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Abstract

This paper investigates the quasi-maximum likelihood (QML) estimation of spatial panel data models
where spatial weights matrices can be time varying. We show that QML estimate is consistent and
asymptotically normal. We also derive the asymptotic distribution of average impact coefficients (direct,
indirect, total). Monte Carlo results are reported to investigate the finite sample properties of QML
estimates and impact coefficients.
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1. Introduction

For spatial panel data models, the spatial weights matrix can be based on contiguity or distances among
regions, which is usually time invariant. However, the spatial weights matrix can also be constructed from
economic/socioeconomic distances or demographic characteristics, which might be changing over time. One
may wonder whether we can easily handle the models with time varying spatial weights, and whether ignoring
time variation in spatial weights matrices would have substantial consequences on estimates. These motivate
our investigation on the spatial panel data model with time varying spatial weights matrices. Lee and Yu
(2012) investigate the time varying weights matrices in a dynamic spatial panel model setting, where the
number of time periods T is assumed to be large. In the current paper, we consider the static spatial panel
model with both individual and time fixed effects, where T could be finite or large, and investigate the
quasi-maximum likelihood (QML) estimation.

Compared to the development in the estimation and testing in spatial panel data models, the estimation
and statistical inference of impact effects are rarely carried out in empirical applications. LeSage and Pace
(2009) provide a computationally efficient simulation approach to produce empirical estimates of dispersion
for scalar summary measures of impacts. Debarsy et al. (2011) extend the preceding approach to the
dynamic spatial panel data models with a time invariant spatial weights matrix. Elhorst (2012) provides
Matlab routines for the bias-corrected estimates in Lee and Yu (2010) and relevant impact analysis. The
current paper will provide the estimation and inference for those impacts based on the QML estimates.

The rest of the paper is organized as follows. Section 2 introduces the model and establishes asymptotic
properties of QML estimators. Section 3 investigates the impact estimates and their asymptotic inference.
Section 4 provides Monte Carlo results. Section 5 concludes the paper. Due to space limit, lemmas and

proofs are collected in a supplement file available upon request.

2. The Model and Asymptotic Properties of the QML Estimate

The model considered is
Ynt = )\OWntYnt + Xntﬁo + Cno + atOln + Vnta t= ]-7 23 ceey T7 (1)

where Y,: = (Y11, Yot, -, Ynt)' and Vip = (v1g, V2t ..., Unt)’ are n x 1 column vectors, and v;’s are i.i.d. across
i and t with zero mean and variance o3. The X,; is an n x K matrix of individually and time varying
nonstochastic regressors, ¢, is an n X 1 column vector of individual effects, and ayg is the tth element of
the T x 1 fixed time effect vector apg with [, being n x 1 vector of ones. The spatial weights matrix W,,; is

nonstochastic and it could be time varying. We assume that W, is row-normalized as in common practice.

Similar to Lee and Yu (2010), we can use the eigenvector matrix of J,, = I, — %lnl; to eliminate the time



effects. However, we will directly estimate the individual effects.! By denoting S,;(\) = I,, — AW,,; for an
arbitrary A and Xm =Xt — % Zthl Xnt, the concentrated log likelihood (with individual effects and time

effects concentrated out) is

-1)T -1)T 1 ~ -
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where Vi (8) = Spe(N) Yoe— X8 With Sps(N)Yas = Snt(A)Yos— 5 311 St (A)Yos and J, Vit (8) = i [Srut(A) Yo —
X3 — éily] because J,l, = 0.

We consider the properties of QMLE when n is large while T' can be finite or large. For asymptotic
analysis of the QML estimators, we assume the following regularity conditions.

Assumprion 1. W,,;’s are row-normalized nonstochastic spatial weights matrices with zero diagonals.
Assumprion 2. The disturbances {v;:}, ¢ = 1,2,...,n and t = 1,2,..., T, are i.i.d. across i and ¢t with zero
mean, variance o2 and E |v;¢]*" < oo for some 7 > 0.

Assumprion 3. The elements of X,,;, ¢,0 and apg are nonstochastic and bounded, uniformly in n and t¢.
Also, lim,, % Zf:l X;LtJnXm exists and is nonsingular.

Assumprion 4. S,:(\) is invertible for all ¢ and for all A € A, where the parameter space A is compact
and \g is in the interior of A.

