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Abstract

The response of a patient in a clinical trial usually depends on both the se-
lected treatment and some latent covariates, while its variance varies across
the treatment groups. A general heteroscedastic linear additive model incor-
porating the treatment effect and the covariate effects is often used in such
studies. In this paper, under D- and DA-optimality criteria, it is shown that
the product of an optimal treatment allocation and an optimal design for
covariates is also optimal among all possible designs for this linear additive
model. Moreover, the optimal treatment allocation is characterized by a u-
nique set of solutions to a system of equations. The connection between D-
and DA-optimal designs is also revealed. Several examples are presented to
illustrate the applications of the above results to selected models.

Keywords: Optimal treatment allocation, D-optimality, DA-optimality,
Treatment contrast, Product design, Variance heterogeneity.

1. Introduction

Consider a K-treatment (K ≥ 2) experiment consisting of a set of in-
dependent runs, where in each run one treatment is assigned. Suppose the
mean value of the response of each run is determined by the effect of the
chosen treatment t ∈ T = {1, . . . , K} and also by the effects of m covariates
z = (z1, . . . , zm)T ∈ Z, where Z is a compact subset of Rm. The variance of
the response varies across the treatment groups and depends only on t. Let
f(z) = (f1(z), . . . , fJ(z))T denote a vector of J regression functions defined
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on Z satisfying {1, f1(z), . . . , fJ(z)} is a linearly independent set. Then the
heteroscedastic linear additive model is

y(t, z) = αt +
J∑
j=1

γjfj(z) + σtε, (1)

where α = (α1, . . . , αK)T and γ = (γ1, . . . , γJ)T are the vectors of treatment
effects and covariate effects, respectively. The unequal variances σ2

1, . . . , σ
2
K

are assumed to be known and positive, and ε’s are independent random
variables, each with mean 0 and unit variance.

For simplicity, rewrite model (1) as y(t, z) = βTg(x) + σtε, where x =
(t, z) ∈ X , X = T × Z, g(t, z) = (eTK,t,f

T (z))T and β = (αT ,γT )T . Here
eK,t is the vector of length K with its t-th entry equal to one and all other
entries equal to zero. Throughout all designs will be treated as approximate
designs, i.e., probability measures on the design region with finite support
points. A center problem is to find optimal designs for model (1) under some
optimality criterion. When there is no covariate effects in model (1), Wong
and Zhu (2008), Sverdlov and Rosenberger (2013) obtained optimal treat-
ment allocation designs for different inferential purposes. Recently, Atkinson
(2015) studied D- and DA-optimal designs for model (1) with K = 2, J = m,
fj(z) = zj and Z = [0, 1]m, i.e., only the treatment effects and all the linear
main effects of m continuous covariates are considered.

The aim of this paper is to generalize the work of Atkinson (2015), by
providing a theoretical insight into the design optimality for the general mod-
el (1) with multiple treatments. We note that model (1) can be regarded as
a multi-factor model, for which optimal designs are usually obtained by the
method of product design. See Schwabe (1996), Rodŕıguez and Ortiz (2005)
and Graßhoff et al. (2007) for examples. We will show certain product design
is D- or DA-optimal for model (1) and present a further investigation of the
optimal treatment allocation rules.

The remainder of this paper will unfold as follows. Section 2 proves that
the product of an optimal treatment allocation and an optimal design for
covariates is D-optimal for model (1). The characterization for the optimal
treatment allocation of any D-optimal design is established, some numeri-
cal results are also presented. When the goal is to estimate some treatment
contrasts and certain covariate effects, parallel results are obtained with re-
spect to DA-optimality in Section 3. Moreover, the connection between the
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two optimal treatment allocations under D- and DA-optimality criteria is
built. Applications of the theories to selected models are given in Section 4.
Section 5 concludes this paper with some remarks.

2. D-optimal designs for model (1)

For model (1), the information matrix of a given design ξ on X is

M(ξ) =

∫
X
g(x)gT (x)/σ2

t dξ. (2)

Define Ξ = {ξ | detM(ξ) > 0}, i.e., the set of all designs on X with non-
singular information matrix. Typically we are going to find optimal designs
over Ξ which maximize some concavity criterion function of the information
matrix, see Pukelsheim (2006) and Atkinson et al. (2007) for examples. A
design is said to be D-optimal for model (1) if it maximizes detM(ξ) over Ξ.
Any D-optimal design minimizes the volume of the confidence ellipsoid for β,
the vector of total unknown parameters in model (1).

The D-optimal designs found by Atkinson (2015) are essentially special
product designs (see Example 2 in Section 4). In this section a further
characterization of D-optimal designs for the more general linear model (1)
with multiple treatments will be presented by using the techniques in the
theory of optimal product designs.

