β∗ + ∆)TW (β∗ + ∆)− 2

n
yTX(β∗ + ∆)− {(β∗)TWβ∗ − 2

n
yTXβ∗} − 2〈Wβ∗ − 1

n
XT y,∆〉

= ∆TW∆

by condition (2.11), we have

L(β∗ + ∆)− L(β∗)− 〈∇L(β∗),∆〉 ≥ γ||∆||22 for all ∆ ∈ K(δ;A,B, β∗) (5.1)

hence, condition (2.11) indicates that the RSC(δ, γ;A,B, β∗) holds. We also

assume that the regularizer r(β) = ||β||1 is decomposable with respect to the

subspace pair (A,B⊥), and

λ1,n ≥ 4||Wβ∗ − 1

n
XT y||∞ = 2||∇L(β∗)||∞ (5.2)

then with application of Theorem 1 (Negahban et al. (2009).), we have any op-

timal solution β̂ satisfies the bound ||β̂ − β∗||2 ≤ δn, where the critical tolerance
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δn is defined by (2.13).

Proof of Corollary 1-3

The proof of these corollaries are very similar, hence we only prove corollary 2

here, the other two can be verified with very few modifications. Let A(S) and

A⊥(S) be the model subspace and its orthogonal complement

A(S) = {β ∈ Rp | βj = 0 for all j /∈ S} (5.3)

A⊥(S) = {β ∈ Rp | βj = 0 for all j ∈ S} (5.4)

By example 1 we know that the norm || · ||1 is decomposable with respect to

(A(S), A⊥(S)). By lemma 1, the Elastic Net estimate has the form

β̂(EN) = argmin
β
{βT (

1
nX

TX + λ2nI

1 + λ2n
)β − 2

n
yTXβ + λ1n||β||1}

= argmin
β
{βTWβ − 2

n
yTXβ + λ1n||β||1} (5.5)

whereW = (
1
n
XTX+λ2nI

1+λ2n
) is a nonnegative definite matrix. For any ∆ ∈ Rp, ||∆Sc ||1 ≤

3||∆S ||1

∆TW∆ =
1

1 + λ2n
(
1

n
||X∆||22 + λ2n||∆||22)

≥ 1

1 + λ2n
{(γ(1 + λ2n)− λ2n)||∆||22 + λ2n||∆||22} = γ||∆||22

where the inequality holds because the restricted eigenvalue condition (3.8) holds.

By proposition 1, if λ1n ≥ 4||Wβ∗ − 1
nX

T y||∞, we have

||β̂ − β∗||2 ≤
2λ1n
γ

Ψ̃(A(S)) +

√
2λ1n||β∗Sc ||1

γ
=

2λ1n
γ

Ψ̃(A(S)) (5.6)

where the equality holds because of the exactly sparsity assumption. It is easy

to verify

Ψ̃(A(S)) = sup
u∈A(S)\{0}

||u||1/||u||2 =
√
s (5.7)

Consequently, we need to verify that

λ1n ≥ 4||Wβ∗ − 1

n
XT y||∞ = 4|| λ2n

1 + λ2n
(I − 1

n
XTX)β∗ − 1

n
XT ε||∞ (5.8)
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with high probability. Using condition (3.3) and sub-Gaussian condition (3.4),

we have the tail bound P (|〈Xj , ε〉|/n ≥ t) ≤ 2 exp(− nt2

2σ2 ). By union bound, we

conclude that

P (|| 1
n
XT ε||∞ ≥ t) ≤ 2 exp(− nt

2

2σ2
+ log p) (5.9)

Setting t2 = 9σ2 log p
4n , and recall that our choice of λ1n = 8σ

√
log p
n , then we have

P (|| 1
n
XT ε||∞ ≥

3

16
λ1n) ≤ 2 exp(−1

8
log p) = 2 exp(−c2nλ21n) (5.10)

Moreover, λ2n satisfies 16|| λ2n1+λ2n
(I − 1

nX
TX)β∗||∞ ≤ λ1n, then

P (λ1n ≥ 4||Wβ∗ − 1

n
XT y||∞)

≥ P (λ1n ≥ 4|| λ2n
1 + λ2n

(I − 1

n
XTX)β∗||∞ + 4|| 1

n
XT ε||∞)

≥ P (
3

4
λ1n ≥ 4|| 1

n
XT ε||∞) (5.11)

therefore, with probability at least 1− c1 exp(−c2nλ21n), we have

||β̂ − β∗||2 ≤
2λ1n
γ

Ψ̃(A(S)) =
16σ

γ

√
s log p

n

that yields corollary 2.

