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Abstract

The comonotonicity and countermonotonicity provide intuitive upper and lower depen-
dence relationship between random variables. This paper constructs the shuffle of min’s ran-
dom variable approximations for a given Uniform [0,1] random vector. We find the two optimal
orders under which the shuffle of min’s random variable approximations obtained are shown
to be extensions of comonotonicity and countermonotonicity. We also provide the rate of con-
vergence of these random vectors approximations and apply them to compute Value-at-Risk.
Keywords: Copula, Shuffle of Min approximation, Narrow bounds of copula

1 Introduction
A bivariate copula is a joint distribution on the unit square with Uniform [0,1] marginal distribu-
tions. Sklar’s Theorem (1959) states that for any bivariate distribution H with margins F,G, there
exists a copula C such that H(x,y) = C(F(x),G(y)),∀x,y ∈ R. Any bivariate copula C(u,v) has a
lower and an upper bound, that is,

W (u,v)≤C(u,v)≤M(u,v), ∀u,v ∈ [0,1], (1.1)

where the copula M(u,v) = min(u,v),u,v ∈ [0,1] is called Fréchet upper copula, and W (u,v) =
max(u+ v− 1,0),u,v ∈ [0,1] is called Fréchet lower copula. It is known that the Fréchet upper
copula M(u,v) corresponds to the dependence structure called comonotonicity, and the Fréchet
lower copula W (u,v) corresponds to the countermonotonicity. Here, a pair of random variables
(X ,Y ) is called comonotonic if there exists a random variable Z and two non-decreasing functions
f and g such that X = f (Z) and Y = g(Z), and (X ,Y ) is called countermonotonic if (X ,−Y ) is
comonotonic; see [7], [8] and [20].

In fact, for practical applications, it is necessary to find simple approximations for copulas
that can easily be simulated, in particular for applications in the finance and insurance sectors.
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The simple dependent structures of Fréchet upper bound and lower bound copulas can be ap-
plied in copula approximations. Such approximations are useful for understanding the dependence
structure of complicated copulas and for simplifying computation. For example, the checkmin
approximation makes use of the Fréchet upper copula M(u,v) to approximate the original copula;
both the checkerboard approximation and Bernstein approximation use the independence copu-
la Π(u,v) = uv,u,v ∈ [0,1] in their copula approximation (see [1] and [16]); [21] constructed
a Patched Bivariate Fréchet copula approximation by making use of the linear combination of
M(u,v), Π(u,v) and W (u,v). See also [12] for the importance of constructing new families of
copulas having properties desirable for specific applications.

In this paper, given the target random vector, we will construct a series of random vector ap-
proximations by a grid-type copula approximation–shuffle of min approximations. Here ’Shuffle’
means a special construction method for new copulas ([9], [11] and [15]) and ’min’ represents the
Fréchet upper bound copula M(u,v), corresponding to the comonotonic structure among random
variables. Please see Chapter 3 of [17] for a detailed discussion of shuffle of min copulas. Under
the framework of stochastic measure theory, [15] showed that the approximation error of shuffle
of min is 4

m under the L∞ norm; [7] and [8] extended the ’Shuffle’ method to obtain shuffle of
copula approximations. By extensions of bivariate subcopulas, [2] obtained the general maximum
and minimum shuffle of min extensions for the bivariate copula. The purpose of this paper is to
characterize the specific random variable expressions of the shuffle of min approximations which
is convenient for simulation and financial applications. We use this characterization to re-obtain
the shuffle of min copulas as sharp lower and upper bounds for the original copula. The distance
of our shuffle of min bounds to the original copula is shown to be 2

m under the L∞ norm.
The rest of the paper is organized as follows. Section 2 gives the preparation works including

the definition of bivariate shuffle of min and its probabilistic structures. Section 3 constructs the
random vector approximations for a given bivariate copula by shuffle of min under two specific
partition orders that provide the narrow bounds of the original copula, and also sharpens their
convergent rates. Applications in computation of Value-at-Risk is shown in Section 4.

2 Preparation works for random variable approximations by
bivariate shuffle of min

By stochastic measure theory, [10] defined the generalized shuffling copula which includes shuffle
of min as a special case; [15] showed that there is a strongly piecewise monotonic function con-
necting any two of random variables whose joint distribution is a shuffle of min. Based on [10]
and [15], this section writes out the closed-form random variable expressions of bivariate shuffle
of min to prepare for discussions of its random variable approximations in Section 3.

