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Abstract

In this paper, we establish a spatial central limit theorem for a large class of supercritical
branching, not necessarily symmetric, Markov processes with spatially dependent branching
mechanisms satisfying a second moment condition. This al limit theorem generalizes and
unifies all the central limit theorems obtained recently in for supercritical branching sym-
metric Markov processes. To prove our central limit theorem, we have to carefully develop the
spectral theory of nonsymmetric strongly continuous semigroups which should be of independent
interest.
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1 Introduction

Central limit theorems for supercritical branching processes were initiated by Kesten and Stigum
S. KS66

in hﬂﬁ In these two papers, they established central limit theorems for supercritical multi-

type Galton-Watson processes by using the Jordan canonical form of the expectation matrix M.

_ |Ath69a, Ath69, Ath71 o . . .
Then in [[4] B} 6], Afhreya proved central limit theorems for supercritical multi-type continuous

time branching processes, using the Jordan canonical form and the eigenvectors of the matrix My,
the mean matrix at time t. Asmussen and Keiding ﬁ used martingale central limit theorems to
prove central limit theorems for supercritical multi-type branching processes. In ﬁ%sAsmussen
and Hering established spatial central limit theorems for general supercritical branching Markov
processes under a certain condition. However, the condition in ﬁs‘lss not easy to check and essentially
the only examples given in ﬁ%f branching Markov processes satisfying this condition are branching
diffusions in bounded smooth domains. We note that the limit normal random variables in ﬁiﬁmay
be degenerate.

The recent study of spatial central limit theorem for branching Markov processes started with ﬁ.

In this paper, Adamczak and Milos proved some central limit theorems for supercritical branching
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Ornstein-Uhlenbeck processes with binary branching mechanism. We note that branching Ornstein-
Uhlenbeck processes do not satisfy the condition in ﬁ?jln %, Mito$ proved some central limit
theorems for supercritical super Ornstein-Uhlenbeck processes with branching mechanisms satis-
fying a fourth moment condition. Similar to the case of ﬁ?ﬁthe limit normal random variables in
ﬁ*ﬁ may be degenerate. In %, we established central limit theorems for supercritical super
Ornstein-Uhlenbeck processes with branching mechanisms satisfying only a second moment con-
dition. More importantly, the central limit theorems in are more satisfactory since our limit
normal random variables are non-degenerate. In ﬁ we obtained central limit theorems for a
large class of general supercritical branching symmetric Markov processes with spatially dependent
branching mechanisms satisfying only a second moment condition. In %% we obtained central limit
theorems for a large class of general supercritical superprocesses with symmetric spatial motions
and with spatially dependent branching mechanisms satisfying only a second moment condition.

SZ
Furthermore, we also obtalned the covariance structure of the hmlt Gaussian field in

th7l, KS, KS66 RSZ3
Compared with € spaftial processes in are assumed to be

RSZS
symmetric. The reason for this assumptlon is that one of the main tools in iS

well-developed spectral theory of self-adjoint operators.

The main purpose of this paper is to establish central limit theorems for general supercritical
branching, not necessarily symmetric, Markov processes with spatially dependent branching mech-
anisms satisfying only a second moment condition. To accomplish this, we need to carefully develop
the spectral theory of not necessarily symmetric strongly continuous semigroups. We believe these
spectral results are of independent interest and should be very useful in studying non-symmetric
Markov processes.

In this paper, R and C stand for the sets of real and complex numbers respectively, all vectors in
R™ or C™ will be understood as column vectors. For any z € C, we use ®(z) and I(z) to denote real
and imaginary parts of z respectively. For a matrix A, we use A and A” to denote the conjugate

and transpose of A respectively.

1.1 Spatial process

In this subsection, we spell out our assumptions on the spatial Markov process. Throughout this
paper, E stands for a locally compact separable metric space, m is a o-finite Borel measure on
E with full support and 9 is a separate point not contained in E. 0 will be interpreted as the
cemetery point. We will use Ey to denote E U {0}. Every function f on FE is automatically
extended to Ey by setting f(9) = 0. We will assume that £ = {§;, 11, } is a Hunt process on E and

= inf{t > 0: & = 0} is the lifetime of £&. We will use {P; : ¢t > 0} to denote the semigroup of &.
Our standing assumption on £ is that there exists a family of continuous strictly positive functions

{p(t,x,y) : t >0} on E x E such that, for any ¢ > 0 and nonnegative function f on F,

Pif(x) Z/Ep(t,w,y)f(y)m(dy)-



For p > 1, we define LP(E,m;C) := {f : E — C: [ |f(z)[Pm(dz) < oo} and LP(E,m) := {f €

LP(E,m;C) : f is real} . We also define

wlo)i= [ pltapPmin, @@= [ .’ m).
In this paper, we assume that

Assumption 1 (a) For allt >0 and z € E, [, p(t,y,z)m(dy) < 1.

(b) For anyt >0, a; and a; are continuous functions in E and they belong to L*(E,m).

(c) There exists tg > 0 such that ay,,dy, € L*(E,m).
It is easy to see that
plt+s0,0) = [ plt ol ) m(d2) < (anle) @)
which implies
aps(x) < /E’ds(y) m(dy)ai(x) and Gpps(z) < /Eas(y) m(dy)a(x).
So condition (c) above is equivalent to

(c') There exists tg > 0 such that for all t > tg, a;,a; € L*(E,m).

It is well known and easy to check that, for p € [1,00), {P, : t > 0} is a strongly continuous

(1.1)

(1.2)

contraction semigroup on LP(E, m; C). We claim that the function t — [ a;(z) m(dz) is decreasing.

In fact, by Fubini’s theorem and Hoélder’s inequality, we get

at+s($) = /Ep(t—|—8,:E,y)/Ep(t,:lt,z)p(s,z,y)m(dz)m(dy)
~ / plt, . 2) / plt + 5,2, 9)p(s, ) m(dy) m(dz)
E

E
at+8(x)1/2/Ep(t,x,z)as(z)l/2 m(dz)

IN

which implies

ti(z) < < /E p(t,x,z)as(z)l/2m(dz)>2§ [E p(t, 7, 2)as (=) m(d=).

Thus, by Fubini’s theorem and condition (a), we get

[ avesta) mida) < /E ) [ otz m(da)midz) < [ a2)mido).

E

Therefore, the function ¢ — [, a;(x) m(dx) is decreasing.

Now we give some examples of non-symmetric Markov processes satisfying the above assump-
tions. The purpose of these examples is to show that the above assumptions are satisfied by many

Markov processes. We will not try to give the most general examples possible. For examples of

S
symmetric Markov processes satisfying the above assumptions, see %]g

(1.3)

(1.4)

8.
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examp0| Example 1.1 Suppose that E consists of finitely many points. If X = {X; : t > 0} is an irreducible
P pp y many p i
conservative Markov process in E, then X satisfies Assumption 1 for some finite measure m on E

with full support.

Example 1.2 Suppose that o € (0,2) and that Y = {Y; : ¢t > 0} is a strictly a-stable process in
R?. Suppose that, in the case d > 2, the spherical part  of the Lévy measure p of Y satisfies the
following assumption: there exist a positive function ® on the unit sphere S in R? and & > 1 such
that

dn

® =— and /{_1§<I>(z)§/£ on S
do

where o is the surface measure on S. In the case d = 1, we assume that the Lévy measure of Y is
given by

pdr) = 1z " gm0y + 2l g

with ¢1,¢2 > 0. Suppose that D is an open set in R? of finite Lebesgue measure. Let X be the

process in D obtained by killing Y upon exiting D. Then X satisfies Assumption 1 with £ = D
iS009

and m being the Lebesgue measure. For details, see ﬁExample 4.1].

Example 1.3 Suppose that o € (0,2) and that Z = {Z; : t > 0} is a truncated strictly a-stable

process in R, that is, Z is a Lévy process with Lévy measure given by

p(dr) = p(d)lgz)<ay,

where 1 is the Lévy measure of the process Y in the previous example. Suppose that D is a
connected open set in R? of finite Lebesgue measure. Let X be the process in D obtained by killing
Z upon exiting D. Then X satisfies Assumption 1 with £ = D and m being the Lebesgue measure.
For details, see H@E?'xample 4.2 and Proposition 4.4].

Example 1.4 Suppose o € (0,2), Y = {Y; : t > 0} is a strictly a-stable process in R? satisfying
the assumptions in Example %d that B is an independent Brownian motion in R?. Let W
be the process defined by W; = Y; + B;. Suppose that D is an open set in R of finite Lebesgue
measure. Let X be the process in D obtained by killing W upon exiting D. Then X satisfies
Assumption 1 with £ = D and m being the Lebesgue measure. For details, see ﬁo_oéxample 4.5

and Lemma 4.6].

Example 1.5 Suppose o € (0,2), Z = {Z; : t > 0} is a truncated strictly a-stable process in R?
satisfying the assumptions in Example %d that B is an independent Brownian motion in R€.
Let V be the process defined by V; = Z; + B;. Suppose that D is a connected open set in R? of
finite Lebesgue measure. Let X be the process in D obtained by killing V' upon exiting D. Then

X satisfies Assumption 1 with £ = D and m being the Lebesgue measure. For details, see ﬁ@

Example 4.7 and Lemma 4.8].



Example 1.6 Suppose d > 3 and that pu = (u*, - - ,,ud), where each 1/ is a signed measure on R¢

such that id
lim sup / % =0.
=0 ycRrd B(z,r) |l‘ - y|
iS006
Let Y = {Y; : t > 0} be a Brownian motion with drift x in R?, see o. uppose that D is a

bounded connected open set in R¢ and suppose K > 0 is a constant such that D C B (0, K/2).
Put B = B(0,K). Let Gp be the Green function of Y in B and define H(z) := [ Gp(z,y)dy.
Then H is a strictly positive continuous function on B. Let X be the process obtained by killing
Y upon exiting D. Then X satisfies Assumption 1 with £ = D and m being the measure defined

LS iS008, KiSo08
by m(dz) = H(x)dx. For details, see Kﬂ, Example 4.6] or IIZI;O i

Example 1.7 Suppose d > 2, a € (1,2), and that u = (u!,--- ,ud), where each p/ is a signed

I\(d
lim sup / % = 0.
=0 1 cRra B(z,r) ‘Z’ - y‘

measure on R? such that

Let Y = {Y; : t > 0} be an a-stable process with drift x in R?, see h@sﬁﬁsuppose that D is a
bounded open set in R? and suppose K > 0 is such that D C B(0, K/2). Put B = B(0,K). Let
Gp be the Green function of Y in B and define H(z) := [, Gp(x,y)dy. Then H is a strictly
positive continuous function on B. Let X be the process obtained by killing Y upon exiting D.
Then X satisfies Assumption 1 with £ = D and m being the measure defined by m(dz) = H(z)dz.
For details, see ﬁ Example 4.7] or %g

1.2 Branching Markov Processes

The branching Markov process {X; : t > 0} on E we are going to work with is determined by three
parameters: a spatial motion § = {&,I1,} on F satisfying the assumptions at the beginning of the
previous subsection, a branching rate function f(x) on E which is a non-negative bounded mea-

surable function and an offspring distribution {p,(z):n =0,1,,2,...} satisfying the assumption

o0

sup Z n*py(x) < oco. (1.5)
el n—0

We denote the generating function of the offspring distribution by
[ee]
(10('%72) = an(x)zna r€E€E, ‘Z’ <L
n=0

Consider a branching system on E characterized by the following properties: (i) each individual
has a random birth and death time; (ii) given that an individual is born at = € E, the conditional
distribution of its path is determined by II,; (iii) given the path £ of an individual up to time ¢
and given that the particle is alive at time ¢ , its probability of dying in the interval [¢,¢ + dt) is
B(&)dt + o(dt); (iv) when an individual dies at x € E, it splits into n individuals all positioned at

.16



x, with probability p,(z); (v) when an individual reaches 9, it disappears from the system; (vi) all
the individuals, once born, evolve independently.

