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1. Introduction

For spatial panel data models, the spatial weights matrix can be based on contiguity or distances among

regions, which is usually time invariant. However, the spatial weights matrix can also be constructed from

economic/socioeconomic distances or demographic characteristics, which might be changing over time. One

may wonder whether we can easily handle the models with time varying spatial weights, and whether ignoring

time variation in spatial weights matrices would have substantial consequences on estimates. These motivate

our investigation on the spatial panel data model with time varying spatial weights matrices. Lee and Yu

(2012) investigate the time varying weights matrices in a dynamic spatial panel model setting, where the

number of time periods T is assumed to be large. In the current paper, we consider the static spatial panel

model with both individual and time �xed e¤ects, where T could be �nite or large, and investigate the

quasi-maximum likelihood (QML) estimation.

Compared to the development in the estimation and testing in spatial panel data models, the estimation

and statistical inference of impact e¤ects are rarely carried out in empirical applications. LeSage and Pace

(2009) provide a computationally e¢ cient simulation approach to produce empirical estimates of dispersion

for scalar summary measures of impacts. Debarsy et al. (2011) extend the preceding approach to the

dynamic spatial panel data models with a time invariant spatial weights matrix. Elhorst (2012) provides

Matlab routines for the bias-corrected estimates in Lee and Yu (2010) and relevant impact analysis. The

current paper will provide the estimation and inference for those impacts based on the QML estimates.

The rest of the paper is organized as follows. Section 2 introduces the model and establishes asymptotic

properties of QML estimators. Section 3 investigates the impact estimates and their asymptotic inference.

Section 4 provides Monte Carlo results. Section 5 concludes the paper. Due to space limit, lemmas and

proofs are collected in a supplement �le available upon request.

2. The Model and Asymptotic Properties of the QML Estimate

The model considered is

Ynt = �0WntYnt +Xnt�0 + cn0 + �t0ln + Vnt; t = 1; 2; :::; T , (1)

where Ynt = (y1t; y2t; :::; ynt)0 and Vnt = (v1t; v2t; :::; vnt)0 are n� 1 column vectors, and vit�s are i:i:d: across

i and t with zero mean and variance �20. The Xnt is an n � K matrix of individually and time varying

nonstochastic regressors, cn0 is an n � 1 column vector of individual e¤ects, and �t0 is the tth element of

the T � 1 �xed time e¤ect vector �T0 with ln being n� 1 vector of ones. The spatial weights matrix Wnt is

nonstochastic and it could be time varying. We assume that Wnt is row-normalized as in common practice.

Similar to Lee and Yu (2010), we can use the eigenvector matrix of Jn = In� 1
n lnl

0
n to eliminate the time
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e¤ects. However, we will directly estimate the individual e¤ects.1 By denoting Snt(�) = In � �Wnt for an

arbitrary � and ~Xnt = Xnt � 1
T

PT
t=1Xnt, the concentrated log likelihood (with individual e¤ects and time

e¤ects concentrated out) is

lnLn;T (�) = �
(n� 1)T

2
ln 2� � (n� 1)T

2
ln�2 � T ln(1� �) +

PT
t=1 ln jSnt(�)j �

1

2�2
PT

t=1
~V 0nt(�)Jn ~Vnt(�),

(2)

where ~Vnt(�) = ^Snt(�)Ynt� ~Xnt� with ^Snt(�)Ynt = Snt(�)Ynt� 1
T

PT
t=1 Snt(�)Ynt and Jn ~Vnt(�) = Jn[

^Snt(�)Ynt�
~Xnt� � ~�tln] because Jnln = 0.

We consider the properties of QMLE when n is large while T can be �nite or large. For asymptotic

analysis of the QML estimators, we assume the following regularity conditions.

Assumprion 1. Wnt�s are row-normalized nonstochastic spatial weights matrices with zero diagonals.

