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Abstract Definitive screening designs are a new class of three-level designs
which are shown superior to the classical central composite designs in response
surface methodology. They can be constructed by inserting conference matri-
ces into their fold-over structures. How to block definitive screening designs
in an optimal way is of practical importance, and lacks systematic theoreti-
cal research up to now. Pairwise blocking schemes are usually adopted which
assign each pair of fold-over runs into the same block. In this paper, the opti-
mality of such pairwise blocking schemes is thoroughly studied in theory. It is
shown that under the linear model consisting of main effects, quadratic effects
and block effects, pairwise blocked definitive screening designs are universally
optimal for the main effects among all balanced blocking schemes. Moreover,
such blocked designs are proved to have the same generalized wordlength pat-
tern, and are also shown optimal under the generalized minimum aberration
criterion.

Keywords Blocking · Definitive screening design · Optimality · Generalized
minimum aberration · Fold-over

1 Introduction

Jones and Nachtsheim (2011) proposed a new class of small three-level de-
signs for definitive screening, called definitive screening designs (DSDs). Such
designs possess many advantages for identifying both the main and quadratic
effects. For example, the estimates of main effects are unbiased with quadratic
effects and two-factor interactions, and all quadratic effects are estimable in
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models consisting of any number of main and quadratic effects terms. Later,
Xiao et al. (2012) used the conference matrices to construct DSDs with orthog-
onal main effects, which was recommended by Jones and Nachtsheim (2013).
Throughout, we focus on the DSDs constructed based on conference matrices.

Blocking, a fundamental technique in design of experiments, can effectively
eliminate the effects of the nuisance variations. How to block DSDs in an op-
timal way is a problem of practical importance. Lin (2014b) considered all
schemes that block a DSD into 2q(q ≥ 1) blocks of equal size, and selected
the optimal one under the generalized minimum aberration criterion by an
algorithm. From the results of computer search, he observed that the optimal
blocking schemes follow a common rule, but provided no confirmation in the-
ory. In this paper, the common rule is referred to as pairwise blocking. Pairwise
blocking schemes assign each pair of fold-over runs in a DSD into the same
block. A theoretical insight into these blocking schemes shows that pairwise
blocked DSDs are universally optimal for the main effects among all balanced
blocking schemes, under the linear model consisting of main effects, quadratic
effects and block effects. Furthermore, we find that all pairwise blocked DSDs
have the same treatment and block wordlength patterns, and they are op-
timal under the generalized minimum aberration criterion with respect to a
combined generalized wordlength pattern.

The rest of the paper is unfolded as follows. Section 2 gives the definition
of pairwise blocking schemes for DSDs. Section 3 studies the optimality of
pairwise blocked DSDs for estimating the main effects under the linear model
consisting of main effects, quadratic effects and block effects. Section 4 shows
that pairwise blocked DSDs are optimal under the generalized minimum aber-
ration criterion with respect to a combined generalized wordlength pattern.
Section 5 concludes this paper with some remarks.

2 Pairwise blocking schemes for DSDs

We first review the definition of conference matrices [Goethals and Seidel
(1967)]. For a matrix A, let A[i, :], A[:, j] and A[i, j] denote its ith row, jth
column and (i, j)-th entry, respectively. For an even number m, a conference
matrix of order m, denoted by Cm, is an m×m matrix with diagonal entries
Cm[i, i] = 0, i = 1, . . . ,m, and off-diagonal entries Cm[i, j] ∈ {1,−1}, i 6= j,
such that CT

mCm = (m − 1)Im. Here Im is the m-order identity matrix and
CT

m is the transpose of Cm. Conference matrices can be algebraically con-
structed for m = 0 (mod 4), and have been found by computer program when
m = 2, 6, 10, 14, 18, 26, 30, 38, 42, 46, 50, 54 and so on. See Xiao et al. (2012) for
details. Note that CT

mCm = (m−1)Im implies C−1
m = (m−1)−1CT

m. We have
CmCT

m = CT
mCm = (m− 1)Im.