Let M,(E) be the space of finite integer-valued atomic measures on F, and let By(FE) be
the set of bounded real-valued Borel measurable functions on E. Let X;(B) be the number of
particles alive at time ¢ located in B € B(E). Then X = {X;,t > 0} is an M, (E)-valued Markov

process. For any v € M, (E), we denote the law of X with initial configuration v by P,. As usual,
(f,v) =[5 f(z)v(dz). For 0 < f € By(E), let

w(t,x) = IP’(;xe_<f’Xt>,

then w(t, z) is the unique positive solution to the equation

Wit z) = nx/o W(Es ot — 5,€,)) ds + T (e E)), (1.6)

where ¢(z, z) = B(x)(¢(z,2) — 2z),x € E, z € [0,1], while (0, 2) =0,z € [0,1]. By the branching
property, we have
]P)Ve_<f7Xt> — e(logw(t,-),l/).

Define .
a() = 2w, 1) = f(z) (Z npa() - 1) (1.7)
n=1
and
924 >
Aw) = 5 (2,1) = B(x) > (0= Vnpy(x). (1.8)
n=2
By (ﬂj? , there exists K > 0, such that
sup (|a(z)] + A(z)) < K. (1.9)
el
For any f € By(E) and (t,z) € (0,00) x E, define
Tif (@) =0, [elo @) ()] (1.10)

It is well known that T} f(z) = Ps, (f, X;) for every x € E.
SZ4
It is elementary to show that, see hLemma 2.1], that there exists a function ¢(¢,z,y) on
(0,00) x E x E which is continuous in (z,y) for each ¢ > 0 such that

e Kipt,z,y) < qt,z,y) < eXlp(t,z,y), (t,z,y) € (0,00) x Ex E (1.11)
and that for any bounded Borel function f on E and (t,z) € (0,00) x E,
T, f(x) Z/EQ(t,w,y)f(y)m(dy)-
Define

bi() = /E a(t.zyPm(dy),  Ba) = /E o(t, ) m(dy).

6

= [0)
(&) =

comp



~ 1.1
The functions z — by(x) and z — by(x) are continuous. In fact, by (ﬁ),

q(t7$7y) < eKtp(t7$7y) < eKtat/2($)1/2at/2(y)1/2‘ (112)

Since ¢(t,-,y) and a; /2 are continuous, by the dominated convergence theorem, we get b; is contin-
uous. Similarly, by is also continuous. Thus, it follows from (ﬁl} and the assumptions (b) and (c)

in the previous subsection that b; and Zt enjoy the following properties.
(i) For any ¢ > 0, we have by € L'(E, m). Moreover, b;(x) and gt(:n) are continuous in = € E;

(ii) There exists to > 0 such that for all ¢ > to, by, by € L2(E, m).

1.3 Preliminaries

For p > 1, {T} : t > 0} is a strongly continuous semigroup on LP(E,m;C). In fact, by (w), we
et |T1f(2)| < KB f](x). Thus,

”thHp < eKtHPt’f’”p < eKt”f”p- (1.13)

For f,g € L?(E,m;C), define
(Frghm = [ fa)gt@ym(da)

Let {ﬁ,t > 0} be the adjoint semigroup of {T; : t > 0} on L?(E,m;C), that is, for f,g €
L*(E,m;C),

Thus,
Tog(x) = /E a(t, v, 2)g(y) m(dy).

It is well known, see for instance h Corollary 1.10.6, Lemma 1.10.1], that {7} : ¢ > 0} is a strongly

continuous semigroup on L?(E,m;C) and that
T3z = | T3]l < ™. (1.15)

For all t > 0 and f € L?*(E,m;C), T;f and ﬁf are continuous. In fact, since g(¢,x,y) is
continuous, by (HZI) and Assumption 1(b), using the dominated convergence theorem, we get T} f
and T} f are continuous.

It follows from (i) above that, for any ¢ > 0, 7; and JA} are compact operators on L2(E,m;C).
Let A and A be the infinitesimal generators of {T; : ¢ > 0} and {7, : t > 0} in L2(E,m;C)
respectively. Let o(A) and o(A) be the spectra of A and A respectively. It follows from ;

Theorem 2.2.4 and Corollary 2.3.7] that both o(A) and o(A) consist of eigenvalues only, and that

A and A have the same number, say IV, of eigenvalues. Of course N might be finite or infinite. Let

I={1,2,...,N}, when N < oo; otherwise I = {1,2,...}. Under the assumptions of Subsec‘cionifﬁﬁ}1

h
using (iﬂil) and Jentzsch’s theorem (% Theorem V.6.6 on page 337], we know that the common



value A; = supR(c(A)) = supR(c(A)) is an eigenvalue of multiplicity one for both A and A,
and that an eigenfunction ¢ of A associated with A1 can be chosen to be strictly positive almost
everywhere with [|¢1]j2 = 1 and an eigenfunction t; of A associated with A; can be chosen to be
strictly positive almost everywhere with (¢1,11),,, = 1. We list the eigenvalues {—\, k € I} of
Ain an order so A; < R(A2) < R(A3) < ---. Then {—Ag, k € I} are the eigenvalues of A. For
convenience, we define, for any positive integer k not belong to I, A\; = A\ = oo. For k € I, we
write Ry, := R(A\;) and Sy := F(A\). We use the convention R, = oo.

Let o(T;) be the spectrum of T; in L*(E,m;C). It follows from ﬁ Theorem 2.2.4] that
o(Ty) \ {0} := {e~ ! : k € I}. In particular, o(T}) \ {0} = {e M,k €T} .

Remark 1.8 It is easy to see that, there exists t* such that, for any k # j, e Mt #£ e Nt So
without lose of generality, we assume that, for k # j, e ™ # e~ . Otherwise, we can consider Ty

instead of Ty in the following arguments.

Now we recall some basic facts about spectral theory, for more details, see ﬁ Chapter 6]. For
any k € I, we define Ny o := {0} and for n > 1,

Niew = N((e I = T1)") = {f € L*(E,m;C) : (e ™I —T)" f = 0}
and
Rim = R((e™I —T1)") = (eI — T1)"(L*(E, m;C)).

For each k € I, there exists an integer v, > 1 such that
Niw & Ninsr, n=0,1,--- vp =15 Nip=Nignt1, 1>y

and

Rim 2 R, n=0,1,---,vp =1, Rpp=TRpns1, 1>

For all k € I and n > 0, N}, is a finite dimensional linear subspace of L?*(E,m;C). N}, and

R, are invariant subspaces of T;. In fact, for any f € N p,
(€M =T)™(Tif) = Ti(e ™I = Ty)" f =0,

which implies that T;f € Ny p. If f = (eI —T)"g, then Tyf = Ty(e ™I —T)"g = (e ™I —
T1)"Irg € Ripn. Thus, {Tt\Nk,%,t > 0} is a semigroup on Nj,,. We denote the corresponding
infinitesimal generator as Ay. By ﬁ Theorem 6.7.4], o(T1|ns,, ) = {e=*}. Since o(Ax) C o(A),
we have o(Ay) = {—A;}. Define ny := dim(Ny,,, ) and rj := dim(Nj1). Then from linear algebra
we know that there exists a basis {qﬁgk),j =1,2,--- ,ng} of Ny, such that

Jen 0

Jk,2
A8, 6, o®) = (@) o) e



where
A, 1 0
e 1
Jij = , adgj;xdg; matrix (1.17)
A, 1
0 — A
with Z;kzl di,j = ng. Dy is uniquely determined by the dimensions of Nkm,n =1,2,--+ v (see

ever
H,_Section 7.8] for more details). Here and in the remainder of this paper we use the convention
that when an operator, like A or Ay or T}, acts on a vector-valued function, it acts componentwise.

For convenience, we define the following C™-valued functions:

@4(2) 1= (6 (@), 6 (), - ol (@)

Thus, we have, for a.e. x € E,

Jk,l(t) 0
Jroft
Ty(®k)" (x) = e M (Dp(x))” (0
0 T (1)
= e MWDy ()T Dy(t), (1.18)
where Jy, ;(t) is a dj, ; x dj, ; matrix given by
1ot 220 o kT (dy — 1))
01 t t2/2
Ji,j(t) = : (1.19)
1 t
0 1

More details can be found in ﬁﬁ%. 609]. Under our assumptions, T;(®;)? (z) is continuous. Thus,
—Jordan —Jordan
by (%We can choose @ to be continuous, which implies (ﬁ}hfolds for all z € E. We note that
here the matrix Dy (t) satisfies the semigroup property, that is, for t,s > 0, Dy (t+s) = Dy (t)Dg(s)
and Dy,(t) is invertible with Dy (t)~! = Dy (—t).
T n 1/p
For any vector a = (ay,--- ,a,)" € C", we define the LP norm of a by |al, := (ijl |aj|p)

when 1 < p < 0o and |a|s := max;(|a;|) when p = co.

—-Jord
By Holder’s inequality, \Tt(gbgk))(x)\ < bi(x)'/2. By (%%e get (O)T = M (D) T (D (t)) 7.

Thus,
|k ()00 < c(t, k)by(2)'/?, (1.20)

where ¢(t, k) does not depend on z. When we choose t = ty, we get that ¢§-k) € L*(E,m;C) N
LY(E,m;C).

phi



Now we consider the corresponding formula for T;. We know that o/(71) \ {0} = {e >,k € I}.