Assumprion 5. W,’s and S,,,'(\)’s are uniformly bounded (uniformly in ¢ for W,’s, and uniformly in
A€ A and t for S, (\)’s) in both row and column sums in absolute value.

Assumprion 6. n is large, where T' can be finite or large.

In Lee and Yu (2010) with time invariant weights matrix, the direct approach (estimating the individual
effects directly) will yield bias for the variance parameter. Denote 07 = 0y — (01 (x+1), %O’%)/. The asymp-
totic analysis for the direct approaches is based on 1. For the time varying spatial weights matrices case
in the current paper, because we transform the data to eliminate the time effects but directly estimate the
individual effects, we expect that the bias for the variance parameter remains. Thus, we will similarly base
our asymptotic analysis on 07, and make bias correction for the variance parameter.

Denoting Gnt = Wnt ,;tl, G/n—t\)_(/nt = GntXnt — % Z?:l GntXnt and ént = Gnt — % Z?:l Gnt- The

information matrix ¢, ,r = —E ((n—ll)T i lnaLe"é’aT,(oT)) is equal to
1 Ok xK * *
: T
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IWe can eliminate the individual effects by eigenvector matrix of Jp = I — %lTl’T. But, due to the time varying feature
of spatial weights matrices, the transformed equation is no longer an SAR process and the QML approach cannot be applied
directly. Thus, we will adopt a direct approach where we eliminate the time effects but estimate the individual effects directly.



where HnT = o 1)T Zt 1( nts ( ntXntﬂo + éntcno))/t]n(f(nta (GntXntBo + éntcno))- The limit of ZQT,nT

is nonsingular if lim,, .., EH¢, is nonsingular or

. ( nGnt)
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For asymptotic distribution, denote
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Assumprion 7. Either lim,, .. EH¢ - is nonsingular or (4) holds.
Assumption 7 assures that the information matrix is nonsingular.
Theorem 1 Under Assumptions 1-7, the QMLE 0,7 that mazimizes (2) has
5 d . T 1 -1
(n = DT (Onr — 07) = N(O, lim = (Bor.n7) " (Zorn7 + Qor 1) (Bornr) ™) (5)

Therefore, the variance estimate 2, does not converge to o2 when T is a fixed finite value as n tends
to infinity. It will be consistent only when T is large. The (ﬁnT,)\nT)’ of 0,7 will be consistent even
when T is small. From Theorem 1, it is straightforward to construct the bias corrected estimates éiT =
(B;T, AnT, TTl AZT)’ = A,r0,1 where A, = diag(1x 1, 7— 1) Correspondingly,

1

(n = DT (B — 00) > N(0, lim Zg, ), (6)

where EGOmT = %AnT(EOT,nT)_I(EGTmT + QE'T,nT)(ZGT,nT)_lAnT-

3. Impact Analysis

OYny

We take the partial derivatives 5 X

= (I, — \oWni) 1840 and define
Rnk = (In - )\OWnt)_lﬂ]go (7)

as the impact matriz associated to the k' explanatory variable (for notational simplicity, we omit the ¢-
subscript here). In contrast to the classical linear model, diagonal elements of this matrix are different from

one another, and off-diagonal elements are non null and the matrix is not symmetric.



The diagonal elements of this matrix, diag{ Ry}, represent the direct impacts including feedback effects,
where individual ¢ affects individual j and individual j also affects individual 7 as well as longer paths which
might go from individual ¢ to j to k and back to i. Those feedback effects corresponding to diag{ R.x} — Broln
are inherently heterogenous, due to differentiated interaction terms in the W,; matrix. The off-diagonal
elements of the impact matrix Ry, —diag{ R,k } represent indirect impacts, which can be seen as the difference
of the total impacts, Ry, and the direct impacts diag{ R, }.