Denote the unit square as I2 = I(1)× I(2), where I(i) = [0,1], i = 1,2, and the superscript (i)

means the i-th dimensional interval of I2. Let µ([a,b]) be the length of an interval [a,b]. First, we
introduce the definition of the shuffling structure in [10] for easy explanation. A system {J i}2

i=1
is called shuffling structure, if J 1,J 2 are systems of closed and non-empty intervals of I(1), I(2),
and J i =

{
J(i)j = [J(i)j ,J(i)j ]

}m
j=1 satisfies

(P1) for every i∈ {1,2} and h,k ∈ {1,2, . . . ,m}, J(i)h and J(i)k have at most one endpoint in common;
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(P2) ∑
m
j=1 µ(J(1)j ) = ∑

m
j=1 µ(J(2)j ) = 1;

(P3) for every k ∈ {1,2, . . . ,m}, µ(J(1)k ) = µ(J(2)k ).
Based on the shuffling structure above, different shuffling copulas can be obtained by assuming

different constructing copulas (see [10]). Here, we focus one specific shuffling copula–shuffle of
min, and give its random variable expressions in detail. To facilitate our discussion, we define an
interval ordering.

Definition 2.1. If two intervals [a,b] and [c,d] satisfy a < b≤ c < d, then we say the interval [a,b]
is ahead of [c,d], denoted as [a,b] � [c,d]; if a < b < c < d, then we say the interval [a,b] is strictly
ahead of [c,d], denoted as [a,b]≺ [c,d].

Given the shuffling structure system {J i}2
i=1, we use the permutations {σi}2

i=1 on {1,2, . . . ,m}
to represent their respective partition orders, i.e.

J(i)
σi(1)

� J(i)
σi(2)

� · · · � J(i)
σi(m)

, ∀i = 1,2.

Note that J(1)j × J(2)j , ∀ j ∈ {1,2, . . . ,m} is a sub-cube with length µ(J(1)j ) in I2. However, the

endpoints J(1)j , J(2)j and J(1)j , J(2)j as the respective partition orders are different. For distinction,

we write J(i)j := J(i)j (�) and J(i)j := J(i)j (�) for i = 1,2, j ∈ {1,2, . . . ,m}. The partition order � plays
a key role in the properties of shuffle of min approximations of a given copula and we will further
discuss it in Section 3.

A copula function C is a shuffle of min if for the shuffling structure {J i}2
i=1 and the permu-

tation sets {σi}2
i=1 above, it spreads the mass µ(J(1)j ) uniformly along one of the diagonals of the

sub-square J(1)j × J(2)j , ∀ j = 1,2, . . . ,m. For each j = 1,2, . . . ,m, let ω j denote the slope of the

diagonal of J(1)j × J(2)j . If ω j ≡ 1, C is called a straight shuffle of min. If ω j ≡ −1, C is called a
flipped shuffle of min. Let � := {σi, i = 1,2} and � := {ω j, j = 1,2, . . . ,m}. The copula C is said
to be a shuffle of min generated by

(
{J i}2

i=1,�,�
)
.

Now we give the random variable representation of the shuffle of min. Suppose S1 and S2 are
the uniform [0,1] random variables whose joint distribution is the shuffle of min C generated by(
{J i}2

i=1,�,�
)
. According to the construction of C, the relationship between S1 and S2 on each

sub-square J(1)i × J(2)i is linear; specifically,

S2 =
[
S1

m

∑
i=1
I{S1∈J(1)i ,ωi=1}−

m

∑
i=1

(J(1)i (�)− J(2)i (�))I{S1∈J(1)i ,ωi=1}

]
+
[ m

∑
i=1

(J(2)i (�)+ J(1)i (�))I{S1∈J(1)i ,ωi=−1}−S1

m

∑
i=1
I{S1∈J(1)i ,ωi=−1}

]
=: fm(S1|�,�). (2.1)

where I is the indicator function. We obtain different functions between S1 and S2 by setting d-
ifferent m, � and �. Particularly, we denote �straight = {σ1(i) = σ2(i) = i, i = 1,2, . . . ,m} and
� f lipped = {σ1(i) = σ2(i) = m− i, i = 1,2, . . . ,m} as the straight and flipped orders. Given m > 1,
by equation (2.1), if ωi = 1, ∀i = 1,2, . . . ,m, then we have S1 = S2 under straight order �straight ,
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which means (S1,S2) is comonotonicity; If ωi =−1, ∀i = 1,2, . . . ,m, then S1 =−S2 under flipped
order � f lipped , which means (S1,S2) is countermonotonicity. Thus, the straight and flipped bivari-
ate shuffle of min under straight order and flipped order can be regarded as a generalization of
Fréchet copulas corresponding to comonotonicity and countermonotonicity. We also note that the
random variable representation of given in (2.1) is convenient to use for generating random num-
bers for a shuffle of min. Application of using such random numbers in financial risk management
will be illustrated in Section 4.

