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Functional central limit theorems for supercritical superprocesses
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Abstract

In this paper, we establish some functional central limit theorems for a large class of general
supercritical superprocesses with spatially dependent branching mechanisms satisfying a second
moment condition. In the particular case when the state E is a finite set and the underline
motion is an irreducible Markov chain on F, our results are superprocess analogs of the functional
central limit theorems of [I4] for supercritical multitype branching processes. The results of this
paper are refinements of the central limit theorems in [22].
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1 Introduction

Kesten and Stigum [I5] [16] initiated the study of central limit theorems for supercritical branching
processes. In these two papers, they established central limit theorems for supercritical multi-
type Galton-Watson processes by using the Jordan canonical form of the mean matrix. Then
in [4 B 6], Athreya proved central limit theorems for supercritical multi-type continuous time
branching processes, also using the Jordan canonical form of the mean matrix. Asmussen and
Keiding [3] used martingale central limit theorems to prove central limit theorems for supercritical
multi-type branching processes. In [2], Asmussen and Hering established spatial central limit
theorems for general supercritical branching Markov processes under a certain condition. In [I4],
Janson extended the results of [4, 5] [6] 15l [16] and established functional central limit theorems for
multitype branching processes. In [14] Remark 4.1], Janson mentioned the possibility of extending
his functional central limit theorems to the case of infinitely many types (with suitable assumptions).
However, he ended this remark with the following sentence: “It is far from clear how such an

extension should be formulated, and we have not pursued this”.
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The recent study of spatial central limit theorems for branching Markov processes started with
[1]. In this paper, Adamczak and Milo§ proved some central limit theorems for supercritical branch-
ing Ornstein-Uhlenbeck processes with binary branching mechanism. In [19], Mito$ proved some
central limit theorems for supercritical super Ornstein-Uhlenbeck processes with branching mech-
anisms satisfying a fourth moment condition. In [20], we established central limit theorems for
supercritical super Ornstein-Uhlenbeck processes with branching mechanisms satisfying only a sec-
ond moment condition. More importantly, compared with the results of [I], 19], the central limit
theorems in [20] are more satisfactory since our limit normal random variables are non-degenerate.
In [21], we sharpened and generalized the spatial central limit theorems mentioned above, and ob-
tained central limit theorems for a large class of general supercritical branching symmetric Markov
processes with spatially dependent branching mechanisms satisfying only a second moment con-
dition. In [22], we obtained central limit theorems for a large class of general supercritical su-
perprocesses with symmetric spatial motions and with spatially dependent branching mechanisms
satisfying only a second moment condition. Furthermore, we also obtained the covariance structure
of the limit Gaussian field in [22]. In [23], we extended the results of [21] to supercritical branching
nonsymmetric Markov processes with spatially dependent branching mechanisms satisfying only a
second moment condition.

The main purpose of this paper is to establish functional central limit theorems, for supercritical
superprocesses with spatially dependent branching mechanisms satisfying only a second moment
condition, similar to those of [I4], for supercritical multitype branching processes. For simplicity,
we will assume the spatial process is symmetric. One could combine the techniques of this paper
with that of [23] to extend the results of this paper to the case when the spatial motion is not
symmetric. We leave this to the interested reader.

The organization of this paper is as follows. In the remainder of this section, we spell out our
assumptions and present our main result. Section 2 contains some preliminary results, while the

proof of the main result is given in Section 3.

1.1 Spatial process

Our assumptions on the underlying spatial process are the same as in [2I]. In this subsection, we
recall the assumptions on the spatial process.

F is a locally compact separable metric space and m is a o-finite Borel measure on £ with full
support. 0 is a point not contained in F and will be interpreted as the cemetery point. Every
function f on E is automatically extended to Ey := E U {9} by setting f(9) = 0. We will assume
that & = {&,1I,} is an m-symmetric Hunt process on E. The semigroup of ¢ will be denoted

by {P; : t > 0}. We will always assume that there exists a family of continuous strictly positive



symmetric functions {p;(x,y) : t > 0} on E x E such that

Pf(x) = /E P, y) £ () m(dy).

It is well-known that for p > 1, {FP, : t > 0} is a strongly continuous contraction semigroup on
LP(E,m).

Define a;(x) := pi(z, ). We will always assume that a;(z) satisfies the following two conditions:

(a) For any ¢t > 0, we have

/ ai(x) m(dr) < 0.

E

(b) There exists tg > 0 such that a, (z) € L*(E, m).

It is easy to check (see [21]) that condition (b) above is equivalent to
(b’) There exists tg > 0 such that for all ¢ > tg, a;(z) € L*(E, m).

These two conditions are satisfied by a lot of Markov processes. In [2I], we gave several classes

of examples of Markov processes satisfying these two conditions.

1.2 Superprocesses

Our basic assumptions on the superprocess are the same as in [22]. In this subsection, we recall
these assumptions. Let By(E) (B, (E)) be the set of (nonnegative) bounded Borel functions on E.

The superprocess X = {X; : t > 0} is determined by three parameters: a spatial motion
& ={&,11,} on E satisfying the assumptions of the previous subsection, a branching rate function
B(x) on E which is a nonnegative bounded Borel function and a branching mechanism 1) of the
form

Y(x, \) = —a(z)\ + b(x)A\* + /(0 N )(e_)‘y — 1+ Xy)n(x,dy), ze€E, X>0, (1.1)

where a € By(E), b € B (E) and n is a kernel from E to (0,00) satisfying

sup/ y*n(z,dy) < oco. (1.2)
zel JO

Let Mp(F) be the space of finite measures on F, equipped with topology of weak conver-
gence. The superprocess X is a Markov process taking values in Mp(F). The existence of such
superprocesses is well-known, see, for instance, [10] or [I8]. As usual, (f,u) = [ f(2)u(dz) and
|pl| := (1, ). According to [I8, Theorem 5.12], there is a Borel right process X = {Q,G,G;, X;, P, }
taking values in Mp(E) such that for every f € B, (E) and p € Mp(E),

—log P, (e=¥0) = (uy (1), ), (1.3)
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where uy(z,t) is the unique positive solution to the equation

up(e ) + 1, /0 6w up(Eart — 8))B(E)ds = T (), (1.4)

where ¥(9,\) = 0, A > 0. By the definition of Borel right processes (see [I8, Definition A.18]),
(G, Gt)t>0 are augmented, (G; : t > 0) is right continuous and X satisfies the Markov property with
respect to (G; : t > 0). Moreover, such a superprocess X has a Hunt realization in Mp(E), see [I8],

Theorem 5.12]. In this paper, the superprocess we deal with is always this Hunt realization.
Define

a(z) := B(z)a(z) and A(x) := B(z) <2b(x) + /Ooo y%(m,dy)) . (1.5)

Then, by our assumptions, a(x) € By(E) and A(z) € By(FE). Thus there exists K > 0 such that

:lelg(!a(w)\ + A2)) < K. (1.6)

For any f € By(F) and (t,x) € (0,00) x E, define
Tif (@) i= 1L, [elo (€0 f(gy)] (1.7)

It is well-known that T;f(z) = Ps, (f, X;) for every = € E.
It is shown in [21] that there exists a family of continuous strictly positive symmetric functions
{qi(x,y),t > 0} on E x E such that g;(x,y) < eX'p(x,y) and for any f € By(E),

T,f(x) = /E ae(z,y) F(y) m(dy).

It follows immediately that, for any p > 1, {73 : t > 0} is a strongly continuous semigroup on
LP(E,m) and
ITefIIE < S| £ 1. (1.8)

Define a;(z) := q;(z,z). It follows from the assumptions (a) and (b) in the previous subsection

that a; enjoys the following properties:

(i) For any ¢ > 0, we have

/ ai(z) m(dr) < oo.
E
(ii) There exists to > 0 such that for all t > tq, a;(x) € L?(E,m).

By Holder’s inequality, we get

a(r,y) = /EQt/2($vz)Qt/2(zay) m(dz) < at($)1/2at(y)1/2-



Since q¢(z,y) and a;(z) are continuous in z € E, by the dominated convergence theorem, we get
that, if f € L2(E,m), Tif(-) is continuous for any ¢ > 0.
It follows from (i) above that, for any ¢ > 0, T} is a compact operator. The infinitesimal generator
L of {T} : t > 0} in L?(E,m) has purely discrete spectrum with eigenvalues —A\; > —Xg > —A3 >
--+. It is known that either the number of these eigenvalues is finite, or limy_ o, A = 0o. The first
eigenvalue —\; is simple and the eigenfunction ¢; associated with —\; can be chosen to be strictly
positive everywhere and continuous. We will assume that ||¢1]]2 = 1. ¢ is sometimes denoted as
gl). For k > 1, let {¢§k)7 j =1,2,---ni} be an orthonormal basis of the eigenspace associated with
—Ak. It is well-known that {¢§-k),j =1,2,---ng;k=1,2,...} forms a complete orthonormal basis
of L?(E,m) and all the eigenfunctions are continuous. For any k > 1, j = 1,...,n and t > 0, we
have thﬁg-k) (x) = e_)‘thSg-k) (z) and

P60 @) <a@)?, aeB. 1.9

It follows from the relation above that all the eigenfunctions ¢§-k) belong to L*(E,m). The basic
facts recalled in this paragraph are well-known, for instance, one can refer to [8, Section 2].
In this paper, we always assume that the superprocess X is supercritical, that is, A\; < 0.

