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Direct Regression Modelling of High-order
Moments in Big Data
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Big data problems present great challenges to statisti-
cal analyses, especially from the computational side. In this
paper, we consider regression estimation of high-order mo-
ments in big data problems based on the U-statistic-based
Functional Regression Model (U-FRM) model. The U-FRM
model is a nonparametric method that allows direct estima-
tion of higher-order moments without imposing assumptions
on the mean structure. Despite of this modeling advantage,
its estimation relies on a U-statistics-based estimating equa-
tion whose computational complexity is generally too high
for big data. In this paper, we propose using the “divide-
and-conquer” strategy to construct a computationally more
succinct surrogate estimating equation. Through both theo-
retical proof and simulations, we show that our method sig-
nificantly reduces the computational time and meanwhile
enjoys the same asymptotic behavior as the original esti-
mation method. We then apply our method to a genomic
problem to illustrate its performance on real data.

Keywords and phrases: Big data, Higher-order moment,
U-statistics, Estimating equation, Divide-and-conquer, Ag-
gregation, Consistency, Asymptotic normality, Data cube.

1. INTRODUCTION

The recent technology breakthroughs have made data
collection very efficient and cost-effective in many different
fields such as biology, astronomy and business. For example,
in biology, the latest sequencing platform HiSeq X Ten can
generate up to 1.8 Tb of sequencing data in a 3-day run.
As data collection becomes easier, data analysis or compu-
tation is becoming the bottleneck for many researches and
real applications. The very first question in big data analysis
is how to computationally efficiently perform available sta-
tistical analyses. In big data analyses, an algorithm’s ideal
computational complexity is O(n), where n stands for the
size of the data. When an algorithm’s computational com-
plexity is more than O(n2), it becomes computationally very
difficult or even infeasible for many big data analyses.

There are at least two basic strategies to address the com-
putational problems in big data analysis. The first strategy
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is sub-sampling. The naive sub-sampling method is to u-
niformly sample from the entire data set and perform sta-
tistical analyses on the sub-sampled data. More advanced
methods take advantage of the properties of the statisti-
cal analysis under consideration (e.g. linear regression) and
develop sampling methods that can give estimates closer
to the estimates based on the entire data sets than simple
uniform sampling [3, 4, 16]. The other strategy is “divide-
and-conquer”, i.e. dividing the entire data set to many small
subsets, compressing each subset to a small number of sum-
mary statistics and then performing the statistical analysis
based on aggregating the summary statistics. This strategy
was long ago employed by computer scientists for calculating
simple statistics such as mean and sum [5]. Later, it was fur-
ther developed for linear regression [2, 6], general multiple
linear regression [1, 15], logistic regression analysis [24], pre-
dictive filters [1], generalized estimating equations [13] and
Bayesian analysis [25]. Methods based on the divide-and-
conquer strategy can be easily applied to parallel comput-
ing, distributed computing and fast query in the data cube
setting [7]. For linear statistical analyses such as linear re-
gression analysis, methods based on the divide-and-conquer
strategy can exactly recover the estimates as the ones based
on the entire data set.

In this paper, we consider in big data the estimation prob-
lem in a special semiparametric transformation regression
model [10] that is particularly useful for modeling higher-
order moments. This model was named as functional re-
gression model (FRM) in its original reference. But to avoid
confusion with the popular regression models for functional
data, we rename it here the U-FRM as the transformation
was formulated through U-statistics.

Traditional regression models are mostly interested in
the dependence of the mean of the response variable on
explanatory variables. However, to understand the depen-
dence structure in complex data, higher-order moments are
often of direct interest. For example, Wang et al. [21] consid-
ered the epistatis effects of a pair of genetic markers, such
as single nucleotide polymorphism (SNP), on the correla-
tion pattern of a pair of genes. In this research, the authors
focused on the dependence of correlation of gene pairs on ge-
netic markers instead of the mean expression level of genes.
Another example is the popular Gaussian graphical mod-
el [27, 26, 18], which also emphasizes on understanding the



correlation structure instead of the mean of the response
variables.