By the random variable expressions in (2.1), the joint distribution C has the expression

P(S1 ≤ u1,S2 ≤ u2) =
m

∑
i=1

max
{

min{(u1 +u2− J(2)i (�)− J(1)i (�))I{ωi=−1},

u1− J(1)i (�),u2− J(2)i (�),J(1)i (�)− J(1)i (�)},0
}
. (2.2)

Remark 2.1. Like discussions of the bivariate case, it is easy to obtain the random variable ex-
pressions in multivariate dimensions. That is, the random variable expressions (S1, . . . ,Sd) of the
d dimensional shuffle of min C, generated by

(
{J i}d

i=1,{σi}d
i=1,{ω j(h,k),h,k = 1,2, . . . ,d}m

j=1
)
,

are

Sk =
m

∑
i=1

[
(Sh− J(h)i + J(k)i )I{ωi(h,k)=1}+(J(k)i −Sh + J(h)i )I{ωi(h,k)=−1}

]
I{

Sh∈J(h)i

},
where for any h , k, h,k = 1,2, . . . ,d, ω j(h,k) = 1(or−1) means the comonotonicity (or counter-
monotonicity) between Sh and Sk in sub-square J(h)j × J(k)j .

3 Random vector approximation by shuffle of min for a given
random vector

In this section, for a given random vector (U,V ) with Uniform [0,1] margins, we denote their joint
distribution as C and then construct a sequence of random vectors that their joint distributions are
shuffle of min approximations of C. Based on the ideas in [16], we apply a two-step partition
scheme to construct the random vectors of the shuffle of min approximations for C. Given an
integer m, we partition the interval I(i) = [0,1], i = 1,2 equally into m subintervals, and obtain m2

sub-squares {
I(1)i × I(2)j , i, j = 0,1, . . . ,m−1

}
,

where I(i)0 = [0,1/m] is a close interval and I(i)j = ( j/m,( j + 1)/m], i = 1,2, j = 0,1, . . . ,m− 1.

By Definition 2.1, the orders of the subintervals {I(1)i } and {I(2)j } are both with no shuffling, i.e.

I(i)0 � I(i)1 � · · · � I(i)m−1, i = 1,2. This is our first step partition.

Writing Ai, j = {(U,V )∈ I(1)i ×I(2)j }, i, j = 0,1, . . . ,m−1, then Ai, j, 0≤ i, j≤m−1 is a partition

of the probability space. Considering the cell probability P(Ai, j) = P(U ∈ I(1)i ,V ∈ I(2)j ) for fixed
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i, j ∈ {0,1, . . . ,m−1}, it is easy to see that

m−1

∑
k=0

P(Ai,k) = P(U ∈ I(1)i ) =
1
m

and
m−1

∑
l=0

P(Al, j) = P(V ∈ I(2)j ) =
1
m
. (3.1)

In the second step, for each I(1)i × I(2)j , i, j ∈ {0,1, . . . ,m− 1}, we use P(Ai,k), k = 0,1, . . . ,m− 1

to partition I(1)i and P(Al, j), l = 0,1, . . . ,m− 1 to partition I(2)j . Specifically, for the subinterval

I(1)i , we find one partition I(1)i,k =: (I(1)i,k , I
(1)
i,k ], k = 0,1, . . . ,m−1 such that

⋃
0≤k≤m−1 I(1)i,k = I(1)i and

µ(I(1)i,k ) = P(Ai,k). To obtain the end points I(1)i,k , k = 0,1, . . . ,m−1, we use a permutation σ
(1)
i on

{0,1, . . . ,m−1} to order I(1)i,k , k = 0,1, . . . ,m−1 as

I(1)
i,σ (1)

i (0)
� I(1)

i,σ (1)
i (1)

� · · · � I(1)
i,σ (1)

i (m−1)
. (3.2)

Similarly, for the subinterval I(2)j , we find its partition I(2)l, j =: (I(2)l, j , I
(2)
l, j ], l = 0,1, . . . ,m−1 such that⋃

0≤l≤m−1 I(2)l, j = I(2)j and µ(I(2)l, j )=P(Al, j). Here, we use another permutation σ
(2)
j on {0,1, . . . ,m−

1} to order I(2)l, j , l = 0,1, . . . ,m−1 as

I(2)
σ
(2)
j (0), j

� I(2)
σ
(2)
j (1), j

� · · · � I(2)
σ
(2)
j (m−1), j

. (3.3)

Note that for each sub-square I(1)i × I(2)j , I(1)i, j × I(2)i, j ⊂ I(1)i × I(2)j is also a sub-square with length

µ(I(1)i, j ) = µ(I(2)i, j ) = P(Ai, j) which can be determined by the original random vector (U,V ). Then it

is easy to verify that {I(k)i, j , i, j = 0,1, . . . ,m−1,k = 1,2} is a shuffling structure. In the following,

we re-denote � = {σ (i)
j , i = 1,2; j = 0,1, . . . ,m− 1}. From equation (3.2) and (3.3), � plays an

important role in the lower end points of I(1)i, j and I(2)i, j . Particularly,

I(1)i, j (�) =
i
m
+

[σ
(1)
i ]−1( j)−1

∑
q=0

P(A
i,σ (1)

i (q)
); I(2)i, j (�) =

j
m
+

[σ
(2)
j ]−1(i)−1

∑
q=0

P(A
σ
(2)
j (q), j

), (3.4)

where [σ
(k)
i ]−1 means the inverse function of σ

(k)
i for k = 1,2, i = 0,1, . . . ,m−1.

