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The interference model has been widely used and studied in block
experiments where the treatment for a particular plot has effects on
its neighbor plots. In this paper, we study optimal circular designs
for the proportional interference model, in which the neighbor effects
of a treatment are proportional to its direct effect. Kiefer’s equiv-
alence theorems for estimating both the direct and total treatment
effects are developed with respect to the criteria of A, D, E and T.
Parallel studies are carried out for the undirectional model, where
the neighbor effects do not depend on whether they are from the
left or right. Moreover, the connection between optimal designs for
the directional and undiretional models is built. Importantly, one can
easily develop a computer program for finding optimal designs based
on these theorems.

1. Introduction. In many agricultural experiments, the treatment as-
signed to a particular plot could also have effects on its neighbor plots. This
is well recognized in literature. See Draper and Guttman (1980), Kemp-
ton (1982), Besag and Kempton (1986), Langton (1990), Gill (1993) and
Goldringer, Brabant and Kempton (1994) for examples. To adjust the biases
caused by these neighbor effects, the interference model is widely adopted.
In a block design with n blocks of size k and t treatments, the response,
ydij , observed from the jth plot of block i is decomposed into the following
items.

ydij = µ+ βi + τd(i,j) + γd(i,j−1) + ρd(i,j+1) + εij ,(1)

where the subscript d(i, j) denotes the treatment assigned to the jth plot
of block i by the design d : {1, 2, ..., n} × {1, 2, ..., k} → {1, 2, ..., t}. Fur-
thermore, µ is the general mean, βi is the effect of block i, τd(i,j) is the
direct effect of treatment d(i, j), λd(i,j−1) is the neighbor effect of treatment
d(i, j − 1) from the left, and ρd(i,j+1) is the neighbor effect of treatment
d(i, j + 1) from the right. At last, εij is the error term.
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2 K. LI, W. ZHENG AND M. Y. AI

Kunert and Martin (2000) studied optimal designs under Model (1) for
estimating the direct treatment effect when k = 3 or 4. The latter was ex-
tended to 5 ≤ k ≤ t by Kunert and Mersmann (2011). Zheng (2014) recently
provided a unified framework which provides optimal designs for general val-
ues of k and t, with an arbitrary structure of the within-block covariance
matrix. On the other hand, Bailey and Druilhet (2004) studied the optimal
designs under the same model, however for estimating the total treatment
effect which is the summation of the direct and neighbor effects. This line
of research was extended by Ai, Ge and Chan (2007), Ai, Yu and He (2009)
and Druilhet and Tinssonb (2012). See also Gill (1993), Druilhet (1999), Fil-
ipiak and Markiewicz (2003, 2005, 2007) and Filipiak (2012) among others
for relevant works on optimal designs.

In this paper, we shall consider the proportional interference model, where
the neighbor effects are proportional to the direct treatment effect, i.e.
γi = λ1τi and ρi = λ2τi, 1 ≤ i ≤ t, for unknown constants λ1 and λ2.
This is reasonable for many applications since an effective treatment typi-
cally has large impacts on its neighbor plots. In fact, Draper and Guttman
(1980) has proposed such model with λ1 = λ2. A model with this restric-
tion is said to be undirectional, otherwise it is directional. Yet, there is no
literature on optimal designs under either of these two models according
to the best knowledge of the authors. Meanwhile, optimal crossover designs
under a similar proportional model have been studied by Kempton, Ferris
and David (2001), Bailey and Kunert (2006), Bose and Stufken (2007) and
Zheng (2013a). By their enlightenment, the nonlinear terms λ1τi and λ2τi
in the proportional interference model can be handled in the same fashion.
We are interested in finding the optimal designs for estimating the direct
and total treatment effects, respectively, under either of the directional and
undirectional models.

Let Yd be the vector of responses organized block by block. Now we can
write the proportional interference model as follows.

Yd = 1nkµ+ Uβ + (Td + λ1Ld + λ2Rd)τ + ε,(2)

where 1nk represents a vector of ones with length nk, β = (β1, ..., βn)′,
τ = (τ1, ..., τt)′ and U = In ⊗ 1k. Here, In is the identity matrix of order
n; ⊗ denotes the Kronecker product and ′ means the transposition. Also,
Td, Ld and Rd represent the design matrices for the direct, left neighbor
and right neighbor effects, respectively. Throughout the paper, we consider
circular designs, for which d(i, 0) = d(i, k) and d(i, k + 1) = d(i, 1), 1 ≤
i ≤ n. Hence we have Ld = (In ⊗ H)Td and Rd = (In ⊗ H ′)Td, where
H = (Ii=j+1(mod k))1≤i,j≤k with the indicator function I. For the random
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error term ε, we assume that E(ε) = 0 and V ar(ε) = In ⊗Σ, where Σ is an
arbitrary k × k positive definite within-block covariance matrix.

The rest of the paper is organized as follows. Sections 2 and 3 investigate
the optimal designs for estimating the direct and total treatment effects,
respectively, under the proportional interference model. Kiefer’s equivalence
theorems are given with respect to A, D, E and T criteria therein. Section
4 carries out parallel studies for the undirectional model. Moreover, the
connection between optimal designs for the two models is built. Section 5
illustrates these theorems through several examples. Section 6 concludes the
paper with some discussions.

2. Optimal designs for direct treatment effect. For any matrix
G, define G− as a generalized inverse of G and the projection operator
pr⊥G = I − G(G′G)−G′. Let Ũ = (In ⊗ Σ−1/2)U , T̃d = (In ⊗ Σ−1/2)Td,
L̃d = (In ⊗ Σ−1/2)Ld and R̃d = (In ⊗ Σ−1/2)Rd. The Fisher’s information
matrix for the direct treatment effect τ under Model (2) is

Cd(τ) = (T̃d + λ1L̃d + λ2R̃d)′pr⊥(Ũ |L̃dτ |R̃dτ)(T̃d + λ1L̃d + λ2R̃d).

For notational convenience, let Mx,y,z = xT̃d + yL̃d + zR̃d for any values of
x, y and z. By setting λ0 = 1, we have

Cd(τ) = M ′
1,λ1,λ2

pr⊥(Ũ |L̃dτ |R̃dτ)M1,λ1,λ2

= M ′
1,λ1,λ2

pr⊥(Ũ)M1,λ1,λ2 −M ′
1,λ1,λ2

pr⊥(Ũ)(L̃dτ |R̃dτ)

×[(L̃dτ |R̃dτ)′pr⊥(Ũ)(L̃dτ |R̃dτ)]−(L̃dτ |R̃dτ)′pr⊥(Ũ)M1,λ1,λ2

=
2∑

i=0

2∑
j=0

λiλjCdij −A′d(τ
′Cdijτ)−1≤i,j≤2Ad,(3)

Ad =

(
2∑

i=0

λiCdi1τ

∣∣∣∣∣
2∑

i=0

λiCdi2τ

)′
,

where Cdij = G′i(In ⊗ B̃)Gj , 0 ≤ i, j ≤ 2, with G0 = Td, G1 = Ld, G2 = Rd

and B̃ = Σ−1 − Σ−11k1′kΣ
−1/1′kΣ

−11k. In particular, if Σ is a matrix of
type-H, i.e. Σ = Ik + η1′k + 1kη

′ with a vector η of length k, we have B̃ =
pr⊥(1k) := Bk [Kushner (1997)]. Examples of type-H matrices include the
identity matrices and completely symmetric matrices.