Typically, inference on high-order moments relies on an
initial estimate of the mean function, and hence is sensi-
tive to misspecfication of the mean structure, which may
often occur in big data due to its heteroscedastic na-
ture. This limitation is exacerbated if our interest lies in
modelling second and higher-order moments. The U-FRM
avoids assuming the mean regression structure by replac-
ing the single subject-based response yi with a function
f(yi1 , · · · , yik) of several responses yi1 , · · · , yik from mul-
tiple subjects i1, · · · , ik. For example, in variance regression
for homoscedastic data, i.e. V ar(yi) = σ2 for all i, it is
also true that σ2 = E(yi − yi+1)

2 and one may construc-
t (yi − yi+1)

2 as the response for direct variance regres-
sion without seeking any assumption on the mean structure.
Such ideas can be traced earlier back to [19, 20]. In general,
parameter estimation of the U-FRM employs a U-statistic
based generalized estimating equation (UGEE). While the
U-FRM provides an appealing nonparametric framework for
solving high-order moments regression problems, its com-
putational complexity is likely to hinder its application to
big data for that computing a U-statistic of degree m ≥ 2
generally has complexity O(nm) (see definition in Section
2.1), and solving the estimating equation in U-FRM often
involves many iterations each of which needs to compute the
U-statistic.

In this paper, we propose a new efficient computational
strategy for estimating the U-FRM that provides statisti-
cally equivalent estimates. Our method was motivated by
the computationally more efficient surrogate of U-statistics
for i.i.d. data, namely the aggregated U-statistics (AU-
statistics) [12]. The AU-statistic significantly reduces the
computational burden by utilizing the “divide-and-conquer”
strategy and meanwhile maintains first-order asymptotic e-
quivalence to the raw U-statistic. In our method, we replace
the UGEE for a U-FRM by an AU-statistics-based general-
ized estimating equation (AUGEE). And we show that the
estimator from the AUGEE is asymptotically equivalent to
that from the UGEE. Simulation studies also show that the
estimator obtained from the AUGEE is nearly as efficient as
the estimator obtained from the UGEE but computationally
much more efficient.

2. THE U-FRM

2.1 U-statistics and AU-statistics

Let X1, · · · , XN be N i.i.d. random variables from an
unknown distribution P in a nonparametric family P. Sup-
pose that h(x1, · · · , xm) is a measurable function defined
on Rm that is symmetric in its arguments and satisfies
ϑ = E[h(X1, · · · , Xm)] < ∞. Then an unbiased estimator
of ϑ is given by

(1) UN =

(
N

m

)−1 ∑
1≤i1<···<im≤N

h(Xi1 , · · · , Xim),

where the summation is over the set of all
(
N
m

)
combinations

of m integers, i1 < i2 < . . . < im chosen from {1, 2, . . . , N}.
Here, UN is called a U-statistic with kernel h and degree
m. Many commonly used nonparametric statistics can be
viewed as U-statistics, such as the Mann-Whitney-Wilcoxon
test statistic [17, 22] and Kendall’s τ rank correlation [9].
The time complexity of computing the U-statistics in (1) is
generally O(Nm), which increases very rapidly as the sample
size increases for m ≥ 2.

To reduce the computational burden of U-statistics, Lin
and Xi [12] introduced AU-statistics defined as follows.
First, partition a random sample {X1, · · · , XN} into K
subsets with observations in the kth subset denoted by
{Xk1, · · · , Xknk

} and the U-statistic based on them as Uknk
.

It is obvious that
∑K

k=1 nk = N . Then, the AU-statistic is
given by the following weighted average,

(2) ŨN =
1

N

K∑
k=1

nkUknk
.

Since the AU-statistics only depends on m-tuples within
each subset not across, its computational complexity is much
lower then the original U-statistics. Lin and Xi [12] also
showed that under some mild regularity conditions (allow-
ing K tending to ∞), the asymptotic distribution of AU-
statistics is the same as that of the U-statistics and thus
they are statistically equivalent.

2.2 The UGEE

Consider a regression setup based on independent ob-
servations Z1 = (Y1, X1), · · · , ZN = (YN , XN ). Let f and g
be two known measurable q-dimensional vector-valued func-
tions satisfying the following equation,

E[f(Yi1 , · · · , Yim)|Xi1 , · · · , Xim ](3)

= g(Xi1 , · · · , Xim ;θ0),

where θ0 is a p-dimensional unknown parameter. We then
call (3) the U-FRM [10]. Without loss of generality, we may
assume the functions f and g are symmetric about their
arguments. Otherwise, they can be easily symmetrized.

