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Abstract

In multivariate analysis, the covariance matrix associated with a set of vari-

ables of interest (namely response variables) commonly contains valuable infor-

mation about the dataset. When the dimension of response variables is con-

siderably larger than the sample size, it is a non-trivial task to assess whether

they are linear relationships between the variables. It is even more challenging

to determine whether a set of explanatory variables can explain those relation-

ships. To this end, we develop a bias-corrected test to examine the significance

of the off-diagonal elements of the residual covariance matrix after adjusting for

the contribution from explanatory variables. We show that the resulting test is

asymptotically normal. Monte Carlo studies and a numerical example are pre-

sented to illustrate the performance of the proposed test.
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1. INTRODUCTION

Covariance estimation is commonly used to study relationships among multivariate

variables. Important applications include, for example, graphical modeling (Edwards,

2000; Drton and Perlman, 2004), longitudinal data analysis (Diggle and Verbyla, 1998;

Smith and Kohn, 2002), and risk management (Ledoit and Wolf, 2004) among others.

The total number of parameters needed for specifying a covariance matrix of a mul-

tivariate vector with dimension p is p(p + 1)/2. When the sample size n is less than

p, the large number of covariance parameters can significantly degrade the statistical

efficiency of the usual sample covariance estimator, which makes interpretation diffi-

cult. It is therefore important to select the covariance structure so that the number

of parameters needing to be estimated is reduced and an easy interpretation can be

obtained.

There are a number of regularized estimation methods which have recently been

developed to address this issue; current research has focused particularly on identifying

various sparse structures; e.g. Huang et al. (2006), Meinshausen and Bühlmann (2006),

Lam and Fan (2009), Zhang and Leng (2012) and Leng and Tang (2012). While many

novel methods have been developed for covariance estimations, there has not yet been

much discussion focusing on statistical tests of the covariance structure. In addition,

the classical test statistics developed by John (1971), Nagao (1973), and Anderson

(2003) are not applicable for high dimensional data, since the spectral analysis of

the sample covariance matrix is inconsistent under a high dimensional setup (Bai and

Silverstein, 2005). Efforts to address this problem have led to various tests to determine

if the covariance matrix is an identity or a diagonal matrix; see, for example, Srivastava

(2005) and Chen et al. (2010). It is noteworthy that Chen et al.’s (2010) test allows for

p → ∞ as n → ∞ without imposing the normality assumption; thus it is quite useful
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for microarray studies (Efron, 2009; Chen et al., 2010). In addition, the aim of their

test is to assess whether the covariance matrix exhibits sphericity (i.e., the matrix is

proportional to the identity matrix, see Gleser (1966), Anderson (2003) and Onatski

et al. (2013)) or identity without controlling for any covariates. As a result, Chen et

al.’s (2010) test is not directly applicable for testing diagonality, in particular when

explanatory variables are included in the model setting.

In practice, a set of variables of interest (namely, a set of response variables, Y ∈ Rp)

could be explained by another set of explanatory variables, X ∈ Rd, in a linear form.

For example, Fama and French (1993, 1996) introduced three variables to explain the

response of stock returns, and the resulting three-factor asset pricing model has been

widely used in the fields of finance and economics. To assess the significance of the off-

diagonal elements after adjusting for the contribution of explanatory variables, one can

naturally adapt the aforementioned methods to test whether the residual covariance

matrix, cov{Y − E(Y |X)}, is diagonal or not. However, such an approach not only

lacks theoretical justification but can also lead to inaccurate or misleading conclusions.

This motivates us to develop a test for high dimensional data in a regression setting

to investigate whether the residual covariance matrix is diagonal or not. The resulting

test can be applied in various fields, such as financial theory (Fan et al., 2008) and

microarray analysis (Chen et al., 2010).

The rest of the article is organized as follows. Section 2 introduces the model

structure and proposes the bias-corrected test statistic. In addition, the theoretical

properties of the resulting test are investigated. Section 3 presents simulation studies

to illustrate the finite sample performance of the proposed test. An empirical example

is also provided to demonstrate the usefulness of this test. Finally, we conclude the

article with a brief discussion in Section 4. All the technical details are left to the
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Appendix.

2. THEORETICAL ANALYSIS

2.1. Model Structure and A Test Statistic

Let Yi = (Yi1, · · · , Yip)
⊤ ∈ Rp be the p-dimensional response vector collected for the

ith subject, where 1 ≤ i ≤ n. For each subject i, we further assume that there exists

a d-dimensional explanatory vector Xi = (Xi1, · · · , Xid)
⊤ ∈ Rd. For the remainder

of this article, d is assumed to be a fixed number, and p → ∞ as n → ∞ with the

possibility that p ≫ n. Consider the following relationship between Yi and Xi,

Yi = B⊤Xi + Ei, (2.1)

where B = (β1, · · · , βp) ∈ Rd×p, βj = (βj1, · · · , βjd)
⊤ ∈ Rd are unknown regression

coefficients, and Ei = (εi1, · · · , εip)⊤ ∈ Rp are independent and identically distributed

vectors from a multivariate normal distributions with mean vector zero and cov(Ei) =

Σ = (σj1j2) for i = 1, · · · , n. For the given dataset Y = (Y1, · · · , Yn)
⊤ ∈ Rn×p and

X = (X1, · · · , Xn)
⊤ ∈ Rn×d, we obtain the least squares estimator of the regression

coefficient matrix B, B̂ = (X⊤X)−1(X⊤Y) ∈ Rd×p. Subsequently, the covariance matrix

Σ can be estimated by Σ̂ = (σ̂j1j2), where σ̂j1j2 = n−1
∑n

i=1 ε̂ij1 ε̂ij2 , and ε̂ij1 and ε̂ij2 are

j1-th and j2-th components of Êi = Yi − B̂⊤Xi, respectively.

To test whether Σ is a diagonal matrix or not, we consider the following null and

alternative hypotheses,

H0 : σ
2
j1j2

= 0 for any j1 ̸= j2 vs. H1 : σ
2
j1j2

> 0 for some j1 ̸= j2. (2.2)

If the null hypothesis is correct, we should expect the absolute value of the off-diagonal
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element, σ̂j1j2 , to be small for any j1 ̸= j2. Hence, we naturally consider the test

statistic, T ∗ =
∑

j1<j2
σ̂2
j1j2

. Under the null hypothesis, we can further show that

var1/2(T ∗) = O(n−3/2p3/2) provided that p/n → ∞, which motivates us to propose the

following test statistic

T = n3/2p−3/2
∑
j1<j2

σ̂2
j1j2

.

Clearly, one should reject the null hypothesis of diagonality if the value of T is suffi-

ciently large. However, we need to develop some theoretical justification to determine

what value of T is sufficiently large.

2.2. The Bias of Test Statistic

To understand the asymptotic behavior of the test statistics T , we first compute

the expectation of T in the following theorem.