One major objective of design theorists is to find a design with maximum
information matrix. Following Kiefer (1975), we shall try to find the designs
which maximize Φ(Cd(τ)), where Φ satisfies the following three conditions.

(C.1) Φ is concave.
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(C.2) Φ(S′CS) = Φ(C) for any permutation matrix S.
(C.3) Φ(bC) is nondecreasing in the scalar b > 0.

Note that Cd(τ) depends on the true value of τ itself, and thus the choice
of optimal designs. Following Kempton, Ferris and David (2001), Bailey and
Kunert (2006) and Zheng (2013a), we adopt the Bayesian type criterion

φg(d) =
∫

Φ(Cd(τ))g(τ)d(τ) = Eg(Φ(Cd(τ))),(4)

where g is the prior distribution of τ and is assumed to be exchangeable
throughout the paper. A design is said to be optimal if and only if it achieves
the maximum of φg(d) among all designs for given g, Φ, λ1 and λ2. Further-
more, if a design maximizes φg(d) for any Φ, it is also called to be universally
optimal.

In this paper we consider four popular criteria for finding optimal designs.
For a t× t matrix C with eigenvalues 0 = a0 ≤ a1 ≤ a2 ≤ ... ≤ at−1, define
the criterion functions as

ΦA(C) = (t− 1)

(
t−1∑
i=1

a−1
i

)−1

,

ΦD(C) =
(
Πt−1

i=1ai

)1/(t−1)
,

ΦE(C) = a1,

ΦT (C) = (t− 1)−1
t−1∑
i=1

ai.

A design is said to be Ag-optimal if it maximizes φg(d) with Φ = ΦA in (4).
The Dg-, Eg- and Tg-optimality of a design are similarly defined.

Let Ωn,k,t denote the set of all possible block designs with n blocks of size
k and t treatments. A design in Ωn,k,t could be considered as a result of
selecting n elements from the set, S, of all possible tk block sequences with
replacement. For each s ∈ S, we define the sequence proportion ps = ns/n,
where ns is the number of replications of s in the design. For given n, a design
is determined by the measure ξ = (ps, s ∈ S). If ps > 0, then s is a supporting
sequence of ξ. In approximate design theory, we search for optimal measures
in the space of P = {ξ :

∑
s∈S ps = 1, ps ≥ 0}. If such a measure happens

to fall within the subset Pn = {ξ ∈ P : nξ is a vector of integers}, then we
derive an exact design which is optimal among Ωn,k,t.

Let Csij be the matrix Cdij when the design d is degenerated to a single
sequence s for 0 ≤ i, j ≤ 2. Then we have Cdij = n

∑
s∈S psCsij . By equation
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(3), we have

Cd(τ) = nCξ(τ),

Cξ(τ) =
2∑

i=0

2∑
j=0

λiλjCξij −A′ξ(τ
′Cξijτ)−1≤i,j≤2Aξ,(5)

Cξij =
∑
s∈S

psCsij ,

Aξ =

(
2∑

i=0

λiCξi1τ

∣∣∣∣∣
2∑

i=0

λiCξi2τ

)′
.

Note that Cξ(τ) is independent of n. Here we call Cξ(τ) the information
matrix of the measure ξ. Furthermore, by noting that the four criterion
functions satisfy Φ(nC) = nΦ(C), we have

φg(d) = nφg(ξ),(6)

φg(ξ) =
∫

Φ(Cξ(τ))g(τ)d(τ).

The equation (6) indicates that the number of blocks n is irrelevant to
the search of approximate optimal designs. In the sequel, we shall focus on
finding the optimal measures which maximize φg(ξ) among P.

Let O denote the set of all t! permutation operators on {1, 2, . . . , t}. For
any σ ∈ O and s = (t1, . . . , tk) with 1 ≤ ti ≤ t, define σs = (σ(t1), . . . , σ(tk)).
A measure is said to be symmetric if it is invariant under treatment rela-
beling, i.e. σξ = ξ for all σ ∈ O, where σξ = (pσ−1s, s ∈ S). By adopting
the similar arguments for Corollary 1 in Zheng (2013a), we get the following
result.

Proposition 1. In approximate design theory, given any values of λ1

and λ2, and the exchangeable prior distribution g of τ , for any measure ξ
there exists a symmetric measure, say ξ∗, such that

φg(ξ) ≤ φg(ξ∗).

Proposition 1 indicates that an optimal measure in the subclass of sym-
metric measures is automatically optimal among P. The merit of such result
is that the form of the information matrix for a symmetric measure is usually
feasible to be calculated explicitly. In fact there is a larger subclass of mea-
sures with the same convenience. We call a measure to be pseudo symmetric
if Cξij , 0 ≤ i, j ≤ 2, are all completely symmetric. A symmetric measure is
also pseudo symmetric [Kushner (1997)]. It is easy to verify that the column
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and row sums of Cξij ’s are all zero. Hence, for any pseudo symmetric mea-
sure we have Cξij = cξijBt/(t− 1), 0 ≤ i, j ≤ 2, where cξij = tr(Cξij). Now
let ` = (1, λ1, λ2)′, Vξ = (cξij)0≤i,j≤2, Qξ = (cξij)1≤i,j≤2 and

q∗ξ = cξ00 −
(
cξ01 cξ02

)
Q−

ξ

(
cξ10
cξ20

)
.(7)

Proposition 2. For a pseudo symmetric measure ξ, the information
matrix Cξ(τ) has eigenvalues of 0, (t− 1)−1q∗ξ and (t− 1)−1`′Vξ` with mul-
tiplicities of 1, 1 and t− 2, respectively. Moreover we have q∗ξ ≤ `′Vξ`.

Proof. Due to 1′tτ = 0, we have Btτ = τ and τ ′Cξijτ = cξijτ
′τ/(t− 1).