Suppose that H(x1, · · · , xm) is a measurable p × q di-
mensional matrix-valued function and is symmetric about
its arguments and

h(z1, · · · , zm;θ)(4)

= H(x1, · · · , xm)[f(y1, · · · , ym)− g(x1, · · · , xm;θ)],

where zi = (yi, xi). The following UGEE is used to estimate
θ0 in the U-FRM,

UN (θ) =

(
N

m

)−1 ∑
1≤i1<···<im≤N

h(Zi1 , · · · , Zim ;θ)(5)

= 0.
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However, solving equation (5) is computationally expensive
for m ≥ 2 and large N . In the next section, we will use the
AU-statistics [12] to reduce the computational complexity
for solving (5).

2.3 The AUGEE

Now, we can introduce the alternative AUGEE for the
U-FRM and show that the estimator obtained from the
AUGEE is asymptotically equivalent to the estimator from
the original UGEE.

As in the case of AU-statistics, we first partition the da-
ta set {Z1, · · · , ZN} into K subsets {Zk1, · · · , Zknk

}, k =
1, . . . ,K. Let Uk(θ) be the U-statistic based function in (5)
based on the kth subset. Then, we can solve the following
alternative AUGEE to get an estimate of θ0,

(6) ŨN (θ) =
1

N

K∑
k=1

nkUknk
(θ) = 0.

Let θ̃K,N be the solution to the estimating equation (6).

Note that θ̃1,N is just the solution to the UGEE (5). Be-
cause the estimating equation (6) uses m-tuples less than
the estimating equation (5), the computational complexity
of solving (6) would be much lower. If we use the Newton-
Raphson algorithm and choose nk to be the same for all
k, the computational complexity of solving the AUGEE (6)
would be at the order of O(Nm/Km−1) in each iteration,
but the computational complexity of solving the UGEE (5)
is at the order of O(Nm) in each iteration. Therefore, the
AUGEE tremendously reduces the computational burden of
estimating FRMs when m ≥ 2.

Define

ϑ = E[h(X1, · · · , Xm)],

hk = E[h(x1, . . . , xk, Xk+1, . . . , Xm)],

ζk(h) = Var(hk(X1, · · · , Xk)).

Before presenting the asymptotic property of the estimator
θ̃K,N , we give the following conditions.

(C1) E[h(Z1, · · · , Zm;θ0)
Th(Z1, · · · , Zm;θ0)] < ∞ and

ζ1(hθ0) is positive definite, where hθ0(z1, · · · , zm) =
h(z1, · · · , zm;θ0).

(C2) h(z1, · · · , zm;θ) is twice differentiable in a neighbor-
hood of θ0 and

B = E

[
∂h

∂θ
(Z1, · · · , Zm;θ0)

]
is an invertible matrix.

(C3) Suppose that hs(z1, · · · , zm;θ) (s = 1, · · · , p) is the
sth entry of the vector function h(z1, · · · , zm;θ) and

b(z1, · · · , zm) is a measurable function which is symmet-

ric about its argument and E
[
b(Z1, · · · , Zm)

]2
< ∞.

We have for all s, i, j = 1, · · · , p

E

[
∂hs

∂θj
(Z1, · · · , Zm;θ0)

]2
< ∞

and ∣∣∣∣ ∂2hs

∂θi∂θj
(z1, · · · , zm,θ)

∣∣∣∣ ≤ b(z1, · · · , zm)

in a neighborhood of θ0.

Theorem 1. Let θ̃K,N be the solution to the AUGEE (6).
If Conditions (C1), (C2) and (C3) are satisfied and K =
o(N), the estimator θ̃K,N is a consistent estimator of θ0

and

(7)
√
N(θ̃K,N − θ0)

d−→N (0,m2Gζ1(hθ0)G
T ),

where G = B−1.

Note that Theorem 1 applies to the case of K = 1, so it
also establishes the asymptotic normality of the estimator
from the original UGEE, which was missing in the original
reference of the U-FRM [10]. A quick corollary of Theorem
1 is that the estimators θ̃K,N and θ̃1,N are asymptotical-
ly equivalent when K = o(N). Therefore, the aggregation
method reduces the computational complexity while main-
taining the asymptotic efficiency of the estimator θ̃1,N . The
proof of Theorem 1 is given in Appendix.