Define
N = N((e I —=T)") = {f € L*(E,m;C) : (e ™I —T))"f = 0}
We have .
(eI —Ty)" = e "] =Y ey, (1.21)
j=1
. , P N

Since 2?21 e~ (=X Y is also a compact operator, by h Theorem 6.6.13], Ny, is of the same
dimension as N}, ,. In particular, dim(/(\/' o) = dim(Ng ) = ng. Thus we have

New & Ninst, =01, vy —1; Nigp=Ngns1, 1>

Similarly, we can get, for all £k € T and n > 0, /\A/';m is an invariant subspace of T,. Hence,

{ﬁ| o t> 0} is a semigroup on N kv, With infinitesimal generator Ay
Wk
Let {1[)§k),¢§k), e ,T,Z)gz)} be a basis of Ny ,, such that

where ﬁk( t) is an ny X nk invertible matrix. Since Ttwl , 2 , . ,wnk )(z) is continuous, we can
choose (ﬂ ,¢2 R, ,wnk ) to be continuous. We define an nj X nj matrix Ay, by
(An)ja = (08 0. (1.23)

Lemma 1.9 For each k €1,
L2(E,m;C) = Ny ® Wiy )" = Niewy ® Wiy )™ (1.24)
~ A k
Morover, the matriz Ay, defined in (‘E{D is tnvertible.

p p
Proof: By %L Theorem 6.6.7], we have L*(E,m;C) = N, @® Rk, It follows from %L The-
orem 6.6.14] that Ry, = (/i\/'kﬂ,k)J-. Thus, L*(E,m;C) = N, & (./Vk,uk)l. Similarly, we have
LH(E,m;C) = Ny @ Nigw, ) -

For any vector a = (a1, ,an, )’ € C™, we have

Apa = (B8 Ry (68, By -+ (08 )T

where h = (wl , 7... 7¢nk )ae./\fkl,k
If Aya = 0, then h € (Niy, ). Since '/\A[k% N (New, )t = {0}, we have h = 0, which implies
a = 0. Therefore, ﬁk is invertible. O

Lemma 1.10 For any k € 1, define
(@) = (0 @), 0 @), B (@) 1= (D (@), 0 @), @) A

10



Then {wgk), ék),--- , nk} is a basis of N v, Such that the ny x ny matriz Ay, = (<¢§k)’ l(k)>m)

satisfies
Ap =1 (1.25)

and for any x € E,
Ty (W) (z) = e M Dy (t) Uk (). (1.26) |T~*

Moreover, the basis of./\Aka,k satisfying (ﬁ]ﬂ) is unique.

Proof: For any C"-valued functions (fi(z), f2(z),--- fn(z))" and (g1(x), g2(x), - - - gn(z))T, we use

((f1, f2,-- fn), (91,92, - gn))m to denote the n x n matrix ((fj,g;)m). Since g,;l is invertible,
_ T-Jord 1.14

{%k),wék), e ,T,Z)gz)} is a basis of Ny ,,. By (ﬁ%d (m), we get

e‘WDk(t))Tﬁk:(ca( 6o, (30,30, 30))
= (o0 00) T (B0 0P, BD)) = BBt

Since Dy(t) is a real matrix, we have

—~ =7

e M A(Dy(1)T = Dy(t) AL (1.27) [1.17
By dﬁ) and dﬁ), we have
et ( BURT NS ,wnk) H(Dy(e)" = e (wl L ) (Du(e)

Assume that there exists another basis \Tfk(:n) of ./Vk,,,k satisfying m Then there exists matrix
B such that (Uy(z))T = (¥4(z))TB. Thus,

I= <(@k)T7 (CI;k)T>m = <(<I)k)T, (\I/k)T>m§ = §7
which implies B = I. Thus, we get \I’k(x) = W, (z). The proof is now complete. -

Remark 1.11 We know that Tt(tﬁ_g)( ) = _)‘kt@T( )Dy(t). Thus e Mt is also a eigenvalue of
Ty. Hence there exists a unique k' such that \pr = \. It is obvious that Dy(t) = Dy(t) and we
_— lemma Tx* _—
can choose @y (x) = Pp(z). By Lemmam have Uy (x) = Wi (). In particular, if Ny is real,
then k' = k.

Lemma 1.12 For j,k €1 and j # k , we have

N, C Riwy = Niw) (1.28) [1.18

In particular, N, N\ Ny, = {0}.
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Proof: Assume f € Nj,,, then (eI —T1)" f = 0. Since v; > 1, we can define g = (741 —
T1)" ' f. Thus e % g = T1g. Hence, (e™ I —T1)g = (e™™ — e Y)g, which implies

(e_)‘kl —T)%g = (e_)"c — e_’\j)”’“g.

Therefore g = (e™ — e X)) Vk(e" M [ — T1)" g € Ry, -

Assume f = fi + fo with f1 € N}, and fo € Ry,,. Then (eNI —T)i~ f € Ni.v,- On the
other hand, (e NI —Ty)" ' fy =g — (e NI —Ty)"i "\ fy € Rk, Thus (e NI =T~ f =0.

P

If vy =1, then f =g € Rg,,. If v; > 1 and f; # 0, then e € O’(Tl"/\/’k’uk). By %, Theorem
6.7.4], o(T1ns,,, ) = {e=*}. This is a contradiction. Thus, f; = 0, which implies f = fo € R,
Therefore N, C Ry, O

1.3

By Lemma% k € I, we can define

My = Nl’yl EBN?,Vz D @Nk7yk and M\k = ./VLVl EB./VQ,W (SRR @N’kﬂ/k:'

Corollary 1.13 For any k €1,

LA(E,m; C) = My ® (My)* = My ® (My)* (1.29)
Proof: By (ﬁ), (ﬁ) holds for k£ = 1. Assume that (ﬁ) holds for k — 1. Then
L2(B,m;C) = Mj—1 & (Mj—1)". (1.30)

For any f € (./\//Yk_l)l, by (ﬁ), we have f = f3 + fi, where f3 € Ny, and fi € (/\A/'kﬂ,k)L. By
, fs € ﬂf;}(ﬁ/j,yj)i = (/(/l\k_l)L, which implies f4 = f — f3 € (My_1)*. Thus, we obtain

f1 € W)t N (Mgt = (ML
Hence
(Mk_l)l = ./\/k,yk ) (Mk)l
2.1
Therefore, by induction, the first part of dﬁgl) holds for all k& € 1.

The proof of L?(E,m;C) = M\k ® (M)t is similar. O

Remark 1.14 Since —\; is simple, which means n; = r = vy = 1, we know that ®1(z) = ¢1(x)
and W1 (z) = 11 (z). Moreover, since Tyd1(x) = e Mgy (x) and Tyby (z) = e Moy (z) for every z,
@1 and Y1 are continuous and strictly positive. It is easy to see that Dy (t) = 1.
lemma1.2(j) i ) . G) -
By Lemmaml J=1,- kl=1,---,n;} is a basis of My, and {¢;"’,j =1,-- k1 =
1,---,n;} is a basis ofﬂk. By ﬁ) and m, we get <¢l(j),1/)ﬁlk)>m =1, when j =k andl =n;
otherwise (qﬁl(j), ,(Lk)>m =0.

In this paper, we always assume that the branching Markov process X is supercritical, that is,

Assumption 2 \; < 0.

12



We will use {F; : t > 0} to denote the filtration of X, that is F; = o(X, : s € [0,¢]). Using the
expectation formula of (¢1, X;) and the Markov property of X, it is easy to show that (see Lemma
%ﬁ%f’or any nonzero v € My(E), under P,,, the process W; := eM*(¢1, X;) is a positive martingale.
Therefore it converges:

Wy = Wy, Py-as. ast— oo.

6
Using the assumption (H:éﬁ we can show that, as t — oo, W; also converges in L%(P,), so Wy
is non-degenerate and the second moment is finite. Moreover, we have P,(Ws) = (¢1,v). Put
E = {Wy =0}, then P,(€) < 1. It is clear that £¢ C {X;(F) > 0,Vt > 0}.

1.4 Main results

For any k € I, every function f € L?(E,m;C) can be written uniquely as the sum of a function
fr € M, and a function in (/(/l\k)l Similarly, every function f € L?(E,m;C) can be written
uniquely as the sum of a function fk € ./\//\lk and a function in (Mj)*. Using , we can easily
get that

k k
fo(@) =3 (@5(2) (£, U))m € My, and  fi(z) =Y (W(@)7(f, B))m € My, (1.31)

j=1 Jj=1
where

o3 = (0 Y (0 Vs (0D
and

<f7 Cp]>m = (<f7 ¢§])>M7 <f7 ¢é])>mu T, <f7 ¢S£J)>m)T
For any f € L?(E,m;C), we define

V(f) == inf{j € T: (f, ¥;)m # 0},

where we use the usual convention that inf @ = co. If (f) < oo, define

C(f) :==sup{j e l: R; =R 5}

For each j € I, every component of the function ¢ :— D;(t)(f, V), is a polynomial of ¢. Denote
the degree of the [-th component of D;(t)(f, ¥;)m by 7;:(f). We define

7(f) i=sup{7;u(f) : 7(f) <5 < C(f), 1 <1<y
Then for any j with ®; = %, ;),
Fyj= Jim 7O D;(0)(f, ) (1.32) [1.20

exists and there exists a j such that Fy; # 0.

13



rem:large

Note that if g € L?(E, m), then for any j € I,

<g7 \Ilj>m = <g7 \Ilj>m = <gv \Ijj/>m7

k
where j" is defined in Remarkﬁ For g() = > 4.0, >om, (@ ()" b, we get by = (g, ;). Thus,
if g(x) is real, we get by = bp. The following three subsets of L?(E,m) will be needed in the

statement of our main result:

Cl = g(;p) = Z (@k(iﬂ))Tbk : bk € C™ with E = bk/ s
kel >2R),

Cor=qg(@) = > (P(x) by : by € C™ with by = by p .
kel: =28y

and
.= {g € PBm) AL Bm) < 20).

1.4.1 Some basic law of large numbers

For any k € I, we define an ng-dimensional random vector Ht(k) as follows:

HY = M (6", X0), - (0, X)) (D(1)

ng ?

1
One can show (see Lemma %ﬂﬁelow) that, if Ay > 2Ry, then, for any v € M (F) and b € C™k,
Ht(k)b is a martingale under P, and bounded in L? (P,). Thus the limit Hgg) = limy_ a0 Ht(k) exists
P,-a.s. and in L2(P,).