In view of (5), we obtain

(t− 1)Cξ(τ) =
2∑

i=0

2∑
j=0

λiλjcξijBt − a(τ ′τ)−1ττ ′,

a =

(
2∑

i=0

λicξi1

∣∣∣∣∣
2∑

i=0

λicξi2

)
Q−

ξ

( ∑2
j=0 λjcξ1j∑2
j=0 λjcξ2j

)
.

Let {x1, ..., xt−2} be the orthogonal basis that is orthogonal to both 1t

and τ . Then {1t, τ, x1, ..., xt−2} forms the eigenvectors of Cξ(τ). The cor-
responding eigenvalues are 0, (t − 1)−1(

∑2
i=0

∑2
j=0 λiλjcξij − a) and (t −

1)−1∑2
i=0

∑2
j=0 λiλjcξij with multiplicities of 1, 1 and t − 2, respectively.

The proof is concluded in view of

`′Vξ` =
2∑

i=0

2∑
j=0

λiλjcξij ,

a = `′

 cξ01 cξ02
cξ11 cξ12
cξ21 cξ22

Q−
ξ

(
cξ01 cξ11 cξ21
cξ02 cξ12 cξ22

)
` ≥ 0,

and (7). ♦

By Proposition 2, it is seen that φg(ξ) = Φ(Cξ(τ)) for any pseudo symmet-
ric measure under the four criterion functions. Hence g is irrelevant to the
determination of optimal pseudo symmetric measures for the four criteria.

Lemma 1. Except for measures with each supporting sequence consisting
of only one treatment, we have cξii > 0 for i = 0, 1, 2. If det(Qξ) > 0, then
q∗ξ = det(Vξ)/det(Qξ), where det(·) means the determinant of a matrix.
Otherwise, q∗ξ = cξ00 − c2ξ01/cξ11 = cξ00 − c2ξ02/cξ22.
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Proof. Note that B̃ is nonnegative definite. So cξ00 =
∑

s∈S pstr(T ′sB̃Ts)
≥ 0, where Ts is the matrix Td when d is degenerated to a single sequence s. If
cξ00 = 0, we have T ′sB̃Ts = 0 and thus B̃Ts = 0 for any supporting sequence
s. It is known that B̃x = 0 if and only if x is a multiple of 1k [Kushner
(1997)]. This is only possible when each supporting sequence repeats the
same treatment throughout the k plots. For cξ11 and cξ22, we have the similar
arguments. The rest of the lemma follows by straightforward calculations.
♦

From the proof of Lemma 1, we know Vξ = 0 if each supporting sequence
of ξ consists of only one treatment. There is no information gathered from
such measures regarding τ , and hence it is impossible to be optimal. In the
subsequent arguments, we neglect such measures by default.

Define the quadratic function qξ(x) = cξ00 + 2cξ01x + cξ11x
2 and xξ =

−cξ01/cξ11, then we have qξ(xξ) = cξ00 − c2ξ01/cξ11. Let csij = tr(Csij),
Vs = (csij)0≤i,j≤2, Qs = (csij)1≤i,j≤2 and qs(x) = cs00 + 2cs01x + cs11x

2.
Clearly, cξij =

∑
s∈S pscs, Vξ =

∑
s∈S psVs, Qξ =

∑
s∈S psQs and qξ(x) =∑

s∈S psqs(x).

Theorem 1. In estimating τ under Model (2), a pseudo symmetric mea-
sure ξ is optimal in the following cases. In each case, the ps in ξ is positive
only if s reaches the maximum therein.
(i) If det(Qξ) = 0, then ξ is Ag-optimal if and only if

max
s∈S

qξ(xξ)−2qs(xξ) + (t− 2)(`′Vξ`)−2`′Vs`

qξ(xξ)−1 + (t− 2)(`′Vξ`)−1
= 1.

If det(Vξ) > 0, then ξ is Ag-optimal if and only if

max
s∈S

rs det(Qξ)/det(Vξ) + (t− 2)(`′Vξ`)−2`′Vs`

det(Qξ)/det(Vξ) + (t− 2)(`′Vξ`)−1
= 1.

(ii) If det(Qξ) = 0, then ξ is Dg-optimal if and only if

max
s∈S

(
1

t− 1
qs(xξ)
qξ(xξ)

+
t− 2
t− 1

`′Vs`

`′Vξ`

)
= 1.(8)

If det(Vξ) > 0, then ξ is Dg-optimal if and only if

max
s∈S

(
rs
t− 1

+
t− 2
t− 1

`′Vs`

`′Vξ`

)
= 1.(9)
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(iii) If det(Qξ) = 0, then ξ is Eg-optimal if and only if

max
s∈S

qs(xξ)
qξ(xξ)

= 1.

If det(Vξ) > 0, then ξ is Eg-optimal if and only if

max
s∈S

rs = 1.

(iv) If det(Qξ) = 0, then ξ is Tg-optimal if and only if

max
s∈S

qs(xξ) + (t− 2)`′Vs`

qξ(xξ) + (t− 2)`′Vξ`
= 1.

If det(Vξ) > 0, then ξ is Tg-optimal if and only if

max
s∈S

rs det(Vξ)/det(Qξ) + (t− 2)`′Vs`

det(Vξ)/det(Qξ) + (t− 2)`′Vξ`
= 1.

Here rs = tr(VsV
−1
ξ )− tr(QsQ

−1
ξ ).

Proof. Here we give only the proof for (ii) and the other three cases
follow similarly. First we would like to show that

det(Vξ)/det(Qξ) ≤ cξ00 − c2ξ01/cξ11(10)

whenever det(Qξ) > 0. To see this, consider the following inequality.(
cξ00 cξ01

cξ10 cξ11

)
− 1
cξ22

(
cξ02
cξ12

)(
cξ20 cξ21

)
≤

(
cξ00 cξ01
cξ10 cξ11

)
(11)

The left (resp. right) hand side of (10) is the Schur complement of the left
(resp. right) hand side of (11), and hence (10) follows by the nondecreasing
property of Schur complement.