In this paper, we also assume that, for any t > 0 and « € F,
Ps, {lIX¢ll = 0} € (0,1). (1.10)

Here is a sufficient condition for (II0). Suppose that ®(z) = infep (2, 2)5(z) can be written in
the form: -
®(z) = az + bz + / (e7* — 1+ zy)n(dy)
0

with @ € R, b > 0 and 7 being a measure on (0, c0) satisfying IS wnyHn(dy) < oo. If b+7(0, 00) >
0 and ®(z) satisfies

* 1
/ () dz < oo, (1.11)

then (ILI0) holds. For the last claim, see, for instance, [9, Lemma 11.5.1].

1.3 Main Result

In the remainder of this paper, whenever we deal with an initial configuration u € Mp(F), we are
implicitly assuming that it has compact support.
We will use (-, ), to denote inner product in L2(E,m). Any f € L?(E,m) admits the following

expansion:
(o] ng

F@) =33 dbo (),



where af = (f, qﬁg»k))m and the series converges in L?(E,m). al will sometimes be written as a;.

For f € L*(E,m), define
~v(f) :=inf{k > 1: there exists j with 1 < j < mny such that a? # 0},

where we use the usual convention inf & = co. We note that if f € L*(E,m) is nonnegative and
m(z : f(x) > 0) >0, then (f,$1)m > 0, which implies y(f) = 1.
Define
HY =MW Xy, >0,

In [22] Lemma 1.1], it has been proved that, for any nonzero u € Mp(E), Hf Jis a martingale
under IP,. Moreover, if A\; > 2\, then sup;. s, IE"M(Hf’j)2 < 00. Thus the limit

HFI = lim H™Y
o0 t—o00 t

exists Py-a.s. and in L*(P,).
In particular, we write W; := H;' = eMi¢, X,) and Wao = HY'. {W, : t > 0} is a

nonnegative martingale and
Wi = We, Py-as. and in L*(P,).

Thus W is non-degenerate. Moreover, we have P,(Ws) = (¢1, ). Put € = {W, = 0}, then
P,(€) < 1. Tt is clear that £° C {X(F) > 0,Vt > 0}.

The following three subspaces of L?(FE,m) will be needed in the statement of the main result:

C:=<g(x) = Z be(ﬁgk)(x) : b;? ER 3,

keihg>2\y j=1

ng

Coi= 1 g(z) = > oM (@) 20 = Ay 0k e R
j=1

and
Cs = {g(z) € L*(E,m) N LYE,m): A\ < 2)‘7(9)} :

The space C; consists of the functions in L?(E,m) that only have nontrivial projections onto the
eigen-spaces corresponding to those “large” eigenvalues —\; satisfying A1 > 2)\;. The space
is of finite dimension. The space C. is the (finite dimensional) eigen-space corresponding to the
“critical” eigenvalue —\, with Ay = 2\;. Note that there may not be a critical eigenvalue and
C. is empty in this case. The space Cs consists of the functions in L?(E,m) N L*(E, m) that only
have nontrivial projections onto the eigen-spaces corresponding to those “small” eigenvalues —\g

satisfying A1 < 2\;. The space C; is of infinite dimensional in general.



Fix a ¢ > max{K, -2\ }. For any p > 1 and f € LP(E,m), define

Uifla) = [ e L)@ s, e B

Then,

(f <Uq\f\<x>>Pm<dx>)l/pg [ emimanids < [Te v asisl, <o (112

which implies that Uy|f| € LP(E,m). Let f* and f~ be the positive part and negative part of f
respectively. For any x € E with U,|f|(z) < oo, we define

Uyf(z) = /0 T ST (@) ds = Uy(f) () — Uy(f)(@),

otherwise we define U, f(x) be an arbitrary real number. It follows from (ITI2)) that U, is a bounded

linear operator on LP(E,m). Notice that

Ug(6{) () = (g + M) 0l (2).

One can easily check that, for f € L%(E,m), v(U,f) = v(f). In fact, by Fubini’s theorem, we have
Uyt ) = /O (T 68 d = (g4 M) (F 6o (1.13)

For any f € L?(E,m), the random variable (Uy|f|, X;) € [0,00] is well defined. Since u has
compact support and T;(U,|f|) is continuous, P,((Uq|f|, X:)) = (Ti(Uq|f]), n) < oo, and thus
P,((Uqlf], X¢) < 00) = 1. Therefore, for t > 0, P, ((Uy f, X;) is finite) = 1. In Subsection 3] we
will give a stronger result: for any u € Mp(E) and f € L*(E,m), it holds that

P, ((Ugl f1, Xi) < 00,Vt > 0) =P, ((Uyf, Xy) is finite, V¢ > 0) = 1.

We denote by D(R?) the space of all cadlag functions from [0,00) into R?, equipped with
the Skorokhod topology. There is a metric 6 on D(R?) which is compatible with the Skorokhod
topology. See, for instance, [13, Chapter VI, 1.26], for the definition of §. In the present paper, we
will consider weak convergence of processes in the Skorokhod space D(]Rd), which is stronger than

convergence in finite dimensional distributions.

For f € Cs, define
Opy =M/ / M (AT f)(Tsir ), é1)m ds. (1.14)
0

We write oy as a]%. For h € C., define

pi = (AR%, §1)m. (1.15)



n k
For g(z) = Yo, cn, ity bE0 () € €1, we put

ng
Lg@) =Y Y el @), zebuzo,

k22, <A1 j=1
and
ng
F(g) :== Z Ze_)‘ktb?Hféj, t>0.
k):2)\k<)\1 j:1
Define -
o NT/2 NS (A(Lg)(I d 1.16
,8977-. e ) (& ( (Sg)( s+'rg)7¢1)m S. ( )

We write 62 := fg,0- For f € Cs and g € C;, we define

T2
Mrims (f,g) 1= —eM M7/ / e ATy i) Luer 9), 1), du, 0< 7 <750 (L117)

T1

Theorem 1.1 Assume that f € Cs, h € C., g € C; and p € Mp(FE). For any t > 0, define
Y;fl’f(T) = e)\l (t+7)/2 <f7 Xt+T>7 T2 07

}/tz’h(T) = t_l/ze)‘l (t+T)/2 <h7 Xt+7'>7 T 2 07

and
V(1) = M2 (g Xy — Frar(9))) . 7> 0.
Then, for each fized t € [0,00), <Wt, Ytl’Uqf(-),Yf’h('), Ytg’g(')> is a D(R*)-valued random variable

under P, where Wy is regarded as a constant process. Furthermore, under IP,,

(W V2 (0,720, 7290)) 5 (Wooy VWocGH (), WaG, WsGP9 () ), as t— o0,
(1.18)
in D(R*). Here G*" ~ N(0,p2) is a constant process, and {(GY"V/(7),G>9(1)) : 7 > 0} is a

continuous R?-valued Gaussian process with mean 0 and covariance functions given by

E(Gl’Uqf(Tl)Gl’Uqf(7_2)) = OUyf,ma—T1> for 0 <71 < 79, (119)
E(G*I(1)G*9(12)) = Bymy—m> Jor0<7 <, (1.20)
and (Uofrg) r
3,9 LU f _ ) 1 n(Ugf,9), #yO0<m <7,
E(G>9(n)G (19)) = { 0. ifr>m>0 (1.21)

Moreover, Wao, G2 and (G"Vaf ,G>9) are independent.



For f € L*(E,m), we define

fo@) = > Y delP (),

k:A1>2\, j=1

fo) = > > a§¢§-k) (),
kihp <2y, j=1
fo@) = f()— fs(@) = fo)(x).
Then f(l) € Cs, f(c) € C. and f(s) e (.

Remark 1.2 Assume that g = U,f for some f € L?*(E,m) N L*(E,m) satisfying \; > 205 -
Then gy = Ugfays 9c) = Ugf(e) and gy = Uy f(s)- In particular, if Ay = 2X,y) then gy = 0.
If fie) =0, then g = gq) + g(s), thus we have

. 1, 3.9(s
M1, Xiir) = Frarlg)) = 0 (0) + 19 (7).

Using the convergence of the first, second and fourth components in Theorem [ 1], we get for any

nonzero ju € Mp(E), it holds under P, that, as t — oo,
(Wt, M ()2 <<9,Xt+v> - Ft—l-'(g(s)))) b (Weo, G190 + G396)), (1.22)
where G904+ G396) is a continuous Gaussian process with mean 0 and covariance function

B[(GM90 (r) + G20 (7)) (G0 (72) + G900 (7))
O-Q(l)yTZ_Tl + Nry,m2 (g(l)ag(s)) + /Bg(s),Tz—Tp 0 < T1 < T2.
If f(c) 75 0, then

_ , _ 1, 3,9(s 2,9(c
RN (g X = Frr(ge)) = V2 (%0 (1) + Y70 (1) + V00 (0).

By (L22), we get
t_1/2 (}/tl’g(l) () + Y;&Q(S) ()) i 0.