Based on a conference matrix Cm, a DSD for investigating m factors is
constructed as

D =

 Cm

−Cm

01×m

 , (1)
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where 01×m is a 1×m matrix of zeros [Xiao et al. (2012)]. Each column of D
represents a three-level factor and each row is an experimental run.

Suppose the number of blocks, k, divides m. Let n = m/k. We need to
assign the runs of D into k blocks. A blocking scheme is called balanced if all
blocks are of equal size.

For the similar arguments of Lin (2014b), throughout we only consider
balanced blocking schemes in the following fashion. First divide the 2m nonzero
runs of D into k blocks evenly and then add one zero run in each block. The
resulting design, denoted by Db, is called a balanced blocked DSD and can be
written as

Db =

 Cm b1

−Cm b2

0k×m b0

 , (2)

where the last column (bT
1 ,bT

2 ,bT
0 )T represents the block factor. More specif-

ically, (bT
1 ,bT

2 )T consists of 2n 1’s, 2n 2’s, . . ., 2n k’s, and b0 = (1, 2, . . . , k)T .
Any balanced blocking scheme for a DSD is uniquely determined by the vector
(bT

1 ,bT
2 ).

Since any DSD contains a fold-over structure (CT
m,−CT

m)T , a natural way
for blocking is to let each fold-over pair fall into the same block, i.e. b1 = b2.
Such schemes are called pairwise blocking schemes and the corresponding Db’s
are called pairwise blocked DSDs. From computer search, Lin (2014b) observed
that pairwise blocked DSDs are optimal among all balanced blocking schemes
when k = 2q(q ≥ 1) under the generalized minimum aberration criterion. In
the subsequence, the optimality of such blocked designs is thoroughly studied
in theory.

Example 1 Suppose m = 12 and k = 3. The conference matrix C12 can be
found in Appendix of Xiao et al. (2012), given by

C12 =



0 1 1 1 1 1 1 1 1 1 1 1
1 0 −1 −1 −1 −1 1 −1 1 1 1 1
1 1 0 1 1 −1 1 −1 −1 1 −1 −1
1 1 −1 0 1 1 −1 −1 −1 −1 1 1
1 1 −1 −1 0 1 −1 1 1 1 −1 −1
1 1 1 −1 −1 0 1 1 −1 −1 1 −1
1 −1 −1 1 1 −1 0 1 1 −1 1 −1
1 1 1 1 −1 −1 −1 0 1 −1 −1 1
1 −1 1 1 −1 1 −1 −1 0 1 1 −1
1 −1 −1 1 −1 1 1 1 −1 0 −1 1
1 −1 1 −1 1 −1 −1 1 −1 1 0 1
1 −1 1 −1 1 1 1 −1 1 −1 −1 0



.

Let b0 = (1, 2, 3)T , b1 = (1, 1, 1, 1, 2, 1, 1, 3, 3, 3, 3, 2)T and b2 = (2, 3, 2, 2, 1,
2, 2, 1, 3, 3, 2, 3)T . Then the balanced blocked DSD constructed by (2) is not
pairwise blocked. By letting b1 = b2 = (1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3)T , we get
a pairwise blocked DSD. If we take b1 = b2 = (1, 2, 3, 4, 2, 1, 4, 3, 3, 2, 1, 4)T ,
another pairwise blocked DSD is obtained. For ease of later use, the three
blocked DSDs obtained above are denoted by Db

1, Db
2, Db

3, respectively.
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3 Universal optimality of pairwise blocked DSDs

In this section, we discuss the optimality of the pairwise blocked DSDs for
estimating the main effects. Consider the linear model

yij = α0 +
m∑

l=1

αlxijl +
m∑

l=1

αllx
2
ijl + γi + εij , (3)

where xijl is the lth factor’s value of the jth run in the ith block and yij is
the corresponding response, i = 1, . . . , k, j = 1, . . . , 2n + 1 and l = 1, . . . ,m.
Here α0 is the intercept, αl is the main effect of the lth factor , αll is the
quadratic effect of the lth factor, γi is the effect of the ith block with the zero-
sum constraint

∑k
i=1 γi = 0, and εij ’s are the i.i.d. errors with mean zero and

variance σ2. The blocked DSD in (2) is saturated for estimating the intercept,
main effects, quadratic effects and block effects in the model.