By the definition of Dg-optimality, Propositions 1 and 2, Lemma 1 and
the inequality (10), a pseudo symmetric measure ξ with det(Qξ) = 0 is
Dg-optimal if and only if

lim
δ→0

ψ[(1− δ)ξ + δξ0]− ψ(ξ)
δ

≤ 0(12)

for any measure ξ0, where ψ(ξ) = log(qξ(xξ))+(t−2) log(`′Vξ`). Here we used
the fact that Vξ∗0

= Vξ0 and hence ψ(ξ∗0) = ψ(ξ0), where ξ∗0 is a symmetric
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measure defined by ξ∗0 =
∑

σ∈O σξ0/t!. Direct calculations show that (12) is
equivalent to

1
t− 1

qξ0(xξ)
qξ(xξ)

+
t− 2
t− 1

`′Vξ0`

`′Vξ`
≤ 1.(13)

By reducing ξ0 to a degenerate measure which puts all mass on a single
sequence s, we have

max
s∈S

(
1

t− 1
qs(xξ)
qξ(xξ)

+
t− 2
t− 1

`′Vs`

`′Vξ`

)
≤ 1.(14)

By letting ξ0 = ξ, we have equality in (13) and hence

max
s∈S

(
1

t− 1
qs(xξ)
qξ(xξ)

+
t− 2
t− 1

`′Vs`

`′Vξ`

)
≥ 1(15)

in view of qξ(x) =
∑

s∈S psqs(x). Combining (14) and (15), we obtain (8).
For a pseudo symmetric measure ξ with det(Vξ) > 0 and any measure ξ0,

by the continuity of det(Q(1−δ)ξ+δξ0) in δ, there exists a constant ε > 0 such
that det(Q(1−δ)ξ+δξ0) > 0 for all δ ∈ (−ε, ε). Hence ξ is Dg-optimal if and
only if

lim
δ→0

ϕ[(1− δ)ξ + δξ0]− ϕ(ξ)
δ

≤ 0,(16)

where ϕ(ξ) = log(det(Vξ)/det(Qξ))+(t−2) log(`′Vξ`). It is well known that

lim
δ→0

log(det(V(1−δ)ξ+δξ0))− log(det(Vξ))
δ

= tr(Vξ0V
−1
ξ )− 3.(17)

The same result holds for Qξ except that the number 3 in (17) is replaced
with 2. By applying (17) to (16) we have

tr(Vξ0V
−1
ξ )− tr(Qξ0Q

−1
ξ )

t− 1
+
t− 2
t− 1

`′Vξ0`

`′Vξ`
≤ 1.(18)

Hence, for single sequences we have

max
s∈S

(
tr(VsV

−1
ξ )− tr(QsQ

−1
ξ )

t− 1
+
t− 2
t− 1

`′Vs`

`′Vξ`

)
≤ 1.

By taking ξ0 = ξ, we have equality in (18). Also observe that conditioning
on fixed ξ, the left hand side of (18) is a linear function of the proportions
in ξ0. Hence we have

max
s∈S

(
tr(VsV

−1
ξ )− tr(QsQ

−1
ξ )

t− 1
+
t− 2
t− 1

`′Vs`

`′Vξ`

)
≥ 1.

Then equation (9) follows. ♦
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Remark 1. Theorem 1 neglected the pseudo symmetric measures with
det(Vξ) = 0 and det(Qξ) > 0 and Theorem 1 (i)-(iii) neglected those with
det(Qξ) = 0 and qξ(xξ) = 0. However, all these measures yield q∗ξ = 0 and
thus they can not be optimal under Ag, Dg and Eg criteria. Actually, τ is
not estimable for any measure with q∗ξ = 0 and hence such measures should
not be adopted [Pukelsheim (1993), Chapter 3]. Note also that det(Qξ) = 0
implies det(Vξ) = 0. Theorem 1 gives a comprehensive list of conditions to
judge the optimality of a pseudo symmetric measure for estimating τ .

Remark 2. Since we also have q∗ξ = cξ00− c2ξ02/cξ22 by Lemma 1, if the
function qξ(x) is replaced with cξ00+2cξ02x+cξ22x2, equivalent conditions for
optimal pseudo symmetric measures with respect to the four criteria could
be derived similarly.

Remark 3. For the non-proportional model (1), the information matrix
of a pseudo symmetric measure has t−1 eigenvalues of q∗ξ and one of 0. The
measure in Theorem 1 (iii) should also be universally optimal under Model
(1).

Remark 4. When there is only one neighbor effect, say left, we have
det(Qξ) = 0 for all ξ ∈ P. Theorem 1 reduces to equivalent conditions for
the optimal crossover measures where the pre-period treatment is equal to
the treatment in the last period for each subject.

3. Optimal designs for total treatment effect. In this section we
study optimal measures for estimating the total treatment effect, defined by
θ = (1 + λ1 + λ2)τ . Bailey and Druilhet (2004) commented that the total
treatment effect is more important when the experiment is aimed to find a
single treatment which is recommended for use in the whole field.

When 1+λ1 +λ2 = 0, θ takes the value of constant 0 regardless the value
of τ and there is no need to carryout the experiment. In the following we
assume 1 + λ1 + λ2 6= 0. By plugging τ = θ/(1 + λ1 + λ2) into Model (2),
we have

Yd = 1nkµ+ Uβ + (1 + λ1 + λ2)−1(Td + λ1Ld + λ2Rd)θ + ε.

The information matrix for θ is

Cd(θ) = (1 + λ1 + λ2)−2

×M ′
1,λ1,λ2

pr⊥(Ũ |M−1,1+λ2,−λ2θ|M−1,−λ1,1+λ1θ)M1,λ1,λ2 .

Here we used the equation pr⊥EF = pr⊥E for any nonsingular matrix
F . Actually, it is seen that 1 + λ1 + λ2 = 0 will yield infinite Cd(θ) for
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any d, which implies that the covariance matrix for θ is zero. Our previous
comment on this special case is justified here. In the same way of defining
Cξ(τ) in Section 2, the information matrix of a measure ξ for θ is given
by Cξ(θ) = n−1Cd(θ), which is independent of n and can be expressed in
the similar fashion of equation (5). In the spirit of Proposition 1, we shall
restrict our considerations to pseudo symmetric measures.

To precede, we define `0 = (−1, 1 + λ2,−λ2)′, `1 = (−1,−λ1, 1 + λ1)′,
L0 = (`0, `1) and L1 = (`, `0, `1). Let Vξ,1 = L′1VξL1, Qξ,1 = L′0VξL0 and
q∗ξ,1 = `′Vξ`− `′VξL0Q

−
ξ,1L

′
0Vξ`.

Proposition 3. For a pseudo symmetric measure ξ, the information
matrix Cξ(θ) has eigenvalues of 0, (1 + λ1 + λ2)−2(t − 1)−1q∗ξ,1 and (1 +
λ1 + λ2)−2(t − 1)−1`′Vξ` with multiplicities of 1, 1 and t − 2, respectively.
Moreover we have q∗ξ,1 ≤ `′Vξ`.