Remark 3.1. As in Section 2, the permutations are introduced to illustrate the partition order of
subintervals. However, in the two-step construction of shuffle of min approximation, we make no
shuffling in the first step partition, but use different permutations to order the subintervals of I(1)i

and I(2)j in the second step partition.

Re-denote � = {ωi, j, i, j = 0,1, . . . ,m− 1}. Based on the partitions of I(1)× I(2) under the
two-step scheme, we can define the uniform [0,1] random variable fm(U |�,�) from the original
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random variable U as follows.

fm(U |�,�)

=

[
U

m−1

∑
i=0

m−1

∑
j=0
I{U∈I(1)i, j ,ωi, j=1}−

m−1

∑
i=0

m−1

∑
j=0

[I(1)i, j (�)− I(2)i, j (�)]I{U∈I(1)i, j ,ωi, j=1}

]

+

[m−1

∑
i=0

m−1

∑
j=0

[I(2)i, j (�)+ I(1)i, j (�)]I{U∈I(1)i, j ,ωi, j=−1}−U
m−1

∑
i=0

m−1

∑
j=0
I{U∈I(1)i, j ,ωi, j=−1}

]
(3.5)

where I{U∈I(1)i, j ,ωi, j=1} (I{U∈I(1)i, j ,ωi, j=−1}) is the indicator of a comonotonic (countermonotonic) rela-

tionship between U and fm(U |�,�) on I(1)i, j × I(2)i, j . By equation (3.5), it is easy to obtain the joint
distribution of (U, fm(U |�,�)) as

C(m)
SM (u,v|�,�)

=
m−1

∑
i=1

m−1

∑
j=0

max{min{[u+ v− I(2)i, j (�)− I(1)i, j (�)]I{ωi, j=−1},u− I(1)i, j (�),v− I(2)i, j (�),P(Ai, j)},0}.

(3.6)

Constructed from the original random vector (U,V ) under the two-step scheme, C(m)
SM (u,v|�,�)

spreads the mass P(Ai, j) uniformly along one of the diagonals of the sub-square I(1)i, j × I(2)i, j . Then

C(m)
SM (u,v|�,�) is a shuffle of min approximation generated by

{
{I(k)i, j }

m−1
i, j=0,�,�

}
from discussions

in Section 2. Based on the discussions in [15],[16], [10] and so on, (U, fm(U |�,�)) converges to
(U,V ) in distribution as m goes to infinity.

Denote the Spearman’s rho of (U, fm(U |�,�)) as ρSM(�,�). By equation (3.5), we have

ρSM(�,�) =
m−1

∑
i=0

m−1

∑
j=0

{[
4−12

(
I(1)i, j (�)− I(2)i, j (�)

)
E[UI{U∈I(1)i, j }

]
]
I{ωi, j=1}

+
[
12
(
I(2)i, j (�)+ I(1)i, j (�)

)
E[UI{U∈I(1)i, j }

]−4
]
I{ωi, j=−1}

}
−3. (3.7)

Let �≡ 1(−1) if ωi, j = 1(−1) for all i, j ∈ {0,1, . . . ,m−1}. Thus, (U, fm(U |�,1)) is comonoton-
ic and (U, fm(U |�,−1)) is countermonotonic. Next, we find the optimal partition orders �∗ max-
imizing ρSM(�,1) and �

# minimizing ρSM(�,−1). Suppose that �∗ := {σ (1)∗
i ( j),σ (2)∗

i ( j), i, j =
0,1, . . . ,m−1} and �# := {σ (1)#

i ( j),σ (2)#
i ( j), i, j = 0,1, . . . ,m−1}.

Theorem 3.1. For the shuffle of min random variables (U, fm(U |�,�)) obtained in the two-step
scheme, if �∗ = argmax�ρSM(�,1) and �# = argmin�ρSM(�,−1), then for all i, j ∈ {0,1, . . . ,m−
1}, we have σ

(1)∗
i ( j) = σ

(2)∗
i ( j) = j and σ

(1)#
i ( j) = σ

(2)#
i ( j) = m− j−1.

The proof of Theorem 3.1 is shown in the Appendix. For illustration, we call �∗ as the straight
order and �

# as the flipped order. By Theorem 3.1, under the straight order, equations (3.2) and

6



(3.3) become

I(1)i,0 � I(1)i,1 � · · · � I(1)i,m−2 � I(1)i,m−1 and I(2)0, j � I(2)1, j � · · · � I(2)m−2, j � I(2)m−1, j.

Under the flipped order, equations (3.2) and (3.3) become

I(1)i,m−1 � I(1)i,m−2 � · · · � I(1)i,1 � I(1)i,0 and I(2)m−1, j � I(2)m−2, j � · · · � I(2)1, j � I(2)0, j .