Theorem 1.15 If f € L?*(E,m;C) N L*(E,m;C) with \; > 2R, (p), then for any nonzero v €
M(E), ast — o,

C(f)
t_T(f)egR“/(f)t<f, Xt> o Z e_igthg,)Ff,j — 0, m L2(]P’V).
J=(f)

Remark 1.16 Suppose f € L*(E,m;C) N L*(E,m;C) with v(f) = 1. Then ((f) = 1. Since
thrm2
Dy(t) =1, 7(f) = 0. Thus Ht(l) reduces to Wy and HY = Wi. Therefore by Theorem 75 and

the fact that Fy1 = (f,¥1)m, we get that for any nonzero v € My (F),

MU X)) = (f,01)mWee, in LA(B,),

as t — oo. It is obvious that the convergence also holds in P, -probability.

In particular, if f is non-zero and non-negative, then (f,1¥1)m # 0 which implies v(f) =1. O
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1.4.2 Main result

For f € Cs, define

o ;:/O AT, 12 00 ds + (£ 12 1), (1.33) [ersigma
For h =73} \ —om, (@1 (z))T by, € Ce, define
p%z = (1 + 2T(h))_l <AFh71/}1>m ) (134)

where F,(7) == > ).\ —on, |(¢k(aj))TFh7k|2. For g(x) = > 1.5, 52w, (@ ()" by, € ¢y, define
Lga):= Y M®u(2) Dils)'br, B = / e MUALugl® 1)m du — (5%, 1) m
kA1 >20, 0

and

Ei(g)i= > (e HEDL®)b) -
k:X1>2R

Theorem 1.17 If f € Cs, h € C. and g € C;, then aff, p,zl and ﬁg all belong to (0,00). Furthermore,
it holds that, under P, (- | £°), as t — oo,

<6A1t<¢1 X, X0 - Bl Xy (f, X0) )
T (f1,Xe) VO W (6, X))V, Xy
L (W, Gs(g), Ga(h), Gi(f)), (1.35)

where W* has the same distribution as W, conditioned on £¢, G3(g) ~ N (0, 52)7 Ga(h) ~ N(0, p3)
and G1(f) ~ N(0,0']%). Moreover, W*, Gs(g), Ga2(h) and G1(f) are independent.

Whenever f € Cy, we will use G1(f) to denote a normal random variable A/ (0, 0]%). For f1, fo €
Cs, define

o(fs fo) = /0 AT ) (T fo), 1) ds + (Fufos 1)

Corollary 1.18 If f1, fo € Cs, then, under P, (- | £°),

( (f1i,Xe)  (f2, Xi)
V(e X (1, Xi)

and (G1(f1),G1(f2)) is a bivariate normal random variable with covariance

) L (G1(h),Gi(f2), t— oo,

Cov(G1(f1), G1(f2)) = o(fi1, fa)- (1.36)

:1.3
Proof: Using the convergence of the fourth component in Theorem %e get

L (f1, Xp) o (f2, X4) c
P, [ exp it ———= +ilg————xoro— 5 | &€
< p{ 1\/<¢1,Xt>+ 2\/(¢1,Xt>} | >
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_ ]P)u <€Xp {Z<91fl ";92.]027Xt>} |gc>

17
1
— exp{ 57 91f1+92f2} as t— 00,

where

Olofistafs) = /0 (AT (01 f1 + 02£2))%, 1) m ds + (011 + 02f2)%,U1)m
= 9%0?1 + 201020 (f1, f2) + 9%01%2.

(f
Now (ﬁ%f(ﬁ)fows immediately. O

Whenever h € C., we will use Go(h) to denote a normal random variable N (0, p?). For hy, hy €

C., define
p(hi,ha) == (L4 7(h1) + 7(ha)) " {AFp, s 1), (1.37)
where
Fuyno(r) = Y @) Fpy @5 (@) Fryyr= > ®(2) Fyy j@;(2)T iy . (1.38)
JiA=2R; JiA1=2R;

Corollary 1.19 If hy, hy € C., then we have, under P, (- | £),

(h, X2) (ha, Xe)
\/t1+2T(h1) <¢17 Xt> ’ \/t1+27(h2) <¢17 Xt>

and (Ga2(h1),G2(he)) is a bivariate normal random variable with covariance

> 4 (Go(hy), Ga(hs)), t— oo,

COV(GQ(hl), GQ(hg)) = p(hl, hg)

Whenever g € C;, we will use G3(g) to denote a normal random variable N (0,53), For
g1(x), g2(x) € C;, define

B(g1,92) == /000 e M (A(Tg1)(Is92), ¥1)m ds — (9192, V1) m

Using the convergence of the second component in Theorem %d an argument similar to that
(1
in the proof of Corollary %We get

Corollary 1.20 If gi(z), g2(x) € C;, then we have, under P, (- | £°),

<<917Xt> — Ei(91) (92, X¢) — Ei(g2)

Joixy | VX )ﬂ(G:@(Ql)’Gs(gz))’

and (G3(g1),Gs(g2)) is a bivariate normal random variable with covariance

Cov(G3(g1),G3(92)) = B(91,92)-

16



r:critical

For any f € L*(E,m) N L*(E,m), define
fo@) = > (@), U)m,
Ji2R; <A

fo@ = > (@) (f,))m,

j:2§Rj =)\

fo@) = [f@) = fi(@) - fo@)
Then f(s) e (y, f(c) € C. and f(l) € Cs.

Remark 1.21 If f € L*(E,m) N L*(E,m) with \; = 2R (), then f = fi) + fa)- Using the
convergence of the fourth component in Theorem @757“ fw, it holds under P, (- | £°) that

(fy, X¢) d
— 0,
\/t1+27(f)<¢1,Xt>
The:1.3
Thus wusing the convergence of the first and third components in Theorem @we get, under

Py (-] €9,

t — oo.

\/t1+2'r (251 Xt>
where W* has the same distribution as W, conditioned on £¢ and G (f(s)) ~ N (0, pfe(c)). Moreover,
W* and Ga(f(c)) are independent.

<€)\1t<¢1, > <f7Xt> >i>(W*, G2(f(c))), t — oo,

Remark 1.22 Assume f € L?>(E,m) N L*(E,m) satisfies \; > 285 -
If ey =0, then f = fq)+ f(s)- Using the convergence of the first, second and fourth components
The:1.3

in Theorem [I.17, we get for any nonzero v € My(E), it holds under P, (- | £°) that, as t — oo,
(f X0) = Sy en, € HE DO, Ui
<€A1t<¢1,Xt>, < k<¢11 X172 ) 4w, G1(fwy) + Gs(f(s)));

The:1.3
where W*, G3(f(s)) and G1(fq)) are the same as those in Theoremim._smce G3(f(s)) and G1(f1)
are independent, G1(fq)) + G3(f5) ~ N (0, aff(l) + 5]%(3)).
If fie) #0, then as t — oo,

<<f(z + fis)s Xt) = D kam <, © e Mt HE (F, ) ) J
— 0.
\/t1+2'r ¢1 Xt>

. . . The:1.3
Then using the convergence of the first and third components in Theorem me get

<<f,Xt> D k2Rp<h; € e MEH D) (f, Wh)m >) d

(e“<¢1,Xt>, T (67, X W Galdal)

r:critical
where W* and G2(f()) are the same as those in Remark mus }ﬁ Theorem 1.13] is a
1.3
consequence of Theoremw
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2 Estimates on the moments of X

In the remainder of this paper we will use the following notation: for two positive functions f(t,x)
and g(t,x), f(t,x) < g(t,z) means that there exists a constant ¢ > 0 such that f(¢,2) < cg(t,x)

for all ¢, x.

2.1 Estimates on the first moment of X

Lemma 2.1 For each k € 1, if a < Ry11, there exists a constant c(k,a) > 0 such that for allt > 0,

I T% s < c(k,a)e™™ and ”ﬁ’(Mk)LHQ < c(k,a)e™ ™, (2.1)

’(M\k)LH

Proof: Since (M) is invariant for 7}, {ﬁ|(Mk)J_ t > 0} is a semigroup on (Mj)*+ . By h
Theorem 6.7.5], we have O'(T1| i) = {e” Mok+1 < j eT}u{0}. Thus, if k +1 € I, the
spectral radius of Tl‘(Mk)J_ is T(Z}](Mk 1) = e ™1 < e If kK + 1 does not belong to I, then
(Tl ) =0<e™

By [, Theorem 6.3.10], T(Tl’(Mk)L) = limn_mo(an\(Mk)LHg)l/", thus there exists a constant
n1, such that

[Ty (payy 12 < €7 (2.2)
1.
By (ﬁ), we have
sup [ Telougyyllo < sup [ Tila < 5. (2.3)
<t<ni <t<ni

For any ¢t > 0, there exist [ € N and r € [0,n1) such that ¢t = nyl +r. By (ﬁ) and (%), we have

it e < ol Bl T ag o < e mtekm < ko (sup om) e
0<r<ni

Thus we can find c(k,a) > 1 such that Hﬁ|(Mk)L||2 < ¢(k,a)e~9t. Similarly, we can show that
||Tt|(//\;(\k)LH2 < C(k‘,a)e_“t. -

Lemma 2.2 For each k € I and t; > 0, if a < Ryy1, there exists a constant c(k,a,t1) > 0 such
that for all (t,z,y) € (2t1,00) X E X E,

k
alt,zy) =Y e D (t);(y)| < ce™ by, ()" 2Dy, (y)'/2. (2.4)

Proof: Recall that for any f € L?(E,m;C) and k € 1, fk is defined in the paragraph containing
E5D. Since [(£.0)ul < If]2 we have [f@)] < Ifll2 S5y S [0 @) Thus, we get

HﬂHg < c1(k)||fll2. By Lemma or any a < Rp41, there exists a constant co = ca(k,a) > 0
such that for all ¢ > 0,

IT(f — F)ll2 < o™ f — Filla < cse™ | f]l2, (2.5)
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where c3 = ca(1 + ¢1(k)). For t > t;, we have
alte.y) = [ altno2)att =t mldz) = s, (1))
where h,(2) = q(t1,x,2) € L>(E,m). It is easy to see that
(o6 = [ attroa,2)0P () m(d) = T (0 o)

Let

j

ho(2) = D3 (he, o)t (2) = Y T, (8,)T) (2)W5(2).
j=1

j=11=1

(%S%d (hl) we have

Tt (b)) = 3 T (@) @) Tk (¥))(w) = 3 e V@) Dy(t) Dyt = 1), (0)