Firstly, in addition to the full model (1) we consider two reduced marginal
models: the heteroscedastic one-way layout for treatment effects

y1(t) = αt + σtε, (3)

and the homoscedastic marginal model for covariate effects with an explicit
intercept term

y2(z) = γ0 +
J∑
j=1

γjfj(z) + ε. (4)

Let ξ1 and ξ2 be designs on T and Z, respectively, i.e., ξ1 is a treatment
allocation design and ξ2 is a design for covariates. Since a treatment allo-
cation design always provides K nonnegative weights w1, . . . , wK for the K
treatments with

∑K
k=1wk = 1, ξ1 can be equivalently described by a K × 1

vector of weights w = (w1, . . . , wK)T . For the two marginal models, the
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corresponding information matrices of ξ1 and ξ2 are

M1(ξ1) = diag
{
w1σ

−2
1 , . . . , wKσ

−2
K

}
and

M2(ξ2) =

(
1

∫
Z f

T (z) dξ2∫
Z f(z) dξ2

∫
Z f(z)fT (z) dξ2

)
,

respectively.
Given ξ1 on T and ξ2 on Z, the product design is defined as the product

measure ξ1 ⊗ ξ2 on X = T × Z. Hence ξ1 ⊗ ξ2 assigns the weight ξ1(t)ξ2(z)
to every point (t, z) in the Cartesian product of the supports of ξ1 and ξ2.
And the information matrix (2) of ξ1 ⊗ ξ2 for model (1) can be rewritten as

M(ξ1 ⊗ ξ2) =

(
M11(ξ1 ⊗ ξ2) M12(ξ1 ⊗ ξ2)
MT

12(ξ1 ⊗ ξ2) M22(ξ1 ⊗ ξ2)

)
, (5)

where

M11(ξ1 ⊗ ξ2) = M1(ξ1),

M12(ξ1 ⊗ ξ2) = (w1σ
−2
1 , . . . , wKσ

−2
K )T

∫
Z
fT (z) dξ2,

M22(ξ1 ⊗ ξ2) =
( K∑
k=1

wkσ
−2
k

)∫
Z
f(z)fT (z) dξ2.

Furthermore, we suppose that M1(ξ1) and M2(ξ2) are non-singular. Then the
formula for the determinant of a partitioned matrix (see, e.g., Lemma A.2 in
Schwabe (1996)) yields

detM(ξ1 ⊗ ξ2) =
( K∑
k=1

wkσ
−2
k

)J
detM1(ξ1) detM2(ξ2) > 0,

which means ξ1 ⊗ ξ2 ∈ Ξ.
The theorem below shows that when a product design is D-optimal for

model (1) and gives the optimal treatment allocation, which covers the re-
lated results of Atkinson (2015) as special cases. The proofs of all theorems
and corollaries are given in Appendix A.
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Theorem 1. Let ξ∗1 be the design on T with the vector of weights w∗ =
(w∗1, . . . , w

∗
K)T that solves the following K equations

w−1
k + J

(
σ2
k

K∑
t=1

wtσ
−2
t

)−1

= K + J, for k = 1, . . . , K. (6)

Let ξ∗2 be a D-optimal design on Z for the marginal model (4). Then the
product design ξ∗1 ⊗ ξ∗2 is D-optimal for model (1).

Using Theorem 1, we can obtain a product D-optimal design for model (1)
once a D-optimal design for the marginal model (4) is provided. However,
not all the D-optimal designs for model (1) have the product structure. For
example, sometimes it would be desirable to construct optimal designs with
minimal number of support points. Typically they are not product designs.
For any design ξ on X = T × Z, define the marginal design of ξ on T
by ξ(1) =

∫
Z dξ. Then ξ(1) is a treatment allocation design. The following

theorem tells us that although a D-optimal design may not be uniquely
determined, the optimal marginal treatment allocation is.

Theorem 2. Let ξ∗ be any D-optimal design for model (1). Then the
marginal treatment allocation design ξ∗(1) has the vector of weights w∗ which is

the unique set of solutions of (6) in Theorem 1 with the constrain 0 < w∗k < 1
for 1 ≤ k ≤ K.

It follows from Theorems 1 and 2 that for model (1), regardless of the
choice of regression functions in f(z), the optimal allocation for the K treat-
ments under D-criterion is unique, and only depends on the number J of re-
gression functions for covariates and the ratios of variances σ2

2/σ
2
1, . . . , σ

2
K/σ

2
1.

To obtain w∗ in Theorem 1, the nonlinear system of K equations (6) can
be solved by the following procedure. Comparing the last K − 1 equations
with the first yields

σ2
kw
−1
k = σ2

1w
−1
1 + (K + J)(σ2

k − σ2
1), for k = 2, . . . , K. (7)

Substituting them into the first equation in (6), we get a univariate equation

σ2
1w
−1
1 +J

(
w1σ

−2
1 +

K∑
k=2

[
σ2

1w
−1
1 + (K + J)(σ2

k − σ2
1)
]−1
)−1

− (K+J)σ2
1 = 0,

(8)
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which is essentially a polynomial of w1 whose roots can be obtained analyt-
ically for small K or numerically for large K. After w∗1 is found, w∗2 . . . , w

∗
K

are obtained immediately from (7). The optimization problem is, thus, re-
duced to a one-dimensional root finding problem which can be solved easily.
In addition, from the above solving process the following corollary can be
derived.