3. SIMULATION STUDIES

In this section, we will show by simulation that the esti-
mator obtained from the AUGEE is statistically equivalent
to the estimator obtained from the UGEE, while the former
is computationally more efficient.

Simulation 1. Suppose that y1it, y2it are two measure-
ments on subject i at time t (i = 1, · · · , n; t = 1, · · · , T ).
Assume that subjects are independent. Let σ2

kt be the vari-
ance of ykit (k = 1, 2) and ρt be the correlation between the
two measurements y1it and y2it at time t. By the indepen-
dence assumption, it follows that

E[(y1it − y1jt)
2/2] = σ2

1t

E[(y2it − y2jt)
2/2] = σ2

2t

E[(y1it − y1jt)(y2it − y2jt)/2] = ρt

√
σ2
1t

√
σ2
2t

Let yit = (y1it, y2it) and yi = (yi1, · · · ,yiT ). De-
note fkt(yi,yj) = (ykit − ykjt)

2/2, hkt = σ2
kt (k =

1, 2), f3t(yi,yj) = (y1it − y1jt)(y2it − y2jt)/2 and h3t =

ρt
√
σ2
1t

√
σ2
2t. Then the U-FRM model is

E[fkt(yi,yj)] = hkt k = 1, 2, 3 t = 1, · · · , T.
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Let ft = (f1t, f2t, f3t), ht = (h1t, h2t, h3t), f = (f1, · · · , fT )
and h = (h1, · · · ,hT ). Then the U-FRM becomes
E[f(yi,yj)] = h. Given observations y1, · · · ,yN , the fol-
lowing UGEE is used to estimate the parameters ρt, σ2

1t

and σ2
2t,

UN (θ) =

(
N

2

)−1 ∑
1≤i<j≤N

(
f(yi,yj)− h

)
.

The U-FRM under consideration is based on a posttraumat-
ic stress disorder (PTSD) study with a total of 95 women
victims of sexual and non-sexual assault at the University
of Pennsylvania Medical Center [10]. The two measurements
are PTSD Symptom Scale and Beck Depression Inventory
at 5 time points. The goal is to longitudinally examine the
correlations between the two measurements.

In this simulation, the number of time points is set as 3,
i.e. T = 3. We generate 100 data sets each of which has 100
observations. In every data set, (y1it, y2it) are drawn from
a mean 0 bivariate normal distribution. The parameters
are set as σ2

1t = σ2
2t = 1 and ρt = 0.2 for all t = 1, 2, 3. We

then compare their estimates from the UGEE and from the
AUGEE with partition number K = 5, 10 and 20 using
a program written in R. Figure 1 shows the box plots of
the 100 estimates of the correlation ρt from the UGEE and
three AUGEEs. And box plots for other parameters showed
similar comparisons. Table 1 compares the sample means
and sample variances of the 100 estimates and average
computation time using the four different estimating
equations. At all t, the four sample means are comparable,
while the sample variances increases mildly as K increases.
However, the AUGEE saves a considerable amount of
computation time compared with the UGEE. In all, the
simulation clearly shows that AUGEEs provide estimators
nearly as good as estimators obtained from UGEEs, while
the computational burden of solving AUGEEs is much
lower.

Simulation 2. In this simulation, we consider the estima-
tion of the over-dispersion parameter with the UGEE. Let
yi and xi denote some count response and vector of inde-
pendent variables from the ith subject. The classic quasi-
Poisson log-linear model is given by

E(yi|xi) = µi = exp(xTβ).

If yi comes from a Poisson distribution, its mean and vari-
ance are equal. In case of over-dispersion, we have

E((yi − µi)
2) = λµi (λ > 0).

The over-dispersion parameter may be estimated by the
GEE method, but here we will use UGEE and AUGEE.
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Figure 1. Box plots of correlation estimates from different
estimating equations. 1: UGEE; 2: AUGEE (K = 5); 3:

AUGEE (K = 10) and 4: AUGEE (K = 20).

Following Kowalski and Tu (2008) [10], define

f1(yi, yj) = yi + yj

f2(yi, yj) = (yi − yj)
2

h1(xi,xj ;β, λ) = µi + µj

h2(xi,xj ;β, λ) = λ(µi + µj) + (µi − µj)
2(8)

f = (f1, f2)

h = (h1, h2).