Thus using the convergence of the first and third components in Theorem [I1l, we get
(Wt, t_1/2€)\1(t+~)/2(<ngt+.> _ F1t+(g(5)))> i) (Wooa G«2,g(c))7

where G290 ~ N(O,pg(c)) is a constant process. Moreover, Woo and G>9© are independent.
Note that, if \1 = 2\, p), then Fi1.(g9(s)) = 0, and thus we have (Wt, t_1/2e>‘1(t+')/2(g,Xt+.>) L\
(Weo, G29).



2 Preliminaries

In this section, we give some useful results and facts. In the remainder of this paper we will use the
following notation: for two positive functions f and g on E, f(x) < g(x) means that there exists a
constant ¢ > 0 such that f(z) < cg(x) for all z € E.

In [211, (2.25)], we have proved that

/oto T, (azy) (@) ds S ag, (2)'/2. (2.1)

2.1 Estimates on the moments of X

In this subsection, we will recall some results about the moments of (f, X;). The first result is [21],

Lemma 2.1].

Lemma 2.1 For any f € L*(E,m), x € E and t > 0, we have

[e%e) ng
Tif(@)= > e ™S bl (a) (2.2)
k=~(f) Jj=1
and
L h a0
. A t _ Y
lim MO f(z) = Zl a] Vo (), (2.3)
]:

where the series in (2.2)) converges absolutely and uniformly in any compact subset of E. Moreover,

for any t1 > 0,

sup MO T ()] < MO8 ]l ( / am/Q(x)m(dx)) ar, (@), (2.4)
t>1t1 E

sup 05120t MO, (@) = (a)| < et ], ( [ @ m(dx)) (an @),
t>t1 E

(2.5)
where f* = Y 50 00N,

We now recall the second moments of the superprocess {X; : t > 0} (see, for example, [22]): for
feL*E,m)nLYE,m) and p € Mp(E), we have for any t > 0,

P, (f, X0)? = (Pulf, Xo))? / / AT ) (x) dspa(dr). (2.6)

Thus,
Var, (f, Xt) = (Vars (f, Xi), / / ATy f)?)(z) dsp(dz), (2.7)
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where Var, stands for the variance under P,. Moreover, for f € L?(E,m) N L*(E,m),
Vars, (f, Xi) < eB'T(£2)(x) € L2(E,m). (2.8)
The next result is [22, Lemma 2.6].
Lemma 2.2 Assume that f € L*(E,m) N L*(E,m).
(1) If A1 < 2\y(5), then for any x € E,
tliglo eMVars (f, X)) = a]%(;ﬁl(a:). (2.9)
Moreover, for (t,z) € (3tg,00) x E, we have

MVars, (f, Xi) < ag, ()2, (2.10)
(2) If M1 = 2)p), then for any (t,r) € (3to, 00) X E,
t~LeMVars, (f, X,) — pfc*qﬁl(x) <t lag, (2)V?, (2.11)
where f* = Zj;(lf) b].(f)qﬁy(f)).

(3) If A1 > 2X\(5), then for any x € E,

lim e*)'Wars (f, X;) :/ ePMNSTL(A(f)?) () ds. (2.12)

t—o00 0

Moreover, for any (t,z) € (3ty,00) X E,
NP, (f, X1)? S agy (2) 2. (2.13)
2.2 Excursion measures of X

We use D to denote the space of M p(FE)-valued right continuous functions ¢ — w; on (0, 00) having
zero as a trap. We use (A, A;) to denote the natural o-algebras on D generated by the coordinate
process.

It is known (see [I8], Section 8.4]) that one can associate with {Ps, : * € E} a family of o-finite
measures {N, : z € E} defined on (D, A) such that N,({0}) =0,

/ (1 — e~ )N, (dw) = —log Ps, (e~ X)) f e BF(E), t >0, (2.14)
D
and, for every 0 < t; < --- < t,, < oo, and nonzero puy,- - , p, € Mp(E),

Nz (wg, € dpy, -+ ywy, € dppn) = Np(wy, € dﬂl)Pm (Xty—t, € dpg)--- Punq(th—tnq € dpn).
(2.15)
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For earlier work on excursion measures of superprocesses, see [12] [I'7, [11].
For any u € Mp(E), let N(dw) be a Poisson random measure on the space D with intensity
[ Nz (dw)p(da), in a probability space Q,F, P,). We define another process {A; : t > 0} by
Ay = p and
Ay = / weN(dw), t>0.
D

Let F; be the o-algebra generated by the random variables {N(A) : A € A;}. Then, {A, (]-N't)tzo, P,}
has the same law as {X, (G¢)i>0, Py}, see [I8, Theorem 8.24]. Thus,

P [exp {i0(f, Xi44)} | Xi] = Px, [exp (i0(f, AL))] = exp { / / (M) — 1)Nx<dw>Xt<dx>} :
wor (2.16)
The proposition below contains some useful properties of N,. The proofs are similar to those in
[11l Corollary 1.2, Proposition 1.1].

Proposition 2.3 If Py |(f, X¢)| < 0o, then
[ M) = B, (5,0 (217)

préx <f7 Xt>2 < 09, then
/D (Fwn)? No(dw) = Varg, (f, Xi). (2.18)

2.3 Potential functions

Recall that ¢ > max{K, —2\;}. For any « € E such that U,|f|(x) < oo, we have
Uyf(z) = /000 e T f(x)ds. (2.19)
Lemma 2.4 If f € L?(E,m), then for any yu € Mp(E),
P, {(Uq|f], Xi) < 00,Vt >0} = 1. (2.20)
Moreover, (Uyf, Xy) is finite and right continuous, P,-a.s.

Proof: First, we claim that, if f is nonnegative and bounded, e~%(U, f, X;) is a nonnegative right
continuous supermartingale with respect to {G; : t > 0}. In fact, since T;f(z) < || f||cce’?, we have
e K
Uut(e) < e [ e et dt = (= K)o < o
0
Since Ti f(z) is continuous, by the dominated convergence theorem, we get that U, f is continuous.

Thus, U, f is a bounded and continuous function on E. Since X is a right continuous process in
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Mp(E), we get that t — (U, f, X;) is right continuous. By Fubini’s theorem, we have, for any
r € Fandt >0,

L) = [ Taf(a)ds =t [T (@) ds < 10 (o)
0 t
By the Markov property of X, we have, for ¢t > s,
Pu(e™(Ugf, X0)|Gs) = e (-5 (Uy f), Xs) < e ®(Uyf, Xs).

Thus, e~ (U, f, X;) is a supermartingale.
Now, if f € L?(E,m) is nonnegative, then fa(z) := f(2)1s<p(z) is bounded. So e~ (U,(fur), Xt)

is a nonnegative right continuous supermartingale with respect to {G; : t > 0}, and, as M — oo.
Vt>0: e_qt<Uq(fM)7Xt> T e_qt<Uqfa X).

Since U, f € L*(E,m), P, (Uyf, Xs) = (Ty(Uyf), ) < oo. Thus, by [T, Section 1.4, Theorem 5],
e~ 1(U, f, X;) is a right continuous supermartingale. By [7, Section 1.4, Corollary 1], e=%(U, f, X;)

is bounded on each finite interval, P,-a.s., which implies that for any N > 0,
P, (e_qt(Uqf, Xy) <oo, tel0,N])=1.

Thus, we have
P, ((Uyf, Xi) <00, te[0,00))=1.

Finally, we consider general f € L?(E,m). Let
Qo == {(Uy|f, Xz) < 00,Vt > 0}n{w : (Ug(fT), X¢(w)) and (Uy(f ™), X¢(w)) are right continuous} .

We have proved that, for any p € Mp(E), P, () = 1. It follows that, for w € €y,

(Ugf, Xo(w)) = (Ug(f7), Xe(w)) = (Uy(f7), Xe(w))
is well defined and right continuous. The proof is now complete. O

2.4 Martingale problem of X

In this subsection, we recall the martingale problem of superprocesses. For more details, see, for
instance, [18, Chapter 7].