For the design Db in (2), Model (3) can be written in the matrix form

Y = 12m+kα0 + X1α1 + X2α2 + Γγ + ε, (4)

where Y is the vector of 2m + k responses, 12m+k is the vector of 2m + k
ones, α1 = (α1, . . . , αm)T , α2 = (α11, . . . , αmm)T and γ = (γ1, . . . , γk)T .
Let Qm = −Im + Jm with Jm = 1m1T

m. Denote B1 and B2 as the in-
cidence matrices corresponding to b1 and b2 in (2), respectively. We have
X1 = (CT

m,−CT
m,0m×k)T , X2 = (QT

m,QT
m,0m×k)T and Γ = (BT

1 ,BT
2 , Ik)T .

Finally, ε is the vector of errors.
For estimating the parameters in (4), γk = −

∑k−1
i=1 γi is substituted by

the zero-sum constraint. Let γ̃ = (γ1, . . . , γk−1)T , B̃1 = B1(Ik−1,−1k−1)T ,
B̃2 = B2(Ik−1,−1k−1)T and Γ̃ = Γ(Ik−1,−1k−1)T . Then Model (4) reduces
to an unconstrained model

Y = 12m+kα0 + X1α1 + X2α2 + Γ̃γ̃ + ε. (5)

It is apparent that Db is pairwise blocked if and only if B1 = B2, or equiva-
lently B̃1 = B̃2.

The Fisher’s information matrix for α1 in Model (4) is

Mα1(D
b) = XT

1 X1 −XT
1 X(−1)(XT

(−1)X(−1))−1XT
(−1)X1, (6)

where X(−1) = (12m+k,X2, Γ̃).
The goal is to find the balanced blocked DSDs with maximum informa-

tion matrix. According to Pukelsheim (1993), we shall try to find Db’s which
maximize φ(Mα1(D

b)), where φ(·) is an optimality function. Typically, an
optimality function φ(·) satisfies the following four conditions.

(i) Isotonic to the Loewner ordering: if M1 ≥ M2, then φ(M1) ≥ φ(M2).
(ii) Concavity: φ((1−λ)M1 +λM2) ≥ (1−λ)φ(M1)+λφ(M2) for any scalar

λ ∈ (0, 1).
(iii) Positive homogeneity: φ(δM) = δφ(M) for any scalar δ ≥ 0.
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(iv) Permutation invariant: φ(PMPT ) = φ(M) for any permutation matrix
P.

Here a symmetric matrix M > 0 means M is positive definite and M ≥ 0
means M is nonnegative definite. For two symmetric matrices M1 and M2,
M1 ≥ M2 means M1 − M2 ≥ 0. The commonly used optimality functions
include A, D, E and T -optimality functions. A design Db

∗ is said to be φ-
optimal if it achieves the maximum of φ(Mα1(D

b)) among all possible Db’s.
It is universally optimal if it achieves the maximum of φ(Mα1(D

b)) for any φ.
In the following we will show the optimality of pairwise blocked DSDs for

estimating the main effects α1 in Model (4). We first give a simple but very
useful lemma, whose proof is omitted.

Lemma 1 If b 6= − a
m , we have (aIm + bJm)−1 = 1

aIm − b
a(a+mb)Jm.

For estimating α1, the theorem below shows that pairwise blocked DSDs
are universally optimal among all balanced blocked DSDs and they are the
only universally optimal ones. The proof is given in Appendix.