Assumprion 2. The disturbances fvitg, i = 1; 2; :::; n and t = 1; 2; :::; T; are i:i:d: across i and t with zero

mean, variance �20 and E jvitj
4+�

<1 for some � > 0.

Assumprion 3. The elements of Xnt, cn0 and �T0 are nonstochastic and bounded, uniformly in n and t.

Also, limn!1
1
nT

PT
t=1

~X 0
ntJn ~Xnt exists and is nonsingular.

Assumprion 4. Snt(�) is invertible for all t and for all � 2 �, where the parameter space � is compact

and �0 is in the interior of �.

Assumprion 5. Wnt�s and S
�1
nt (�)�s are uniformly bounded (uniformly in t for Wnt�s, and uniformly in

� 2 � and t for S�1nt (�)�s) in both row and column sums in absolute value.

Assumprion 6. n is large, where T can be �nite or large.

In Lee and Yu (2010) with time invariant weights matrix, the direct approach (estimating the individual

e¤ects directly) will yield bias for the variance parameter. Denote �T = �0 � (01�(K+1); 1T �
2
0)
0. The asymp-

totic analysis for the direct approaches is based on �T . For the time varying spatial weights matrices case

in the current paper, because we transform the data to eliminate the time e¤ects but directly estimate the

individual e¤ects, we expect that the bias for the variance parameter remains. Thus, we will similarly base

our asymptotic analysis on �T , and make bias correction for the variance parameter.

Denoting Gnt = WntS
�1
nt , ĜntXnt = GntXnt � 1

T

PT
t=1GntXnt and ~Gnt = Gnt � 1

T

PT
t=1Gnt. The

information matrix ��T ;nT = �E
�

1
(n�1)T

@2 lnLn;T (�T )
@�@�0

�
is equal to

��T ;nT =
1

�2T

�
EHc

nT �
01�(K+1) 0

�
+

0B@ 0K�K � �
01�K

1
(n�1)T

PT
t=1

�
tr(G0ntJnGnt) + tr((JnGnt)

2)
�

�
01�K

1
�2T (n�1)T

PT
t=1 tr(JnGnt)

1
2�4T

1CA , (3)
1We can eliminate the individual e¤ects by eigenvector matrix of JT = IT � 1

T
lT l

0
T . But, due to the time varying feature

of spatial weights matrices, the transformed equation is no longer an SAR process and the QML approach cannot be applied
directly. Thus, we will adopt a direct approach where we eliminate the time e¤ects but estimate the individual e¤ects directly.

2



where Hc
nT =

1
(n�1)T

PT
t=1(

~Xnt; (ĜntXnt�0 + ~Gntcn0))
0Jn( ~Xnt; (ĜntXnt�0 + ~Gntcn0)). The limit of ��T ;nT

is nonsingular if limn!1 EHc
nT is nonsingular or

lim
n!1

(
1

(n� 1)T
PT

t=1

�
tr(G0ntJnGnt) + tr((JnGnt)

2)
�
� 2[ 1

T

PT
t=1

tr(JnGnt)

n� 1 ]2) 6= 0: (4)

For asymptotic distribution, denote


�T ;nT =
T � 1
T

�3
�40

0BBBB@
0K�K � �

1
(n�1)T

TP
t=1

nP
i=1

(JnGnt)ii(Jn ~Xnt)i
2

(n�1)T

TP
t=1

nP
i=1

(JnGnt)ii(JnĜntXnt�0 + Jn ~Gntcn0)i �

1
2�2T (n�1)T

TP
t=1

nP
i=1

E(Jn ~Xnt)i
1

2�2T (n�1)T

TP
t=1

nP
i=1

E(JnĜntXnt�0 + Jn ~Gntcn0)i 0

1CCCCA

+
T � 1
T

�4 � 3�40
�40

0BBBB@
0K�K � �

01�K
1

(n�1)T

TP
t=1

nP
i=1

(JnGnt)
2
ii �

01�K
1

2�2T (n�1)T

TP
t=1
tr(JnGnt)

1
4�4T

1CCCCA .
Assumprion 7. Either limn!1 EHc

nT is nonsingular or (4) holds.