For our superprocess X, there exists a worthy (G;)-martingale measure {My(B) : t > 0; B €
B(E)} with covariation measure

v(ds,dz,dy) = ds/EA(z)éz(d:E)5Z(dy)Xs(dz) (2.21)
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such that for ¢t > 0, f € By(E) and p € Mp(E), we have, P,-as.,

U, X0) = (Tuf, 1) + /O /E Ty o f(2) M(ds, dz). (2.22)

Let £L2(E) be the space of two-parameter predictable processes hg(z) such that for all 7 > 0 and

p € Mp(E),
Pu[/OT he(2)ha(y) v(ds, da dy] U /A X.(d2) ds

E2
/ /T T [AR?](2) dsp(dz) < oo
EJo

Then, for h € L2(E),
t
:/ / hs(z)M (ds, dz)
0 JE

is well defined and it is a square-integrable cadlag G;-martingale under P, for each p € Mp(E),
with

(M(h)); = /t(Ahg,Xs> ds. (2.23)

0
For f € L*(E,m)N L*(E,m) and u € Mp(E), we have

/ / A(Ti o f)(2) dsp(dz) = Var, (£, Xi) < o0

//nsf M(ds, dz)

is well defined. Now, using a routine limit argument, we can show that ([Z22]) holds for all f €
L*(E,m)NLYE,m) and u € Mp(E).
For f € L*(E,m)NLY(E,m), U,f € L*(E,m)NLY(E,m). By 222), for t > 0 and u € Mp(E),

we have, P-a.s.,

which implies that

U X0) = (T(Uuf), / /T (Ugf)(2)M(ds, dz)
= (LU ). / // eIT, 4y f(2) duM (ds, d2)
— (T(U ) )+ e / / / =T, () dub(ds, d2)

= (Ty(Uyf), ) + e /t e 7" du /0 /E Tu_sf(2)M(ds,dz)
= JI(t) + e T (1), (2.24)
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where the fourth equality follows from the stochastic Fubini’s theorem for martingale measures
(see, for instance, [I8, Theorem 7.24]). Thus, for ¢ > 0 and p € Mp(FE),

P, ((Uq £.X0) = J () + e (t)> ~1. (2.25)

For any v > 0 and 0 < T < u, we define
T
M:(Fu) = / / Tu—sf(x)M(ds,dx).
o JE

Then, for any p € Mp(E), {Mf(pu), 0 < T < u} is a cadlag square-integrable martingale under P,
with -
(M*)p = / (A(Tu—sf)?, Xs) ds. (2.26)
0
Note that
P, (M) = P (M"Y, = Var,(f, X.). (2.27)

u

Lemma 2.5 If f € L2(E,m) N L*(E,m) and p € Mp(E), then t — (U,f, X;) is a cadlag process

on [0,00), Py-a.s. Moreover,
P, ((Uqf, Xp) = () + ™ T (1), vt > o) ~ 1 (2.28)

Proof: Since (U, f, X;) is right continuous, P,-a.s., in light of ([2.23]), to prove (228]), it suffices to
prove that Jlf(t) and J2f(t) are all cadlag in (0,00), P,-a.s..
For Jlf(t), by Fubini’s theorem, for ¢ > 0,

Ay =et [7 T ) ds,
t

Thus, it is easy to see that Jlf(t) is continuous in ¢ € (0, 00).

Now, we consider J{(t). We claim that, for any ¢; > 0,
P, (sz(t) is cadlag in [t1, oo)) = 1. (2.29)
By the definition of J2f, for t > ty,

J(t) = / e~ M1, du. (2.30)

t1

Since t — Mt(u)1t<u is right continuous, by the dominated convergence theorem, to prove (2.29)), it

suffices to show that

P, (/ e~ sup <|Mt(“)|1t<u) du < oo> = 1. (2.31)
t1

t>t1
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By the L, maximum inequality and (2.27)), we have

P </ooe_q“sup (]M(u)\l ) du> <2/Ooe_q“\/]P’ ‘M(u) 2du
w t t<u = o u
t1 t>t t1

= 2/:0 e_q“\//EVar(;z(f,Xw,u(da:) du. (2.32)

By 238) and (24]), we have, for u > t1,

/EVarsx (f. X.) plda) < /

T,(f2)(x) p(de) < eKven / ar, (2)/2 pu(dz).
E E

Since ay, (x) is continuous in E and p has compact support, it follows that [, a, (2)"2u(dz) < oo.
Thus, by ([2.32), we have

P, </ e 9" sup <|Mt(u)|1t<u> du> < / e~ e K=A)u/2 gy, / ag, (2)Y/2 p(dx) < .
t1 t>t1 t1 E

Now (2.31)) follows immediately. Since ¢; > 0 are arbitrary, we have

P, (Jg(t) is cadlag in (0, oo)) =1. (2.33)

3 Proof of the main result

Suppose that (X"),>p and X are all D(R%)-valued random variables and D is a subset of R,. If
for any k£ > 1 and any t1,...t;, € D,

d
(X7, XD X)) = (X, o, Xy,),  asn— oo,

then we write
L(D
X" (—>) X, asn— oco.

It is known (see, for example, [I3] Chapter VI, 3.20]) that, X" 4 X in D(R?) as n — oo if and
only if
(i) (X™)n>0 is tight in D(RY),

(ii) X" “8) X as n — oo for some dense subset D of Ry.
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3.1 Finite dimensional convergence
The following lemma is a generalization of [22] Remark 1.3].

Lemma 3.1 If f € L*(E,m) is nonnegative and y € Mp(E), then

MUE X)) = (f, 01)mWeo, in LY(P,). (3.1)

Proof: For any M > 0, let fy(z) = f(2)1)f)<m and far == f — fu. It is obvious that
fu € L2(E,m) N L*(E,m). In 22| Remark 1.3], we have proved that

lim P, [N (far, Xi) — (far, @1)mWeo| = 0. (3.2)

t—o00

For t > to, by (2.4]), we have

Py (€M far, Xi) — (fM,¢1)mW°°‘ < P(far, Xo) + (far, 61)m | Pu(Woo)
= MNUT far, 1) + [(Fars 61)m Pp(Weo)

< N fulle (3.3)

By B2) and (33)), we have
h?ls;}pp“ MUE X)) — (f, 01)mWoo| S a2 (3.4)
Letting M — oo, we arrive at (B.1]). O

Recall that
HEY o= Mo, X)), ¢ 0,

ne k
and for g(x) = Zk:2>\k<>\1 Zjil b§¢§ )(x)v reE,

Ft(g) — Z ie—Aktbe&jj

k22, <A1 j=1

where HE? is the martingale limit of Hf 7. And recall that

ng
Ig(x) == Z Ze’\k“b?¢§k)(x), z e k.

k22X <A1 j=1

It is easy to see that I;11g = Is(lyg) and T, (I,9) = I,(Tywg) = g. Thus, we have, as u — oo,
(Iug, Xt1u) — Fi(g), Pu-as. (3.5)

Define
HY (@) = (0, wy), £ 0,weD,
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and

Hoo(g)(w):= > D bFHY (w)

k2 <A1 j=1

It follows from [22) Lemma 3.1] that the limit HE = limy_y o0 I:Tfj exists N -a.e., in L'(N,) and
in L?(N,). Then, as u — oo,

(I.g,wy) = Hoo(g)(w), Ng-ae., in LY(N,) and in L*(N,). (3.6)

Since N (1,9, wy) = Ps, (19, Xu) = g(z), we get that

Nz (Hoo(9)) = g(). (3.7)

By I8) and 21, we have
Nx(Iug,wu>2 = Varg, (I,9, Xy) = / T [A(Isg)z] (x)ds, (3.8)

0
which implies that
N(Holo))? = [T [AL0)) @) (39)
The following simple fact will be used later:
i N ()" (P 20
— — 1 < . .

‘ mzz:o ml | =0 (n+1)!" n! (3.10)

Lemma 3.2 Assume that f € Cs, h € C., g € C; and p € Mp(FE). Suppose that Ytl’f, Ytz’h, and
Yt?”g are defined as in Theorem [I1. Then, for any 0 < 1 < 1o--- < 73, under Py, as t — oo,

UB 2GRN A0SR el CONTEN Al GO ACI RIS Al C/S)
i> <W007 W Gl f 7.1 /W, Gl f Tk /W G2h - /WOOG2’h,
VWG9 (1), -+ /WG9 (1 ) (3.11)

Here G*h ~ N(0, p?) is a constant process and <G17f(7'1),--- ,GU (1), G39 (1), - - - ,G?”Q(Tk)) is

an R% —valued Gaussian random variable, with mean 0 and covariance
E(GY (r))GY (1)) = 0fqyorys for1<j <1<k, (3.12)

E(G*9(1))G39(n)) = Byr—r;, for1<j<I<E, (3.13)

and

E(G¥9(r))GM (7)) = { Myn(f9),  if1<j<U<Ek,

0. iFl1<1<j<k (3.14)

Moreover, Wa, G* and (Gl’f(ﬁ), s, G (1), GBI (1), - - ,G379(Tk)> are independent.
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Proof: We put 01 = b9 =030 =0,79=0and s; :=7; —7j_1, 5 = 1,--- ,k. Let 6,0, ; € R,
1=1,2,3,7=1,--- k. Define, for [ =0, - , k,

k
f l‘) :Zel,le (rj = /2T —Tlf( ) gl 203 e)\l(TJ K /2I (l‘),

and
Bi(z) == fi(z) + 03,19(x) — Gil=).

FOI‘jzl,"' 7]{77 by (m)v
Ft+7'j (g) = liI&<Iu+Tk_Tjg,Xu+t+Tk>. (315)

u—r

Then, by [BI3), we get that

P exp{zHWt—i-ZzHl] (7 +Zz€2] " (75 —i—ZzHg] T]}

7=1

k
= Puexp {iWi+ Y (135 (7)) + 02,5 (1) + 0,560 2 (g, Xiiry) = Friry (9)) |}
j=1

= 11m P, exp {z@Wt + Z [161 g (T]) + 6 ;Y ’h(Tj) + i3 jeM (T2 (g Xt+rj>}
j=1
k

—i< Z 937je)‘1(t+Tj)/2Iu+m—Tj97 Xutttn, > }
j=1

k
= uh_{go P, exp {ieWt + Z M2, L 4720, ik + 05 g, Xiyr;) — ieM TT2(T g Xu+t+Tk>}

j=1
k
= lim P, exp {th + Y e TR, 5 f 17 205 50 4 03 g, Xigry) — i TP (G X )
U— 00 —
]_

il (), Xen) |
where
TP (¢, x) = /D (exp { — e 2L, G, wa ) = 14 e 2 (G, ) )N (d).
The last equality above follows from the Markov property of X, (216 and the fact that
[ i wNel) = B, (1,51 X.) = ().
In the proof of [22] Theorem 1.4], we have proved that

lim <J(k)( )7 Xt+7'k> - <J(k) (t7 ')7 Xt+7'k>7 ]P’u—a.s.