Based on Theorem 3.1, it is easy to obtain the properties of the partition intervals’ end points in
the following corollary.

Corollary 3.1. For any i, j = 1,2, . . . ,m, under the straight order �∗, we have I(1)i, j−1(�
∗) = I(1)i, j (�

∗)

and I(2)i−1, j(�
∗) = I(2)i, j (�

∗); under the flipped order �#, we have I(1)i, j (�
#) = I(1)i, j−1(�

#) and I(2)i, j (�
#) =

I(2)i−1, j(�
#).

Remark 3.2. The order (left to right, bottom to top) mentioned in [2] which extends the bivariate
sub-copula by blocks is essentially the same as the straight order. In our paper, we further obtain
the flipped order and then show the probability properties of the straight and flipped orders.

Denote C(m)
SSM+ and C(m)

FSM− as the joint distributions of (U, fm(U |�∗,1)) and (U, fm(U |�#,−1)).
Then by equation (3.6), we have

C(m)
SSM+(u,v) =

m−1

∑
i=0

m−1

∑
j=0

max
{

min{u− I(1)i, j (�
∗),v− I(2)i, j (�

∗),P(Ai, j)},0
}

and

C(m)
FSM−(u,v) =

m−1

∑
i=0

m−1

∑
j=0

max
{

min{u+ v− I(2)i, j (�
#)− I(1)i, j (�

#),

u− I(1)i, j (�
#),v− I(2)i, j (�

#),P(Ai, j)},0
}
.

By [2], we know that C(m)
SSM+(u,v) and C(m)

FSM−(u,v) are lower and upper bounds of the original
distribution C. In Theorem 3.1, we further gives the convergent rate of the two bounds.

Proposition 3.1. For any random vector (U,V ) with Uniform [0,1] margins, given integer m, the
shuffle of min approximations C(m)

SSM+ under the straight order and C(m)
FSM− under the flipped order

in the two-step partition of I2 satisfy

sup
(u,v)∈[0,1]2

{
C(m)

SSM+(u,v)−C(u,v)
}
≤ 2

m
and sup

(u,v)∈[0,1]2

{
C(u,v)−C(m)

FSM−(u,v)
}
≤ 2

m
.

Proof. We only prove the results of C(m)
SSM+(u,v). The proof for C(m)

FSM−(u,v) is similar. For fixed

(u,v) ∈ [0,1]2, there exists h,k such that (u,v) ∈ I(1)h × I(2)k = ( h
m ,

h+1
m ]× ( k

m ,
k+1

m ]. Inspired by [2],

we divide the probability support of C(m)
SSM+ in I(1)h × I(2)k into three sub-regions which are marked
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Figure 1: The subregions of I(1)h × I(2)k under the two-step partitions, where I(1)h,k × I(2)h,k is the sub-square. The

straight shuffle of min approximation C(m)
SSM+(u,v) distributes the probability P(Ah,k) uniformly on the main

diagonal of I(1)h,k × I(2)h,k .

h
m

1h
m
+

k
m

1k
m
+

( )1
,h kI

( )2
,h kI

( )I

( )I I

( )I I I

( )1
, ,h jI j k< ( )1

, ,h jI j k>

( )2
, ,i kI i h<

( )2
, ,i kI i h>

in Figure 1. We will compare C(m)
SSM+ with C in each region. First, consider the case that (u,v) is in

the sub-region (I). We have

C(m)
SSM+(u,v) = u− h

m
+C(m)

SSM+(
h
m
,v) =

{
u− h

m + v− k
m +C( h

m ,
k
m),

k
m ≤ v≤ k

m +λ1

u− h
m +C( h

m ,
k+1

m ) k
m +λ1 ≤ v≤ k+1

m ,

where λ1 =C( h
m ,

k+1
m )−C( h

m ,
k
m) (see [2]). Then

C(m)
SSM+(u,v)−C(u,v) =

{
P( h

m ≤U ≤ u,V ≥ v)+P(U ≥ u, k
m ≤V ≤ v), k

m ≤ v≤ k
m +λ1

P(U ≤ h+1
m ,v≤V ≤ k+1

m )+P( h
m ≤U ≤ u,V ≥ v), k

m +λ1 ≤ v≤ k+1
m

≤

{
u− h

m + v− k
m ,

k
m ≤ v≤ k

m +λ1
k+1

m − v+u− h
m ,

k
m +λ1 ≤ v≤ k+1

m

≤ 2
m

Next, consider the case that (u,v) is in the sub-region (II). We have

C(m)
SSM+(u,v) = v− k

m
+C(m)

SSM+(u,
k
m
) =

{
u− h

m + v− k
m +C( h

m ,
k
m),

h
m ≤ v≤ h

m +λ2

v− k
m +C(h+1

m , k
m)

h
m +λ2 ≤ v≤ h+1

m ,

where λ2 =C(h+1
m , k

m)−C( h
m ,

k
m). Similarly, we have

C(m)
SSM+(u,v)−C(u,v) =

{
P( h

m ≤U ≤ u,V ≥ v)+P(U ≥ u, k
m ≤V ≤ v), h

m ≤ u≤ h
m +λ2

P(u≤U ≤ h+1
m ,V ≤ k+1

m )+P(U ≥ u, k
m ≤V ≤ v), h

m +λ2 ≤ u≤ h+1
m

≤ 2
m

8



Finally, consider the case that (u,v) is in the sub-region (III). We have C(m)
SSM+(u,v) =C(h+1

m , k+1
m ).