Then, we have E(f(yi, yj)|xi,xj) = h(xi,xj ;β, λ) and hence
we can construct the estimating equation as (6) to estimate
the parameters β and λ.

In this simulation, we set β = c(5, 3,−2), λ = 2. The co-
variates xi = (1, x1i, x

2
1i), where x1i = exp (zi)/(1+exp (zi))

with zi sampled from N(0, 0.52). The responses are generat-
ed from negative binomial distribution with mean µi = xt

iβ
and variance λµi. This model is motivated by the depen-
dence of short read coverage on the GC content (i.e. propor-
tion of G and C in a genomic region) in the high-throughput
sequencing data (see more detailed description in Section 4).
We generated 200 data sets and each data set contains 500
observations. We compared the performance of UGEE and
AUGEE for K = 5, 10, 20. Note that UGEE can also be
viewed as AUGEE with K = 1. Figure 2 shows the boxplots
of the estimates of β and λ in the 200 simulations. Clearly,
the estimates of β with different choice of K are very close,
but for λ, the estimates given byK = 1 and 5 are quite close,
but the estimates given by K = 10 and 5 seem to have a
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Table 1. Comparison of estimates from different estimating
equations

K Mean Variance(×10−3) Time (seconds)

1 0.181 9.21 467.3
ρ1 (t = 1) 5 0.181 9.48 90.7

10 0.182 10.2 44.5
20 0.181 11.5 20.3

1 0.154 11.0 467.3
ρ2 (t = 2) 5 0.155 10.7 90.7

10 0.152 10.7 44.5
20 0.159 12.0 20.3

1 0.191 9.35 467.3
ρ3 (t = 3) 5 0.187 9.74 90.7

10 0.183 10.6 44.5
20 0.178 10.7 20.3

larger bias. Table 2 shows the mean computation time for

different types of estimating equations as well as the mean

and variances of the 200 estimates in each scenario. Clearly,

as K increases the computation time decreases significant-

ly, and the variances of the estimates also tends to increase

(but do not significantly increase). For example, for K = 5,

all estimates’ mean and variance are all very close to the

case of K = 1 (i.e. UGEE), but its computation time is only

1/5 of the UGEE.

Table 2. Comparison of estimates from different estimating
equations

K Mean Variance(×10−3) Time (seconds)

1 5.00 0.46 182.3
β0 5 5.00 0.46 37.2

10 5.00 0.49 19.1
20 5.00 0.53 10.0

1 2.99 7.55 182.3
β1 5 2.99 10.7 37.2

10 2.99 8.11 19.1
20 3.00 8.92 10.0

1 −1.99 6.73 182.3
β2 5 −1.99 6.75 37.2

10 −2.00 7.22 19.1
20 −2.00 7.95 10.0

1 2.00 51.2 182.3
λ 5 1.96 50.4 37.2

10 1.89 50.8 19.1
20 1.77 50.8 10.0

Figure 2. Box plots of parameter estimates (A. β0, B. β1, C.
β2, D. λ) for Simulation 2 from different types of estimating

equations (K = 1, 5, 10, 20).

4. REAL DATA ANALYSIS

In this section, we apply the AUGEE model to estimate
the GC-dependence and the over-dispersion parameter in
the high-throughput sequencing (HTS) genomic data. In re-
cent years, the breakthrough of the HTS technology has
revolutionized the research in many biological fields. The
HTS technology has been applied in various biological as-
says such as SNP detection, copy number variation detec-
tion, gene expression analysis and epigenetic studies. It is
well-known that the short read coverage of the HTS data
can be influenced by many biological and technical factors
[23]. If the technical factors are not properly accounted for,
the biological analysis based on HTS data would be mis-
leading. Here, we use the U-FRM to study one of the most
important factors, the GC-content on the short read cover-
age in HTS data. The GC-content refers to the proportion
of G and C in a genomic region.