Theorem 1 Given m and k, the design Db is universally optimal among all
balanced blocked DSDs for estimating α1 under Model (4) if and only if it is
a pairwise blocked DSD.

From the definition of Cm, it is easy to see that the main effects are or-
thogonal to each other and all quadratic effects for any DSD in (1). It would
be nice if the block factor won’t affect the estimates of main effects either.
The following result shows that only pairwise blocking schemes satisfy such
requirement. Its proof is postponed in Appendix.

Proposition 1 The main effects are orthogonal to block effects if and only if
Db is a pairwise blocked DSD.

4 Minimum aberration of pairwise blocked DSDs

Besides universal optimality, the popular generalized minimum aberration cri-
terion is considered in this section. The standard framework for finding opti-
mal blocked factorial designs is using generalized minimum aberration crite-
rion with respect to the split generalized wordlength pattern, i.e. treatment
wordlength pattern and block wordlength pattern. Treatment factors are cate-
gorized into qualitative and quantitative factors. If treatment factors are qual-
itative, refer to Chen and Cheng (1999), and Ai and Zhang (2004) for details.
If both qualitative and quantitative factors are involved, Lin (2014a) proposed
a new split generalized wordlength pattern modified from the β wordlength
pattern [Cheng and Ye (2004)] to search for optimal blocked orthogonal ar-
rays. Lin (2014b) used the same method to select optimal balanced blocking
schemes for a DSD with 2q(q ≥ 1) blocks based on a combined generalized
wordlength pattern. In this section, we will show that pairwise blocked DSDs
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have minimum aberration among all balanced blocked DSDs with respect to
the combined generalized wordlength pattern.

First we briefly review the combined generalized wordlength pattern de-
fined in Lin (2014b). Let F1, . . . , Fm denote the m three-level quantitative fac-
tors in a balanced blocked DSD Db and Fm+1 denote the block factor with k
blocks. Recall that k divides m and n = m/k. For convenience of presentation,
recode the levels of Fi as −1 → 0, 0 → 1 and 1 → 2, for i = 1, . . . ,m. Recode
the levels of Fm+1 as 1 → 0, 2 → 1, . . . , k → k − 1. Define T0 = {0, 1, 2}m,
T1 = {0, 1, . . . , k − 1}, and T = T0 × T1.

For each factor Fi with si levels, let Ci
0(x), Ci

1(x), . . . , Ci
si−1(x) be the

orthogonal polynomial contrasts satisfying∑
x∈{0,1,...,si−1}

Ci
u(x)Ci

v(x) =
{

0 if u 6= v,
si if u = v,

where Ci
j(x) is a polynomial of degree j for j = 0, 1, . . . , si−1. In particular, for

the three-level factors Fi, 1 ≤ i ≤ m, we have Ci
0(x) = 1, Ci

1(x) =
√

3/2(x−1)
and Ci

2(x) = 3
√

2/2(x− 1)2−
√

2. For each run x = (x1, . . . , xm+1) of Db and
any t = (t1, . . . , tm+1) ∈ T , define Ct(x) = Πm+1

i=1 Ci
ti

(xi). Then the indicator
function of Db is

FDb(x) =
∑
t∈T

btCt(x), (7)

where the coefficient of Ct is uniquely determined by

bt =
1

k3m

∑
x∈Db

Ct(x). (8)

Especially, we have b0 = (k3m)−1(2m + k).
If bt 6= 0, then t = (t1, . . . , tm+1) is called a word. A word t is said to be a

pure-type word if tm+1 = 0. Otherwise t is a mixed-type word. Denote by wt

the set of all pure-type words and wb the set of all mixed-type words. Define
‖t‖ =

∑m
i=1 ti, the sum of the first m elements in t. The treatment wordlength

pattern Wt and the block wordlength pattern Wb are given as follows.