Corollary 1. Consider the optimal weights for the K treatments w∗1, . . . , w
∗
K

in Theorem 1.
(i) If σ2

k1
= σ2

k2
, 1 ≤ k1 < k2 ≤ K, then w∗k1 = w∗k2. In particular, if all the

variances σ2
1, . . . , σ

2
K are equal, then w∗1 = . . . = w∗K = 1/K.

(ii) If all the variances take only two different values, say σ2
a and σ2

b , with
σ2
b/σ

2
a = τ 6= 1. Without loss of generality, assume σ2

1 = . . . = σ2
K1

= σ2
a, and

σ2
K1+1 = . . . = σ2

K = σ2
b , where 1 ≤ K1 < K, then w∗1 = . . . = w∗K1

= w∗a/K1

and w∗K1+1 = . . . = w∗K = (1− w∗a)/(K −K1). Here w∗a is the unique root of
the following quadratic equation

(K + J)(1− τ)w2
a − [(K1 + J)(1− τ) +K]wa +K1 = 0 (9)

satisfying 0 < w∗a < 1/K1.

Corollary 1 implies that the optimal weights are same for all the treat-
ments with same variance. When all the K variances are equal, model (1)
degenerates to a homoscedastic model, and in such case the equal allocation
is always optimal. Note that when K = 2 and K1 = 1, equation (9) becomes
equation (4) in Section 3 of Atkinson (2015) for the case of two treatments.
Furthermore, from the quadratic equation (9) we get the lower and upper
bounds of the optimal weight w∗1 for extreme values of τ : w∗1 → 1/(K + J)
as τ → 0 and w∗1 → (K1 + J)/[K1(K + J)] as τ → +∞. The two bounds
depend on J , the number of regression functions for covariates, and approach
to 0 and 1/K1 respectively as J increases to infinity.

For convenience of use, we provide an R code based on the package root-
Solve as supplementary material in Appendix B. The code can return the
desired treatment allocation design under D- or DA-optimality criterion once
parameters are inputted. Also, for selected numbers J of covariate effects
and the variances ratios σ2

1 : σ2
2 : . . . : σ2

K , optimal treatment allocation-
s are presented in Tables 1 and 2, respectively, for K = 3 and K = 4.
The corresponding result for K = 2 can be found in Table 1 of Atkinson
(2015). These numerical results show that equal weights are assigned to the
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Table 1: Optimal treatment weights w∗
1 , w

∗
2 , w

∗
3 for K = 3 in (6)

Variances Number J of covariate effects

σ2
1 : σ2

2 : σ2
3 1 2 4 6 8 10

1 : 1 : 1 .333 .333 .333 .333 .333 .333 .333 .333 .333 .333 .333 .333 .333 .333 .333 .333 .333 .333

1 : 1 : 2 .354 .354 .293 .370 .370 .260 .395 .395 .210 .412 .412 .175 .425 .425 .150 .435 .435 .131

1 : 1 : 4 .364 .364 .271 .386 .386 .227 .415 .415 .171 .432 .432 .136 .443 .443 .113 .452 .452 .097

1 : 1 : 8 .370 .370 .261 .393 .393 .213 .422 .422 .156 .439 .439 .123 .450 .450 .101 .457 .457 .086

1 : 1 : 16 .372 .372 .255 .397 .397 .206 .425 .425 .149 .442 .442 .117 .452 .452 .096 .459 .459 .081

1 : 1 : 1
2

.305 .305 .390 .276 .276 .447 .227 .227 .547 .189 .189 .623 .160 .160 .679 .139 .139 .722

1 : 1 : 1
4

.280 .280 .440 .237 .237 .527 .177 .177 .645 .141 .141 .715 .117 .117 .767 .099 .099 .801

1 : 1 : 1
8

.266 .266 .469 .218 .218 .565 .159 .159 .683 .124 .124 .751 .102 .102 .795 .087 .087 .826

1 : 1 : 1
16

.258 .258 .485 .209 .209 .582 .150 .150 .699 .117 .117 .765 .096 .096 .807 .082 .082 .836

1 : 2 : 4 .412 .311 .277 .483 .283 .234 .593 .230 .176 .669 .191 .140 .722 .161 .116 .761 .140 .099

1 : 2 : 8 .422 .314 .263 .498 .285 .216 .610 .232 .158 .685 .191 .124 .736 .162 .102 .773 .140 .087

1 : 2 : 16 .428 .316 .257 .506 .287 .208 .618 .232 .150 .691 .191 .117 .742 .162 .096 .778 .140 .082

1 : 4 : 8 .454 .282 .265 .545 .238 .217 .664 .178 .158 .735 .141 .124 .781 .117 .102 .814 .099 .087

1 : 4 : 16 .460 .282 .257 .554 .238 .208 .672 .178 .150 .742 .141 .117 .787 .117 .096 .819 .099 .082

1 : 8 : 16 .477 .266 .258 .574 .218 .208 .691 .159 .150 .758 .124 .117 .802 .102 .096 .832 .087 .082