By the Lipschitz property of a copula, we have C(m)
SSM+(u,v)−C(u,v) =C(h+1

m , k+1
m )−C(u,v)≤ 2

m .

Combining the above results, we conclude that 0 ≤ C(m)
SSM+(u,v)−C(u,v) ≤ 2

m for any (u,v) ∈
I2. �

Remark 3.3. [15] proved

sup
(u,v)∈[0,1]2

|C(m)
SM (u,v)−C(u,v)| ≤ 4

m

using the fact that C(m)
SM ( k

m ,
l
m) =C( k

m ,
l
m),k, l ∈ {0,1, . . . ,m}. Proposition 3.1 improves this result

by providing a lower and an upper bound of C(u,v) and sharpening the order of approximation.

The following result gives the upper and lower bound of E[g(U,V )] for a smooth function g.

Corollary 3.2. Suppose that the measurable function g defined on I2 has the second order partial
derivatives ∂ 2g(u,v)

∂u∂v . Then we have

∣∣E[g(U,V )]−E[g(U, fm(U |�,�))]
∣∣≤ 2

m

∫ 1

0

∫ 1

0

∣∣∂ 2g(s, t)
∂ s∂ t

∣∣dsdt, (3.8)

where the random variable fm(U |�,�) represents either fm(U |�∗,1) or fm(U |�#,−1). Further-
more, if g is a convex function, then

E[g(U, fm(U |�#,−1))]≤ E[g(U,V )]≤ E[g(U, fm(U |�∗,1))]. (3.9)

Proof. Note that the measurable function g can be rewritten as

g(u,v) =
∫ u

0

∫ v

0

∂ 2g(s, t)
∂ s∂ t

dsdt +g(0,v)+g(u,0)−g(0,0).

Thus,

E[g(U,V )] =
∫ 1

0

∫ 1

0
g(u,v)C(du,dv)

=
∫ 1

0

∫ 1

0

∫ u

0

∫ v

0

∂ 2g(s, t)
∂ s∂ t

dsdt C(du,dv)+
∫ 1

0
g(0,v)dv+

∫ 1

0
g(u,0)du−g(0,0)

=
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∂ 2g(s, t)
∂ s∂ t

I{u≥s,v≥t}C(du,dv)dsdt +
∫ 1

0
g(0,v)dv+

∫ 1

0
g(u,0)du−g(0,0)

=
∫ 1

0

∫ 1

0

∂ 2g(s, t)
∂ s∂ t

C(s, t)dsdt +
∫ 1

0
g(0,v)dv+

∫ 1

0
g(u,0)du−g(0,0),

where C(s, t) = P(U > s,V > t) = 1− s− t +C(s, t). Similarly, we have

E[g(U, fm(U |�∗,1))] =
∫ 1

0

∫ 1

0

∂ 2g(s, t)
∂ s∂ t

C(m)
SSM+(s, t)dsdt +D

9



and

E[g(U, fm(U |�#,−1)] =
∫ 1

0

∫ 1

0

∂ 2g(s, t)
∂ s∂ t

C(m)
FSM−(s, t)dsdt +D,

where D =:
∫ 1

0 g(0,v)dv+
∫ 1

0 g(u,0)du−g(0,0). Combining this with Proposition 3.1, we have

∣∣E[g(U,V )]−E[g(U, fm(U |�∗,1))]
∣∣= ∣∣∫ 1

0

∫ 1

0

∂ 2g(s, t)
∂ s∂ t

[C(s, t)−C(m)
SSM+(s, t)]dsdt

∣∣
≤ 2

m

∫ 1

0

∫ 1

0

∣∣∂ 2g(s, t)
∂ s∂ t

∣∣dsdt.

We can argue similarly for
∣∣E[g(U,V )]− E[g(U, fm(U |�#,−1))]

∣∣. The proof of equation (3.8)

is complete. If g is a convex function, i.e. ∂ 2g(u,v)
∂u∂v ≥ 0, then by comparing the expressions

of E[g(U,V )], E[[g(U, fm(U |�∗,1))] and E[g(U, fm(U |�#,−1))], equation (3.9) follows natural-
ly. �

Remark 3.4. Comparing with the discussions of bivariate shuffle of min approximations in [16]
and [2], we directly construct the random vector approximations (U, fm(U |�,�)) from the orig-
inal random vector (U,V ) by a shuffle of min approximation, which makes it convenient for an
application in simulation and finance.