Wt = (β1,0, β2,0, . . . , β2m,0), where βi,0 =
∑

t∈wt,‖t‖=i

(
bt
b0

)2, (9)

Wb = (β1,1, β2,1, . . . , β2m,1), where βi,1 =
∑

t∈wb,‖t‖=i

(
bt
b0

)2. (10)

The combined wordlength pattern is defined as

W = (β1,0, β1,1, β2,0, β3,0, β2,1, β4,0, . . .), (11)

where βi,1 is between β2i−1,0 and β2i,0 for i ≤ m and βi,1 is before βi+1,1 for
i ≥ m + 1. The order of components in (11) is determined by comparing the
importance of βi,1, β2i−1,0 and β2i,0. Among the three, β2i−1,0 is the most
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important because β2i−1,0 6= 0 could result in the aliasing between (i − 1)-
order effects and i-order effects. Since the aliasing between treatment effects
(resulting in β2i,0 > 0) can be de-aliased through a follow-up design, but the
confounding between treatment effects and block effects (resulting βi,1 > 0)
cannot be de-confounded, βi,1 is considered more important than β2i,0. The
generalized minimum aberration criterion is to find the balanced blocked DSDs
which sequentially minimize the components in the combined wordlength pat-
tern W .

Let Zb be the matrix whose columns are labeled by all nonzero elements
of T1 and the column labeled by tm+1 ∈ T1 is

(Cm+1
tm+1

(Db[1,m + 1]), . . . , Cm+1
tm+1

(Db[2m + k,m + 1]))T .

For any t ∈ T0, we also denote ‖t‖ =
∑m

i=1 ti. For j = 1, . . . , 2m, let Zj be the
matrix whose columns are labeled by all elements of the set {t ∈ T0 : ‖t‖ = j}
and the column labeled by t = (t1, . . . , tm) is

(Πm
i=1C

i
ti

(Db[1, i]), . . . ,Πm
i=1C

i
ti

(Db[2m + k, i]))T .

From (8), (9), (10) and the definitions of Zj and Zb, the following lemma can
be obtained directly.

Lemma 2 For a balanced blocked DSD Db, we have

βj,0(Db) = (2m + k)−2tr(ZT
j 12m+k1T

2m+kZj), (12)

βj,1(Db) = (2m + k)−2tr(ZT
j ZbZT

b Zj), (13)

where tr(A) is the trace of a matrix A.

From Lemma 2, it is clear that once a DSD D and the number of blocks k
are given, all balanced blocking schemes have the same treatment wordlength
pattern Wt, since Zj depends only on the first m columns of Db. Furthermore,
we find that Wt is constant for all possible Cm’s used in Db, when m and k
are fixed. See the following lemma 3, whose proof is given in Appendix.

Lemma 3 Given m and k, the treatment wordlength pattern Wt in (9) is
independent of the choice of Cm used in Db. Especially, we have βi,0(Db) = 0
for odd i and β2,0(Db) = (2m + k)−22m(k −m + 3)2.

Now to find the optimal balanced blocked DSDs under the generalized min-
imum aberration criterion with respect to the combined wordlength pattern
W in (11), we need only to find the balanced blocked DSDs which sequentially
minimize the block wordlength pattern Wb. We shall show that for given m
and k, among all balanced blocked DSDs, the pairwise blocked DSDs are op-
timal. For any two balanced blocked designs Db and Db

∗, Db
∗ is said to have

less aberration than Db with respect to Wb, if βr,1(Db
∗) < βr,1(Db), where r is

the smallest integer such that βr,1(Db
∗) 6= βr,1(Db).

We first show that pairwise blocked DSDs are superior than those not
pairwise blocked by comparing their β1,1’s.
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Theorem 2 β1,1(Db) = 0 if and only if Db is a pairwise blocked DSD.

The proof of Theorem 2 is postponed in Appendix. It shows that any
pairwise blocked DSD has less aberration than those not pairwise blocked with
respect to Wb. Moreover, we find that for any two different pairwise blocked
DSDs Db and D̃

b
, their block wordlength patterns are the same. A detailed

proof of the following is given in Appendix.