Table 2: Optimal treatment weights w∗
1 , w

∗
2 , w

∗
3 , w

∗
4 for K = 4 in (6)

Variances Number J of covariate effects

σ2
1 : σ2

2 : σ2
3 : σ2

4 1 3 5 9

1 : 1 : 1 : 1 .250 .250 .250 .250 .250 .250 .250 .250 .250 .250 .250 .250 .250 .250 .250 .250

1 : 1 : 1 : 2 .258 .258 .258 .225 .271 .271 .271 .187 .280 .280 .280 .159 .293 .293 .293 .122

1 : 1 : 1 : 4 .262 .262 .262 .213 .279 .279 .279 .163 .290 .290 .290 .131 .302 .302 .302 .095

1 : 1 : 1 : 1
2

.237 .237 .237 .290 .207 .207 .207 .378 .179 .179 .179 .463 .136 .136 .136 .592

1 : 1 : 1 : 1
4

.222 .222 .222 .333 .173 .173 .173 .479 .139 .139 .139 .582 .099 .099 .099 .703

1 : 1 : 2 : 2 .270 .270 .230 .230 .305 .305 .195 .195 .333 .333 .167 .167 .373 .373 .128 .128

1 : 1 : 4 : 4 .284 .284 .216 .216 .333 .333 .167 .167 .365 .365 .135 .135 .404 .404 .096 .096

1 : 1 : 8 : 8 .292 .292 .208 .208 .346 .346 .154 .154 .378 .378 .122 .122 .414 .414 .086 .086

1 : 1 : 2 : 4 .277 .277 .232 .215 .319 .319 .197 .166 .349 .349 .169 .134 .388 .388 .128 .096

1 : 1 : 2 : 8 .280 .280 .233 .207 .324 .324 .198 .154 .355 .355 .169 .122 .393 .393 .129 .086

1 : 1 : 4 : 8 .288 .288 .217 .208 .339 .339 .167 .154 .372 .372 .135 .122 .409 .409 .097 .086

1 : 2 : 4 : 8 .322 .247 .221 .210 .454 .217 .172 .156 .553 .185 .139 .123 .677 .138 .099 .087

1 : 2 : 4 : 16 .326 .248 .221 .205 .460 .218 .173 .149 .559 .185 .139 .117 .681 .138 .099 .081

1 : 2 : 8 : 16 .334 .250 .211 .205 .474 .220 .157 .149 .573 .186 .124 .117 .694 .138 .087 .081

1 : 4 : 8 : 16 .358 .225 .212 .206 .519 .174 .157 .150 .619 .140 .124 .117 .733 .099 .087 .081
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treatment groups having equal variances. When variances are different, the
smaller the variance is, the larger the optimal weight will be. Moreover, the
treatment allocation becomes more skewed as J increases when the ratios of
variances are fixed.

3. DA-optimal designs for model (1)

If our primary interest is only in some linear combinations of parameters
in a model, DA-optimality can be used instead of D-optimality (Silvey (1980);
Atkinson et al. (2007)). Let A be a (K + J) × s matrix with full column
rank s. A design is said to be DA-optimal for model (1) if it maximizes
det [(ATM−1(ξ)A)−1] over Ξ. Note that when s = K + J , i.e., A is a non-
singular square matrix, DA-optimality is equivalent to D-optimality since
det [(ATM−1(ξ)A)−1] = detM(ξ)/ det(ATA).

Throughout this section we discuss DA-optimal designs for model (1) in
the following scenario. Suppose we aim to estimate a system of s1 (s1 < K)
treatment contrasts AT1α and a set of s2 (s2 ≤ J) linear combinations of
covariate effects AT2 γ, where A1 is a K×s1 matrix with full rank s1 satisfying
AT1 1K = 0s1 , and A2 is a J × s2 matrix with full rank s2. Here 1n and 0n are
column vectors of n ones and zeros, respectively. When s2 = J , A2 is a non-
singular square matrix, and we can without loss of generality let A2 = IJ .
Moreover, each row of A1 is assumed to be nonzero, i.e., we are interested
in all treatments in T . Then the linear combinations of parameters ATβ
depend separately on α and γ, where

A =

(
A1 0K×s2

0J×s1 A2

)

with rank s = s1 + s2, and 0m×n is an m× n matrix of zeros. In such cases,
the following theorem presents a characterization of DA-optimal designs for
model (1).

Theorem 3. Define an auxiliary optimality criterion for designs on T with
non-singular information matrix for the marginal model (3)

Φλ,A(ξ1) = s2 ln
( K∑
k=1

wkσ
−2
k

)
− ln det [(AT1M

−1
1 (ξ1)A1)].

8



(i) Let ξ∗1 on T maximize Φλ,A and ξ∗2 be a DA3-optimal (in particular,
D-optimal when s2 = J) design on Z for the marginal model (4), where
A3 = (0s2×1, A

T
2 )T . Then the product design ξ∗1 ⊗ ξ∗2 is DA-optimal for mod-

el (1).
(ii) For any DA-optimal design ξ∗ for model (1), the marginal treatment
allocation design ξ∗(1) maximize Φλ,A.