Thus, by (E:ﬁ), we have

k
/E la(t,z,) — > e NH@,(@) "D ()T, (9) [ mldy) < (e3)%e ||y |3 = ce™ by, (),
j=1

where c4 = c4(k,a,t1) = c3e~ 2%, Since q(t,r,y) is a real-valued function, we have, for t > 1,
k _
/ gt 2m) — 3 e @, ()T D3 (0T ) mldy) < caetby, (). (2.6) [2.11
7j=1

Repeating the above argument with 7}, we get that there exists ¢5 = ¢5(k,a,t;) > 0 such that

for t > tq,
k

/ lq(t2,y) — 3 e 9H(®@5(2)) Dy (0T ()2 mldz) < ese By, (y). (27) [2.15
J

=1

Since D;(t) = D;(t/2)D;(t/2), we get

e (@ ()T Dy ()T, () = e N2 /E (t/2,2,2)(®;(2)) " D;j(t/2)T;(y) m(dz),  (28) [2.12

N (D, (2))7 Dy (1) T, (g) = e Mt /E a(t)2,2,9) (D, ()T D, (/2,2 m(dz),  (2.9) [2.13

and by m, we have
k

/E (Ze N2 ()T D (1/2)T ) (Ze N2 (2))T Dj (t2) T <>) m(dz)

J=1
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k
= D eV ) ' D;(t/2)D;(t/2)%;(y) Ze M@ (2) T Dy (1) W5 (y). (2.10)

7j=1
Thus, by the semigroup property of T3 and (ﬁ% 51t , we obtain
k
a(t,z,y) =D e "D;(t)¥;(y)
7=1
k
= T,z z,y)m(dz) — e Nt/? T,z T z
= /Eq(t/l ,2)a(t/2, 2z, y) m(dz) ; /E q(t/2, 2, 2)(®;(2))" Dj(t/2)W;(y) m(dz)
k
=30 [ qtt2,,)(® (@) Dy /2T mlde)
j=1 £
k
+/ (Ze Ait2(@ ()T D (t)2) W ) (Ze M2 (@ (2))T Dy(t/2)%5(y )) m(dz)
e\

k
_ /( (t/2,2,2) — (Z 2B, (1)) D, (/2)T ()))
E _

( (t/2,2,y) (Ze)‘ t2(0;(2)) T D (t/2)0;(y ))) m(dz).
Therefore, by Holder’s inequality, (Ejff and (E:%ff , we get, for t > 2tq,

< \Jeacse by, () 2y, ()2

k
g(t,m,y) = > e H(®;(2)) Dy(t)W5(y)

|

Corollary 2.3 Assume f € L?(E,m;C). Ify(f) < oo, then, for anyt; > 0, there exists a constant
c(f,t1) > 0 such that for all (t,x) € (2t1,00) X E,

¢(f)
DO () — Y e SN (@) Fry| < e f, 1)t by ()2 (2.11) [1.81
J=(f)
Moreover, we have, for (t,z) € (2t1,00) X E,
Ty f ()| S 7D e Rantp,, ()2 (2.12) [1.23

If y(f) = o0, for any t1 > 0, we have, for (t,x) € (2t1,00) X E,
T, f ()] S byy ()2 (2.13)

Proof: First, we consider the case v(f) < oo, which implies v(f) € I. By the definition of {(f),
~ a2.2
we have R r) < Re(p41- Since (f, (be)) /) < Hb1/2|]2HfH2, applying Lemmaiﬂmw—lﬂi k= C((f)
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and a fixed a with R,(5) < a < R¢(5)+1, we get that there exists c; = c1(f,t1) > 0 such that for
(t,z) € (2t1,00) x E,
¢(f)
Tyf (x) — e M0t " e S @ ()" D () (f, Uj)m| < cre” by, ()2 (2.14) [1.21
7=y(f)
If 7(f) > 1, the degree of each component of D;(t)(f, ¥;),, — t" ) F}; is no larger than 7(f) — 1.
Thus, for t > 2ty

D5 () (f, U m — T Py jloe S 77 (2.15) [1.22
IfFr(f) =0, Dj(t)(f, Vj)m — tT(f)Ffvj = 0. By (%II), we get, for (t,z) € (2t1,00) X E,
¢(f) ¢(f)
ST e @ (@) T D) U ())m — 7T eI (@ ()T Fy
J=y(f) J=y(f)
S DD (@)oo S by, (2)12, (2.16)

Now ﬁ) follows easily from (%) and ﬁ) By ﬁ) and (ﬁﬂ), we get (ﬁ%) immediately.

Now, we deal with the case y(f) = oco. Let ko := sup{j : ®; < 0}. Thus, we have ky € I and
2.2
Rio+1 > 0. Since y(f) = oo, so for any k € I, we have (f, Ux),, = 0. Now, applying Lemma :
with k = kg and a = 0, we get (ﬁ:ﬁ]’j immediately. O

it
Remark 2.4 Since Di(t) = 1, using 15%]5) “0ith k = 1 and A < a < Ro, we get that, for any
ty > 0, there exists c1(t1,a) > 0 such that for any f € L*(E,m) and (t,x) € (2t;,00) x E,

[T f (@) = (f,1)mér (@)] < eatr, a)e™ @A fllaby, (2)'V2, (2.17)

and hence there exists ca(t1,a) > 0 such that
MTf ()] < ea fllzbe, ()2, (2.18)

2.2 Estimates on the second moment of X

We first recall the formula for the second moment of the branching Markov process {X; : t > 0}
h
(see, for example, EZZL Lemma 3.3]): for f € By(E), we have for any (¢,z) € (0,00) x E,

t
Ps, (f, X;)? = /0 TJA|T,— o f 1] (z) ds + Ty (f?)(x). (2.19) |1.19
For any f € L*(E,m)N L*E,m) and z € E, since (Tj_sf)*(x) < KT, _ (?)(z), we have

lénmmﬂﬁm@wSKﬁmuww<m,

which implies
/t TA(Ti—s f)(z) ds + Ty (£%)(z) < (1 + KeEYT () (z) < oo. (2.20) [2.27
0
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1.1
Thus, using a routine limit argument, one can easily check that (‘ﬁ) also holds for f € L2(E,m)N
L*(E,m). Thus, for f € L?>(E, m;C) N L*(E, m;C), we have

Ps, | (f, Xe)|* = Ps, (R(f), X2)? + Bs, (3(f), X2)? = /0 TAIT s () ds + To(| f1*) (). (2.21)

Let Var, be the variance under P,. Then by the branching property, we have Var,(f, X;) =

(Vars (f, Xy),v). By (Eﬁ) and (%I), we get, for ¢ > 2tg,

Vars, (f, Xi) < Pa|(f, X0)|* < (1+ K" (| f*) (=)
(14 Kefe ™ ()2 ||| f |2 € L2(E,m) N L*(E,m). (2.22)

A

Recall that to is the constant in Assumption 1(c).

Lemma 2.5 Assume that f € L*(E,m;C) N LYE,m;C). If A\ > 2R, (y), then for any (t,z) €
(10tg, 00) X E we have,

sup ¢ DX [(f, Xp)[* S by ()12, (2.23)
t>10tg

Proof: In this proof, we always assume t > 10t5. For s < 2ty, we have T;_[A|Tsf|?](z) <
KX Ty(1f12)(x) < To(|f2)(). Thus, by €, we have for ¢ > 10t

2to
/0 T s[AIT f1P] () ds S Ti(|f7)(2) S €M by (2) 2. (2.24)

1.2
It follows from (ﬁ) again that, for (s,z) € (8tg,00) x E, |Ts f(x)| < s™He Rn3byy (2)Y/? . Thus,
for (t,x) € (10tg,00) X E,

t

t
/ T S[AIT ) () ds S £7U) / e, (bagy ) () ds
t—2tg t—2tg

2t 2to
(27(F) =2, 1yt / DT, (bygy ) () ds < 127D et / T, (buy)(x) ds.  (2.25)
0 0

We now show that for any = € F, fozto Ts(bay)(x) ds < co. By (ﬁ), we get

b4to (x) < 68Kt0a4t0 (x) < eIOKtOT%o (a2to)(x)'
2.
Thus, by (ﬁ), we have

2to 2to 2to
| L)@ ds < 00 [T fam @) ds S [N dsby ()2 5 b (o)1
0 0 0

.51

.52

(2.26) |1.37
By (&ﬁ) and (E:ﬁél), we get
t
/ Ty JAIT fP) () ds S 27D e 2Ty ()12, (2.27)
t—2tg
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1.2 2.
For s € [2ty,t — 2to], by (ﬁl), we have |Tyf(z)> < s> Ne P, (). By (‘ﬁl), we get
Ty [A(Ts f)?) () < s2™De 2Ranse=Mlt=9)p, (2)1/2. So, for (t,z) € (10ty,00) X E,

t—2tg t
/ T JAITf(2)ds S #DeNt / O1=2R1)3 b ()12 (2.28)
2 0

to

< DRty (2)1/2, (2.29)
Combining (ﬁ?%), (ﬁ) and (ﬁ), when Ay > 28,4, we get
/ot T J[AIT £ P)(2) ds S 27D Pty (2)1/2.
Since A1 > 2%y, by m, we have, for (t,z) € (10tg,00) x E,
T 12)(z) S e Mty (2)12 < 27D e PRty ()12,
Now m follows easily. O
Lemma 2.6 Assume that f € L*>(E,m)NL*(E,m). If \y < 2R, then for (t,z) € (10ty, 00) x E,
[ Vars, (£, Xi) = o31(2)| S culbio(2)'/2 + byy (), (2.30)
where ¢ is independent of x with limy o ¢y = 0 and a? is defined in (Eﬁf)'ﬁ@

Proof: First, we consider the case vy(f) < oo. In this proof, we always assume t > 10t; and
1.2
feL?(E,mnLYE,m). By (ﬁ), we have

M2 |Ps (f, Xy)| S 7 em R = A2, (Y172, (2.31)
L
We first show that 0]% < 0o. For s < 2tg, by (ﬁﬂ), we have
AT, f1P]l2 < K| Tsf1I7 < Ke | £]3- (2.32) [1.32

1.2
For s > 2tg, by dﬁ), T f(x)| < e Rrnss™Dp, (2)Y/2. Thus, we have
| AT ) ds < Kl [ TS ds
0 0
2t oo
< / i eM* ds + / e 2R3 271 ds < o0, (2.33)
0 2to
from which we easily see that JJ% < 00. By ﬁ), we have
NP5, (£, X)? = o ()

t—2tg
S e)\lt /
0
o0

t
+e)\1t/t 2 Tt—s[A’TSJC’z](x) ds +/ 6A18<A’T8f’27w1>m dsg(x)

t—2tg

E—S[A’Tsﬂz](x) - e_)\l(t_S) <A‘Tsf’27wl>m¢l(x) ds
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H T (1 2) (@) — (|12, ¥1)mér (@)
= Vi(t,x) + Va(t,z) + Va(t,x) + Va(t, z). (2.34)