Theorem 3 For given m and k, all pairwise blocked DSDs share the same
block wordlength pattern Wb in (10). Especially, we have βi,1 = 0 for odd i.

According to Theorem 3, there is no difference between any two pairwise
blocked DSDs in the sense of generalized minimum aberration criterion when
m and k are given. By Lemma 3, Theorem 2 and Theorem 3, we obtain that
pairwise blocked DSDs are the only optimal balanced blocked DSDs under
the generalized minimum aberration with respect to the combined wordlength
pattern W in (11).

Theorem 4 A balanced blocked DSD is optimal under the generalized mini-
mum aberration criterion with respect to the combined wordlength pattern W
in (11) if and only if it is a pairwise blocked DSD.

Example 2 (Example 1 continued). Consider the treatment and block word-
length patterns of the three balanced blocked DSDs Db

1, Db
2 and Db

3 in Ex-
ample 1. They share the same Wt = (0, 1.185, 0, 196.370, . . .). For Db

1, we have
β1,1(Db

1) = 1.358 > 0. Contrarily, the two pairwise blocked DSDs, Db
2 and Db

3,
enjoy the same Wb = (0, 18.370, 0, 325.185, . . .).

5 Concluding remarks

In this paper, we investigate the optimality of a special class of balanced
blocked DSDs, called pairwise blocked DSDs. Different from Lin (2014b), the
number of blocks k here can be any divisor of m. Two optimality criteria are
considered. We show that under Model (5), only pairwise blocked DSDs are
universally optimal for estimating the main effects. Moreover, with respect
to the combined wordlength pattern W , pairwise blocked DSDs are the only
generalized minimum aberration balanced blocked DSDs. Note that our con-
clusion takes not only different balanced blocking schemes, but also different
choices of Cm, into consideration.

For estimating all parameters under Model (4), pairwise blocked DSDs are
not universally optimal and we have tried other optimality criterion. It can be
proved that, given m and k, all balanced blocked DSDs are common in the
sense of D-optimality. For A, E and T -optimality, some examples show that
pairwise blocked DSDs are not always optimal.

Although pairwise blocked DSDs are proved to be equivalent optimal for
estimating the main effects or under the generalized minimum aberration cri-
terion, they still have many possibilities. It is worth to distinguish the pairwise
blocked DSDs under some criteria stricter and find the optimal ones.
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Since a conference matrix is a special case of a weighing matrix, Georgiou et
al. (2013) replaced the conference matrix in the DSD with a weighing matrix to
construct efficient screening designs. Note that for any design with a fold-over
structure, pairwise blocking schemes can always be defined. So it is possible to
generalize the results of this paper to those weighing matrix-based screening
designs and we leave it for a future work.

Appendix

Proof of Theorem 1
Note that CT

mCm = CmCT
m = 2(m − 1)Im, QT

mQm = Im + (m − 2)Jm,

JT
m(B̃1 + B̃2) = 0m×k, Γ̃

T
Γ̃ = (2n + 1)(Ik−1 + Jk−1), B̃

T

1 B̃1 + B̃
T

2 B̃2 =
2n(Ik−1 + Jk−1). From (6), we have

Mα1(D
b) = XT

1 X1 −XT
1 X(−1)(XT

(−1)X(−1))−1XT
(−1)X1

= 2CT
mCm −

(
0m×1,0m×m,CT

m(B̃1 − B̃2)
)
(XT

(−1)X(−1))−1(
0m×1,0m×m,CT

m(B̃1 − B̃2)
)T

= 2(m− 1)Im −CT
m(B̃1 − B̃2)∆−1(B̃1 − B̃2)T Cm, (14)

where ∆−1 is the bottom right (k−1)× (k−1) submatrix of (XT
(−1)X(−1))−1.