U— 00
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where

JE (¢, ) = / (exp{ — MR (G} -1+ z'eM(tW)/?Hoo@k))Nx(dw).
D

Thus, by the dominated convergence theorem, we get that
k
P, exp {19Wt + Z i61 ;Y. () + 2102] M) + Z i937j§/;3’g(7'j)}
j=1 j=1

k
= Puexp {Z'@Wt + Z Z'e/\l(t+7j)/2<91,jf + t_1/292,jh + 03,59, Xt4r;) — M2 Xy
j=1
+Z<J(k) (t7 ’)7 Xt+7'k>}'
It is known (see [22] 3.44]) that
i (k) — 1 ~ 12 . .
tli>m (JYW(L, ), Xt+7k> = exp { - §(N(Hoo (9k)) 7¢1)mWoo} in P,-probability.

Since By(z) := 01 1f(x) + 03 k9(x) — gr(x), we have, as t — oo,

‘]P’ exp{zHWt+Zu91] (15) —1-2292,3 4 (75) +ZZ93,] TJ}

j=1
1 k—1
—]P’u exp {(19 — §(N~(Hoo(§k))27 ¢1)m)Wt + Z jeM (7)) <917jfj + t_1/2927jh + 937jg, Xt+7-j>
j=1

i (B 71203 b, X ) |

— 0. (3.16)

By the Markov property of X, we have
P, [exp {z'e)‘l(HTk)/2 (B, + t_1/292,kh, Xt+m>} |]:t+m71]
= exp {</ <eXp{ eMFT/2( By t_1/292,kh,w3k>} - 1> N'(dw)7Xt+Tk1>}
D
= €xp {ie)\l(t+Tk)/2 (N.(By + t_1/292,kh7 Wsk>7 Xt+7'k:—1}
1
% exp{ . §eA1(t+Tk)<N-<Bkawsk>27Xt+‘rk71>} X exp{ Xt"l‘Tk 1>}

= (I) x (II) x (III),

where

R(taaj) = / <exp {ZeAl(t+Tk)/2<t_l/2927kh+Bk)7w3k>} - 1
D
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1
— e (tH7k)/2 (t_1/292,kh + By, ws,) + gekl(tJer)(Bk,wskV) N,(dw), z€E.

For part (I), by the definition of g, we get that

93 kg( 263] TJ Tk /2[7'k Tjg(x) - _e_Al(Tk_Tkil)/2[7'k—7'k—1§k—l(x)y re k.

(3.17)
Since h € C., we have T,h(x) = e~ *%/2h(zx). Thus, for x € E,

No((Bg +t720 4 h, ws, ) = Ty, (Bi + t /205 ) ()
= Hl,kTskf(‘/E)+t_1/292,ke_)\18k/2h( ) — e MG (x).

Hence, we have
(1) = exp {ieM T2 gy 2T f 7205 1k~ G, X, ) (3.18)
For part (IT), we define for j =1,--- |k,
Cj 1= M (N.(Bj,wsj>2, b1)m = €M% (Vars (Bj,ws;), 1)m- (3.19)
By Lemma Bl we get that, as ¢t — oo,
eAl(t+Tk)<N-<Bk,wsk>2aXt+rk,1> — CpW
in IP,-probability. Thus, we get that, as t — oo,
(1) — exp{—%Cka}, in P,-probability. (3.20)

Now, we deal with part (I1I). For x1,z9 € R, by ([B.I0), we have

. 1
e@1FT2) () + a9) + E(xl)z
1 . . ,
< et —1—dx + 5(3:1)2 + |€2 — 1 —dwg| + | — 1][e"*2 — 1
x 1
< |ZE1| (1 A %) §|ZE2|2 + |l‘1$2|. (3.21)

Using B2I) with x1 = eMEF)/2(By w, ) and g = Oyt~ /2 ER)/2(h )| we get

eAl(tJka)/?](Bk,ws )|
<Bk7w8k>2 <1/\ 6 .

4] 2
+%t—1eh<t+m>m<h,wsk>2 + [0 k[t 2N TN, [ (B, we, ) (Br, way )|

IR(t,z)] < eMEHN,
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A (t+75)/2
eAl(t+Tk)<Nm <Bk,wsk>2 <1/\ € " 6’<Bk7w8k>‘>]
4] 2
PO AN 02 4 107N L0, ) B0 )

MU (L, ).
Notice that U(-,z) | 0, as t — oco. Thus, for t > u,

lim sup e)\l (t+Tk)PH<U(t7 ')7 Xt+Tk71> < lim sup e)\l (t+7) <Tt+7'k71 U(’LL, ')7 M> = e)\lsk (U(’LL, ')7 ¢1)m<¢17 M>7

t—o00 t—o00

where the last equality follows from (Z3]). Letting u — oo, we get that

lim 6A1(t+Tk)Pu<U(tv ')7 Xt+7k71> = 07

t—o0

which implies that
Jim P [(R(, ), Xigr, )| = 0 (3:22)
Thus, by (B18]), (3:20) and (3:22]), we have that, as t — oo,
‘IP’H [eXp {ieM /2By 4 ¢71/20, 1, Xt+Tk>}|}}+ml]
—exp{ - %CkWt e /2 gy MR 720, h - G, Xt+7“>}‘
—0 in P,,-probability.

Hence, using the Markov property and the dominated convergence theorem, we get that, as t — oo,

k—1
o1 . (bt _
P, exp {(29 - §(N.(Hoo(gk))2, $1)m) Wi + > _ i OTTI2(0,  f 471205 b+ 05 59, Xpir,)
j=1
HieM T2 (B 4 17120, B X ) } -
k—2
o1 _ 1 At _
P exp {(29 - §(N~(Hoo(gk))2a $1)m = 5CWe + D eI, 5 f 4 7205 b+ 05 59, Xiyry)
j=1

+Z‘€>‘1(t+Tk*1)/2<Bk_1 + t_l/z(eg,k_1 + eg,k)h, Xt+7-k71>}‘

— 0.

Repeating the above procedure k times, we obtain that, as t — oo,

k—1

o1 _ . . _
P, exp {(29 - §(N.(Hoo(gk))2, $1)m) Wi + > _ i€ TG, S f 71205 b+ 03 59, Xpir,)
Jj=1

i 2B V20, 1, X ) |
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. 1
—Puexp{(zﬁ — §(N (Hoo(9x)) ,gbl ZCJ W, —I—Ze)‘lt/2<f0 Xy) + it~ 1/20Mt/2 Zﬁgjh Xt>}

Jj=1 j=1
— 0. (3.23)

By [22, Lemma 3.5], we have

k
tli)rgoexp{(iH—%(N.(H )2 61)m %ZC])W M2 (fo, X,) 4 it Y22 Zem X}
j=1 J=1
1 S 1< 1 1
= exp { (0 — 5 (N.(Hoo(G)% 61)m — 5 D Cs = 50% — 5(2%) o) Woe }. (3.24)
7j=1

Thus, by B10), B23) and [B24]), we get

hm]P’ exp{zHWt+2291j (15) +Zu92] h (15) +2203J T]}

7j=1

- exp{(w - %(N.(HOO(A - %icj - %(2927j>pi)woo}. (3.25)

Jj=1

By the definition of C; in (B19]), we have,

k
(N (Heo G, 60)m + 3 Ci 07

=1
k
= [(N(Hoo(ak))2, ¢1)m + Z e)\1sj (VCLT(;_ (937jg — §j, w5j>, ¢1)m]
j=1
k ~ k ~
+ [Z M (Vars (f5,ws;), ¢1)m + 0’]2;0] +2) M (Covs ((fj,ws,), (03,59 — i ws;)) 1) m-
j=1 j=1

In the following, we calculate the three parts separately.