Theorem 1. Under the null hypothesis H0, we have

E(T ) =
1

2

(
n− d

n

)1/2(
n− d

p

)1/2(
pM2

1,p −M2,p

)
,

where Mκ,p = p−1
∑p

j=1 σ
κ
jj for κ = 1 and 2.

The proof is given in Appendix A. Theorem 1 indicates that E(T ) is not exactly zero,

which yields some bias. To further investigate the property of bias, we assume that

Mκ,p → Mκ as p → ∞ for some |Mκ| < ∞. Then, E(T ) ≈ M2
1

√
np → ∞. As

mentioned earlier, under the null hypothesis, we have var1/2(T ∗) = O(n−3/2p3/2) if

p/n → ∞, which leads to var(T ) = O(1). Accordingly, E(T )/var1/2(T ) = O(
√
np) →

∞, which suggests that T/{var(T )}1/2 is not asymptotically distributed as a standard

normal random variable. This implies that we cannot ignore the bias due to T in

asymptotic test, so we need to turn to methods of bias correction. To this end, we

obtain an unbiased estimator of E(T ) as given below.
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Theorem 2. Under H0, we have E(B̂ias) = E(T ), where

B̂ias =
n3/2

2(n− d)p3/2

[
tr2(Σ̂)− tr(Σ̂(2))

]
and Σ̂(2) = (σ̂2

j1j2
). (2.3)

The proof is given in Appendix B. Theorem 2 shows that B̂ias is an unbiased estimator

of E(T ). This motivates us to consider the bias-corrected statistic, T − B̂ias, whose

asymptotic properties will be presented in the following subsection.

2.3. The Bias-Corrected (BC) Test Statistic

After adjusting T by its bias estimator B̂ias, we next study its variance.

Theorem 3. Assume that min{n, p} → ∞ and Mκ,p = p−1
∑p

j=1 σ
κ
jj → Mκ for some

constant |Mκ| < ∞ and for all κ ≤ 4. Under H0, then var(T − B̂ias) = (n/p)M2
2,p +

o(n/p).

The proof is given in Appendix C. Theorem 3 demonstrates that var(T − B̂ias) =

O(n/p) and we can show that its associated termM2,p can be estimated by the following

unbiased estimators

M̂2,p = n2p−1
[
(n− d)2 + 2(n− d)

]−1
p∑

j=1

σ̂2
jj.

This drives us to consider the following bias-corrected (BC) test statistic.

Z =
T − B̂ias

(n/p)1/2M̂2,p

, (2.4)

whose asymptotic normality is established below.

Theorem 4. Assume that min{n, p} → ∞ and Mκ,p = p−1
∑p

j=1 σ
κ
jj →p Mκ for some

constant |Mκ| < ∞ and for all κ ≤ 4. Under H0, we have Z →d N(0, 1).
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The proof is given in Appendix D. Theorem 4 indicates that the asymptotic null dis-

tribution of Z is standard normal, as long as min{n, p} → ∞. Applying this theorem,

we are able to test the significance of the off-diagonal elements. Specifically, for a given

significance level α, we reject the null hypotheses of diagonality if Z > z1−α, where Z

is the test statistics given in (2.4) and zα stands for the αth quantile of a standard

normal distribution. Simulation studies, reported in the next section, suggest that such

a testing procedure can indeed control the empirical size very well. It is noteworthy

that Nagao’s (1973) diagonal test is valid only when p is fixed. To accommodate high

dimensional data, Schott (2005) developed a testing procedure via the correlation coef-

ficient matrix, which is useful if one is interested in testing whether cov(Y ) is diagonal.

However, it cannot be directly applied to test the diagonality of cov{Y − E(Y |X)},

unless the predictor dimension d is appropriately taken into consideration; see Remarks

2 and 3 below for detailed discussions.

Remark 1. In multivariate models, researchers (e.g., Anderson, 2003, and Schott, 2005)

have proposed various methods to test whether or not the covariance matrix is diagonal.

It is interesting to recall that Anderson (2003) introduced the likelihood ratio test in

the field of factor analysis as a method of examining the number of factors. In fact,

identifying the number of common factors is similar to testing the diagonality of the

covariance matrix of the specific factor. This leads us to propose our approach for

testing whether the covariance matrix of the error vector is diagonal, after controlling

for the effect of explanatory variables.

Remark 2. By Theorem 2, B̂ias is an exactly unbiased estimator of T , and it contains

the quantity (n − d). For the sake of simplicity, one may consider replacing (n − d)

in the denominator of (2.3) by n so that the multiplier of B̂ias becomes n1/2/(2p3/2).

Under this replacement, however, E(T − B̂ias) ̸= 0 and it is of the order O(n1/2/p1/2),
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which has the same order as (n/p)1/2M̂2,p given in the denominator of (2.4). Hence,

the resulting test statistic is no longer distributed as a standard normal. This suggests

that the predictor dimension (i.e., d) plays an important role for bias correction in our

proposed BC-test statistic.

Remark 3. Although the BC-test in (2.4) shares some merits with the Schott (2005)

test, there are three major differences given below. First, the BC-test considers

min{p, n} → ∞, while the Schott test assumes that p/n → c for some finite con-

stant c > 0. Second, the BC-test takes the predictors into consideration, which is

not the focus of the Schott test. Third, the BC-test is obtained from the covariance

matrix. In contrast, the Schott test is constructed via the correlation matrix and it

is scale invariant. It is not surprising that the asymptotic theory of the Schott test

is more sophisticated than that of the BC-test. According to an anonymous referee’s

suggestion as well as an important finding in Remark 2, we have carefully extended

the Schott test to the model with predictors. We name it the Adjusted Schott (AS)

test, which is

Zadj =

√
(n− d)2(n− d+ 2)

(n− d− 1)p(p− 1)

[ ∑
j1<j2

r̂2j1j2 −
p(p− 1)

2(n− d)

]
, (2.5)

where r̂j1j2 = σ̂j1j2/{σ̂
1/2
j1j1

σ̂
1/2
j2j2

}. Following the techniques of Schott (2005) with slightly

complicated calculations, we are able to demonstrate that Zadj is asymptotic standard

normal under the null hypothesis. However, its validity is established only when p/n →

c for some finite constant c > 0, as assumed by Schott (2005). In high dimensional

data with p ≫ n, the asymptotic theory is far more complicated and needs further

investigation.

3. NUMERICAL STUDIES
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3.1. Simulation Results

To evaluate the finite sample performance of the bias-corrected test, we conduct

Monte Carlo simulations. We consider model (2.1), where the predictor Xi = (Xij)

is generated from a multivariate normal distribution with E(Xij) = 0, var(Xij) = 1,

and cov(Xij1 , Xij2) = 0.5 for any j1 ̸= j2. In addition, the regression coefficients

βjk are independently generated from a standard normal distribution. Moreover, the

error vector Ei = (εij) is generated as follows: (i.) the εij are generated from normal

distributions with mean 0; (ii.) the variance of εij (i.e., σjj) is simulated independently

from a uniform distribution on [0,1]; (iii.) the correlation between εij1 and εij2 for any

j1 ̸= j2 is fixed to be a constant ρ.