Using Lemma 1, with some algebraic calculations, we have ∆ = (2n+1)(Ik−1+
Jk−1)−2−1(B̃1+B̃2)T (B̃1+B̃2) = Ik−1+Jk−1+2−1(B̃1−B̃2)T (B̃1−B̃2) > 0.
Thus by (14), for a pairwise blocked DSD Db

∗ and any balanced blocked DSD
Db, we have

Mα1(D
b
∗)−Mα1(D

b) = CT
m(B̃1 − B̃2)∆−1(B̃1 − B̃2)T Cm ≥ 0,

which implies Db
∗ is universally optimal for estimating α1. Moreover, since

∆−1 > 0 and Cm is nonsingular, CT
m(B̃1 − B̃2)∆−1(B̃1 − B̃2)T Cm = 0m×m

if and only if B̃1 = B̃2, which implies that Db is pairwise blocked. That shows
any universally optimal balanced blocked DSD for estimating α1 is a pairwise
blocked DSD. So the proof of Theorem 1 is complete.

Proof of Proposition 1
From the proof of Theorem 1, we have XT

1 Γ̃ = CT
m(B̃1 − B̃2) = 0m×(k−1)

if and only if B̃1 = B̃2. The conclusion follows.

Proof of Lemma 3
Write Zj as (ZT

j,1,Z
T
j,2,Z

T
j,0)

T , where the submatrices Zj,1, Zj,2 and Zj,0

have m, m and k rows, respectively. Note that Zj,1 and Zj,2 depend on the
choice of Cm. It is easy to obtain that when j is odd, Zj,2 = −Zj,1 and
Zj,0 = 0; when j is even, Zj,2 = Zj,1. According to Lamma 2, when j is odd,
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βj,0(Db) = 0 and when j is even,

βj,0(Db) = (2m + k)−2tr(ZjZT
j 12m+k1T

2m+k)

= (2m + k)−2tr

Zj,1ZT
j,1 Zj,1ZT

j,1 Zj,1ZT
j,0

Zj,1ZT
j,1 Zj,1ZT

j,1 Zj,1ZT
j,0

Zj,0ZT
j,1 Zj,0ZT

j,1 Zj,0ZT
j,0

12m+k1T
2m+k

 .

Next we are ready to show that βj,0(Db) is independent of the choice
of Cm for even j. It suffices to show Zj,1ZT

j,1 and Zj,1ZT
j,0 do not change

according to different Cm’s. For any Cm, define A1 =
√

3/2Cm and A2 =
−3
√

2/2Im +
√

2/2Jm. By the definition of Zj , for any t = (t1, . . . , tm) ∈ {t ∈
T0 : ‖t‖ = j, there are j/2 compoments of t is 2}, the column of Zj,0 labeled
by t is (−

√
2)j/21k, and the column of Zj,1 labeled by t is the element-wise

product of all the ith columns of A2, where 1 ≤ i ≤ m and ti = 2. For any
t = (t1, . . . , tm) ∈ {t ∈ T0 : ‖t‖ = j, at least one ti = 1, 1 ≤ i ≤ m}, the
column of Zj,0 labeled by t is 0k×1, and the column of Zj,1 labeled by t is the
element-wise product of all the ith columns of A2 and all the lth columns of
A1, where 1 ≤ i, l ≤ m, ti = 2 and tl = 1. Thus Zj,1ZT

j,0 = a1m×k, where a is
a constant which is independent of the choice of Cm.