We consider the HTS data HG00103 sequenced from the
1000 Genome Project [14]. After aligning the short reads to
the human reference genome hg18 using BWA [11], we ex-
tracted the mapping positions of the short reads and binned
the data to 50Kb (K-basepair) bins. In each bin, we count-
ed the total number of short reads and calculated the GC-
percentage. The original HTS data is around 10 Gb (in fastq
format) and we got around 238,000 bins after binning the
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data to 50Kb bins. Figure 3 shows the dependence of the
read count on the GC-content. We used the same model as
in Simulation 2 in Section 3, where x1i is the GC-proportion
and yi is the read count in the ith bin .

Figure 3. The GC dependence of Read Count in 50 KB for
the 1000Genome Individual HG00103; The curves are
estimated using the model same as Simulation 2 with

different partition number K.

Table 3 shows the parameter estimates and computation-
al time of AUGEE with different partition number K. It is
clear that all estimates using different K are very similar.
In terms of the computational time, larger K would require
much less computational time. For example, when K = 20,
the computational time is 10624.66 seconds, only 5% of the
computational time forK = 1. Figure 3 shows the estimated
function exp(β0 + β1x + β2x

2) with different choices of K.
Note that since these estimates are so close that the fitted
curves are almost the same and they visually seem the same.

5. CONCLUSION AND DISCUSSION

In this paper, we consider direct estimation of high-order
moments in a regression setting and focus on the nonpara-
metric U-FRM model that imposes no restrictions on the
mean structure. Estimation of the U-FRM model was orig-
inally proposed to be estimated using a U-statistics-based
estimating equation and its high computational complex-
ity makes it difficult to be applied to big data problems.
In this paper, we proposed an efficient computational strat-
egy by constructing a surrogate estimating equation using
the “divide-and-conquer” method. Our new approach signif-
icantly reduces the computational complexity and is proved
to meanwhile maintain asymptotic equivalence. Its merit is
further illustrated through an application in genomics. In
addition, the original estimator of the U-FRM model was
presented in [10] without its asymptotic behavior, and our

Table 3. Real Data Analysis

K Mean Time (seconds)

1 5.221022 214399.57
β0 5 5.220018 42683.05

10 5.219381 21320.32
20 5.220067 10624.66

1 5.326345 214399.57
β1 5 5.330730 42683.05

10 5.332967 21320.32
20 5.330220 10624.66

1 −6.459848 214399.57
β2 5 −6.464496 42683.05

10 −6.466170 21320.32
20 −6.463578 10624.66

1 2.764525 214399.57
λ 5 2.762958 42683.05

10 2.761451 21320.32
20 2.758854 10624.66

theory also fills this blank (see Theorem 1). Further, by ideas
similar in [24], our computational strategy also enables a s-
torage scheme to support the online analytical processing of
the U-FRM model in some big data environments such as
data cubes and data streams.

Semiparametric and nonparametric models are often ap-
pealing for big data problems for that parametric models
may not offer enough flexibility in accounting for the com-
plex structure of such data. However, the high computation-
al burden can be a serious bottleneck in promoting them.
The method presented in this paper, along with our earlier
work [12], provides a general computational strategy for im-
plementing U-statistics-based methods in large scale prob-
lems. And we hope they may shed light on how to revive
many traditional nonparametric methods in big data.

APPENDIX

In this section, we give the proof of Theorem 1. We
first give a theorem about the asymptotic normality for the
vector-valued AU-statistics, which itself is also of interest.

Theorem 2. Suppose that h = (h1, · · · , hp)T is a p-
dimensional vector-valued measurable functions which is
symmetric about its arguments. Let ŨN be the vector-valued
AU-statistic with kernel h. Suppose E[hi(X1, · · · , Xm)]2 <
∞ for all i = 1, · · · , p and ζ1(h) is positive definite. Then,
if K = o(N), one has

√
N [ŨN − ϑ]

d−→N (0,m2ζ1(h)) as N → ∞,

where ϑ = E[h(X1, · · · , Xm)].

6 R. Xi & N. Lin



Proof. It is sufficient to prove that for any nonzero vector
c = (c1, · · · , cp)T ∈ Rp, we have
(9)√

N [cT ŨN − cTϑ]
d−→N (0,m2cT ζ1(h)c) as N → ∞.