First, we consider Vj(¢,x). By (%I), for t — s > 2ty, there exists a € (A1, Rg) such that
‘Tt—s[A|Tsf|2]($) — e MENAIT P ) mdi(2)| S e I A(Tf)? l2byy ()2,

Therefore, by (ﬁ) and ﬁ), we have

t—2t 2t
Vl (t, .Z') S_, e)\ltt%'(f) / 0 e_a(t—s) 6_2%%”5 ds bto (1’)1/2 + e)\lt / 0 e_a(t—s) ds bto (1’)1/2
2to 0

N

e (a=)tg27(f) /Ot @213 ds b, ()12 4 e~ (@A, (1)1/2
< 2 (e(,\l—zé}ev(f))t I e—(a—Al)t) by ()2 (2.35)
Now we deal with V5(t,z). By (%), we have
Va(t, z) < 127D eM=2Ryn)ty, (2)1/2, (2.36)

For V5(t,z), by (&ﬁﬁ), we get fto—o2to M (AT f12,¢1)mds — 0, as t — co. By (ﬁﬂ), we have
$1(2) < by ()2,
Finally, we consider Vj(¢,x). By (%I), we have

Vit @) S e @y ()2, (2.37)
1 4
Thus, by (%ﬁ)*(h), we have, for (¢t,z) € (10ty,00) x E,
[P, (f, X0) = oFon ()] S eaby (@), (238) [2.22

with lim;_, ¢; = 0. Now (% follows immediately from (&ﬁﬂ) and (‘ﬁ)

Now, we consider the case v(f) = co. The proof is similar to that of the case y(f) < oo, the

only difference being that we now use instead of . O

Lemma 2.7 Assume that f,h € L*(E,m) N L*(E,m). If \y = 2R, 5y = 2R, then for (t,z) €
(10to, 00) x E,

[T M Covs, (£, X0), (X)) = p(f: )61 ()] S 71 (b (0)/2 by (@), (239) [7:49

where Covs, is the covariance under Ps, and p(f,h) is defined by (i%) with f and h in place of
hi and he respectively. In particular, we have, for (t,z) € (10ty,00) X E,

[ 02D A Vg, (£, X) — p3on ()] S 471 (b (@) + by () (240) [148
where p% is defined by (ﬁﬁ%. Moreover, we have, for (t,z) € (10ty,00) x E,

=20 Mbyars (F, X)) < <bt0(x)1/2 +bt0(:p)) , (2.41) [3.33
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1.1
Proof: In this proof we always assume ¢t > 10ty and f,h € L?(E,m) N L*(E,m). By (ﬁ), we

have
Covs, ((f, Xt), (h, X4))
_ i (Vars, ((f + h), X} — Varg, ((f — h), X;))
_ /0 Ty [A(TLf)(Tsh)] () ds + To(f1) (x) — To() (@) Ti(R) (). (2.42)
Let

Cpls,z) = > (e—ﬁﬁ(@j(x))TFm), Chl(s,z) = Y (e‘ﬁf’s@j(:v))TFh,j)-

F:A=2R; J:A=2R;
Define
t—2to
Valto) = N[ TG E) @) ds
2
t0—2t0
‘/ﬁ(ta ‘T) = eAlt / ST(f)+T(h)e_)\18ﬂ—s[ACf(S7 ‘)Ch(S, )](‘r) ds,
2
t—2t00
V7(t7$) = / ST(fH_T(h) <A0f(s7')0h(87')77/)1>m d's?bl(x)
2to
and
t—2tg
W(t,z) = / sTIDTT AR 1) dsepr (),
2to

where Iy, is defined in (ﬁ:ﬁ% with f and h in place of hy and hy respectively. It is easy to see
from the definition of p(f,h) that

t
p(f, h) = (PR / TR AR 1) ds
0

Thus we have

et /Oti/’t_s[A(Tsf)(Tsh)](x) ds — " TIHTM p(f h)a ()

2to t
< M / +/ )ﬂ—s[A!TsfHTshH(w) ds + [V5(t, ) — Vs(t,z)| + |Vs(t, x) — Vz(t, z)|
0 t—2t
’ 2to
+Vz(t, ) — Vs(t,z)| + (/ / > DAT) ds(AF gy, 91 ) e (). (2.43)
t—2to
2.
By (‘ﬁ), for s <t — 2ty, we have
Ty s[AIT f|Tsh)(2) S e MUY AT, | Toh] |1 (b (2))'/2.
By (‘%ﬂ), it is easy to see that ||A|Tsf||Tshllle < K||Tsf||l4l|Tsh|ls < Ke2KSHfH4HhH4. Thus,

2to 2to
N T AT @ ds S [ dslbi @)V S (b))
0 0
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.2
For s > t — 2ty, using arguments similar to those leading to (hl), we get
¢
N T AT (0 ds S OO 0RO by (2))V2 (2.45)
t

—2to
TR (b, ()12, (2.46)

b
By (ﬁﬂ), it is easy to see that

2to t

( / + / ) sTDFTO) Gs(AFy gy, b1 )y (2) S DT 0, ()12, (2.47) [1.42
0 t—2tg
Next we consider |V5(t, ) — Vs(t, z)|. By (%), we have, for (s,z) € (2tp,00) x E,
|Tsf(x) — ST(f)e_’\ls/sz(s,xﬂ < T2y, ()12,

The same is also true for . Thus by (ﬁiﬁ%) and (ﬁﬂ), we get, for (s,x) € (2tg,00) X E,

1T @) Th(@)| = 5™ e NC(s,2)C(s, )|

< g _Sr(f)e—)\ls/2cf(37x)‘ Th(z) _Sr(h)e—xls/zch(s,x)‘
4 gm(h) =his/2 ‘Tsf(:n) _ ST(f)e_)‘ls/2C’f(3’$)‘ |Ch (s, )|
L gT(De=Nis/2 ‘Tsh(x) _ ST(h)C_)\ls/zch(S,x)‘ |Cp(s, )|
< ST gmAsp, (). (248)

Therefore, by (&ﬁ), we have, for (t,z) € (10tp, 00) x E,

t—2tg
Vs (t, ) — Vi(t,2)| < / sTUDFT LM U=, (by, ) () dis
2t
t—2tg ’
< /Zt SOFTL ggp ()12 < TRy, (2912, (2.49)
0

For |Vs(t,x) — Vz(t, )|, by (‘ﬁl), there exists A\; < a < Rq, such that, for t — s > 2ty,
MEIT,_[AC(s,)Chl(s, )] () — (ACk(s,-)Ch (s, ), ¥1)mi (x)
< e IO (s, ) On(s, ) |2big (2) 2.

~

b
By (ﬁﬂ), we get, for s > 2tg, |Cf(s,2)Cp(s, )| < by, (x). Thus, we get

t—2tg
Vs(t,@) = Va(t, )| S / R N N CO R
2t
t—2tg ’
< gD+ /2t e~ (a=A1)(t—s) dsbto(x)1/2gtT(f)+T(h)th(a:)1/2. (2.50)
0

Now we deal with |V7(¢,2) — Vg(t,z)|. We can check that Cj(s,z) is real. In fact, for each j
with A\; = 2R;, we also have \; = 2R, and e~ "37*(®,/(2)) " Fy, ;o = e~13%(®;(x))T F, ;. Thus, we
have Cy(s,z) = Cp(s,x) = Ej:A1:2§Rj <ei%js(<1>j(x))TFh7j>. Therefore,

Cr(s,x)Ch(s,z) = > ®5(@) Fyj(®;(x)) Fuy

JiA1=2R;
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n Z (e_i(gj_%l)s(¢j($))TFf,j(m) .
V() ZGAILC(S)

When j # [, since A\; # X\; and R; = Ry, we have I; # .
We claim that for any non-zero € € R and n > 0, we have for ¢t > 2t,

t—2tg )
/ sl ds| < . (2.51) |2.26
2to

Then, using (%%, we get

Va(t, z) — Vs(t, o)l

t—2tg
< 3 / ST () g=i(S-30)s g
Y(<i#I<C(f) 2o
< DR, ()12, (2.52)

(@) Fry (@i () Pty )| 1 ()

Now we prove (Eﬁ%) Using integration by parts, for n > 1, we get

t—9t n,i0s|t—2tog _ t—2to _ n—1_ifs t—9t
0 n _i0s _ se |2150 2y NS e ds < 4n 0 n—1 < 4n
s"e” ds| = - St + s ds St
2to 160 2to

For n =0, we have
ei@(t—Qto) _ ei29to

10

<2/|6].

t—2tg )
/ ez@s ds| =
2to

Therefore, (%) follows immediately.

Combining (%), (%), (ﬁ), (%), (ﬁﬁ%]) and (E:éﬁ), we get (t,x) € (10tg, 00) X E,

et /Ot Ty [A(T f)(T,h))(x) ds — 570 p( £, )y ()

< D0, ()12, (2.53) |1.46

By (‘%), we have, for (t,z) € (10tp,00) x E,
AT (|fh]) (@) S by ().
And by (%) and A\; = 2%, (),
MT, f (2)||Tyh(x)| S 7T Wby ().
Now ﬁ) follows immediately. O

nd critical| Lemma 2.8 Assume that f € L*(E,m)NL*(E,m) with A\y < 2Ry and h € L*(E,m)NL*(E, m)
with A\1 = 28 ). Then, for any (t,x) € (10tg, o) x E,

M Covs, ((f, X1), (hy X)) S ((brg (€))7 + byo (). (2.54)
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Proof: In this proof, we always assume that t > 10tg, f € L?(E,m) N L*(E, m) with A\; < 285
1
and h € L?>(E,m) N L*(E, m) with \; = 2% (). First, we assume y(f) < co. By , we have

Covs, ((f, Xe), (h, X3)) = /0 Ti—s [A(Ts f)(Tsh)] () ds + Ti(fh)(2) — To(f)(2)Te(h) ().
By (%) and (ﬁﬂ), we have, for (¢,z) € (10tp, 00) x E,
2t0 t
e)\lt t—s s s x)as
([ 7+ [, ) s Am iz e)a

S by ()2 T A2 by (2))12 S (b ()2,

By (E:E%), we have

t—2to t—2tg
eMt / Ty—s [A|T, f||Tsh|] (z) ds < eM? / sTDFT W) = /2Ry (By ) () ds
2to 2to
t—2t,
SJ (/ 0 ST(f)+T(h)e()\1/2—§R,y(f))s dS> bto(x)l/Q 5 bto(x)l/2- (255)
2to

Thus, we have

N [ Trea (AT T (2) ds| S (), (2.56)

0

By m, we get

MT(fR) ()] < T FAI) () S by ()12
By (‘ﬁ), for (t,x) € (10tg, 00) x E, we have

MUy f(2)Tih(x)| S DI 2=Ran)ty, (1) < by, ().