Now let’s focus on Zj,1ZT
j,1. For 1 ≤ u, v ≤ m and u 6= v, the u-th diagonal

entry and the (u, v)-th entry of Zj,1ZT
j,1 are actually∑

t∈T0,‖t‖=j

(Πl:tl=1A1[u, l]2Πi:ti=2A2[u, i]2)

and ∑
t∈T0,‖t‖=j

(Πl:tl=1A1[u, l]A1[v, l]Πi:ti=2A2[u, i]A2[v, i]),

respectively. Denote by� the element-wise product. Using the fact that CmCT
m

= (m− 1)Im, it can be derived that(
A1[u, :]�A1[u, :]
A2[u, :]�A2[u, :]

)
consists of one column as (0, 2)T and m− 1 columns as (3/2, 1/2)T , and(

A1[u, :]�A1[v, :]
A2[u, :]�A2[v, :]

)
consists of two columns as (0,−1)T , (m − 2)/2 columns as (3/2, 1/2)T and
(m − 2)/2 columns as (−3/2, 1/2)T . Thus it follows that ZT

j,1Zj,1 = a1Im +
a2Jm, where a1 and a2 are constants which are independent of the choice of
Cm. Especially, by straightforward calculations, we have β2,0(Db) = (2m +
k)−22m(k −m + 3)2. The proof of Lemma 3 is complete.

Proof of Theorem 2
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Directly, we have Z1 = (
√

3/2CT
m,−

√
3/2CT

m,0T
k×m)T . Suppose Zb =

(ZT
b1,Z

T
b2,Z

T
b0)

T , where Zb1, Zb2 and Zb0 are m × (k − 1), m × (k − 1) and
k × (k − 1) submatrices of Zb, respectively. Then by Lemma 2,

β1,1(Db) = (2m + k)−2tr(3/2CT
m(Zb1 − Zb2)(Zb1 − Zb2)T Cm)

= 2−1(2m + k)−23(m− 1)tr((Zb1 − Zb2)(Zb1 − Zb2)T ).

So β1,1(Db) = 0 if and only if Zb1 = Zb2, which is equivalent to b1 = b2 in
(2), i.e. Db is pairwise blocked.

Proof of Theorem 3
Let

Db
∗ =

 Cm b
−Cm b
0k×m b0

 , D̃
b

∗ =

 Cm b̃
−Cm b̃
0k×m b0


be two pairwise blocked DSDs. Then there exists an m-order permutation
matrix P such that b̃ = Pb. Let Zj = (ZT

j,1,Z
T
j,2,Z

T
j,0)

T be the correspond-
ing matrices defined in the proof of Lemma 3, j = 1, . . . , 2m. And let Zb =
(ZT

b1,Z
T
b1,Z

T
b0)

T and Z̃b = (Z̃
T

b1, Z̃
T

b2, Z̃
T

b0)
T be the corresponding matrices de-

fined in the proof of Theorem 2 for Db and D̃
b
, respectively. Then we have

Z̃b0 = Zb0 and Z̃b1 = PZb1.
From the proof of Lemma 3, when j is odd, Zj,2 = −Zj,1, and when j is

even, Zj,2 = Zj,1. Thus, by (13) we have βj,1(Db
∗) = βj,1(D̃

b

∗) = 0, when j is
odd.

Now we will show that βj,1(D̃
b

∗) = βj,1(Db
∗) and βj,1(Db

∗) is independent
of the choice of Cm, when j is even. According to (13),

βj,1(D̃
b

∗) = (2m + k)−2tr(Z̃
T

j Z̃bZ̃
T

b Z̃j)

= (2m + k)−2tr

PZj,1ZT
j,1P

T PZj,1ZT
j,1P

T PZj,1ZT
j,0

PZj,1ZT
j,1P

T PZj,1ZT
j,1P

T PZj,1ZT
j,0

Zj,0ZT
j,1P

T Zj,0ZT
j,1P

T Zj,0ZT
j,0

ZbZT
b

 .

In the proof of Lemma 3, we have shown that Zj,1ZT
j,0 = a1m×k and ZT

j,1Zj,1 =
a1Im + a2Jm, where a, a1 and a2 are constants independent of the choice
of Cm. Since P is a permutation matrix and PPT = Im, we further have
PZj,1ZT

j,1P
T = Zj,1ZT

j,1 and PZj,1ZT
j,0 = Zj,1ZT

j,0. The conclusion follows.
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