It is easy to see that cT ŨN is an AU-statistic with k-
ernel g = cTh and E[g(X1, · · · , Xn)] = cTϑ. Since
E[hi(X1, · · · , Xm)]2 < ∞ for all i = 1, · · · , p, we have

E[g(X1, · · · , Xm)]2

=

p∑
i,j=1

E[cicjh
i(X1, · · · , Xm)hj(X1, · · · , Xm)] < ∞.

At last, since ζ1(g) = cT ζ1(h)c > 0 and K = o(N), we get
the asymptotic normality (9) from Theorem 2 in Lin and Xi
(2010) [12]. �

Kantorovitch’s theorem, whose proof can be found in [8],
is needed in proving the consistency and asymptotic nor-
mality of the estimator θ̃K,N . For ease of reference, we list
Kantorovitch’s theorem as the following lemma.

Lemma 1 (Kantorovitch’s theorem). Let a0 be a point in
Rp, U an open neighborhood of a0 and f : U 7→ Rp a differ-
ential mapping, with its derivative Df(a0) invertible. Define

r0 = −Df(a0)
−1f(a0), a1 = a0 + r0,

U0 = {x| ∥x− a1∥ ≤ ∥r0∥}

If the derivative Df(a0) satisfies the Lipschitz condition

∥Df(x1)−Df(x2)∥ ≤ M∥x1 − x2∥,

for all points x1,x2 ∈ U0 and if the inequality

∥f(a0)∥ · ∥Df(a0)
−1∥2M ≤ 1

2

is satisfied, the equation f(x) = 0 has a unique solution in
U0.

Now we are ready to give the proof of Theorem 1.

Proof of Theorem 1. A. Consistency. Since hθ0 satisfies
Condition (C1), by Theorem 2 we have ŨN (θ0) = op(1).
From Condition (C3), we get

∂ŨN

∂θ
(θ0) = E

[
∂h

∂θ
(Z1, · · · , Zm;θ0)

]
+ op(1).

Then, ∂ŨN

∂θ (θ0) is invertible in probability and rN =

−(∂ŨN

∂θ (θ0))
−1ŨN (θ0) tends to zero in probability. By Con-

dition (C3), it is straightforward to show that there exists
a neighborhood U of θ0 and a constant M such that in
probability∥∥∥∥∂ŨN

∂θ
(θ1)−

∂ŨN

∂θ
(θ2)

∥∥∥∥ ≤ M∥θ1 − θ2∥

for all θ1,θ2 ∈ U . Again, since ŨN (θ0) = op(1)

and (∂ŨN

∂θ (θ0))
−1 is bounded in probability, we have

∥ŨN (θ0)∥∥(∂ŨN

∂θ (θ0))
−1∥2M ≤ 1/2 in probability. Then,

by Kantorovitch’s theorem, there exists a unique solution
θ̃N in the neighborhood UN = {θ| ∥θ−θN∥ ≤ rN} in prob-
ability, where θN = θ0 + rN . Then, we have ∥θ̃N − θ0∥ ≤
2∥rN∥ = op(1) and the estimator θ̃K,N is consistent.

B. Normality. Since θ̃N is the solution to Equation (6), we
have ŨN (θ̃N ) = 0. By the Taylor expansion of the vector-
valued function ŨN (θ) at θ0, we have

0 = ŨN (θ̃N ) = ŨN (θ0) +
∂ŨN

∂θ
(θ0)(θ̃N − θ0) +R2,

where R2 is the second order residual in the Taylor expan-
sion. Therefore, we have the following representation

√
N(θ̃N − θ0)

= −
(
∂ŨN

∂θ
(θ0)

)−1√
N

(
ŨN (θ0)−R2

)
.

By Conditions (C2) and (C3), we have ∂ŨN

∂θ (θ0) → B
in probability. Let Vk be the U-statistic with kernel b(·)
based on the observations {Zk1, · · · , Zknk

} and ṼN =∑K
k=1 nkVk/N be the corresponding AU-statistic. Since θ̃N

is a consistent estimator of θ0, we have ∥R2∥ ≤ CṼN∥θ̃N −
θ0∥2 in probability for some constant C. From the proof of
Part A, we know that

√
N∥θ̃N −θ0∥2 ≤

√
N∥rN∥2 = op(1).

Furthermore, ṼN goes to E[b(Z1, · · · , Zm)] in probability.
Hence, ∥

√
NR2∥ = op(1) and Theorem 1 can then be proved

using the delta method. �
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