Proof. Denote Ãd = (M−1,1+λ2,−λ2θ|M−1,−λ1,1+λ1θ). Using 1′tθ = 0 and
Cξij = cξijBt/(t− 1), we have

Cξ(θ) = n−1(1 + λ1 + λ2)−2
{
M ′

1,λ1,λ2
pr⊥(Ũ)M1,λ1,λ2

−M ′
1,λ1,λ2

pr⊥(Ũ)Ãd[Ã′dpr
⊥(Ũ)Ãd]−Ã′dpr

⊥(Ũ)M1,λ1,λ2

}
= (1 + λ1 + λ2)−2(t− 1)−1[`′Vξ`Bt − a(θ′θ)−1θθ′],

where a = `′VξL0Q
−
ξ,1L

′
0Vξ`. Let {x1, . . . , xt−2} be the orthogonal basis

which is orthogonal to both 1t and θ. Then {1t, θ, x1, . . . , xt−2} forms the
eigenvectors of Cξ(θ). The corresponding eigenvalues are 0, (1+λ1+λ2)−2(t−
1)−1q∗ξ,1 and (1+λ1+λ2)−2(t−1)−1`′Vξ` with multiplicities of 1, 1 and t−2,
respectively. The proof is concluded in view of a ≥ 0. ♦

Since Vξ = 0 implies Vξ,1 = 0, we neglect the measures with each support-
ing sequence consisting of only one treatment. Note that q∗ξ,1 is the same
Schur complement of Vξ,1 as q∗ξ is that of Vξ. Define Vs,1 = L′1VsL1 and
Qs,1 = L′0VsL0. Let qξ,1(x) be the same function of Vξ,1 as qξ(x) is that of
Vξ, and qs,1(x) be the same function of Vs,1 as qs(x) is that of Vs. Similar
arguments for Theorem 1 yield the following theorem.

Theorem 2. In estimating θ under Model (2), a pseudo symmetric mea-
sure ξ with `′0Vξ`0 > 0 is optimal in the following cases. In each case, the ps

in ξ is positive only if s reaches the maximum therein.
(i) If det(Qξ,1) = 0, then ξ is Ag-optimal if and only if

max
s∈S

qξ,1(xξ,1)−2qs,1(xξ,1) + (t− 2)(`′Vξ`)−2`′Vs`

qξ,1(xξ,1)−1 + (t− 2)(`′Vξ`)−1
= 1.
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12 K. LI, W. ZHENG AND M. Y. AI

If det(Vξ,1) > 0, then ξ is Ag-optimal if and only if

max
s∈S

rs,1 det(Qξ,1)/det(Vξ,1) + (t− 2)(`′Vξ`)−2`′Vs`

det(Qξ,1)/det(Vξ,1) + (t− 2)(`′Vξ`)−1
= 1.

(ii) If det(Qξ,1) = 0, then ξ is Dg-optimal if and only if

max
s∈S

(
1

t− 1
qs,1(xξ,1)
qξ,1(xξ,1)

+
t− 2
t− 1

`′Vs`

`′Vξ`

)
= 1.

If det(Vξ,1) > 0, then ξ is Dg-optimal if and only if

max
s∈S

(
rs,1
t− 1

+
t− 2
t− 1

`′Vs`

`′Vξ`

)
= 1.

(iii) If det(Qξ,1) = 0, then ξ is Eg-optimal if and only if

max
s∈S

qs,1(xξ,1)
qξ,1(xξ,1)

= 1.

If det(Vξ,1) > 0, then ξ is Eg-optimal if and only if

max
s∈S

rs,1 = 1.

(iv) If det(Qξ,1) = 0, then ξ is Tg-optimal if and only if

max
s∈S

qs,1(xξ,1) + (t− 2)`′Vs`

qξ,1(xξ,1) + (t− 2)`′Vξ`
= 1.

If det(Vξ,1) > 0, then ξ is Eg-optimal if and only if

max
s∈S

rs,1 det(Vξ,1)/det(Qξ,1) + (t− 2)`′Vs`

det(Vξ,1)/det(Qξ,1) + (t− 2)`′Vξ`
= 1.

Here rs,1 = tr(Vs,1V
−1
ξ,1 )− tr(Qs,1Q

−1
ξ,1) and xξ,1 = −`′Vξ`0/`

′
0Vξ`0.

Remark 5. For the similar arguments in Remark 1, Theorem 2 gives a
comprehensive list of conditions to judge the optimality of pseudo symmetric
measures with `′0Vξ`0 > 0 for estimating θ. Equivalence conditions for the
four criteria could be easily derived when `′0Vξ`0 = 0, where we need to
consider the cases of `′1Vξ`1 is equal to 0 or not, separately. We omit the
details due to limit of space.

imsart-aos ver. 2007/12/10 file: AOS1015.tex date: October 16, 2014



OPTIMAL DESIGNS FOR THE PROPORTIONAL INTERFERENCE MODEL 13

Remark 6. If the within-block covariance matrix Σ is of type-H, `′0Vξ`0 =
0 implies Vξ`0 = 0 and thus Vξ = 0 in view of the equation (22) below. Sim-
ilarly, `′1Vξ`1 = 0 also results in Vξ = 0. Therefore, except for measures
with each supporting sequence consisting of only one treatment, we have
`′0Vξ`0 > 0 and `′1Vξ`1 > 0 for any type-H matrix Σ.

The following proposition shows that the values of λ1 and λ2 are irrele-
vant to the determination of the Eg-optimal pseudo symmetric measures for
estimating θ.

Proposition 4. For any measure, we have

q∗ξ,1 = (1 + λ1 + λ2)2 min
x,y

[(1, x, y)Γ′VξΓ(1, x, y)′],

where

Γ =

 1 −1 −1
0 1 0
0 0 1

 .
Proof. Let

Λ = (1 + λ1 + λ2)−1

 1 + λ1 + λ2 0 0
λ1 1 + λ2 −λ1

λ2 −λ2 1 + λ1

 .
Note that L1 = (`, `0, `1) = (1 + λ1 + λ2)ΓΛ. From Proposition 3 in Kunert
and Martin (2000), we have

q∗ξ,1 = min
x,y

[(1, x, y)Vξ,1(1, x, y)′]

= (1 + λ1 + λ2)2 min
x,y

[(1, x, y)Λ′Γ′VξΓΛ(1, x, y)′]

= (1 + λ1 + λ2)2 min
x,y

[(1, x, y)Γ′VξΓ(1, x, y)′].

The last equality used the fact that for all possible values of x and y,
Λ(1, x, y)′ and (1, x, y)′ share the same vector space. ♦

4. Optimal designs for the undirectional model. In many appli-
cations, it is reasonable to assume λ1 = λ2 := λ, i.e. the neighbor effects
don’t depend on whether they are from the left or right. See Draper and
Guttman (1980), Besag and Kempton (1986) and Filipiak, K. (2012) for
examples. Under this condition, Model (2) reduces to

Yd = 1nkµ+ Uβ + (Td + λLd + λRd)τ + ε.(19)
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14 K. LI, W. ZHENG AND M. Y. AI

The information matrix for τ under Model (19) is

C̃d(τ) = M ′
1,λ,λpr

⊥(Ũ |M0,1,1τ)M1,λ,λ.