We simulated 1,000 realizations with a nominal level of 5%, each consisting of two

sample sizes (n = 100 and 200), three dimensions of multivariate responses (p = 100,

500, and 1,000), and four dimensions of explanatory variables (d = 0, 1, 3, and 5). The

value of ρ = 0 corresponds to the null hypothesis. Schott (2005) developed a diagonal

test in high dimensional data under d = 0. For the sake of comparison, we include the

Schott (2005, Section 2) test by calculating the sample correlation with the estimated

residual Êi rather than the response Yi. In addition, we consider the Adjusted Schott

test given in (2.5).

Under normal errors, Table 1 reports the sizes of the BC, Schott, and Adjusted

Schott tests. When d = 0, all three tests perform well. However, the performance of

the Schott test deteriorates with d > 0. This indicates that the Schott test cannot

be directly applied to assess the diagonality of the residual covariance matrix after

incorporating the contribution from explanatory variables. In contrast, after adjusting

for the effective sample size from n to n−d, the performance of the Adjusted Schott test

becomes satisfactory, which indicates that the predictor dimension d is indeed critical.
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Figure 1: Power functions for testing H0 : ρ = 0 with normal errors and n = 100.
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Table 1 also indicates that the BC test controls the empirical sizes well across the

various sample sizes, dimensions of response variables, and dimensions of explanatory

variables. To examine their robustness, we also generated errors from the Student (t5),

mixture (0.9N(0, 1) + 0.1N(0, 32)), and Gamma(4,0.5) distributions. Table 1 shows

that, under these error distributions, both tests control the empirical size adequately.

Finally, we investigate the power of the BC test and the AS test. For the sake of

illustration, we consider only the case with normal errors, n = 100, and d = 1. Figure

1 depicts the power functions for three dimensions of response variables (p = 100, 500

and 1, 000) respectively. It shows that the powers of the two tests are almost identical,

and the power increases as p becomes large. Since all simulation results for n = 200

show a similar pattern, we do not report them here. In sum, both BC and AS tests are

reliable and powerful, while the theoretical justification for the AS test needs further

study as mentioned in Remark 3.
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Finally, upon the suggestions of an AE and an anonymous referee, we have compared

our proposed test with Chen et al.’s (2010) test and with Ledoit and Wolf’s (2002) test,

which was mentioned in Onatski et al. (2013), for testing high dimensional covariances

via simulation studies with d = 0. The results show that all these tests perform well

in testing for identity, while the BC test is superior to Chen et al.’s and Ledoit and

Wolf’s tests for testing diagonality. This finding is not surprising since those two tests

are not developed for examining diagonality.

3.2. A Real Example

To further demonstrate the practical usefulness of our proposed method, we consider

an important finance application. Specifically, we employ our method to address an

critical question: how many common factors (i.e., explanatory variables) are needed to

fully describe the covariance structure of security returns? By Trzcinka (1986), Brown

(1989), and Connor and Korajczky (1993), this is one of the fundamental problems in

portfolio theory and asset pricing. To this end, we collect the data from a commercial

database, which contains weekly returns for all of the stocks traded on the Chinese

stock market during the period of 2008–2009. After eliminating those stocks with

missing values, we obtain a total of p = 1, 058 stocks with sample size n = 103.

We consider as our explanatory variables, several of the factors most commonly

used in the finance literature to explain the covariance structure of stock returns. The

first such factor is Xi1 = market index, in this case, returns for the Shanghai Composite

Index. The market index is clearly the most important factor for stock returns because

it reflects the overall performance of the stock market. As a result, it serves as the

foundation for the Capital Asset Pricing Model (Sharpe, 1964; Lintner, 1965; Mossin,

1966). Empirical studies, however, have suggested that the market index alone cannot

fully explain the correlation structure of stock returns. Fama and French (1993, 1996)
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proposed the Three-Factor model to address this problem; they include the market

index as well as two other factors which are denoted by Xi2 = SMB and Xi3 = HML.

Specifically, Xi2 measures the size premium (i.e., the difference in returns between

portfolios of small capitalization firms and large capitalization firms) and Xi3 is the

book-to-market premium (i.e., the difference in returns between portfolios of high book-

to-market firms and low book-to-market firms). Finally, recent advances in behavioral

finance suggest that stock returns have non-trivial momentum, which is captured by

the difference in returns between portfolios of high and low prior returns. To this end,

Jegadeesh and Titman (1993) and Carhart (1997) proposed the momentum factor,

which is denoted by Xi4.

In our analysis, we consider four nested models, M0 = ∅, M1 = {Xi1}, M2 =

{Xi1, Xi2, Xi3}, and M3 = {Xi1, Xi2, Xi3, Xi4} and apply the proposed method to each

candidate model; this gives test statistics of 20,560, 3,357, 228, and 215, respectively.

Similar results are obtained via the AS test. We draw two conclusions from these

results. The first comes from observing the differences between these values. As ex-

pected, the Fama-French model (M2) improves enormously on both the model with

no predictors and the model with only the market index, and while the fourth factor

(momentum) does improve on the Fama-French model, its contribution is clearly small.

The proposed statistical method, therefore, provides additional confirmation that the

Fama-French model is an extremely important finance model, even in datasets with

p > n. Secondly, the addition of a fourth factor still does not allows us to accept

the null hypothesis of a diagonal covariance matrix. This suggests that there may

be factors unique to the Chinese stock market which contribute significantly to the

covariance structure. To explore this idea further, we applied the principle componen-

t method of factor analysis to the residuals of M3 and found that the test statistic
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continued to decline with the inclusion of as many as 75 of the additional factors we

identified. While this additional finding is interesting, it lacks of insightful financial

interpretations, and so we believe that further research on risk factors in the Chinese

stock market is warranted.

4. DISCUSSIONS

In this paper, We propose a bias-corrected test to assess the significance of the

off-diagonal elements of a residual covariance matrix for high-dimensional data. This

test takes into account the information from explanatory variables, which broadens the

application of covariance analysis. Although the results are developed in the context

of a linear regression, it could certainly be extended to nonparametric regressions; see

for example, Fan and Gijbels (1996), Härdle et al. (2000), and Xia (2008). In the

theoretical development of our test statistic, we focus principally on the normal error

assumption. It could, however, be useful to obtain a test for diagonality with weaker

assumptions such as sub-Gaussian errors, although simulation studies show that the

proposed test performs well for non-normal errors. Moreover, it would be interesting

to extend our test to the correlation matrix with d > 0 and min{n, p} → ∞. Finally,

a generalization of the test statistic to the case with d > n could be interest. In this

context, the shrinkage regression estimates, e.g., LASSO of Tibshirani (1996), SCAD

of Fan and Li (2001) and Group LASSO of Yuan and Lin (2006), could be useful

in developing a test statistic. Based on our limited studies, obtaining a shrinkage

estimator of B that is consistent for variable selection will be important in extending

our proposed test. With a consistently selected model, we believe that the usual OLS-

type estimator and the theoretical development of the resulting test statistic can be

achieved. Consequently, it is essential to develop an effective shrinkage method for

both d > n and n → ∞.
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APPENDIX

Appendix A. Proof of Theorem 1

To facilitate the proof, we will refer to the following lemmas, so we present them

first. The proof of Lemma 2 follows directly from the proof of Lemma 3 in Magnus

(1986). Its proof is therefore omitted.