Given the matrix presentation of these impacts, it is useful to use some summary scalar measures. The

average direct impact, average total impact, and average indirect impact are respectively defined as

fk,direct (0) = n_ltTRnk (9), (8)
fk,total(e) = n_ll;ank(e)ln,
fk,indirect(a) = n_ll{ank(e)ln — n_ltTRnk(9)~

As we have 9,11T from (6), the distributions of fkﬁdirect(@iT), fk,toml(éiT) and fk’mdirect(@iT) can be
obtained to make statistical inferences of these impact estimates. Thus,
~ 8 irec 0 —_ 8 irec 0
(n - 1)T(fk,direct(071;) - fk,direct(00>) i) N(07 lim ( fk’d t( 0) - fk’d t( 0)
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(n - 1)T(fk,indirect(9n) - flc,indirect((go)) i’ N(O, nll_{lgo(

where afk’dg;“(e), af’“é’;“l(e) and 3f’“’i”g"9”“(9) can be obtained from (7) and (8).

Theorem 2 Under Assumptions 1-7, the estimates for the impacts in (8) are consistent and asymptotically

normally distributed as specified in (9).

4. Monte Carlo

We conduct a Monte Carlo experiment to evaluate the performance of QMLEs and impact estimators.
The DGP is from equation (1) using 6y = (B4, Ao, 02)’ = (1,0.5,1)’, and X,s, €n0, 0 and Vj,; are generated
from independent standard normal distributions. We use T' = 10, 50, and n = 49, 196. For time varying
spatial weights matrices, we choose an alternating pattern. When ¢ is odd, W, is a square tessellation where
each unit only interact with its left and right neighbors (for the left and right edge units, they have then
only one neighbor). We call this a left-right matrix. When ¢ is even, W,,; is a queen matrix, which presents
a square tessellation with a connectivity of eight for the inner fields on the chessboard and three and five

for the corner and border fields, respectively. All these weights matrices are row-normalized. For each set



of generated sample observations, we obtain the bias é,llT — 6y and do this 1000 times. We also report the
empirical standard deviation (SD), the empirical root mean square error (RMSE), and coverage probability
(CP) of these 1000 estimates. Results are summarized in the columns under “W,;” in Table 1. We see that
the estimators have small biases and their CPs are close to the specified 95% confidence level. For different
cases of n and T, when T is larger or n is larger, biases and SDs are smaller. This is consistent with our
theoretical results, as the variances of the estimators are of the order O(=5).

We report some results using misspecified time invariant weights matrices, while the DGP still has the
above alternating pattern. The columns under “Wyyerage” are the results where the time average of left-right
and queen matrices is used in the estimation of the model. Columns under “W,,, 4¢-” in are the results where
only the left-right matrix is used, and columns under “W,,.,” are the results where only queen matrix is
used. We can see the performance of estimates under misspecification is not as good as that of the correct
specification. Also, overspecification has a better result than the underspecification in the estimation and
inference of A.

We also investigate the estimation of impact analysis under the correct specification of time varying
weights matrices and misspecification of time invariant weights matrix. We see that the estimates of the
impact coefficients are satisfactory with small biases (columns under W,,;). Under misspecifications of time
invariant weights matrix, we have biases in the impact coefficients. Similar to the biases for parameter
estimates, the misspecification of weights matrix by the time average of the left-right and queen matrices has
smaller biases than the over- and under- specifications; and the over-specification of weights matrix yields
smaller biases than the under- specification. However, we see that estimates of direct impact coefficients are
less influenced by the misspecification of weights matrix. Take DGP (1) for an example, the magnitude of

bias for A is 27% for the under-specification and 24% for the over-specification. For the impact coefficients,

1.1802—1.1091

141009—1.0492)
1.1802

the direct impact estimate has about 7% ( ) bias for the under-specification and 6% (=5 5153

bias for the over-specification. These biases are much smaller than the total impact and indirect impact.
LeSage and Pace (2010) state that even though we might have opposite biases in the estimation of A and
B, the estimations of the impact coefficients are less influenced by the misspecification of spatial weights

matrices. The current finding for the average direct impact confirms LeSage and Pace (2010), while the

average indirect and total impacts still have large biases.

5. Conclusion
In this paper, we investigate the QML estimation of the SAR panel data model with both individual and
time fixed effects and time varying spatial weights matrices. We prove that the QML estimate is consistent

and asymptotically normal under this setting. Impact analysis and its statistical inference is also investigated.



Through Monte Carlo experiments, we see that when the true process has substantially time varying spatial
weights matrices, a model misspecification with a time invariant spatial weights matrix will cause biases in

estimates; however, the average direct impact estimates are less influenced.
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