4 Applications
Value-at-risk (VaR) is a useful measure of risk in financial risk management. For any random
variable X with distribution F , given the confidence level α ∈ (0,1), the VaRα(X) is defined as

VaRα(X) = inf{t ≤ 0 : F(t)≥ α}.

Calculation of the VaR for a portfolio usually involves modeling the dependence of asset returns
using copulas (see [3], [5] and [13] etc). Since it is often difficult to have a closed-form expression
of the VaR for a portfolio, simulation methods are widely used (see [4]). In the following example,
we illustrate the use of the shuffle of min approximations for generating random numbers from a
given copula and the application in computation of the VaR of a portfolio.

There are general algorithms available to simulate bivariate Archimedean copulas (as the Clay-
ton copula), see e.g. [14], Chapter 2. Here we use a bivariate Clayton copula to show the approx-
imation effect, from the approximation results we can see that the shuffle of min approximation
can be used to compute the approximate VaR and the approximate errors decrease as m gets large.
Note, however, that our use of bivariate Clayton copula is for illustration purpose. The proposed
method is much more useful in cases when the original copula cannot be easily simulated, e.g., in
the case of Archimedean copulas with an alpha-stable mixing distribution (see [14], Chapter 6).

Example 4.1. Consider the bivariate Clayton copula C(u,v) with parameter θ = 5 and let (U,V )
be the random vector whose distribution is this copula. Given an integer m, we use (U,η+) and
(U,η−) to denote the random vectors corresponding to the straight shuffle of min approximation-
s C(m)

SSM+ under straight order and the flipped shuffle of min approximation C(m)
FSM− under flipped

10



order of C(u,v). Note that the VaRs of U +V , U +η+ and U +η− are the quantiles of the cor-
responding distributions. We can generate random numbers from these distributions and use the
empirical quantiles to approximate the theoretical quantiles. As an illustration, we computed the
VaRs at the level α = 0.9, using N = 10000 random numbers from each distribution. Figure 2
shows the relative errors of VaR0.9(U+η+)−VaR0.9(U+V )

VaR0.9(U+V ) and VaR0.9(U+η−)−VaR0.9(U+V )
VaR0.9(U+V ) as a function of

m averaged over 100 simulation runs. We observe from the figure that the shuffle of min approx-
imation can be used to compute the approximate VaR and the relative errors decrease as m gets
large.

Figure 2: The relative errors of the VaR by using the shuffle of min approximations to generate random
numbers from the Clayton copula.
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Next, we consider the empirical shuffle of min approximation based directly on the data, which
is the use of the empirical copula as a basis for an extension to a shuffle of min copula. This
comes very close to ideas in the recent paper by [6] using rook and Bernstein copulas for practical
applications.

Example 4.2. For an easy illustration, we generated random numbers (Ui,Vi), i = 1, . . . ,N, N =
500 from the bivariate Clayton copula with parameter θ = 6 as our data. Given m = 100, the key
to simulate random numbers from the empirical shuffle of min approximation is to find its random
variable expressions in equation (3.5). The specific steps are given in the following.
Algorithm
1. For the data (Ui,Vi), i = 1, . . . ,N, compute the cell probabilities as

Pe(Ai, j) =
1
N

N

∑
k=1
I{ i

m≤Uk≤ i+1
m , j

m≤Vk≤ j+1
m

}, i, j = 0,1, . . . ,m−1.

2. The cell probabilities Pe(Ai, j) may not satisfy the uniform margin properties, that is, we may
have

m−1

∑
i=0

Pe(Ai, j) ,
1
m

and
m−1

∑
j=0

Pe(Ai, j) ,
1
m
.

11



Thus it is not suitable to use Pe(Ai, j) for partitioning I(1)i × I(2)j directly. In order to construct an
empirical shuffle of min approximation, we adjust the cell probabilities by solving the following
minimization problem: (see [19]).

min
{m−1

∑
i=0

m−1

∑
j=0

[xi, j−Pe(Ai, j)]
2} such that 0≤ xi, j ≤ 1,

m−1

∑
i=0

xi, j =
1
m
,

m−1

∑
j=0

xi, j =
1
m
.

From discussions in [19], we make use of their explicit (suboptimal) solution denoted as x∗i, j =:
xi, j+a

1+m2×a , where a =: −min{xi, j|1 ≤ i, j ≤ m} and xi, j = Pe(Ai, j)− ∑
m
i=1 Pe(Ai, j)

m − ∑
m
j=1 Pe(Ai, j)

m + 2
m2

(see the detailed discussions in [19]).
3. According to equation (3.4) and the empirical probabilities x∗i, j obtained in step 2, we compute
the end points of subintervals by the two-step partition under straight orders.
4. Simulate a uniform [0,1] random number us and compute vs by using (3.5), then the random
number pair (us,vs) is from the empirical shuffle of min approximation.