Lemma 1. Let U1 and U2 be two m×1 independent random vectors with mean vector 0

and covariance matrix Im, where Im is an m×m identity matrix. Then for any m×m

projection matrix A, we have (a) E(U⊤
1 AU1) = tr(A) and (b) E[(U⊤

1 AU2)
2] = tr(A).

Further assume U1 and U2 follow multivariate normal distributions, then we have (c)

E[(U⊤
1 AU2)

2U⊤
1 AU1U

⊤
2 AU2] = 4tr(A)+4tr2(A)+ tr3(A), (d) E[(U⊤

1 AU1)
2] = tr2(A)+

2tr(A), and (e) E[(U⊤
1 AU2)

4] = 3tr2(A) + 6tr(A).

Proof. The proofs of (a) and (b) are straightforward, and are therefore omitted.

In addition, results (d) and (e) can be directly obtained from Proposition 1 of Chen

et al. (2010). As a result, we only need to show part (c). Using the fact that U⊤
1 AU2 ∈

R1, U⊤
1 AU1 ∈ R1, U⊤

2 AU2 ∈ R1, U⊤
1 AU2 = U⊤

2 AU1, and U1 and U2 are mutually

independent, we have

E
{
(U⊤

1 AU2)
2U⊤

1 AU1U
⊤
2 AU2

}
= tr

{
E
(
U⊤
1 AU1AU1U

⊤
1

)
E
(
U⊤
2 AU2AU2U

⊤
2

)}

= tr
{
E
(
AU1U

⊤
1

)2
E
(
AU2U

⊤
2

)2}
. (A.1)

Next, let A = (aij) and U1 = (U1j), where aij = aji since A is a projection matrix.

Then we have (AU1U
⊤
1 )

2 = AU1(U
⊤
1 AU1)U

⊤
1 = (U⊤

1 AU1)AU1U
⊤
1 = (ãij), where

ãij =

(
m∑
k=1

m∑
h=1

akhU1kU1h

)(
m∑
l=1

ailU1l

)
U1j.
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Using the fact that U1 is a m-dimensional standard normal random vector, we obtain

E(ãij) = 2

k ̸=j∑
1≤k≤m

aikakj + aij

k ̸=j∑
1≤k≤m

akk + 3aijajj

= 2
∑

1≤k≤m

aikakj + aij
∑

1≤k≤m

akk.

As a result, we have E(AU1U
⊤
1 )

2 = 2A2+tr(A) ·A. Because U1 and U2 are independent

identically distributed random variables and A is a projection matrix, the right-hand

side of (A.1) is equal to tr(2A2+ tr(A) ·A)2 = 4tr(A4)+4tr(A3)tr(A)+ tr2(A)tr(A2) =

4tr(A) + 4tr2(A) + tr3(A). This completes the proof.

Lemma 2. Let U be an m × 1 normally distributed random vector with mean vector

0 and covariance matrix Im, and let A be a m ×m symmetric matrix. Then, for the

fixed integer s, we have that,

E(U⊤AU)s =
∑
v

γs(v)
s∏

j=1

{
tr(Aj)

}nj

, where γs(v) = s!2v
s∏

j=1

[
nj!(2j)

nj

]−1

,

with the summation over all possible v = (n1, n2, · · · , ns)
⊤ ∈ Rs such that

∑s
j=1 jnj = s

and nj (1 ≤ j ≤ s) is a nonnegative integer.

Proof of Theorem 1. Let εj = (ε1j, ε2j, · · · , εnj)⊤ ∈ Rn for j = 1, · · · , d. From

the regression model (2.1), we know that εj has mean 0 and covariance matrix σjjI,

where I ∈ Rn×n is a n × n matrix. Furthermore, the j-th residual and the (j1, j2)-

th estimator of Σ̂ are ε̂j = (I − H)εj and σ̂j1j2 = n−1ε̂⊤j1 ε̂j2 = n−1ε⊤j1(I − H)εj2 ,

respectively, where H = X(X⊤X)−1X⊤ ∈ Rn×n is an n × n projection matrix. Under

H0, εj1 and εj2 are independent if j1 ̸= j2. Applying Lemma 1(b), we have that
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E(σ̂2
j1j2

) = n−2(n− d)σj1j1σj2j2 . Accordingly, we obtain that

E(T ) = E

{
n3/2p−3/2

∑
j1<j2

σ̂2
j1j2

}
=

(
n− d√

n

)
p−3/2

∑
j1<j2

σj1j1σj2j2

=

(
n− d

2
√
n

)
p−3/2

{ p∑
j1=1

p∑
j2=1

σj1j1σj2j2 −
p∑

j=1

σ2
jj

}

=
1

2

(
n− d

n

)1/2(
n− d

p

)1/2(
pM2

1,p −M2,p

)
. (A.2)

This completes the proof.

Appendix B. Proof of Theorem 2

By Lemma 1(a), we have that E(σ̂jj) = n−1(n − d)σjj. Then, using the fact that

σ̂j1j1 and σ̂j2j2 are uncorrelated, we are able to calculate E[tr2(Σ̂)] as follows.

E
[
tr2(Σ̂)

]
= E

[ p∑
j=1

σ̂jj

]2
= E

{ ∑
j1 ̸=j2

σ̂j1j1σ̂j2j2 +

p∑
j=1

σ̂2
jj

}

=

(
n− d

n

)2 ∑
j1 ̸=j2

σj1j1σj2j2 + E
( p∑

j=1

σ̂2
jj

)
= p

(
n− d

n

)2(
pM2

1,p −M2,p

)
+ E

[
tr(Σ̂(2))

]
.

This, together with (A.2), implies that

n3/2

2(n− d)p3/2

{
E
[
tr2(Σ̂)

]
− E

[
tr(Σ̂(2))

]}
= E(T ),

which completes the proof.

Appendix C. Proof of Theorem 3

Note that var{T − B̂ias} = E{B̂ias
2
}+E{T 2}− 2E{T B̂ias}, where the right-hand

side of this equation contains three components. They can be evaluated separately
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according to the following three steps.