The information matrix of a measure ξ for τ is C̃ξ(τ) = n−1C̃d(τ). Also we
consider only optimal measures in the pseudo symmetric format.

Define `2 = (0, 1, 1)′ and L2 = (`, `2), where ` is defined in Section 2 with
the value of (1, λ, λ)′ here. Let Vξ,2 = L′2VξL2, Qξ,2 = `′2Vξ`2, Vs,2 = L′2VsL2,
Qs,2 = `′2Vs`2 and q∗ξ,2 = `′Vξ` − `′Vξ`2Q

−
ξ,2`

′
2Vξ`. Similar to Proposition 3,

we have the following.

Proposition 5. For a pseudo symmetric measure ξ, the information
matrix C̃ξ(τ) has eigenvalues of 0, (t − 1)−1q∗ξ,2 and (t − 1)−1`′Vξ` with
multiplicities of 1, 1 and t− 2, respectively. Moreover we have q∗ξ,2 ≤ `′Vξ`.

Note that if Qξ,2 = 0, then q∗ξ,2 = `′Vξ` = cξ00 and hence C̃ξ(τ) =
cξ00Bt/(t− 1). By the similar arguments for Theorem 1, we obtain the fol-
lowing result.

Theorem 3. In estimating τ under Model (19), a pseudo symmetric
measure ξ is optimal in the following cases. In each case, the ps in ξ is
positive only if s reaches the maximum therein.
(i) If Qξ,2 = 0, then ξ is universally optimal if and only if

max
s∈S

cs00
cξ00

= 1.

(ii) If det(Vξ,2) > 0, then ξ is Ag-optimal if and only if

max
s∈S

rs,2Qξ,2/det(Vξ,2) + (t− 2)(`′Vξ`)−2`′Vs`

Qξ,2/det(Vξ,2) + (t− 2)(`′Vξ`)−1
= 1.

ξ is Dg-optimal if and only if

max
s∈S

(
rs,2
t− 1

+
t− 2
t− 1

`′Vs`

`′Vξ`

)
= 1.

ξ is Eg-optimal if and only if

max
s∈S

rs,2 = 1.

ξ is Tg-optimal if and only if

max
s∈S

rs,2 det(Vξ,2)/Qξ,2 + (t− 2)`′Vs`

det(Vξ,2)/Qξ,2 + (t− 2)`′Vξ`
= 1.
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(iii) Otherwise, ξ is not optimal.
Here rs,2 = tr(Vs,2V

−1
ξ,2 )−Qs,2Q

−1
ξ,2.

It is easy to verify that for any measure,

q∗ξ,2 = min
x

[(1, x)Vξ,2(1, x)′] = min
x

[(1, x, x)Vξ(1, x, x)′].(20)

Therefore, the value of λ is irrelevant to the search of Eg-optimal pseudo
symmetric measures for estimating τ .

Next, we consider the total treatment effect θ. With the reason explained
earlier, we shall assume 1 + 2λ 6= 0. The information matrix for θ under
Model (19) is

C̃d(θ) = (1 + 2λ)−2M ′
1,λ,λpr

⊥(Ũ |M2,−1,−1θ)M1,λ,λ.

For a measure ξ, its information matrix for θ is given by C̃ξ(θ) = n−1C̃d(θ).
Now we define `3 = (2,−1,−1)′ and L3 = (`, `3). Let Vξ,3 = L′3VξL3, Qξ,3 =
`′3Vξ`3, Vs,3 = L′3VsL3, Qs,3 = `′3Vs`3 and q∗ξ,3 = `′Vξ`−`′Vξ`3Q

−
ξ,3`

′
3Vξ`. Also

we have the following.

Proposition 6. For a pseudo symmetric measure ξ, the information
matrix C̃ξ(θ) has eigenvalues of 0, (1+2λ)−2(t−1)−1q∗ξ,3 and (1+2λ)−2(t−
1)−1`′Vξ` with multiplicities of 1, 1 and t−2, respectively. Moreover we have
q∗ξ,3 ≤ `′Vξ`.

Note that if Qξ,3 = 0, then q∗ξ,3 = `′Vξ` = (1+2λ)2cξ00 and hence C̃ξ(θ) =
cξ00Bt/(t− 1). Similar to Theorem 3, we obtain the following theorem.

Theorem 4. In estimating θ under Model (19), a pseudo symmetric
measure ξ is optimal in the following cases. In each case, the ps in ξ is
positive only if s reaches the maximum therein.
(i) If Qξ,3 = 0, then ξ is universally optimal if and only if

max
s∈S

cs00
cξ00

= 1.

(ii) If det(Vξ,3) > 0, then ξ is Ag-optimal if and only if

max
s∈S

rs,3Qξ,3/det(Vξ,3) + (t− 2)(`′Vξ`)−2`′Vs`

Qξ,3/det(Vξ,3) + (t− 2)(`′Vξ`)−1
= 1.

ξ is Dg-optimal if and only if

max
s∈S

(
rs,3
t− 1

+
t− 2
t− 1

`′Vs`

`′Vξ`

)
= 1.
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16 K. LI, W. ZHENG AND M. Y. AI

ξ is Eg-optimal if and only if

max
s∈S

rs,3 = 1.

ξ is Tg-optimal if and only if

max
s∈S

rs,3 det(Vξ,3)/Qξ,3 + (t− 2)`′Vs`

det(Vξ,3)/Qξ,3 + (t− 2)`′Vξ`
= 1.

(iii) Otherwise, ξ is not optimal.
Here rs,3 = tr(Vs,3V

−1
ξ,3 )−Qs,3Q

−1
ξ,3.

It is easy to verify that for any measure,

q∗ξ,3 = min
x

[(1, x)Vξ,3(1, x)′] = (1 + 2λ)2 min
x

[(1, x, x)Γ′VξΓ(1, x, x)′].(21)

Therefore, the value of λ is also irrelevant to the search of Eg-optimal pseudo
symmetric measures for estimating θ.

Finally, we establish the connection between optimal measures for the
directional and undirectional models if the within-block covariance matrix
Σ is of type-H.

Lemma 2. If Σ is of type-H, we have q∗ξ,2 = q∗ξ and (1 + 2λ)−2q∗ξ,3 =
(1 + λ1 + λ2)−2q∗ξ,1.