In many experiments, especially in clinical trials, there has been a ubiqui-
tous interest in the comparison of treatments with a control. For example, in
a clinical trial it is common to set a placebo group and some treatment group-
s which are expected to provide improvements over the placebo group. Be-
sides, by the similar arguments in Atkinson (2015) for personalized medicine,
the estimation of some linear combinations of the covariate effects is also of
interest. Without loss of generality, suppose the first treatment is the con-
trol, then the above problem can be formulated by estimating ATβ with

A1 =
(
−1(K−1)×1, IK−1

)T
, where In is the identity matrix of order n. The

optimal weights for the K treatments can be obtained by applying Theo-
rem 3.

Corollary 2. In Theorem 3, suppose A1 =
(
−1(K−1)×1, IK−1

)T
, then all the

DA-optimal designs for model (1) share the same marginal treatment alloca-
tion design ξ∗1, whose vector of weights w∗ = (w∗1, . . . , w

∗
K)T is the unique set

of solutions of the following K equations

w−1
k + (s2 − 1)

(
σ2
k

K∑
t=1

wtσ
−2
t

)−1

= K + s2 − 1, for k = 1, . . . , K (10)

with the constrain 0 < w∗k < 1 for 1 ≤ k ≤ K.

Comparing Theorem 1 and Corollary 2, we derive an interesting and
somewhat surprising property of the optimal treatment allocation rules. The
equations in (6) turn to the equations in (10) just with J replaced by s2− 1.
For illustration, let A2 = IJ and thus s2 = J . Then the optimal treatment
allocation design for a model incorporating J covariate effects under DA-

criterion with A1 =
(
−1(K−1)×1, IK−1

)T
, is exactly the same as the optimal

treatment allocation design for a model incorporating one less covariate ef-
fect under D-criterion. Especially, if J = 1, the equal allocation is optimal
under DA-criterion. Hence we establish the connection between the optimal
treatment allocation rules under D- and DA-optimality criteria.
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In addition, parallel to Corollary 1, we have the following.

Corollary 3. Consider the optimal weights for the K treatments w∗1, . . . , w
∗
K

in Corollary 2.
(i) If σ2

k1
= σ2

k2
, 1 ≤ k1 < k2 ≤ K, then w∗k1 = w∗k2. In particular, if all the

variances σ2
1, . . . , σ

2
K are equal, then w∗1 = . . . = w∗K = 1/K.

(ii) If all the variances take only two different values, say σ2
a and σ2

b , with
σ2
b/σ

2
a = τ 6= 1. Without loss of generality, assume σ2

1 = . . . = σ2
K1

= σ2
a, and

σ2
K1+1 = . . . = σ2

K = σ2
b , where 1 ≤ K1 < K, then w∗1 = . . . = w∗K1

= w∗a/K1

and w∗K1+1 = . . . = w∗K = (1− w∗a)/(K −K1). Here w∗a is the unique root of
the quadratic equation (9) with J replaced by s2−1 satisfying 0 < w∗a < 1/K1.

Note that if we are only interested in the treatment contrasts AT1 γ without
any covariate effects in model (1), i.e., A = (AT1 ,0s1×J)T , the conclusions in
Theorem 3, Corollaries 2 and 3 still apply with s2 = 0. In such cases,
the DA-optimality of a design for model (1) relates only to the marginal
weights for the K treatments, and Corollaries 2 and 3 are consistent with
the results of Wong and Zhu (2008). In fact, some stronger results can be
obtained. We refer to a recent work by Rosa and Harman (2015) where
the optimal designs for estimating treatment contrasts in a model like (1)
but with homoscedastic errors were studied systematically, with respect to
a wide range of optimality criteria. Let φ be an information function (see
Section 5.8 of Pukelsheim (2006)) defined on the set of s1-order non-negative
definitive matrices. A design ξ∗ ∈ Ξ is said to be φA-optimal for model (1)
if it maximizes φ ([ATM−1(ξ)A]−1). In particular, when φ = ln det(·) the
definition reduces to DA-optimality. We conclude this section by providing
a theorem which can be viewed as extensions of Theorems 1 and 2 in Rosa
and Harman (2015), for model (1).

Theorem 4. Let A = (AT1 ,0s1×J)T and φ be an information function.
(i) If ξ∗1 on T is φA1-optimal for the marginal model (3) and ξ2 is any design
on Z with non-singular information matrix for the marginal model (4), then
the product design ξ∗1 ⊗ ξ2 is φA-optimal for model (1).
(ii) For any φA-optimal design ξ∗ for model (1), the marginal treatment al-
location design ξ∗(1) is φA1-optimal for the marginal model (3).