Step 1. We first compute E{B̂ias
2
}. Recall that B̂ias = 2−1(n−d)−1n3/2p−3/2{tr2(Σ̂)−

tr(Σ̂(2))} defined in Theorem 2, we then obtain

B̂ias
2
= 4−1(n− d)−2n3p−3

∑
i1 ̸=j1

∑
i2 ̸=j2

σ̂i1i1σ̂j1j1σ̂i2i2σ̂j2j2 . (A.3)

Because σ̂ii = n−1ε̂⊤i ε̂i = n−1ε⊤i (I − H)εi, we have σ̂i1i1σ̂j1j1σ̂i2i2σ̂j2j2 = n−4ε⊤i1(I −

H)εi1ε
⊤
j1
(I − H)εj1ε

⊤
i2
(I − H)εi2ε

⊤
j2
(I − H)εj2 . According to the values of i1, i2, j1,

and j2, we subsequently calculate the expectation of σ̂i1i1σ̂j1j1σ̂i2i2σ̂j2j2 according to the

following three cases.

Case I: i1, i2, j1, and j2 are mutually different. Then, σ̂i1i1 , σ̂j1j1 , σ̂i2i2 , and σ̂j2j2

are mutually independent. By Lemma 1(a), we have

E
(
σ̂i1i1σ̂j1j1σ̂i2i2σ̂j2j2

)

= n−4E
{
ε⊤i1(I −H)εi1

}
E
{
ε⊤j1(I −H)εj1

}
E
{
ε⊤i2(I −H)εi2

}
E
{
ε⊤j2(I −H)εj2

}
= n−4σi1i1σj1j1σi2i2σj2j2

{
tr(I −H)

}4

= n−4(n− d)4σi1i1σj1j1σi2i2σj2j2 . (A.4)

Case II: i1 = i2, j1 = j2, but i1 ̸= j1. Then, σ̂i1i1σ̂j1j1σ̂i2i2σ̂j2j2 = σ̂2
i1i1

σ̂2
j1j1

. By

Lemma 1(d), we obtain that

E
(
σ̂i1i1σ̂j1j1σ̂i2i2σ̂j2j2

)
= n−4E

{
ε⊤i1(I −H)εi1

}2

E
{
ε⊤j1(I −H)εj1

}2

= n−4σ2
i1i1

σ2
j1j1

{
tr2(I −H) + 2tr(I −H)

}2

= n−4σ2
i1i1

σ2
j1j1

(n− d)2(n− d+ 2)2. (A.5)
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Case III: i1 = i2, but i1, j1, and j2 are mutually different. Then, σ̂i1i1σ̂j1j1σ̂i2i2σ̂j2j2 =

σ̂2
i1i1

σ̂j1j1σ̂j2j2 . By Lemma 1(a) and 1(d), we have

E
(
σ̂i1i1σ̂j1j1σ̂i2i2σ̂j2j2

)
= n−4E

{
ε⊤i1(I −H)εi1

}2

E
{
ε⊤j1(I −H)εj1

}
E
{
ε⊤j2(I −H)εj2

}

= n−4σ2
i1i1

σj1j1σj2j2(n− d)3(n− d+ 2). (A.6)

This, together with (A.3), (A.4), and (A.5), leads to

4p3n−1E{B̂ias
2
} =

(
n− d

n

)2

S1 + 2

(
n− d+ 2

n

)2

S2

+4

(
n− d

n

)(
n− d+ 2

n

)
S3, (A.7)

where

S1 =
∑

i1 ̸=j1 ̸=i2 ̸=j2

σi1i1σj1j1σi2i2σj2j2 ,

S2 =
∑
i̸=j

σ2
iiσ

2
jj,

and S3 =
∑
i̸=j1

∑
i̸=j2

σ2
iiσj1j1σj2j2 .

Step 2. We next consider E(T 2). Using the fact that T = 2−1n3/2p−3/2
∑

i̸=j σ̂
2
ij

and σ̂ij = n−1ε⊤i (I −H)εj, we have

T 2 = 4−1n3p−3
∑
i1 ̸=j1

∑
i2 ̸=j2

σ̂2
i1j1

σ̂2
i2j2

= 4−1n−1p−3
∑
i1 ̸=j1

∑
i2 ̸=j2

(
ε⊤i1(I −H)εj1

)2(
ε⊤i2(I −H)εj2

)2
.

Applying the same procedure as that used in Step 1, we compute E(T 2) according to
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the following three different cases.

Case I. i1, i2, j1, and j2 are mutually different. Then, σ̂i1j1 and σ̂j2j2 are mutually

independent. By Lemma 1(b), we have

E
(
ε⊤i1(I −H)εj1

)2(
ε⊤i2(I −H)εj2

)2
= E

(
ε⊤i1(I −H)εj1

)2
E
(
ε⊤i2(I −H)εj2

)2

= (n− d)2σi1i1σj1j1σi2i2σj2j2 . (A.8)

Case II. i1 = i2, j1 = j2, but i1 ̸= j1. Then, σ̂
2
i1j1

σ̂2
i2j2

= σ̂4
i1j1

. By Lemma 1(e), we

obtain that

E
(
ε⊤i1(I −H)εj1

)2(
ε⊤i2(I −H)εj2

)2
= E

(
ε⊤i1(I −H)εj1

)4

= σ2
i1i1

σ2
j1j1

{
3tr2(I −H) + 6tr(I −H)

}
= 3(n− d)(n− d+ 2)σ2

i1i1
σ2
j1j1

. (A.9)

Case III. i1 = i2, but i1, j1, and j2 are mutually different. Because {ε⊤i1(I−H)εj2}2

and ε⊤i1(I −H)εi1 are scalars, we apply Lemma 1(d) and have

E
(
{ε⊤i1(I −H)εj1}2{ε⊤i1(I −H)εj2}2

)

= E
[
tr
(
{ε⊤j1(I −H)εi1}{ε⊤i1(I −H)εj1}{ε⊤i1(I −H)εj2}2

)]
= tr

{
E
(
εj1ε

⊤
j1
(I −H)εi1ε

⊤
i1
(I −H){ε⊤i1(I −H)εj2}2

)}
= tr

{
E
(
εj1ε

⊤
j1

)
E
[
(I −H)εi1ε

⊤
i1
(I −H){ε⊤i1(I −H)εj2}2

]}
= σj1j1E

(
ε⊤i1(I −H)εi1{ε⊤i1(I −H)εj2}{ε⊤j2(I −H)εi1}

)
= σj1j1tr

[
E
{
ε⊤i1(I −H)εi1εi1ε

⊤
i1
(I −H)

}
E
{
εj2ε

⊤
j2
(I −H)

}]
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= σj1j1σj2j2E
(
ε⊤i1(I −H)εi1

)2
= (n− d)(n− d+ 2)σ2

i1i1
σj1j1σj2j2 . (A.10)

Using the results of (A.8), (A.9), and (A.10), we obtain

4p3n−1E{T 2} =

(
n− d

n

)2

S1 + 6

(
n− d

n

)(
n− d+ 2

n

)
S2

+4

(
n− d

n

)(
n− d+ 2

n

)
S3. (A.11)

Step 3. Finally we compute E{T B̂ias}. After algebraic simplification, we obtain

the following expression

T B̂ias = 4−1n3(n− d)−1p−3
∑
i1 ̸=j1

∑
i2 ̸=j2

σ̂2
i1j1

σ̂i2i2σ̂j2j2

= 4−1n−1(n− d)−1p−3
∑
i1 ̸=j1

∑
i2 ̸=j2

{ε⊤i1(I −H)εj1}2ε⊤i2(I −H)εi2ε
⊤
j2
(I −H)εj2 .