Now  follows immediately.
Repeating the proof above by using (ﬁ:ﬁff instead of (E:E%), we get (w& also holds when
Y(f) = oo O

3 Proofs of Main Results

In this section, we will prove the main results of this paper. When referring to individuals in X
we will use the classical Ulam-Harris notation so that every individual in X has a unique label, see
%ﬂ. For each individual uw € T we shall write b, and d, for its birth and death times respectively
and {z,(r) : r € [by,d,]} for its spatial trajectory. Define

Li={ueT by<t<d,), t>0.

Thus, X1+ has the following decomposition:

Xope= Y XM, (3.1)
uely

where given F;, Xg ’t, u € Ly, are independent and X' " has the same law as X, under Ps,, "
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3.1 A basic law of large numbers

Recall that
k k -
H® = MW, X0, (00, X)) (Dg ()"

Lemma 3.1 Assume that b is an ng-dimensional vector. If \y > 2Ry, then, for any v € My (E),

Ht(k)b is a martingale under P,. Moreover, the limit
HY = lim HY (3.2)
t—ro0
exists P,-a.s. and in L*(P,).

Proof: By the branching property, it suffices to prove the lemma for v = 6, with x € E. By

T-Jordan
, we have

Ps, H Vb = T, (1)) () (Dr () "' = (B ()",

Thus, by the Markov property, we get that Ht(k)b is a martingale under P5,. We claim that, for
(t,x) € (2tp,00) x E,
Po, [HM P S 1b[2biq ()12, (33)

8
from which (ﬁj follows immediately.
Now we prove the claim. Let fi(z) = " (Dg(t)~)T®s(2). Then Ht(k)b = (ft, Xy), and by

-Jordan
, for s < t, we have

To(fo) (@) = 90T (Dy(t — )" H)Tdp = fi_s().
By (ﬁ), we have
t
Py, [P = Py | (fin X0) 2 = /0 T A fu?) () ds + Ty ff?) (). (3.4)

Since each component of D (s)™! = Dj(—s) is a polynomial of s with degree no larger than vy, we

get |Dy(s) oo < (1 + s¥%). Thus, for all s > 0, we have
sl S €2 [bloc] Di(5) ool @k (2) oo S [bloo (L + 87 )e™ by, (a) /2. (3.5)

2.
By dﬁ), we have, for (s,z) € (2tg,00) X E,

To(Ifs?) (@) S e M1 folPllabig (2) 2 < b2, (1 + s25)e” M2 e)spy ()12, (3.6)
Thus, we have
t
| TP ds S b @) (3.7)
2to
By (ﬁ) and (ﬁ:&é}, we get
2to 2to
/ TJA|f*)(z) ds S Iblgo/ Tibaty(x) ds < [b|2 by, (2)'/2. (3.8)
0 0
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. 1.59
Thus, by (ﬁ) and (ﬁf , we have
t
| TALP ) ds S iy (o) (9) [158
0
1.56
Since A1 > 2Ry, we have sup,..o; (1 + s2k)e~M=2R)s < oo Thus, by (ﬁf, we get

T i) () S bl3cbey ()2,

from which (ﬁ% follows immediately. O
Now, we present the proof of Theorem iﬂ?
Proof of Theorem hjr%]: By the branching property, it suffices to prove the theorem for
v =20, with z € E. Put

G(f)
)= > ;@) (), flo):=fl)- ()
3=y(f)
and f,(z) = zjﬁw i(@)TD;(t)" Fy,. Then
¢(f)
D) = file) = 3 @) Dy (ETDD (0, W) - Fr).
Ji=y(f)

7
By (ﬁf&nd (‘%), we have, for (t,z) € (2tg,00) X E,

2
Ps, (t—T<f)e%w>t<f*,Xt> — e%ﬂf”(ft,Xﬁ‘

S Z TD D) f,¥5) = Fyl2ebey ()% < 17204 () /2. (3.10)
J=7(f)

; 1.48
By the definition of Ht(] ) and (@T , we have, as t — oo,

¢(f) ¢(f)
D fy, X)) — Z < —StHO Py ) 3 ( ~i%5t(g V) —Hg@)Ff,j) -0, (3.11) [2.16
J=y(f)
in L?(Ps,). Thus, by (%) and (ﬁ) we obtain that, as t — oo,
«w
DM Xy~ Y (wgﬂﬂgg)Ff,j) 0, in L*(Ps,). (3.12) [2.18
J=y(f)

Now, to complete the proof, we only need to show that, as t — oo,
127N tPs |(F, X,)|* — 0. (3.13) [2.21
(1) If \y > 2R () then by dﬁ) we get, for (t,z) € (2tg,00) X E, as t — 00,

t—27'(f) 62%7(f)t]?5z ‘ <}-: Xt> ‘2 5 t—2T(f)t27—(f) 62(%7“) —?R,Y(f))tbto ($)1/2 = 0.
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1.4
(2) It A = 2R 7, then by (‘ﬁ), we get, as t — o0,

t—27’(f) 62%7(f)tp(5x | (ﬁ Xt> |2 _ t_2T(f)t(1+2T(f))t€(2§R“/(f)_Al)tt_(1+2T(widef))t€)\1t]?5x | <]?” Xt> |2 0.

(3) If A\ < 2?]‘%%?), then by (%, we get, as t — 00,

=2 NP0ty |(F, X,)|? = 727D e@Ryn = Atehtp, [(F )2 — 0.
Combining the three cases above, we get (%) The proof is now complete. O

3.2 Proof of the main theorem

First, we recall a metric on the space of distributions on R%. For f : R¢ — R, define

15z = 1 flloo + sup L& = LW
TF#Y |z — 9|

For any distributions v and 15 on Rd, define

B(vr, 1) :zsup{'/fdvl —/de2

dle
Then f is a metric. It follows from %eorem 11.3.3] that the topology generated by this metric

is equivalent to the weak convergence topology. From the definition, we can easily see that, if 14

C A fllsL < 1}-

and vy are the distributions of two R%valued random variables X and Y respectively, then
B(vi, ) <E|X - Y| < VE|X — Y2 (3.14) [5.20
Lemma 3.2 If f € Cs, then a? € (0,00) and, for any nonzero v € My(E), it holds under P, that
(M or. X0, 21X ) S (Woew GLUAVIV), t o0,
where G1(f) ~ N(0, O’?). Moreover, Wy, and G1(f) are independent.

SZ2
Proof: The proof is similar that of hTheorem 1.8 ]. We define an R%-valued random variable
Ui (t) by

Ur(t) = (o1, X0, M2, X0) ) (3.15)
To prove this lemma, it suffices to show that, for any x € E, under Ps_,
d
UL(t) % (Woos VWG (f)) (3.16)

where G1(f) ~ /\/’(0,0?) is independent of Wy. In fact, if v = 370 d,,,n = 1,2,... {z;;] =
1,---,n} C E, then

X, = ixg‘,
j=1
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where Xg is a branching Markov process starting from d,,,7 = 1,...,n, and XJ,j=1,---,n, are
independent. If (%) is valid, we put W = limy_ o0 Mt (g, Xg ). Then we easily get that, under
P,, We = Z?:l WZ,. Since \; < 2R.(f),

P, exp {z’91e’\1t<¢1, Xy) + i6peM /DY ], Xt>>
Ps,, exp {i91€)‘1t<¢17 X7) + i0peM /2§, Xf))

j=1
i ‘ ] :
— H Ps,, exp {zelwgo - §9§J§W&>
j=1

~

. 1
L €Xp {z@lVVoo — 5950]%1/1/00) ,

which implies that (Ef[ﬁl) is valid for P,,.
Now we show that (E:&il) is valid. In the remainder of this proof, we assume s,t > 10ty and

write

Up(s+1) = (eh<s+t> (b1, Xgs), eM/DEH (£, X5+t>) .
Recall the decomposition of X4, in (ﬁ% . Define
Yi"(s) = MY and y)(s) = Py, (Y] (5)| ) (3.17)
Given Fy, Y{"'(s) has the same law as Y;(s) := eM*/2(f, X,) under Ps., - Then we have

e(>\1/2)(8+t)<f7 Xopt) = eA1/2)t Z Ylu’t(s)

u€Ly
eI (Y (5) — yt) + eNDEEIB ((f, Xora) | F)
ueLy
= Ji(s,t) + Ja(s, ). (3.18)

We first consider Jy(s,t). By the Markov property, we have
Jo(s,t) = e/ (T X,
By (‘ﬁ), we get
P (X0 = [ il AT (0P )) 4 T TLP(0),
First, we consider the case v(f) < oo. Since u + s > s > 10tg, by (ﬁ%), we get
Tursf(@)? S (u+ s)7HePan o)y, (7)., (3.19)
Thus, for t > 10ty, we have

t—2tg
/O Ty [A(Torn f)?) () du
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N

N

N

S

The second inequality above follows from (%) And by (%) and (%%), we have

t—2to
e~ 2% () / (u+)*7) e T_ (bag, ) () du
0

t—2tg
6_28%7“) / (u + S)2T(f) 6_2%7(f)u6_)‘1(t_u) dUbto (x)1/2.
0

(3.20)

t—2to t—2to
e~ Mt 2Ry </ w27 eM=2Ry () gy 4 $27(F) / T du) big ()
0 0

S2T(f)e—)\1te—2%,y(f)8bt0 (x)1/2‘

N

/t Ty o[ A(Tarn f)?)(x) du

—2tg
t
(t 4 )27 =2y (tH5—200) / Ty (bt ) ()
t—2tg
(t + S)2T(f)e—2§)‘3,y(f)(t+s)bt0 (x)1/2'

By (ﬁ), we get that [T, f(z)]? < s27e=2%%h, (). Thus, we have

Consequently, we have

P(Sz <Tsf, Xt>2 S (t + S)2T(f)e—2§)?,y(f)(t+s)bto ($)1/2 + S2T(f)e—)\1te—2§)?,y(f)sbt0 (l‘)l/2.