Assumption 7 assures that the information matrix is nonsingular.

Theorem 1 Under Assumptions 1-7, the QMLE �̂nT that maximizes (2) hasp
(n� 1)T (�̂nT � �T )

d! N(0; lim
n!1

T

T � 1(��T ;nT )
�1(��T ;nT +
�T ;nT )(��T ;nT )

�1). (5)

Therefore, the variance estimate �̂2nT does not converge to �
2
0 when T is a �xed �nite value as n tends

to in�nity. It will be consistent only when T is large. The (�̂
0
nT ; �̂nT )

0 of �̂nT will be consistent even

when T is small. From Theorem 1, it is straightforward to construct the bias corrected estimates �̂
1

nT =

(�̂
0
nT ; �̂nT ;

T
T�1 �̂

2
nT )

0 = AnT �̂nT where AnT = diag(1K+1; T
T�1 ). Correspondingly,p

(n� 1)T (�̂
1

nT � �0)
d! N(0; lim

n!1
��0;nT ), (6)

where ��0;nT =
T
T�1AnT (��T ;nT )

�1(��T ;nT +
�T ;nT )(��T ;nT )
�1AnT .

3. Impact Analysis

We take the partial derivatives @Ynt
@X0

nt;k
= (In � �0Wnt)

�1�k0 and de�ne

Rnk = (In � �0Wnt)
�1�k0 (7)

as the impact matrix associated to the kth explanatory variable (for notational simplicity, we omit the t-

subscript here). In contrast to the classical linear model, diagonal elements of this matrix are di¤erent from

one another, and o¤-diagonal elements are non null and the matrix is not symmetric.
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The diagonal elements of this matrix, diagfRnkg, represent the direct impacts including feedback e¤ects,

where individual i a¤ects individual j and individual j also a¤ects individual i as well as longer paths which

might go from individual i to j to k and back to i. Those feedback e¤ects corresponding to diagfRnkg��k0In
are inherently heterogenous, due to di¤erentiated interaction terms in the Wnt matrix. The o¤-diagonal

elements of the impact matrix Rnk�diagfRnkg represent indirect impacts, which can be seen as the di¤erence

of the total impacts, Rnk, and the direct impacts diagfRnkg.

Given the matrix presentation of these impacts, it is useful to use some summary scalar measures. The

average direct impact, average total impact, and average indirect impact are respectively de�ned as

fk;direct(�) � n�1trRnk(�), (8)

fk;total(�) � n�1l0nRnk(�)ln,

fk;indirect(�) � n�1l0nRnk(�)ln � n�1trRnk(�).

As we have �̂
1

nT from (6), the distributions of fk;direct(�̂
1

nT ), fk;total(�̂
1

nT ) and fk;indirect(�̂
1

nT ) can be

obtained to make statistical inferences of these impact estimates. Thus,p
(n� 1)T (fk;direct(�̂

1

n)� fk;direct(�0))
d! N(0; lim

n!1
(
@fk;direct(�0)

@�0
��0;nT

@fk;direct(�0)

@�
)),p

(n� 1)T (fk;total(�̂
1

n)� fk;total(�0))
d! N(0; lim

n!1
(
@fk;total(�0)

@�0
��0;nT

@fk;total(�0)

@�
)); (9)p

(n� 1)T (fk;indirect(�̂
1

n)� fk;indirect(�0))
d! N(0; lim

n!1
(
@fk;indirect(�0)

@�0
��0;nT

@fk;indirect(�0)

@�
));

where @fk;direct(�)
@� , @fk;total(�)@� and @fk;indirect(�)

@� can be obtained from (7) and (8).