Similar to Steps 1 and 2, we consider three cases given below to calculate this quantity

separately.

Case I. i1, i2, j1, and j2 are mutually different. Then, σ̂2
i1j1

, σ̂i2i2 and σ̂j2j2 are

mutually independent. By Lemma 1(a) and 1(b), we have

E
(
{ε⊤i1(I −H)εj1}2ε⊤i2(I −H)εi2ε

⊤
j2
(I −H)εj2

)

= E
(
{ε⊤i1(I −H)εj1}2

)
E
(
ε⊤i2(I −H)εi2

)
E
(
ε⊤j2(I −H)εj2

)
= (n− d)3σi1i1σj1j1σi2i2σj2j2 . (A.12)

Case II. i1 = i2, j1 = j2, but i1 ̸= j1. In this case, σ̂2
i1j1

σ̂i2i2σ̂j2j2 = σ̂2
i1j1

σ̂i1i1σ̂j1j1 .
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By Lemma 1(c), we obtain that

E
(
{ε⊤i1(I −H)εj1}2ε⊤i2(I −H)εi2ε

⊤
j2
(I −H)εj2

)

= E
(
{ε⊤i1(I −H)εj1}2ε⊤i1(I −H)εi1ε

⊤
j1
(I −H)εj1

)
= (n− d+ 2)2(n− d)σ2

i1i1
σj1j1σj2j2 . (A.13)

Case III. i1 = i2, but i1, j1, and j2 are all different. In this case, σ̂2
i1j1

σ̂i2i2σ̂j2j2 =

σ̂2
i1j1

σ̂i1i1σ̂j2j2 . We apply Lemma 1(d) and have

E
(
{ε⊤i1(I −H)εj1}2ε⊤i1(I −H)εi1

)
= tr

{
E
(
ε⊤i1(I −H)εj1ε

⊤
j1
(I −H)εi1ε

⊤
i1
(I −H)εi1

)}

= tr
{
E
(
(I −H)εj1ε

⊤
j1
(I −H)εi1ε

⊤
i1

[
ε⊤i1(I −H)εi1

])}
= tr

{
(I −H)E(εj1ε

⊤
j1
)(I −H)E

(
εi1ε

⊤
i1

[
ε⊤i1(I −H)εi1

])}
= σj1j1tr

[
E
(
(I −H)εi1ε

⊤
i1

[
ε⊤i1(I −H)εi1

])]
= σj1j1E

(
ε⊤i1(I −H)εi1

)2
= (n− d)(n− d+ 2)σ2

i1i1
σj1j1 .

Accordingly, we obtain that

E
(
{εi1(I −H)εj1}2εi1(I −H)εi1εj2(I −H)εj2

)

= E
(
{εi1(I −H)εj1}2εi1(I −H)εi1

)
E
(
εj2(I −H)εj2

)
= (n− d)2(n− d+ 2)σ2

i1i1
σj1j1σj2j2 . (A.14)
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Combing the result of (A.14) with those of (A.12) and (A.13), we have

4p3n−1E{T B̂ias} =

(
n− d

n

)2

S1 + 2

(
n− d+ 2

n

)2

S2

+4

(
n− d

n

)(
n− d+ 2

n

)
S3. (A.15)

Consequently, (A.7), (A.11), and (A.15) in conjunction with the fact that S2 = p2M2
2,p−

pM4,p, imply that

var{T − B̂ias} = E{T 2}+ E{B̂ias
2
} − 2E{T B̂ias}

=
(
4p3n−1

)−1

4

(
n− d+ 2

n

)(
n− d− 1

n

)
S2.

= n−1p−3(n− d+ 2)(n− d− 1)
(
p2M2

2,p − pM4,p

)
=

(
n− d+ 2

p

)(
n− d− 1

n

)
M2

2,p − n−1p−2(n− d+ 2)(n− d− 1)M4,p. (A.16)

In addition, by the assumption that Mκ,p →p Mκ with |Mκ| < ∞ and κ ≤ 4, we have

|p−2n−1(n − d + 2)(n − d − 1)M4,p| ≤ p−2n−1n2|M4,p| = O(n/p2). As a result, the

right-hand side of (A.16) is

(
n− d+ 2

p

)(
n− d− 1

n

)
M2

2,p +O(n/p2)

=
nM2

2,p

p
−
(
2d− 1

p

)
M2

2,p +O(n−1p−1) +O(n/p2). (A.17)

Employing the assumption of min{n, p} → ∞, we know that n → ∞. Hence, the

second and third terms in (A.17) are negligible as compared with the first term,

nM2
2,p/p = O(n/p). Analogously, the last term in (A.17) is also negligible since p → ∞.

In sum, we have var(T − B̂ias) = nM2
2,p/p+ o(n/p). This completes the proof.
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Appendix D. Proof of Theorem 4

To prove this theorem, we need to demonstrate (I.) (T − B̂ias)/var1/2(T − B̂ias)

is asymptotically normal; and (II.) M̂2,p →p M2,p. Because (II) can be obtained by

applying the same techniques as in the proof of Lemma 2.1 of Srivastava (2005), we

only focus on (I). To show the asymptotic normality of (T − B̂ias)/var1/2(T − B̂ias),

we need to employ the martingale central limit theorem; see Hall and Heyde (1980).

To this end, we define Fr = σ{ε1, ε2, · · · , εr}, which represents the σ-field generated

by {ε1, ε2, · · · , εr} for r = 1, 2, · · · , p. We further define

ap,r = n−1/2p−3/2
∑
i<j≤r

[
{ε⊤i (I−H)εj}2−(n−d)−1{ε⊤i (I−H)εi}{ε⊤j (I−H)εj}

]
. (A.18)

Obviously, ap,r ∈ Fr, and one can easily verify that T − B̂ias = ap,p. Then, set

∆p,r = ap,r − ap,r−1 with ap,0 = 0. Furthermore, we can show that E(ap,r|Fq) = ap,q

for any q < r. This implies that, for an arbitrarily fixed p, {∆p,r, 1 ≤ r ≤ p} is

a martingale difference sequence with respect to {Fq, 1 ≤ q ≤ p}. Moreover, define

σ2
p,r = E(∆2

p,r|Fr−1). Accordingly, by the martingale central limit theorem (Hall and

Heyde, 1980), it suffices to show that

∑p
r=1 σ

2
p,r

var(T − B̂ias)
→p 1 and

∑p
r=1 E(∆4

p,r)

var2(T − B̂ias)
→p 0. (A.19)

This can be done in three steps given below. In the first step, we obtain an analyti-

cal expression of σ2
p,r, which facilitates subsequent technical proofs. The second step

demonstrates the first part of (A.19), while the last step verifies the second part of

(A.19).