1. By 39) and (3I7), we have that, for j =1,--- |k,
(NAHw (@) 000 = [ ALG P 01)

_ /0 e—)\ls (A(Is(93,]g + €_>\1(Tj_Tjil)/2ITj—ij1§j—1))27 ¢1>m ds
7—1

= 9%,]'53 +203vj2637l5977j_71 +/ e_AIS(A( 59— 1) ;P1)m

1=0 T
By B8] and @BI7), we get that

Vars <937jg - §j7w5j> = (VCLT& <’[Tj_7'j71/g\j—17w7'j—7'j71>7 ¢1)m
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A —A1s ~ 2
= [ e AL G OR s
Thus, we have, for j =1,--- |k,

j—1
(N~(Hoo(§j))27 ¢1)m+(vaTJ. <93,jg_§j7 w8j>7 ¢1)m = 932,7]',83‘1‘293,]' Z 93,l5g;rj—n+(N.(Hm(§j—1))2y ¢1)m
1=0
Summing over j and using the fact that gy = 0, we get
k k k j—1
(N.(Hoo (G Y+ Y _(Vars (03,59 — Gj,ws,), 1)m Zegﬁ +2) 0 03031897,
j=1 7=11=0

(3.26)

. Since fj =01, f + eMTr=m)/2T, p1—T) fj+1 =01,f+ Zf:jﬂ Gl,le)‘l(Tl_Tj)QTTl_ij, we have
= [ AL b du
/ 0

N /0 eAlu(A[ (eljf—i_e)\l K TJ)/zTThLl ijj+1)]2’¢1)mdu

k 00
= 91 ]Jf +2 Z 017j01710f77'1—7'j + e)\l(Tj+1_Tj) /0 e)\lu(A[Tu+Tj+1—ijj+1]2’ ¢l)m du
=41

k o0
= 6%7.]0-‘?. + 2 Z elvjelvlo-f’Tl_Tj + / eAlu(A[Tuf]‘f‘l]z?(Zsl)m du
l=j+1 Ti+17T5

By (21), we have

A18; r AR Au 3 2
eI (Vars (fj11,ws; 1) P1)m :/o e (AT fi1]7, ¢1)m du.

Thus, we get, for j =0,--- ,k—1,

k
Ufzj + M (Vars, (fi41,Ws; i) 81)m = 01 07 + 2 Z 01,0110 f7—r; + Ufsz-
I=j+1

Therefore, summing over j on both sides of the above equality, we get

] =

e)\lsj (Varé. <f]7 Ws; >7 qbl)m + 02”

> .
[
_ =

k—1 k

_ 2 ) 2
= 67 150F + 2 Z Z 617]61,10-fﬂ'l—7'j + Ufk
j—Ol—j+1

1]af+2z Z 01,761,0 f.7—1, (3.27)

Jj=1ll=j+1

<.
Il
o

Il
i M?r

where the last equality follows from the fact that ¢, ¢ = 0 and fk =01 1f-
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3. Since f; = Zf:j 91,z€>‘1(7’_7j)/2Tn—ij and 039 — gj = _Zi;é Bs,pe (5 Tr)/leJ W
have
e)qu ((COU&_ ((fja w8j>7 <03J-g - gj’ wsj>)’ qbl)m

Tj—Tj—1

= M (AT 03,59 = G).61) du

0
k izl Ti—Ti-1
= ZZQI 103 re 1(m+7r— 27’j)/2/ )\w(ATu—i—n ij S ¢1> du
=5 r=0 0 m
k g—1 7
= Z 0, 193 e A(T+7r)/2 / e_)\lu<ATTl—quu—T7«gy ¢1> du.
=5 r=0 Tj—1 m
Thus, we get that
k ~
2 "M% (Covs. ({f,ws,), (03,59 — Gjrws,))s &1)m
j=1

ko 1-1

S DI T I / N (AT fLurg. 1) du

=1 r=0 j=r+1 -

ko1-1
= 23 0y e 2 / (AT o f L rg,01) du (3.28)
=1 r=0
Combining ([3:25)-B.28), we get ([B.I1I]) immediately.
The proof is now complete. O

Remark 3.3 By Lemmal3.2] for any f € Cs and g € C;, there exists a Gaussian process (Gl’Uqf, G?”g)
with mean 0 and covariance function defined as in Theorem [Tl Furthermore, the next lemma shows

that, this Gaussian process has a continuous version. Thus, the Gaussian process (Gl’Uqf ,G?”g)
defined in Theorem [I1] exists.

Lemma 3.4 Assume that f € Cs and g € C;. If (GMVa/ (1), Gg’g(T))T>0

mean 0 and covariance function defined as in Theorem [I1], then, (leU‘If,Gg’g) has a continuous

18 a Gaussian process with

Version.
Proof: By Kolmogorov’s continuity criterion, it suffices to show that, for any 7 > 7 > 0,
E\G1 Uaf (12) — GLYaf (7'1)\4 + E\Gg’g(rg) Gg’g(Tl)]A‘ < Clrp — 7'1\2, (3.29)

where C' is a constant.
(1) Since GLYaf (13) — GUYaf (11) ~ N (0, B(11, 7)) with X(7q, 1) = E|GUVef (19) — GLUal (1) 2,
we have

E|GYYal (1y) — GVl (1) |* = By, )2 E(GY), (3.30)
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where G ~ N(0,1). In the following, we write U, f as f(9). By [BI2), we have
S(rum) = EIG () - GVl ()
= 2/ EAIS(A(Tsf(q))z,qbl)mdS—QGMTQ_H)/Q/ M (AT f D) Ty sy [9), 1) ds
0 0

_ /0 s ( A(T, fOY T, (f@ — Mm=mfop f(q)))’¢1)m ds

o0
< 2K/ eMs
0

We rewrite the last integral above as the sum of integrals over (0,%y) and (tg,00). For s > t,

A

(T, £ <Ts(f(q) M (=71 /2T f(q )) H

H(Tsf(Q)) <Ts(f(Q) _ 6A1(72—T1)/2T7_2_T1 f(Q))) H2 5 6—2)\,Y(f)sHat0H2Hf(q)||2Hf(q)_e)\l('rg—n)/2T7_2_T1 f(Q)||2-
(3.31)
Thus,

oo
/ e)\ls
to

For s < tg, since ||Ts|l4 < X%, we have

(Tsf(Q)) (Ts(f(q) )\1(7'2 1 /2T Tlf )) H2 ds S ||f(q) )\1(7—2 1 /2T Tlf ||
(3.32)

[T @) (L5 = M2, £ ) g < T f D [T (£ = N T, f )]
< K| D) |fD — M=) @),

Thus,

to
/ e)\ls
0

Combining ([3:32) and ([333) we get that

(7, 7'2) N ”f(q) - e)\l(TQ_Tl)/zTTz—ﬁ f(q)H2 + Hf(q) - e)\l(TQ_Tl)/2T'rz—T1 f(q)”4- (3-34)

(T f(D) <T8(f(q) _ e>\1(7'2—7'1)/2T7_2_7_1f(Q))) H2 ds < ||f@ — eM—m)2p @),
(3.33)

It follows from Fubini’s theorem that, for p = 2,4,

”Uqf— e 1(m2— 7'1)/2TT2 7—1U f”p — H/ e—auT W du — )\1/2+q)('rg Tl)/ e_quTufdu
0 T

2—T1 P
T2—T1 o
< / e T f dul| + (e(A1/2+Q)(T2—Tl) — 1) / e T, fdu
0 P To—T1 P
To—T1 o8]
< [T el dut @0 1) [ e,
0 To—T1
Since | T, fll, < eX¥|f|l, and ¢ > K, we have
To—T1 To—T1
/ e | Tufllpdu < / e~ e dul fll, < (r2 = 7)1 flp- (3.35)
0 0
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1/2

If 79 — 71 > to, by 24), for u > 75 — 71, we have ||T,, f||, < C_AW(f)quHQHCLtO |lp- Thus,
<e()\1/2+q)(72—7-1) - 1> / e\ Tuf |l du < e(A1/24+4)(r2—71) / e~ e~ M (U dul| f |2
To—T1 To—T1
< M2 M) ) < gy (3.36)
If 7 — 71 < to, then eM/2+0)(2=7) _ 1 < 7, — 7. Thus,
(evrtmm) 1) [7 e g du< @) g, [T et S - .
To—T1 0
(3.37)
Now, combining (3.35)—-([337]), we obtain that, for p = 2,4,
HUqf - e)‘l(”_”)mTTz_TqufH ST — Tl
P
Now, by [B34]), we have
Y(r,72) < C(mr2 —71). (3.38)
Thus, by (330) and B38]), we get
E|G1’UQf(T2) — Gl’Uqf(Tl)|4 < C(Tg — 7'1). (3.39)
(2) We claim that
E|G39(ry) — G39(ry)[* < Oy — 1), (3.40)

where C' is a constant. To prove (3.40]), using the same argument as that of leading to ([B.30), it
suffices to show that, for 0 < 7 < 79,

E(G*(ry) — G*9(71))* < C(mz — 7). (3.41)
Note that
E(G*(r2) — G*9(1))* = 2840 — 2By.m—m
= 2 /0 h e N (A(I,g)?, ¢1)m ds — 2e” M1 (27T)/2 /0 s (ALeg) Lo 3). ) dis
= 2 [T (AL g - N ). 6) s

By (I9), we have that for any z € E,

Nk
Lo@l< Y S e pheh ()] S eMosan, (x)/?,

k22, <A1 j=1

where kg = sup{k : 2\ < A1}. By the definition of I,g,

ny,
— Z Z eAkS(l o e()\k_Al/2)(T2_Tl))b§¢§.k) (l‘)

E:2)p <)y j=1

Isg o e—)\l(TQ—Tl)/2IS

+r—119
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< (MRm-m) T S MHIBP @] S (h/2(m - mMa, (@)

k2 <A1 j=1

It follows that

B(G*(r2) = G*9(11))* S (A1) K (12 — 71)/ e M5 eP M0 (agty, O1 ) ds

0
= (=M)E (A1 = 2X) " Ha2ees $1)m (T2 — T1).