Proof. Note that B̃ = Bk if Σ is of type-H. For a sequence s = (t1, . . . , tk),
define t0 = tk and tk+1 = t1. Let kj be the frequency of treatment i appear-
ing in s. Clearly,

∑t
i=1 ki = k. Let ms = k−1∑t

i=1 k
2
i , fs =

∑k
i=1 Iti=ti−1 ,

gs =
∑k

i=1 Iti=ti+1 and hs =
∑k

i=1 Iti−1=ti+1 . By straightforward calculations,
we have cs00 = cs11 = cs22 = k −ms, cs01 = fs −ms, cs02 = gs −ms and
cs12 = hs −ms. Since fs = gs, we have

Vs = (csij)0≤i,j≤2 =

 k −ms fs −ms fs −ms

fs −ms k −ms hs −ms

fs −ms hs −ms k −ms

 .(22)

Note that Vs = 0 if and only if s consists of only one treatment. From Propo-
sition 3 in Kunert and Martin (2000), we have q∗ξ = minx,y[(1, x, y)Vξ(1, x, y)′].
Since (1, x, y)Vξ(1, x, y)′ is convex and exchangeable in x and y by equation
(22) and Vξ =

∑
s∈S psVs, it can achieve the minimum at some point of

x = y. Therefore, q∗ξ = minx(1, x, x)Vξ(1, x, x)′ = q∗ξ,2 in view of equation
(20).

From Proposition 4, we know q∗ξ,1 = (1 + λ1 + λ2)2 minx,y[(1, x, y)Γ′VξΓ
(1, x, y)′]. Similarly, (1, x, y)Γ′VξΓ(1, x, y)′ is convex and exchangeable in x
and y. Then (1+2λ)−2q∗ξ,3 = (1+λ1 +λ2)−2q∗ξ,1 follows by equation (21). ♦
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Theorem 5. If Σ is of type-H, a pseudo symmetric measure is Eg-
optimal for τ (resp. θ) under Model (19) if and only if it is Eg-optimal
for τ (resp. θ) under Model (2). Furthermore, if λ1 = λ2 = λ, the same
result holds for Ag-, Dg- and Tg-optimal pseudo symmetric measures.

This theorem is readily proved by using Lemma 2 and Propositions 2, 3,
5 and 6.

5. Examples. For a sequence s = (t1, . . . , tk), define the symmetric
block of s as 〈s〉 = {σs : σ ∈ O}. A symmetric block is an equivalence class
and hence S is partitioned intom+1 symmetric blocks, say 〈s0〉, 〈s1〉, . . . , 〈sm〉,
where si’s are the representative sequences in their own blocks. Without
loss of generality, let 〈s0〉 be the symmetric block of sequences with iden-
tical elements. For a measure ξ = (ps, s ∈ S), let p〈si〉 =

∑
s∈〈si〉 ps and

Pξ = (p〈s1〉, . . . , p〈sm〉). Since Vs is invariant for sequences in the same sym-
metric block, two pseudo symmetric measures with the same Pξ will share
the same value of φg(ξ). By Remark 2 in Zheng (2013a), one can derive
an exact optimal design in two steps. First find the optimal Pξ and then
construct an exact pseudo symmetric design with that Pξ by using some
combinatory structures, such as type I orthogonal arrays [Rao (1961)].

Note that Csij = 0, 0 ≤ i, j ≤ 2, for any s ∈ 〈s0〉. Given a measure ξ with
p〈s0〉 > 0, one can always obtain a measure superior to ξ given by replacing
all sequences in 〈s0〉 with sequences not in the set. Therefore, the symmetric
block 〈s0〉 will be ignored in the following discusssion.

In the sequel, we will determine the optimal Pξ under Model (2) through
computer search based on Theorems 1 and 2. The one for the undirectional
model (19) can be determined in a similar way by using Theorems 3, 4 and 5.
The general algorithm for deriving the optimal Pξ can be obtained by small
modifications of the algorithm in Zheng (2013b). For ease of illustration, we
consider only 2 ≤ t, k ≤ 5 and use the within-block covariance matrix to be
of the form Σ = (Ii=j + ρIi−j=±1(mod k))1≤i,j≤k. In the following examples,
we take ρ in {0,−0.3, 0.3}. Note that ρ = 0 implies Σ = Ik, i.e. the errors are
uncorrelated. First, let λ1 and λ2 be nonnegative values from [0, 1] and the
negative case will be discussed later. All measures given below are pseudo
symmetric measures.

Cases of k = 2 and 3: When k = 2, the symmetric block is 〈12〉. When
k = 3, the symmetric block is 〈112〉 for t = 2, and those are 〈112〉 and 〈123〉
for t ≥ 3. By straightforward calculations, it can be verified that the second
smallest eigenvalues of Cξ(τ) and Cξ(θ) are both zero for any measure when
k = 2 and 3. Therefore, neither τ nor θ is estimable and the optimal measures
don’t exist in these cases. Such phenomenon is also observed by Bailey and
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18 K. LI, W. ZHENG AND M. Y. AI

Druilhet (2004) and Druilhet and Tinssonb (2012) for the non-proportional
interference model.

Case of k = 4: When t = 2, the four criteria become the same one. From
Propositions 2, 3 and 4, it is known that the optimality of a measure for
τ or θ doesn’t depend on the values of λ1 and λ2. For τ , we find that the
measure with p〈1122〉 = 1 is optimal for the three values of ρ. Next, consider
the optimal measures for θ. If ρ = 0, the measure with p〈1122〉 = 2/3 and
p〈1212〉 = 1/3 is optimal. An exact design with six blocks is given in transpose
by 

1 1 2 2 1 2
1 1 2 2 2 1
2 2 1 1 1 2
2 2 1 1 2 1

 .
If ρ = −0.3, the measure with p〈1122〉 = 0.61 and p〈1212〉 = 0.39 is optimal.
If ρ = 0.3, the measure with p〈1122〉 = 0.76 and p〈1212〉 = 0.24 is optimal.

When t = 3, the measure with p〈1123〉 = 1 is optimal for τ under the four
criteria given all the values of λ1, λ2 and ρ. Consider the optimal measures
for θ. If ρ = 0, theAg-,Dg-, and Tg-optimal measures vary for different values
of λ1 and λ2. For all of them, there are two supporting symmetric blocks, i.e.
〈1123〉 and 〈1213〉. Meanwhile, the former symmetric block dominates. The
measure with p〈1123〉 = 2/3 and p〈1213〉 = 1/3 is Eg-optimal. If ρ = −0.3 and
0.3, we observe that the supporting symmetric blocks are the same as those
for ρ = 0, except for the proportions of the supporting symmetric blocks.

When t = 4 and 5, we find that the measure with p〈1234〉 = 1 is optimal
for both τ and θ under the four criteria, given all the values of λ1, λ2 and ρ.