Step 1. Using the fact that n1/2p3/2∆p,r =
∑r−1

i=1

[
{ε⊤i (I−H)εr}2−(n−d)−1{ε⊤i (I−
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H)εi}{ε⊤r (I −H)εr}
]
, we have

np3σ2
p,r = np3E(∆2

p,r|Fr−1) = E

(
r−1∑
i=1

r−1∑
j=1

{ε⊤i (I −H)εr}2{ε⊤j (I −H)εr}2

+(n− d)−2

r−1∑
i=1

r−1∑
j=1

{ε⊤r (I −H)εr}2{ε⊤i (I −H)εi}{ε⊤j (I −H)εj}

−2(n− d)−1

r−1∑
i=1

r−1∑
j=1

{ε⊤i (I −H)εr}2{ε⊤j (I −H)εj}{ε⊤r (I −H)εr}
∣∣∣Fr−1

)
. (A.20)

To obtain the explicit expression of σ2
p.r, we next calculate the three terms on the

right-hand side of (A.20) separately.

The 1st Term in (A.20). It is noteworthy that

E
(
{ε⊤i (I −H)εr}2{ε⊤j (I −H)εr}2

∣∣∣Fr−1

)

= tr
{
E
(
{ε⊤i (I −H)εr}2εrε⊤r

∣∣∣Fr−1

)
(I −H)εjε

⊤
j (I −H)

}
. (A.21)

This allows us to focus on the computation of E
(
{ε⊤i (I−H)εr}2εrε⊤r |Fr−1

)
in the first

term’s calculation. For the sake of simplicity, let {ε⊤i (I −H)εr}2εrε⊤r = C = (cgh) and

(I −H) = B = (bij), where g, h, i, and j range from 1 to n. Accordingly, we have

cgh =
n∑

k1=1

n∑
k2=1

n∑
l1=1

n∑
l2=1

(
εrgεrh

)(
εil1bl1k1εrk1

)(
εil2bl2k2εrk2

)
.

Because εr is a n-dimensional normal vector with mean 0 and variance σrrI, this leads

to E(cgh|Fr−1) = σ2
rr

∑
l1,l2

(bl1gbl2h+bl1hbl2g)εil1εil2 = 2σ2
rr

∑
l1,l2

bl1gbl2hεil1εil2 for g ̸= h.

In the case of g = h, we have

E(cgh|Fr−1) = σ2
rr

k ̸=g∑
k,l1,l2

bl1kbl2kεil1εil2 + 3σ2
rr

∑
l1,l2

bl1gbl2gεil1εil2
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= 2σ2
rr

∑
l1,l2

εil1bl1gbl2gεil2 + σ2
rr

∑
l1,l2

εil1

( n∑
k=1

bl1kbl2k

)
εil2

= 2σ2
rr

∑
l1,l2

εil1bl1gbl2gεil2 + σ2
rrε

⊤
i (I −H)2εi

Since the (g, h)-th element of (I −H)εiε
⊤
i (I −H) is

∑
l1,l2

εil1bl1gbl2hεil2 , we obtain

E
(
{ε⊤i (I −H)εr}2εrε⊤r

)
= 2σ2

rr(I −H)εiε
⊤
i (I −H) + σ2

rrε
⊤
i (I −H)2εiI

= 2σ2
rr(I −H)εiε

⊤
i (I −H) + σ2

rrε
⊤
i (I −H)εiI,

because I −H is a projection matrix. This, together with (A.21), leads to

E
(
{ε⊤i (I −H)εr}2{ε⊤j (I −H)εr}2

∣∣∣Fr−1

)

= tr

[{
2σ2

rr(I −H)εiε
⊤
i (I −H)

}{
(I −H)εjε

⊤
j (I −H)

}]

+tr

[{
σ2
rrε

⊤
i (I −H)εiI

}{
(I −H)εjε

⊤
j (I −H)

}]

= 2σ2
rr{ε⊤i (I −H)εj}2 + σ2

rr{ε⊤i (I −H)εi}{ε⊤j (I −H)εj}. (A.22)

This completes the calculation of the major component of the first term in (A.20).

The 2nd Term in (A.20). Employing Lemma 1(d), we obtain that

(n− d)−2E
(
{ε⊤r (I −H)εr}2{ε⊤i (I −H)εi}{ε⊤j (I −H)εj}|Fr−1

)

= (n− d)−1(n− d+ 2)σ2
rr{ε⊤i (I −H)εi}{ε⊤j (I −H)εj}. (A.23)

The 3rd Term in (A.20). Lastly, we evaluate the third term of (A.20) by
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computing its major component,

E
(
{ε⊤i (I −H)εr}2{ε⊤r (I −H)εr}

∣∣∣Fr−1

)

= E
[
{ε⊤r (I −H)εr}{ε⊤r (I −H)εi}{ε⊤i (I −H)εr}

∣∣∣Fr−1

]
= tr

{[
E{ε⊤r (I −H)εr}εrε⊤r

]
(I −H)εiε

⊤
i (I −H)

}
. (A.24)

For the sake of simplicity, let {ε⊤r (I −H)εr}εrε⊤r = C̃ = (c̃gh), where

c̃gh =
n∑

k=1

n∑
l=1

εrgεrh(εrkbklεrl).

When g ̸= h, we have E(c̃gh) = 2σ2
rrbgh; otherwise, we obtain that

E(c̃gg) = bggE(ε4rg) +
∑
k ̸=g

bkkE(ε2rg)E(ε2rk) = 3bggσ
2
rr +

∑
k ̸=g

bkkσ
2
rr

= 2σ2
rrbgg + σ2

rr

n∑
i=1

bkk = 2σ2
rrbgg + σ2

rrtr(I −H) = 2σ2
rrbgg + (n− d)σ2

rr.

Accordingly, we have E(ε⊤r (I − H)εrεrε
⊤
r ) = 2σ2

rr(I − H) + (n − d)σ2
rrI. The above

results lead to

E
(
{ε⊤i (I −H)εr}2{ε⊤r (I −H)εr}{ε⊤j (I −H)εj}

∣∣Fr−1

)

= tr

[{
2σ2

rr(I −H) + (n− d)σ2
rrI)

}{
(I −H)εiε

⊤
i (I −H)

}]
{ε⊤j (I −H)εj}

= (n− d+ 2)σ2
rr{ε⊤i (I −H)εi}{ε⊤j (I −H)εj}. (A.25)

which completes the calculation of the major component of the third term. This,
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together with (A.20), (A.22) and (A.23), yields,

σ2
p,r = 2n−1p−3σ2

rr

r−1∑
i=1

r−1∑
j=1

[
{ε⊤i (I −H)εj}2 − (n− d)−1{εi(I −H)εi}{εj(I −H)εj}

]

= 4n−1/2p−3/2σ2
rrap,r−1 + 2n−1p−3Dr, (A.26)

where Dr = σ2
rr

∑r−1
i=1{1− (n− d)−1}{ε⊤i (I −H)εi}2 and ap,r is defined in (A.18).