Now the proof is complete. O
By Lemma 3.2 and Lemma [3.4] we get the following Corollary immediately.

Corollary 3.5 Let f € Cs, h€C,., g € Cp and p € Mp(E). Suppose that Y;l’f, Yf’h, Yf”g, GLUT,
G*" and G39 are defined as in Theorem [ Then, under Py, ast — oo,

(Wt’nl,Uqf’}/ch’Yf,g) E(&) (Woo, /WooGl’Uqf, /WOOGZh /WooGg’g)- (342)

3.2 The tightness of (W, V""" v*" v*9) _in D(RY)

t>0

Recall that a sequence (X™) of cadlag processes is called C-tight if it is tight, and if all its
weakly convergent limit points are continuous processes. In this subsection, we will show that
(Wt, Ytl’Uqf, Ytz’h, Yt?”g)bo is C-tight in D(R*) (with W4, for each ¢ > 0, being considered as a con-
stant process). By [13, Chapter VI, Corollary 3.33], it suffices to show that (Y;I’Uqf)bo, (Y2’h>t>0

3.9 4 .
and (Y; )t>0 are C-tight in D(R).
3.2.1 The tightness of (Y;l’Uqf) in D(R)

t>0

The main purpose of this subsection is to prove that (Ytl’UQf ()) . is C-tight in D(R). The next
t>

lemma gives a sufficient condition for the tightness of a sequence (X™),>1 in D(R9).

Lemma 3.6 Assume (X"),>1 is a sequence of D(R?)-valued random wvariables, each X™ being
defined on the space (Q", F", {F' }1>0, P™). If (X™) satisfies the following two conditions:

(1) For all N >0,

lim sup P" <sup ]Xf\) < 00. (3.43)

n—00 t<N

(2) For all N >0,

lim lim sup sup P" (| X1 — Xg|) =0, (3.44)
020 n = STETR:S<T<S+0

where T3} denotes the set of all {F}'}-stopping times that are bounded by N .
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Then, the sequence (X™) is tight in D(RY).
Proof: This follows immediately from Theorem 4.5 in [I3] Chapter VI]. O

To prove the tightness of (Ytl’Uqf (-)t>0 in D(R), we will check that Ytl’UQf satisfies the two

conditions above.

Lemma 3.7 If f € C5 and p € Mp(E), then for any N > 0,

sup P, (Su][\)[ |Ytl’Uqf(T)|> < 0. (3.45)

t>3to T<
Proof: In this proof, we always assume that ¢t > 3tg. By ([2.28]), for any ¢ > 0,
Py (Y0 (7) = MR (¢4 1) 4 TNDED) I (44 1), W0 2 0) = 1.
First, we consider Jlf(t + 7). Recall that Jlf(t) = (Tyg, p), t > 0. By (24]), we have

sup e)‘l(t+T)/2|J1f(t +7)] < sup M2, g, )
TN TN

< sup e}\l(t+7)/2€—)\w(g)(t+T)Hg||2<a;/2,u>
T<N 0
S ARl S BN . (3.46)

Next, we deal with J{ (t + 7). Recall that

J{(t +7)= / e_q“Mt(ﬁ)T du.
t+1

Using ([Z32]) with t; = ¢, we have, for t > 3t,

1t+7'<u) du
TN

< 2/ e_q“\// Vars, (f, Xu) p(dz) du
t E
< / e—que—Alu/zdu\// ag (2)Y/2 p(dx)
t E

_ (q+)\1/2)—1e—(‘1+)\1/2)t\// ato(x)1/2 /L(dl’), (347)
E

Py (SUP |J§(t + 7')|> < Pu/ e sup <‘Mt(ﬂ
7<N 3

where in the third inequality we use ([2I0). It follows that,

sup P, (sup e(q+>‘1/2)(t+T)J{(t + T)> < sup e(q+)‘1/2)(t+N)]P’M (sup \JQf(t + 7')\) < 0.
t>3to TN t>3to <N
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The proof is now complete.

Od
Next, we prove that
Lemma 3.8 If f € C; and p € Mp(FE), then
lim lim sup sup <\Y;1’U‘”£(T) — Y;l’Uqf(S)D =0, (3.48)

020 tooco §TETE:S<T<S+0
where T, is the set of all {Gy1r : T > 0}-stoping times that are bounded by N.

Proof: In this proof, we always assume that ¢ > 3tg. By [2.28]), we have, Py -a.s.,

D e A ) [ e R R e ()]
telatM/DE+T) J2f(t 4 T) — elatA/2)(t+5) J2f(t +9)|

= Jg’l(t,T, S) + Jg’g(t,T, S)

For Js1(t,T,S), by ([B3.40]), we have that, as t — oo,
PuJsa(t,T,5) < 2P, <Sup M2 g (¢ 4+ T)|> S eIy 0. (3.49)
7<N
Note that
J32(t,T,S)

e(q+)\1/2)(t+S)‘J2f(t + T) . JQf(t + S)’ + ’e(q+)\1/2)(t+T) . (q+)\1/2)(t+S)HJf(t + T)‘
< et MACEN) | JF 4 T) — JI (£ 4 9)| 4 el@t /DN |latX /200 _q) 7] (1 +T)).

IN

By B47), we get that, for ¢ > 3to,

sup elat+21/2)(t+N) |e(f1+>\1/2 —1|P, |J2 (t+ 1)
S TeTh:S<T<S+0

ela /DN |la+h /26 _q)p, (sup |7 (¢ + T)\)
T<N

A

< el atM/20 1| 50, as 6 — 0. (3.50)

By (349) and 3350), to prove [34])), it suffices to show that

lim lim sup sup e(q“‘l/z)t]P’M]Jg(t +7)— J{(t +S5)| =0. (3.51)
020 t—oo STETh:S<T<S+6

By the definition of J{ , we have

It +T) = J(t+9) =

M= [ e
t+T t+S
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0o (w) (w) t+T
< / e\ Myyq — My du+/ e t+5|du
+T t+S
> (w) (w) r (w)
= /t e IMirynu ~ Mt d“+/t+s e 1My | du

= Ju(t,T,S) + J5(t,T,95).

First, we deal with Jy. Since T, S € T, (t+T) Aw and (t + S) Au are both {G; : 7 > 0}-stopping
times. Thus, by (2Z26]), we have

(u (u)
Py Ju(t, T, S) / \/ ‘M(H-T M(t+S)/\u

/ e 1 \/P Ytr)nun — (M) 9)00) du

/ \/ /tHT (T f )2, X,) ds du

T/\u
= q(utt) Ty_sf)? Xsit)ds du

2
du

IN

S/\u
—q(u+t) \// e—)\l(t-i-s)]P)u |e)\1(t+s) (A(Tyu—s )2, Xoqt) — (A(Tues f)2, ¢1)mWoo| ds du

TAu
+ e~ a(utt) \/ e~ M) (A(Ty_s )2, 1)mWeo ds du

S/\u

= J471( )—I—J42 t TS

Now we consider Jy 1. Let V(u—s,t+s) =P, ‘e)‘l(t“) (A(Tues )% Xogt) — (A(Tu=s /)% d1)mWeol-
Then,

oo N
Ju1(t) < e (@A /2t = N/2 / e_q“\// V(u—s,t+s)dsdu. (3.52)
0 0

Since (Tyy_sf)*(x) < eK@=9)T, _(£?)(x), we get that, for t > 3tg,
Viw=st+s) < M0 [ AT @)n(de) + K Tunf PP
< GAI(HS)GK(“_S)K/ Tosu(f2) (@)p(dz) + K| Tums fII3PL(Wos)
E

S e)\l(t—l—s)eK(u—s)e—)q (t+u)K/ ay (x)l/z,u(dx) + K62K(u—s) HszzlP,u(Woo)
E

< e(K—)\l)(u—s) + e2K(u—s) < e(K—)\l) + e2K5

where in the third inequality we used (Z4) and the fact that ||T;,_s|[4 < eX(*=%). Note that

00 N 00
/ e_q“\// e(K=A)u 4 2K dg dy < N'/2 / e~ (@ K/240/2)u 4 o=@ K gy < o,
0 0 0
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By Lemma 3] we get that V(u—s,t+s) — 0 as t — co. By the dominated convergence theorem,

oo N
lim / e_q“\// V(u—s,t+s)dsdu=0.