Using the algorithm above, we generated N = 500 random numbers (us
i ,v

s
i ) from the empirical

shuffle of min approximation. We also performed the Kolmogorov-Smirnov test and obtained the
p-value 0.2000. The large p-value suggests that {(ui,vi)}N

i=1 and (us
i ,v

s
i )

N
i=1 can be statistically

considered as coming from the same distribution. Figure 3 shows scatters of the original empirical
data (ui,vi) and the random numbers (us

i ,v
s
i ) from the empirical shuffle of min approximation.

Figure 3: scatters of the original data {(ui,vi), i = 1,2, . . . ,N} (left) and its empirical shuffle of min
approximation random data {(us

i ,v
s
i ), i = 1,2, . . . ,N} (right)
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Appendix
We first prove the following lemma before the proof of Theorem 3.1.
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Lemma 4.1. If �≡ 1, then we have

m−1

∑
i=0

m−1

∑
j=0

(
I(1)i, j (�)− I(2)i, j (�)

)
E[UI{U∈I(1)i, j }

] =
1
2

m−1

∑
i=0

m−1

∑
j=0

(
I(1)i, j (�)− I(2)i, j (�)

)2P(Ai, j); (A-1)

If �≡−1, then we have

m−1

∑
i=0

m−1

∑
j=0

(
I(2)i, j (�)+ I(1)i, j (�)

)
E[UI{U∈I(1)i, j }

] =
1
2

m−1

∑
i=0

m−1

∑
j=0

(
I(2)i, j (�)+ I(1)i, j (�)

)2P(Ai, j). (A-2)

Proof. Based on the fact that E[U2] = E[ f 2
m(U |�,�)], it is easy to obtain equations (A-1) and (A-2)

from equation (3.5). �

Proof of Theorem 3.1. We only give the proof of the case argmax�ρSM(�,1). It is similar to prove
the case argmin�ρSM(�,−1). It is equal to show the inverse negative proposition. That is, we will
prove that if there exists h,k such that σ̂

(1)
h (k) , k, σ̂

(1)
i ( j) = j, ∀i , h, j , k and σ̂

(2)
i ( j) = j,

i, j ∈ {0,1, . . . ,m− 1}, denoting �̂ = {σ̂ (1)
i ( j), σ̂ (2)

i ( j), i, j ∈ {0,1, . . . ,m− 1}, then ρSM(�̂,1) is
not the maximum Spearman’s rho. In fact, we will show ρSM(�̂,1)< ρSM(�∗,1).

Combining equation (3.7) with Lemma 4.1, we have

ρSM(�,1) = 4−6
m−1

∑
i=0

m−1

∑
j=0

[(
I(1)i, j (�)− I(2)i, j (�)

)2P(Ai, j)
]
.

Then

ρSM(�∗,1)−ρSM(�̂,1) = 6
m−1

∑
i=0

m−1

∑
j=0

{[(
I(1)i, j (�̂)− I(2)i, j (�̂)

)2−
(
I(1)i, j (�

∗)− I(2)i, j (�
∗)
)2]P(Ai, j)

}
,

(A-3)

Suppose σ̂
(1)
h (k) = l ≤ k. By comparing �∗ with �̂, there are only σ

(1)
h (k) , σ

(1)∗
h (k) and σ

(1)
h (l) ,

σ
(1)∗
h (l). Thus, equation (A-3) becomes

ρSM(�∗,1)−ρSM(�̂,1) = 6
{[(

I(1)h,k(�̂)− I(2)h,k(�̂)
)2−

(
I(1)h,k(�

∗)− I(2)h,k(�
∗)
)2]P(Ah,k)

+
[(

I(1)h,l (�̂)− I(2)h,l (�̂)
)2−

(
I(1)h,l (�

∗)− I(2)h,l (�
∗)
)2]P(Ah,l)

}
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Based on the end points in equation (3.4), it is easy to compute that

ρSM(�∗,1)−ρSM(�̂,1)

= 6P(Ah,k)P(Ah,l)[
2(h− k)

m
−2

h−1

∑
q=0

P(Aq,k)+P(Ah,l)+D1]

−6P(Ah,k)P(Ah,l)[
2(h− l)

m
−2

h−1

∑
q=0

P(Aq,l)+P(Ah,k)+D1]

= 6P(Ah,k)P(Ah,l)[
2(l− k−1)

m
+2P(U ≤ h

m
,

l
m
≤V ≤ l +1

m
)

+2P(U ≥ h+1
m

,
k
m
≤V ≤ l

m
)+P(Ah,k)+P(Ah,l)]

≥ 0.

where D1 =∑
l−1
q=k+1 P(Ah,q)+2∑

k−1
q=0 P(Ah,q). Thus ρSM(�̂,1)≤ ρSM(�∗,1). The conclusion comes.

�
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