Case of k = 5: When t = 2, for both τ and θ we have the following.
The measure with p〈11122〉 = 0.8 and p〈11212〉 = 0.2 is optimal for ρ = 0, the
measure with p〈11122〉 = 0.71 and p〈11212〉 = 0.29 is optimal for ρ = −0.3, and
the measure with p〈11122〉 = 0.90 and p〈11212〉 = 0.10 is optimal for ρ = 0.3.

When t = 3, first consider optimal measures for τ . If ρ = 0, the optimal
measures vary for different values of λ1 and λ2 while the supporting sym-
metric blocks are always 〈11223〉 and 〈12123〉. The proportion of 〈11223〉
is almost one for Ag-, Dg- and Tg-optimal measures and is 0.90 for the Eg-
optimal measure. If ρ = −0.3, the supporting symmetric blocks remain the
same as those for ρ = 0 and 〈11223〉 still dominates. If ρ = 0.3, the measure
with p〈11223〉 = 1 is optimal under the four criteria for λ1, λ2 ∈ [0, 1]. For θ,
we have similar observations to those for τ .

When t = 4, the supporting symmetric blocks are 〈11234〉 and 〈11223〉.
When t = 5, the supporting symmetric blocks are 〈11234〉, 〈11223〉 and
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Table 1

Efficiencies of optimal measures for τ at (k, t, ρ, λ1, λ2) = (5, 3, 0, 0.1, 0.2).

p〈11223〉 A D E T

0.98 1 0.99997 0.98817 0.99988
0.99 0.99998 1 0.98670 0.99996
0.90 0.99265 0.99213 1 0.99156
1 0.99988 0.99997 0.98496 1

Table 2

Efficiencies of optimal measures for θ at (k, t, ρ, λ1, λ2) = (5, 3, 0, 0.1, 0.2).

p〈11223〉 A D E T

0.93 1 0.99676 0.98828 0.98702
0.99 0.99556 1 0.98671 0.99787
0.90 0.99859 0.99213 1 0.97925
1 0.99307 0.99981 0.98215 1

〈12345〉. The optimal proportions and the dominating block may change for
different values of λ1, λ2 and ρ.

From Theorems 1 and 2, it is seen that as t increases, the equivalent
conditions for optimal measures under Ag, Dg and Tg criteria tend to agree
with each other. For example, take k = 5, ρ = 0, λ1 = 0.1 and λ2 = 0.2.
The measure with p〈12345〉 = 1 is optimal under the three criteria for both
τ and θ when t ≥ 12. Meanwhile, the measure with p〈11234〉 = 0.955 and
p〈12345〉 = 0.045 is Eg-optimal for both τ and θ as long as t ≥ 5.

Though the four criteria do not lead to the same optimal measure in
general, the optimal measure under one criterion is typically high efficient
under the other three. Here the efficiency of a measure under a criterion is
defined as the ratio of φg(ξ) to the maximum value among all measures. For
the case of k = 5, t = 3, ρ = 0, λ1 = 0.1 and λ2 = 0.2, the efficiencies of
optimal measures for τ are shown in Table 1 and those for θ under the four
criteria are shown in Table 2. They all have efficiencies higher than 0.97.
Furthermore, from the two tables we observe that the optimal measures for
τ also have high efficiencies in estimating θ since they are almost the same
as those for θ.

From practical viewpoint, the optimal proportions are sometimes too
harsh for deriving exact designs. However, since the four criterion functions
are continuous in the proportions, we could get a measure with good propor-
tions in the neighborhood of the optimal one at the cost of a little efficiency.
For example, when k = t = 5, ρ = 0, λ1 = 0.1 and λ2 = 0.2, the Ag-optimal
measure for τ is given by p〈11223〉 = 0.06 and p〈12345〉 = 0.94, which requires
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n to be a multiple of 50 at least. By rounding the proportions, we obtain a
measure with p〈12345〉 = 1, which has efficiency higher than 0.99. An exact
pseudo symmetric design with 20 blocks based on it is given in transpose by

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
2 3 4 5 1 3 4 5 1 2 4 5 1 2 3 5 1 2 3 4
3 4 5 1 2 5 1 2 3 4 2 3 4 5 1 4 5 1 2 3
4 5 1 2 3 2 3 4 5 1 5 1 2 3 4 3 4 5 1 2
5 1 2 3 4 4 5 1 2 3 3 4 5 1 2 2 3 4 5 1

 .

In some occasions, the values of λ1 and λ2 could be negative. For example,
a good fertilizer will possibly make a plant grow well so that the plant will
compete with its neighbors for the sunlight, water and other resources in
the soil. Suppose λ1, λ2 ∈ [−1, 0). The Ag-, Dg- and Tg-optimal measures
found by the computer program are different from the preceding ones for
λ1, λ2 ∈ [0, 1] in some cases. In estimating both τ and θ, we observe the
following. When (k, t) = (4, 3), the supporting symmetric blocks are 〈1123〉
and 〈1213〉 for Ag- and Dg-optimal measures, and are 〈1212〉 and 〈1213〉
for Tg-optimal measures. Contrarily, for λ1, λ2 ∈ [0, 1], there is only one
supporting symmetric block 〈1123〉 for optimal measures in estimating τ ,
and the Tg-optimal measure in estimating θ has two supporting symmetric
blocks as 〈1123〉 and 〈1213〉. When (k, t) = (4, 4), the Ag-optimal measure
is still given by p〈1234〉 = 1. The supporting symmetric blocks are 〈1212〉,
〈1213〉 and 〈1234〉 for Dg-optimal measures, and are 〈1212〉 and 〈1213〉 for
Tg-optimal measures. But for λ1, λ2 ∈ [0, 1], there is only one supporting
symmetric block 〈1234〉 for optimal measures under the three criteria. The
details for other combinations of parameters are omitted for limit of space.

6. Discussions. In this article, two proportional interference models
are considered, in which the neighbor effects of a treatment are proportional
to its direct effect. We investigate the optimal circular designs for the direct
and total treatment effects. Kiefer’s equivalence theorems with respect to
A, D, E and T criteria are established, based on which the search of opti-
mal designs is easy to perform. Moreover, the connection between optimal
designs for the two models is built. Examples are given to illustrate these
theorems for several combinations of parameters.

We now remark on the directions for future work. Note that the number
of distinct symmetric blocks will increase at least geometrically as the block
size k grows. In such circumstance, it is unlikely that we could find the
optimal proportions within reasonable amount of time by using the current
algorithm. Therefore, determining the forms of supporting symmetric blocks
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theoretically is vital to solve this problem. As a design theorist, the ultimate
goal is to provide efficient or even optimal exact designs for any number of
blocks. To achieve this, one way is to further explore the constructions of
exact pseudo symmetric designs. The other is to develop methods to build
up efficient exact designs by modifications of the existing ones of smaller or
larger sizes.
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