It follows from (B52) that

we get that

lim e @T/28 7, (1) = 0. (3.53)

t—o00

For Jya(t, T, S), since (A(Tu—sf)% é1)m < JATuof)?lla < Ke2K 9| £]2 < Ke2Ku | £]2, we have

J4’2(t7f1"'7 S) < “f“46_(Q+)\1/2)t6—)\1N/2/ e_(q_K)u\/]P)u (K(T Au—S /\U)Woo) du
0

< pU2e—(ath/t / T =KD gy, (g — F)191 20N /2,
0

where in the second inequality we used the fact that T'Au — S A u < 0. Thus, we get

lim lim sup sup TN/ (4, T, S) = 0. (3.54)
0=0 tsoo §TETH:S<T<S+6

Combining [B53) and (354), we get

lim lim sup sup M/ 1y (t, T, S) = 0. (3.55)
0=0 t—oo STETH:S<T<S+0

Finally, we consider J5(t,T,S). By Holder’s inequality, we get

t+T t+T
P,Js(t,T,S) = Pu/ _q“]M(“S\du<\/ / —2‘1“\M SPdu\/]P’ (T'—S)
t+N
< 07 / _QunMM((;LJrS W7 du = 6'/ / e 204D, (M ™) (11.5)nu dut
t

t+N
< 91/2\/ / e—zqum(M(u»udu:elﬂ\/ /t e~ 2au /E Vars, (f, Xu) p(dz) du
t

t+N
S.; 91/2\// e—2que—Au du/ ato(x)1/2 u(dx) S_, 91/26—(q—|-)\1/2)t7
t E

where in the second to the last inequality we used ([2.I0)). Thus, we get that

lim lim sup sup M/ T (¢, T, S) = 0. (3.56)
020 t—co §TETE:S<T<S+0

Combining ([B.55) and ([B.350), we get ([B.51) immediately. The proof is now complete. O

Lemma 3.9 If f € Cs and p € Mp(E), then, under P, the family of processes <Y;1’UQf(.)) . is
t>
C-tight in D(R).

32



Proof: It follows from Lemmas B.7] and B.8] that <Yt1’Uqf(-)) . is tight in D(R) under P,. By
t>

Corollary BBl and the fact that v/WaoG Y4/ is a continuous process, we obtain that <Ytl’Uqf ()) .
t>
is C-tight in D(R) under P,,. O

3.2.2 The tightness of (Ytz’h) . in D(R)
t>

The next lemma will be used to prove the tightness of (Yf’h(-))bo.

Lemma 3.10 Suppose that {C(7),7 > 0} and, for each t > 0, {C(7),7 > 0} are non-decreasing
cadlag processes defined on the space (2, F, P) such that C¢(0) = C(0) = 0 and for all T > 0,

tli)m Cy(t) = C(1)  in probability. (3.57)
If C is a continuous process, then
tli)m 0(Cy,C) =0 in probability, (3.58)

where 0 is the metric compatible with the Skorohod topology defined in [13, Chapter VI, 1.26].
Moreover, as t — 0o,

C - -4,
which implies that (Cy)i>o is C-tight in D(R).
Proof: Let D be the subset of all the positive rational numbers. For any subsequence (ny), by a
diagonal argument, we can find a further subsequence (n}) and a set Qy C Q with P(Qg) = 1 such

that for 7 € D and w € Qy,
lim C (7)(w) = C(7)(w). (3.59)

Thus, by [13, Chapter VI, Theorem 2.15(c)], we have, for w € Qq,
lim 6(Cyy (w),C(w)) =0,
k—o0 k

which implies ([3.58). The remaining assertion follows immediately from (B.58]). O

Lemma 3.11 If h € C. and p € Mp(E), then the family of processes (Ytz’h(-))t>0 is C-tight in
D(R) under P,.

Proof: For h € C,, we have T;h = e **/2h. Thus, by [Z22), we get that, for t > 0, P,—a.s.

t
(h, X3) = e M2 (h, X)) + e M2 / / M2 h(z) M (ds, dx).
0 JE
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Since both sides of the above equation are cadlag, we have

P, ((h,)@ M2 (h, X)) A1t/2/ / M2 () M (ds, da), Vit > o> =

Thus, we have
Y2Mr) = t7Y2%(h, Xo) + t—1/2/ / M2 h(2) M (ds, dx)
_ 2h +t—1/2/ / )\13/2h dS dl‘)

Therefore, {Ytz’h(T), 7 > 0} is a square-integrable martingale with
t+7
Y2 (r) =71 / M3 (AR?, X, )ds. (3.60)
t

By (24]), we have for t > to,

t+1 t+7
t'P, (/ e)‘ls(Ah2,Xs>ds> = t_l/ / M3 T (AR?) (x)ds p(dx) <t
t EJt

Thus, for any 7 > 0, as t — oo,
<Ytz’h>(7') — 0 in IP,-probability. (3.61)

Hence, by Lemma[3.10] (<Yt2’h>)t>0 is C-tight in D(R) under P,,. Since Ytz’g(O) =t~ 12e7N2(g X)) —

N(0,p2) in distribution as ¢ — oo, we know that {Y*"(0),t > 0} is tight in R under P,. There-

fore, by [13l Chapter VI, Theorem 4.13], we get that <Y2’h(-)> . is tight in D(R) under P,. By
t>

Corollary B.5] and the fact that /W G>" is a continuous process, we obtain that ( Y2 h( )) . is
t>
C-tight in D(R) under P,. The proof is now complete. O

3.2.3 The tightness of (Yt?”g) . in D(R)
t>

Lemma 3.12 If g € C; and p € Mp(E), then the family of processes (Yf”g('))bo is C-tight in
D(R) under P,,.

Proof: Note that

}/;379(7_) _ Z Z (M /2= ) (t+T) bk (Ht-i-r_Hk’])

kA >2), j=1
ng

n Z Z e()q/2—)\k)(t+‘r)bé§ (le _ Hfo])
kA >2) j=1
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= ZMNT)+ ZE (7).
For ZZ(7), it is known (see [22]) that under P,

(M2~ HET) < GV W,
where G is a normal random variable. It follows that under IP,, as t — oo,

/220 () ( HF H&j> _d, bE G WoageP1/2720):,

Thus, e()‘1/2_)‘k)(t+')b§ (Hf’j - ch’,3> is C-tight in D(R) under P,,. By [I3 Corollary 3.33], (Z)i>0
is C-tight in D(R) under P,. Thus, to prove (Yt3’g)t>0 is tight in D(R) under P,,, it suffices to show
that (Z})>0 is tight in D(R) under P,,.

Since {Hf 4’_jT — Hf o> 0} is a martingale under P, using L, maximum inequality, we get for
A1 > 20,

. . . N 2
P, <SEJI\)/ o(M1/2=Ak) (t+7) Hfiro _ Hf]‘) < 2eM/2=A)(EN) \/Pu (Hf—;_jN B Hfj) .

By ([222]), we have
HE — <¢§k)7ﬂ>+/Ot/EeM8¢§.’f>(g;)M(ds,dx). (3.62)
Thus,
(MY, — /Ot s (A0 X,) ds. (3.63)

Therefore, by (2.4]), we get that, for t > ¢,
y y 2 t+N & t+N
Pu (Hiy — HI) = / [ (A)) @) ds o) < / P38 s (PN
EJt t

Hence,

supP, | sup eQ1/27 k) (t47)
t>to 7<N

H — Ht’“‘) < 0. (3.64)

It follows that

ny
supP, (Sup ‘Zg(ﬂ‘) < Z Z |b§| supP, (Sup o (A1 /2=2p) (t+7)
t>to T<N kA >2), j=1 t>1o T<N

HE - Ht'”D < 0. (3.65)
Next we prove that

lim lim sup sup P, (‘Ztl(T) - Z,}(S)!) =0, (3.66)
0=0 t—oo T,5€TH:0<T-5<6
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where T} is the set of all {Gi+, : 7 > 0}-stoping times that are bounded by N. It suffices to show
that, for Ay > 2\,

Jimn Timn sup sup P, <‘e()\1/2—)\k)(t+T) (HEG, — FET) /2= M08) (prhd Hf,j)D —0.
0=0 t—oo T,5€TH:0<T-5<0
(3.67)
We note that
k.j k.j k.
()\1/2 )\k)(t+T)(Ht+T_H ) ()\1/2 )\k)(t+3)(Ht+S Ht J)‘
< P/2-A)(EEN) ‘ Ht+T t+s‘ 4 e /22A) N (/22000 1y SE]I\)[ HtifT ny‘
By (B.64]), we get that, for t > ¢,
e(A1/2—)\k)(t+N)(e()\l/2—)\k)€ ~1)P, (Sup HH,_]T HZHD < eA1/2=2)0 _ 1 0, (3.68)
T<N
as § — 0. By (3.63]), we have
T2
A1/2-\p)(t+N , A1/2-X N) ; k,
(M /2=A) N, ‘Ht+JT t+S‘ < eM/2=A0) (t+ \/]p ‘Ht—i-]T H'Yg

e(A1/2= ) (t+N) \/]P’ (HEI) i — (HMT)115)

e(A1/2=Ay, (t—I—N\/ e%kS(A((pgk))?,Xst
t+T
< \/ Ms(A(B{Y)?, X,) ds
t+N
< \/ [ Buensa@)2 X — (A2 00 W | ds + 0042, 61),B, (Vo).

By Lemma [3.1]

Jm [ P (A2 X0 — (A2, 61)mWee | ds = 0.
oo Jt
Thus,
lim lim sup sup M/ 2= (N ‘H A ‘
020 t—oco T,9€TH:0<T—S<6 o s
< i AV =
< L 0(A(0)2, 61)mB(Wac) = 0. (3.69)

Combining (3.68) and [B.:69), we get ([B.67]).
By Corollary B5land the fact that /W G>9 is a continuous process, we obtain that <Yf”g ()) .
t>
is C-tight in D(R) under IP,. The proof is now complete. 0
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