Proof of Corollary 4-6

Once again, we only give a proof of corollary 6 here, the other two can be verified

similarly. Let us first show that the RSC condition (2.11) holds when the `2-norm

||β̂ − β∗||2 is sufficiently large. For a threshold τ > 0 to be chosen, define the

threshold set

Sτ := {j ∈ {1, 2, ..., p} | |β∗j | > τ} (5.12)

Since β∗ ∈ Bq(Rq), we have

Rq ≥
p∑
j=1

|β∗j |q ≥
∑
j∈Sτ

|β∗j |q ≥ τ q|Sτ | (5.13)

hence the cardinality of Sτ can be upper bounded in terms of the threshold τ and

lq-ball radius Rq, to be specific, we have |Sτ | ≤ τ−qRq for any τ > 0. Moreover,

let Scτ denote the complementary set Sτ \ {1, 2, ..., p}, we have

||β∗Scτ ||1 =
∑
j∈Scτ

|β∗j | =
∑
j∈Scτ

|β∗j |q|β∗j |1−q ≤ Rqτ1−q (5.14)
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Define the subspaces A(Sτ ), A⊥(Sτ ) and B(Sτ ) as previous in Example 1 with

S = Sτ and let the tolerance parameter δ∗ to be

δ∗ := 32

√
κ2
κ1

log p

n
Rqτ

1−q (5.15)

Next, we will show that the RSC(δ∗, γ;A(Sτ ), B(Sτ ), β∗) condition holds with

γ = 1
1+λ2n

(κ12 +λ2n) and τ = λ1n
16γ . Consider the constrained set C takes the form

C(A,B, β∗) := {∆ ∈ Rp | ||∆Scτ ||1 ≤ 3||∆Sτ ||1 + 4||β∗Scτ ||1} (5.16)

For any ∆ in the set C, we have

||∆||1 ≤ 4||∆Sτ ||1 + 4||β∗Scτ ||1
≤ 4

√
|Scτ |||∆||2 + 4Rqτ

1−q

≤ 4
√
Rqτ

−q/2||∆||2 + 4Rqτ
1−q

Therefore, for any ∆ ∈ C, condition (3.13) implies that

||X∆||2√
n

≥
√
κ1||∆||2 − 4

√
κ2 log p

n
{
√
Rqτ

−q/2||∆||2 +Rqτ
1−q}

≥ ||∆||2{
√
κ1 − 4

√
κ2Rq log p

n
τ−q/2} −

√
κ1
8
δ∗

Then, for all ∆ ∈ K(δ∗;A(Sτ ), B(Sτ ), β∗), we have

||X∆||2√
n
≥ ||∆||2{

7
√
κ1

8
− 4

√
κ2Rq log p

n
τ−q/2} ≥

√
κ1√
2
||∆||2 (5.17)

the second inequality holds since τ = λ1n
16γ and

4

√
κ2Rq log p

n
τ−q/2 = 4

√
κ2
√
Rq(

log p

n
)
1
2
− q

4 (
2γ

σ
)q/2 = o(1) (5.18)

Recall that, for the Elastic Net, W = (
1
n
XTX+λ2nI

1+λ2n
). Therefore, for all ∆ ∈

K(δ∗;A(Sτ ), B(Sτ ), β∗),

∆TW∆ =
1

1 + λ2n
(
1

n
||X∆||22 + λ2n||∆||22)

≥ 1

1 + λ2n
(
κ1
2

+ λ2n)||∆||22 = γ||∆||22 (5.19)
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From above, we have verified that the RSC(δ∗, γ;A(Sτ ), B(Sτ ), β∗) condition

holds with γ = 1
1+λ2n

(κ12 + λ2n) and τ = λ1n
16γ . On the other hand, for our choice

of λ1n and λ2n, we have proved in corollary 2 that with probability at least

1− c1 exp(−c2nλ21n)

λ1n ≥ 4||Wβ∗ − 1

n
XT y||∞ (5.20)

Finally, we may apply proposition 1 to obtain

||β̂ − β∗||2 ≤ max{δ∗, 2λ1n
γ

Ψ(A(Sτ )) +

√
2λ1n||β∗Scτ ||1

γ
}

≤ max{δ∗, 32
√
Rq(

λ1n
16γ

)1−q/2 +

√
32Rq(

λ1n
16γ

)2−q}

≤ max{δ∗, 38
√
Rq(

λ1n
16γ

)1−q/2}

Under the assumption
√
Rq(

log p
n )

1
2
− q

4 = o(1), the critical tolerance δ∗ in (5.15)

is of lower order than the second term, so that the claim follows.
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