4. Applications

The results in the previous sections can be applied to determine the op-
timal designs for some commonly used models.
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Example 1. Suppose there is one qualitative covariate, say z, taking levels
in Z = {1, . . . , L}. The model, which is essentially a two-way layout without
interactions, can be written as

y(t, z) = αt + γz + σtε,

where z ∈ {1, . . . , L} and γ1, . . . , γL are the effects of the covariate.
For the identifiability of the parameters, we request a baseline constrain

γ1 = 0. Then the model belongs to the family of (1) with f(z) = eL−1,z. The
marginal model (3) for covariate effects is a one-way layout with an explicit
intercept term, for which the D-optimal design ξ∗2 on L assigns equal weights
1/L to each level. Hence by Theorem 1, the product design ξ∗1 ⊗ ξ∗2 which
assigns weights w∗k/L to each of the level combinations (k, `), k = 1, . . . , K,
` = 1, . . . , L, is D-optimal for the full model, where w∗ = (w∗1, . . . , w

∗
K)T is

the unique set of solutions of (6) with J = L − 1. When the estimation of
treatment comparisons and all the covariate effects is of interest, it follows
from Corollary 2 that ξ̃∗1 ⊗ ξ∗2 is DA-optimal, where w̃∗ = (w̃∗1, . . . , w̃

∗
K)T

solves (6) with J replaced by L − 2. If we are only concern with treatment
comparisons without any covariate effects, by Corollary 2 and Theorem 4,
all DA-optimal designs share the same marginal treatment allocation design
whose vector of weights w∗ solves (6) with J = −1.

Example 2. Consider model (1) with J = m, fj(z) = zj and Z = [0, 1]m,
i.e., the model incorporating all the linear main effects of m continuous co-
variates

y(t, z) = αt +
m∑
j=1

γjzj + σtε.

When K = 2, this is just the model in Section 2 of Atkinson (2015). The
marginal model (3) for covariate effects is an ordinary linear regression model.

Assume A1 =
(
−1(K−1)×1, IK−1

)T
and A2 = Im. To get product D- or DA-

optimal designs by using Theorem 1 or Corollary 2, one can choose ξ∗2 to
be an m-factor two-level orthogonal array (OA) of strength two with {±1}
levels (see e.g., Hedayt et al. (1999)), i.e., ξ∗2 assigns its weights to each row
of the orthogonal array uniformly. In fact, Atkinson’s choice is two level
full or fractional factorials, which are special OAs. The optimal treatment
allocation design ξ∗1 is uniquely determined by (6) with J = m or m− 1, for
D- or DA-criterion, respectively.

If K = 2 and σ2
1 = σ2

2, then the optimal treatment weights are w∗1 =
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w∗2 = 1/2 by Corollary 1. In such a case, a minimal size (m + 1)-factor
two-level OA is D- and DA-optimal, where the treatment variable is treated
as a two-level factor. Typically it is not a product design, but the marginal
treatment weights are always w∗1 = w∗2 = 1/2, which provides an illustration
of Theorem 2 and Theorem 3 (ii).

Example 3. In Example 2, if all the two-factor interactions of the m covari-
ates are non-neglectable, the model becomes

y(t, z) = αt +
m∑
j=1

γjzj +
m−1∑
j1=1

m∑
j2=j1+1

γj1,j2zj1zj2 + σtε.

Now the total number of covariate effects is J = m(m+1)/2. An m-factor
two-level OA of strength r can be chosen as ξ∗2 , where r = 4 for m ≥ 4 and
r = m for m < 4. Then product D- and DA-optimal designs can be obtained
similarly.

Note that if for the covariates the design region is Z = {
∑m

j=1 zj = 1, zj ≥
0}, i.e., the (m− 1)-order simplex, then the above model is the analogue of
second-order Scheffé polynomial for mixture experiments. Again the product
D- and DA-optimal designs can be obtained, see Donev (1989) for example.

Example 4. Consider the following model

y = αt + γ1z + γ2z
2 + σtε,

where z ∈ Z = [−1, 1], γ1 and γ2 are linear and quadratic effect of the
covariate.

The marginal model (4) is a quadratic regression model in one variable,
for which the D-optimal design ξ∗2 with the minimal number of support points
consists of weights 1/3 at −1, 0 and 1 (see e.g., Section 9.2 of Atkinson et
al. (2007)). By Theorem 1, the product design ξ∗1 ⊗ ξ∗2 is D-optimal for the
full model, where ξ∗1 is uniquely determined by (6) with J = 2.

If we are only interested in estimating treatment comparisons and the

quadratic covariate effect γ2, by letting A1 =
(
−1(K−1)×1, IK−1

)T
and A2 =

(0, 1)T , Theorem 3 can be applied. Let A3 = (0, 0, 1)T and ξ̃2
∗

be a design

which assigns weights 1/4, 1/2, 1/4 to −1, 0 and 1, respectively. Then ξ̃2
∗

is DA3-optimal for the marginal quadratic regression model (Section 10.3 of

Atkinson et al. (2007)). By Corollary 2, the product design ξ̃1
∗ ⊗ ξ̃2

∗
is DA-
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optimal for the full model, where ξ̃1
∗

assigns its weights equally to the K
treatments.