Step 2. We verify the first part of (A.19). Because ∆p,r is a martingale sequence,

one can verify that E(σ2
p,1+σ2

p,2+· · ·+σ2
p,p) = var

{
T−B̂ias

}
. Accordingly, we only need

to show that var(
∑p

r=1 σ
2
p,r)/var

2(T − B̂ias) → 0. To this end, we focus on calculating

var(
∑p

r=1 σ
2
p,r). Because Theorem 3 implies that var(T − B̂ias) = O(np−1), (A.26)

suggests that we can prove the first part of (A.19) by demonstrating the following

results.

(i.) var
( p∑

r=1

Dr

)
= o
(
n4p4

)
and (ii.) var

( p∑
r=1

σ2
rrap,r−1

)
= o(n3p

)
. (A.27)

To prove equation (i), we first note that

p∑
r=1

Dr =
{
1− (n− d)−1

} p−1∑
i=1

{
ε⊤i (I −H)εi

p∑
r=i+1

σ2
rr

}
,

where {ε⊤i (I − H)εi : 1 ≤ i ≤ p − 1} are mutually independent. After algebraic

simplification, we have

var
( p∑

r=1

Dr

)
=
{
1− (n− d)−1

}2
p−1∑
i=1

( p∑
r=i+1

σ2
rr

)2
var
{
ε⊤i (I −H)εi

}
.

=
{
1− (n− d)−1

}2
p−1∑
i=1

( p∑
r=i+1

σ2
rr

)2{
2σ2

ii(n− d)
}
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≤ 2n

p−1∑
i=1

( p∑
r=i+1

σ2
rr

)2
σ2
ii, (A.28)

where the last inequality is using the fact that {1 − (n − d)−1}2(n − d) = (n − d −

1){1 − (n − d)−1} ≤ n. Since
∑p

r=i+1 σ
2
rr ≤

∑p
r=1 σ

2
rr = pM2,p and M2,p →p M2 with

|M2| < ∞, the right-hand side of (A.28) can be further bounded from infinity by

2n

p−1∑
i=1

(
pM2,p

)2
σ2
ii ≤ 2np2M2

2,p

p−1∑
i=1

σ2
ii ≤ 2np3M3

2,p = o(n4p4).

This verifies the equation (i) in (A.27).

We next show equation (ii). Because ap,r =
∑r

s=1∆p,s, we obtain that

p∑
r=1

σ2
rrap,r−1 =

p∑
r=1

σ2
rr

r−1∑
s=1

∆p,s =

p−1∑
s=1

∆p,s

(
p∑

r=s+1

σ2
rr

)
.

Furthermore, using the fact that {∆p,s : 1 ≤ s ≤ p− 1} is a martingale sequence, we

have

var

(
p∑

r=1

σ2
rrap,r

)
=

p−1∑
s=1

E
(
∆2

p,s

)( p∑
r=s+1

σ2
rr

)2

≤ p2M2
2,p

p∑
s=1

E
(
∆2

p,s

)
.

By Cauchy’s inequality, the right-hand side of the above inequality can be further

bounded from infinity by

p2M2
2,pp

{
p−1

p∑
s=1

E(∆4
p,s)

}1/2

. (A.29)

Moreover, using the result that will be demonstrated in (A.30), we have
∑p

s=1 E(∆4
p,s) =

O(n2p−3). This, together with the assumption, M2,p →p M2 with |M2| < ∞, implies

that the right-hand side of (A.29) is the order of O(np) = o(n3p), which completes the

proof of equation (ii) in (A.27).
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Step 3. We finally show the second part of (A.19). It is noteworthy that

∆p,r = n−1/2p−3/2

r−1∑
i=1

[
{ε⊤i (I −H)εr}2 − (n− d)−1{ε⊤i (I −H)εi}{ε⊤r (I −H)εr}

]

= n−1/2p−3/2

r−1∑
i=1

{ε⊤i Arεi},

where Ar = (I −H)εrε
⊤
r (I −H)− (n− d)−1(I −H){ε⊤r (I −H)εr} that is a symmetric

matrix, and it is related to the current observation εr only. When i ̸= r, one can show

that tr(Ar) = 0 and E(ε⊤i Arεi|εr) = 0. Using these results, we have

n2p6E
(
∆4

p,r

∣∣∣εr) = E

(
r−1∑
i1=1

r−1∑
i2=1

r−1∑
i3=1

r−1∑
i4=1

ε⊤i1Arεi1ε
⊤
i2
Arεi2ε

⊤
i3
Arεi3ε

⊤
i4
Arεi4

∣∣∣εr)

= E

(
3

r−1∑
i=1

∑
j ̸=i

{ε⊤i Arεi}2{ε⊤j Arεj}2 +
r−1∑
i=1

{ε⊤i Arεi}4
∣∣∣εr).

In addition, one can verity by Lemma 2 that there exists constants C1, C2, and C3

such that

n2p6E
(
∆4

p,r

∣∣∣εr) ≤ C1

r−1∑
i=1

∑
j ̸=i

σ2
iiσ

2
jjtr

2(A2
r) + C2

r−1∑
i=1

σ4
ii

[
tr2(A2

r) + tr(A4
r)
]

≤ C3p
2
[
tr2(A2

r) + tr(A4
r)
]
.

After algebraic simplification, we obtain that

tr(A2
r) = tr

(
(I −H)εrε

⊤
r (I −H)εrε

⊤
r (I −H) + (n− d)−2(I −H){ε⊤r (I −H)εr}2

−2(n− d)−1(I −H)εrε
⊤
r (I −H){ε⊤r (I −H)εr}

)
= {1− (n− d)−1}{ε⊤r (I −H)εr}2
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and tr(A4
r) = {1−4(n−d)−1+6(n−d)−2−3(n−d)−3}{ε⊤r (I−H)εr}4. Consequently,

we have

n2p6E(∆4
p,r) ≤ E

{
C3p

2tr2(A2
r) + C3p

2tr(A4
r)
}
≤ C4p

2E
(
{ε⊤r (I −H)εr}4

)

≤ C4p
2E(ε⊤r εr)

4 = C4p
2n4E

(
ε⊤r εr/n

)4
≤ 2C4p

2n4σ4
rr,

where C4 is a positive constant and the last inequality is due to the fact that ε⊤r εr/n →p

σrr. This implies that

E
( p∑

r=1

∆4
p,r

)
≤ 2C4n

2p−3σ4
rr = o

(
n2p−2

)
, (A.30)

which proves the second part of (A.19) and thus completes the proof of Theorem 4.
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