Theorem 2 Under Assumptions 1-7, the estimates for the impacts in (8) are consistent and asymptotically

normally distributed as speci�ed in (9).

4. Monte Carlo

We conduct a Monte Carlo experiment to evaluate the performance of QMLEs and impact estimators.

The DGP is from equation (1) using �0 = (�
0
0; �0; �

2
0)
0 = (1; 0:5; 1)0, and Xnt; cn0, �t0 and Vnt are generated

from independent standard normal distributions. We use T = 10, 50, and n = 49, 196. For time varying

spatial weights matrices, we choose an alternating pattern. When t is odd, Wnt is a square tessellation where

each unit only interact with its left and right neighbors (for the left and right edge units, they have then

only one neighbor). We call this a left-right matrix. When t is even, Wnt is a queen matrix, which presents

a square tessellation with a connectivity of eight for the inner �elds on the chessboard and three and �ve

for the corner and border �elds, respectively. All these weights matrices are row-normalized. For each set
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of generated sample observations, we obtain the bias �̂
1

nT � �0 and do this 1000 times. We also report the

empirical standard deviation (SD), the empirical root mean square error (RMSE), and coverage probability

(CP) of these 1000 estimates. Results are summarized in the columns under �Wnt�in Table 1. We see that

the estimators have small biases and their CPs are close to the speci�ed 95% con�dence level. For di¤erent

cases of n and T , when T is larger or n is larger, biases and SDs are smaller. This is consistent with our

theoretical results, as the variances of the estimators are of the order O( 1
nT ).

We report some results using misspeci�ed time invariant weights matrices, while the DGP still has the

above alternating pattern. The columns under �Waverage�are the results where the time average of left-right

and queen matrices is used in the estimation of the model. Columns under �Wunder�in are the results where

only the left-right matrix is used, and columns under �Wover�are the results where only queen matrix is

used. We can see the performance of estimates under misspeci�cation is not as good as that of the correct

speci�cation. Also, overspeci�cation has a better result than the underspeci�cation in the estimation and

inference of �.

We also investigate the estimation of impact analysis under the correct speci�cation of time varying

weights matrices and misspeci�cation of time invariant weights matrix. We see that the estimates of the

impact coe¢ cients are satisfactory with small biases (columns under Wnt). Under misspeci�cations of time

invariant weights matrix, we have biases in the impact coe¢ cients. Similar to the biases for parameter

estimates, the misspeci�cation of weights matrix by the time average of the left-right and queen matrices has

smaller biases than the over- and under- speci�cations; and the over-speci�cation of weights matrix yields

smaller biases than the under- speci�cation. However, we see that estimates of direct impact coe¢ cients are

less in�uenced by the misspeci�cation of weights matrix. Take DGP (1) for an example, the magnitude of

bias for � is 27% for the under-speci�cation and 24% for the over-speci�cation. For the impact coe¢ cients,

the direct impact estimate has about 7% ( 1:1802�1:10911:1802 ) bias for the under-speci�cation and 6% ( 1:1009�1:04921:0492 )

bias for the over-speci�cation. These biases are much smaller than the total impact and indirect impact.

LeSage and Pace (2010) state that even though we might have opposite biases in the estimation of � and

�, the estimations of the impact coe¢ cients are less in�uenced by the misspeci�cation of spatial weights

matrices. The current �nding for the average direct impact con�rms LeSage and Pace (2010), while the

average indirect and total impacts still have large biases.

5. Conclusion

In this paper, we investigate the QML estimation of the SAR panel data model with both individual and

time �xed e¤ects and time varying spatial weights matrices. We prove that the QML estimate is consistent

and asymptotically normal under this setting. Impact analysis and its statistical inference is also investigated.
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Through Monte Carlo experiments, we see that when the true process has substantially time varying spatial

weights matrices, a model misspeci�cation with a time invariant spatial weights matrix will cause biases in

estimates; however, the average direct impact estimates are less in�uenced.
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