5. Concluding remarks

We generalize the related work of Atkinson (2015) to obtain D- and DA-
optimal optimal designs for a general heteroscedastic linear additive mod-
el (1) with multiple treatments and covariate effects. The product struc-
ture of optimal designs is systematically revealed and studied. Moreover,
the optimal treatment allocations for different inferential purposes are also
investigated. The results can be applied to construct optimal designs for spe-
cific models in many fields including clinical trials for personalized medicine,
agricultural, environmental and industry experiments. Note that the opti-
mal designs in this paper provide unbalanced optimal treatment allocations
when the variances are unequal. They are more efficient than equal alloca-
tions or other designs where variance heterogeneity among treatment groups
and covariate effects is ignored.

Before winding up this paper, it should be mentioned that in our setup,
the error ε in model (1) is assumed to have variance 1. When ε has a general
variance σ2 and σ2 is unknown, the variance of the outcome from the k-
th group becomes σ2

kσ
2 for k = 1, . . . , K. Obviously, the ratio of variances

remains unchanged. Therefore, all the results obtained in this paper still
hold for this general case.

Acknowledgements

The work is partially supported by NSFC grants 11271032 and 11331011,
and BCMIIS.

Appendix A. Proofs of all theorems and corollaries

Proof of Theorem 1
Note that although the model (1) that we are interested in does not

contain an intercept term, we can transform it into an equivalent model with
an intercept term by letting α̃1 = α1, α̃k = αk − α1, k = 2, . . . , K, and
γ remain unchanged. It is clear that the above reparametrization does not
affect the D-optimality, i.e., a design is D-optimal for the transformed model
if and only if it is D-optimal for the original model (1).
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The transformed model belongs to the family of model (1) in Section 2.1 of
Graßhoff et al. (2007) with x1 = z, x2 = t, X1 = Z, X2=T , f 1(x1) = f(z),
f 2(x2) = eK−1,t−1 and λ2(x2) = λ2(t) = 1/σ2

t . Here we let eK−1,0 = 0K−1

for ease of expression. The parameters are β0 = α̃1, β1 = γ with dimen-
sion p1 = J and β2 = (α̃2, . . . , α̃K)T with dimension p2 = K − 1. Besides,
for the reparametrized model, the corresponding marginal model for treat-
ment effects is a reparametrization of model (3) with α̃1 = α1, α̃k = αk−α1,
k = 2, . . . , K, and this reparametrization does not change the determinant of
the information matrix for any design ξ1 on T . And the marginal model for
covariate effects coincides with model (4). Hence by Theorem 1 of Graßhoff
et al. (2007), the product design ξ∗1 ⊗ ξ∗2 is D-optimal for model (1) if ξ∗1
maximizes the auxiliary criterion

Φλ(ξ1) = J ln
( K∑
k=1

wkσ
−2
k

)
+ ln

( K∏
k=1

wkσ
−2
k

)
and ξ∗2 is D-optimal for model (4). To maximize Φλ(ξ1) as a function of w
with the constrain

∑K
k=1 wk = 1, the method of Lagrange multiplier can be

applied. Let λ0 be a Lagrange multiplier and

L(w, λ0) =
K∑
k=1

lnwk + J ln
( K∑
k=1

wkσ
−2
k

)
− λ0

( K∑
k=1

wk − 1
)
.

Equating the partial derivatives of L with respect to (wT , λ0)T to zero we
have {

w−1
k + J

(
σ2
k

∑K
t=1 wtσ

−2
t

)−1 − λ0 = 0, for k = 1, . . . , K,∑K
k=1wk − 1 = 0.

From the above equations we obtain λ∗0 =
(∑K

k=1wk
)
λ∗0 = K + J . Substi-

tuting λ∗0 into the first K equations we get (6). The conclusion follows.

Proof of Theorem 2
By the strict concavity of the transformed D-criterion function φ =

ln det(·) considered as a function of M(ξ), the information matrix of a D-
optimal design for model (1) is uniquely determined. Hence by Theorem 1,
all the D-optimal designs for model (1) share the same information ma-
trix M(ξ∗1 ⊗ ξ∗2) which has the form of (5). Noting that M11(ξ∗1 ⊗ ξ∗2) =
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M1(ξ∗1) = M1(ξ∗(1)) and M1(ξ∗1) = diag
{
w∗1σ

−2
1 , . . . , w∗Kσ

−2
K

}
, the vector of

optimal weights w∗ is uniquely determined and can be solved by the equa-
tions in (6). Hence, the conclusion follows.

Proof of Corollary 1
It follows directly from (7) that part (i) is true. For part (ii), first we

have w1 = . . . = wK1 and wK1+1 = . . . = wK from (i). Define wa = K1w1,
then wK1+1 = (1 − wa)/(K − K1) and equation (8) becomes the quadratic
equation (9) after some algebra. The proof of Corollary 1 is complete.

Proof of Theorem 3
By assumption the product design ξ∗1 ⊗ ξ∗2 has non-singular information

matrix for model (1). Applying the formula for the inverse of a partitioned
matrix (see e.g., Lemma A.3 in Schwabe (1996)) and noting that

AT1M
−1
1 (ξ∗1)M12(ξ∗1 ⊗ ξ∗2) = AT1 1K

∫
Z
fT (z) dξ∗2 = 0s1×J ,

we have

ATM−1(ξ∗1 ⊗ ξ∗2)A =

(
AT1M

−1
1 (ξ∗1)A1 0s1×s2

0s2×s1

(∑K
k=1 wk/σ

2
k

)−1

AT2M
−1
22·1(ξ∗2)A2

)
,

where M22·1(ξ∗2) =
∫
Z f(z)fT (z) dξ∗2 −

∫
Z f(z) dξ∗2

∫
Z f

T (z) dξ∗2 . We also
note that for the marginal model (4), the inverse of information matrix
M2(ξ∗2) can be written as

M−1
2 (ξ∗2) =

(
1 +

∫
Z f

T (z) dξ∗2 M
−1
22·1(ξ∗2)

∫
Z f(z) dξ∗2 −

∫
Z f

T (z) dξ∗2 M
−1
22·1(ξ∗2)

−M−1
22·1(ξ∗2)

∫
Z f(z) dξ∗2 M−1

22·1(ξ∗2)

)
.

Now we will show the DA-optimality of ξ∗1⊗ξ∗2 through the general equiv-
alence theorem. For any x = (t, z) ∈ X , denote by

dA(x, ξ) = gT (x)M−1(ξ)A(ATM−1(ξ)A)−1ATM−1(ξ)g(x)/σ2(t).

the sensitivity function of model (1). The general equivalence theorem for
DA-optimality, similar to theD-optimality one (Kiefer and Wolfowitz (1960)),
says that a design ξ∗ ∈ Ξ isDA-optimal for model (1) if and only if dA(x, ξ∗) ≤
s for all x ∈ X , see e.g., Section 5.2 of Silvey (1980). Through a direct cal-
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culation, we derive

dA(x, ξ∗1 ⊗ ξ∗2) = eTK,tM
−1
1 (ξ∗1)A1(AT1M

−1
1 (ξ∗1)A1)−1AT1M

−1
1 (ξ∗1)eK,t/σ

2
t

+
(
fT (z)−

∫
Z
fT (z) dξ∗2

)
M−1

22·1(ξ∗2)A2(AT2M
−1
22·1(ξ∗2)A2)−1

× AT2M−1
22·1(ξ∗2)

(
f(z)−

∫
Z
f(z) dξ∗2

)
/
(
σ2
t

K∑
k=1

wkσ
−2
k

)
.

The general equivalence theorem for theDA3-optimal design ξ∗2 for the marginal
model (4) yields(

fT (z)−
∫
Z
fT (z) dξ∗2

)
M−1

22·1(ξ∗2)A2(AT2M
−1
22·1(ξ∗2)A2)−1

×AT2M−1
22·1(ξ∗2)

(
f(z)−

∫
Z
f(z) dξ∗2

)
≤ s2

for all z ∈ Z. In particular, when A2 = IJ (s2 = J) it is well known that DA3-
optimality is equivalent to D-optimality for the marginal model (4), see e.g.,
Section 1.4.2 of Goos (2002). Furthermore, by the concavity of the auxiliary
criterion Φλ,A, the general equivalence theorem for the Φλ,A-optimal design
ξ∗1 yields

eTK,tM
−1
1 (ξ∗1)A1(AT1M

−1
1 (ξ∗1)A1)−1AT1M

−1
1 (ξ∗1)eK,t/σ

2
t+s2/

(
σ2
t

K∑
k=1

wkσ
−2
k

)
≤ s1+s2

for all t ∈ T (see e.g., Section 3.6 of Silvey (1980)). Thus we have dA(x, ξ∗1 ⊗
ξ∗2) ≤ s1 + s2 for all x ∈ X , which proves the part (i).

Part (ii) follows by the strict concavity of ln det(·) as a function on the
set {C = (ATM−1(ξ)A)−1 | ξ ∈ Ξ} and a similar argument as in the proof
of Theorem 2.

Proof of Corollary 2
By adopting the same procedure for maximizing Φλ,A(ξ1) as in the proof

of Theorem 1, the equations in (10) can be obtained. Moreover, for any DA-
optimal design ξ∗ for model (1) with marginal treatment allocation design
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ξ∗(1), since

AT1M
−1
1 (ξ∗(1))A1 = AT1M

−1
1 (ξ∗1)A1

= (σ2
1/w

∗
1)1K−11

T
K−1 + diag

{
σ2

2/w
∗
2, . . . , σ

2
K/w

∗
K

}
is uniquely determined by the strict concavity of ln det(·) as a function on
the set {C = (ATM−1(ξ)A)−1 | ξ ∈ Ξ}, the vector w∗ is unique.

Proof of Theorem 4
By noting that ATM−1(ξ∗1⊗ξ2)A = AT1M

−1
1 (ξ∗1)A1 and AT1M

−1
1 (ξ∗(1))A1 =

ATM−1(ξ∗)A, the conclusion follows.

Appendix B. Supplementary material

The R code based on the package rootSolve is available.
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