Therefore, we have

lim sup P, Jo(s, t)? = limsup e H9)P; (T, f, X,)? < 527D eM=2Ryp)sp, (Y172,

t—o00

Tt(Tsf)2(x) S S2T(f)e—)\1te—2§]‘€,y(f)sbt0 (x)1/2'

t—o00

Similarly, for the case v(f) = oo, we have

Thus,

lim sup Py, Jo (s, t)? = limsup e H9P; (T, f, X,)2 < Moy, ()2,

t—o00

P5z <T8f7 Xt>2 5 bto (x)1/2 + e_)\11‘/bto (x)1/2.

t—o00

Combining (%EI) and (%), we get

Next we consider Ji(s,t). We define an R2-valued random variable Us(s,t) by

lim sup lim sup Ps, Jo(s,1)? = 0.

$—00 t—o00

Up(s.1) = ({91, X2), Ji(s5,1) )

Let Vs(z) := Vars, Yi(s). We claim that, for any = € E, under Ps,,

Usa(s,t) LN (WOO, \/WOOGl(S)) , ast— oo,
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where G1(s) ~ N (0,0'ch(s)) is independent of W, and O'ch(s) = (Vs, ¢1). Denote the characteristic
function of Us(s,t) under Ps, by (61,602, s,t):

k(01,02,5,t) = Ps, (exp {i@le)‘lt(<z§1,Xt> + ihpeP1/2)t Z (Y (s) — yi‘%s))})

ueLy
= Ps, (exp{i@le)‘lt<¢1,Xt>} 11 hs(zu(t),e()‘l/2)t92)> : (3.29)
uely
where

hs(z,0) := P, e001(5)=F5, Y1(5))

Let t;,my — 00, as k — 00, and ay ; € E, j = 1,2,---my. Now we consider

mg
Sy, = eMt/2 Z(YkJ — Ykj)s (3.30) |6.16
j=1

Yi(s). Further, Y3 ;,7 =1,2,...

kg

are independent. Suppose the following Lindeberg conditions hold:

where Y}, ; has the same law as Y1 (s) under ]P’(;ak ; and yi ; = Ps

(i) as k — oo,

mp mp
MY TE(Viy — k) = MY Vilagy) — o
=1 j=1

(ii) for any € > 0,
mg
MY R (!Yk,j = el Yiog — ymgl > Ee—mk/z)
j=1

my
— Mt Zg(a;w-, s, tg) = 0, ask — oo
j=1

where g(, 5,) = B, ([Vi(5) — s, Yi(5)/%, [Vi(s) — B, Yi(s)| > eeM1/2).

Then using the Lindeberg-Feller theorem, we have S}, AN (0, 02), which implies

mg

H hs(ag j, eM/20) — e 2070 (3.31) |6.17
j=1
By (ﬁﬂ), we get Vi € L*(E,m) N L*(E,m). So using Remark i%,livl&;éghave
eMt Z Vi(zu (1)) = eMY(V,, X)) — (Vi, $1)Weo,  in probability, as t — co. (3.32) |6.18

uely

We note that g(x,s,t) | 0 as t T oo and g(x,s,t) < Vi(z) for any = € E. Thus by (%I) we
have for any = € F,

eAltP5z<g('737t)=Xt> 5 ”g('737t)”2bto(x)1/2 — 07 as t— oo,
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which implies

eMt Z g(zu(t),s,t) = 0, as t— oo, (3.33)
uELy

in Ps,_-probability. Therefore, for any sequence s; — oo, there exists a subsequence s, such that,
if we let ¢t = s}, my = |X8;€| and {ayj,j = 1,2---mi} = {zu(s},),u € £8;€}, then the Lindeberg

conditions hold Ps_ -a.s. for any € F, which implies

klim hs(zu(sh), €21/2%0,) = exp {—%9%(‘/8, ¢1>Woo} , Ps,-a.s. (3.34)
—00
ueLl
K

Consequently, we have

1
lim hs(zu (1), €M /205) = exp {—5(9%(‘/3, gbl)Woo} , in probability. (3.35)

t—o00

Hence by the dominated convergence theorem, we get
1
tlim K(01,02,5,t) = Ps_exp {i01 W } exp {—§9§<V8, 1/11>me} , (3.36)
—00
.1
which implies our claim (m Thus, we easily get that, for any « € E, under P;_,

Us(s,t) := (e)‘l(t+5)<¢1,Xt+s>, Jl(s,t)) KN (Woo, \/WooGl(s)> , ast— oo.

By (%, we have limg oo (Vs, ¥1)m = 0F. Let Gi(f) be a N(0,0%) random variable independent
of W. Then

lim H(G1(5),Gr (1)) =0 (37
Let D(s + t) and D(s,t) be the distributions of Uy(s + t) and Us(s,t) respectively, and let D(s)
and D be the distributions of (Wso, vWooG1(s)) and (Weo, vVWeoG1(f)) respectively. Then, using

(%), we have

limsup 8(D(s +t),D) < limsup[B(D(s +1t),D(s,t)) + B(D(s,t),D(s)) + B(D(s),D)]

t—00 t—o0
< limsup(Ps, Jo(s,1)%)Y2 + 0 + B(D(s), D). (3.38)
t—00

Using this and the definition of limsup,_, ., we easily get that

lim sup B(D(t), D) = limsup B(D(s + t), D) < limsup(Ps, Ja(s, t)?)/? + B(D(s), D).
t—o0 t—o0 t—00
Letting s — oo, we get limsup,_,., B(D(t), D) = 0. The proof is now complete. 0
Lemma 3.3 Assume f(x) = Ej:/\lzmj(@j(x))Tbj € C., where bj € C". Define
Suf(x) =t~ F2TUN2NDE(f X)) — Tif(2)),  (t,2) € (0,00) x E.

Then for any ¢ >0, § >0 and © € E, we have

lim P, (|st F(@)% 1S £ (2)] > ceét) — 0. (3.39)
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Proof: In this proof, we always assume t > 10ty. For each j, define
Sjala) = 17NN (9T Xy) — (@ (@)D (1))

Thus, Sif(z) = Zj:Alzzé)%j S;ji(x)b;. Using the fact that for every n > 1,

2

n
Lsop mpesar <00 2L 2 a0, (3.40)

=1

n
D

=1

4, )
we see that, to prove (ﬁ), it suffices to show that, as t — oo,
Pt ,b5) =P, (|S50()b; % 1850(@)b| > e ) - 0.

- d
Choose an integer ng > 2tg. We write t = l;ng + €;, where I; € N and 0 < ¢; < ng. By (%%e
easily get Tu((I)]T)(a;) = e MU, (2)TD;(t). Since A\; = 2R;, for any (t,7) € (0,00) x E, we have

1 H/2tr(f) A1 (t 2 T A T
Sirnale) = () N (0T, Xipny) (0] X) D (00)
1 ) —in0 ,A1t/2 T _ oAt . TrH. .
+ t+ g € € <(I)j7Xt> € ((I)](x)) Dy(t) D](no)
1\ V2 N b\ V2T
_ ) —iing ) )
_ <Hn0> Ri(t) + e (Hn()) S@)Ds(ne),  (3.41)

where
Ry(t) i= eM/DE0) ((@F Xy 100) — (N0, X) Dj(no))

Hence, for any (t,z) € (0,00) X E, we have

F(t + no, 2, b])

Py, (1904na (@)t 1% 18j4(2) Dy (no)by | > e )

+Ps, <|5j,t+no ()b % 195,4() Dj(no)bj| < ce®™, 1S tng (2)bs] > 065(t+"°))
= Ml(t, x) + Mg(t, $)

IN

Put
Ai(t,a,b) = {[8j0(x)Dj(no)bs| > e},
A(t,,bj) = {]8u(2)D;(no)bj| < ce®,|Sjn (2)bs] > ce”+70))
and
Alt, z, bj) = A(t,x, bj) U As(t, x, bj).
Since Ay (t,x,b;) € Fy and Ps, (R;(t)|F;)=0 for any (¢,z) € (0,00) x E, we have by (ﬁﬂ) that

1 1427(f) , + 1+27(f)
Ml(t,l‘) = <t+n0> P(gz (|Rj(7f)b]| ;Al(t,l‘,bj)) + <t+n0> F(t,ZE,Dj(’I’Lo)bj)
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and

1 1+27(f) )
M) < 2] s (RO Asteby)

¢ 1+27(f) ,

Thus, for any (¢,z) € (0,00) x E, we have

‘ 1+27(f)
F(t +ng,z,b;) < <t+n0> F(t,z,D;(no)bj)
1 14+27(f)
+ <t n no) (F1(t,z,by) + Fa(t, ,b5)), (3.42)
where
Fi(t,z,b;) = 2Ps, (|R;(t)b;|% Ar(t,2,b;) U As(t, 2,b;)))
Fy(t,x,b;) = 26727 DP; (IS;4(2)Dj(no)bj|?; Aa(t, 2, b)) -

4.
Iterating (@), we get for ¢ large enough,

F(t—l_n(])x)bj)

1 1+27(f) L
<t n n0> Z (Fy(mno + e, , D ((l; — m)ng)b;))

m=>5

1o\ b
(7)) X (Bt + . Dy (= o))

m=>5

5ng + € 1+27(f)
< P > F(5’I’L0 —I—Et,l‘,Dj((lt —4)n0)bj)
5 1+27(f)
=: Ll(t, :E) + LQ(t, :E) + < T;O++16t> F(5TLO + €, @, Dj((lt — 4)n0)bj). (3.43)

First, we consider L;(t,x). By the definition of 7(f), we have for s > 0,
1D;(8)bjl2 < |Dj(8)bjloe S 1487, (3.44) [2.33
Thus, we have for 0 < s <t and t > 2t,
|Rj(s)D;(t — $)b;|* < |R;(s)[5D;(t — 8)bsl5 < 7 R;(s)5. (3.45)

It follows that for any e € (0, 1),
2
t+ ng

n 2
t+ ng

Ly(t, ) > Ps, (IRj(mno +e)l3)

5<m<ely

Z Ps, (|Rj(mng + €)|5; A(mng + €, 2, D;((l; — m)no)b;))

lee<m<l;
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=: L171(t, LZ') + L172 (t, LZ') (346)

By the definition of R;(s), we have

IR;(5)3 = M) ST (6, Xoing) — (T (67), X2 (347) [2.34
=1
Note that
D), Xono) = (T (87), X2 = [(R(AD), Xong) — (Tng (R()), X[

Thus, we have

Ps, [(67), Xotno) — (Tno (8, Xs) |2 = Ty(Vars (R(&), Xpo)) () + Ty (Vars (3(617)), Xno)) ().

(3.48) |2.35
Hence, by (%), we get, for s > bng > 2tg,
Bs, [Rj(s)[3 = M40 S P[0 Xevno) = (Tg (0) Xe) P S b (@)% (349) [2:37
=1
Therefore, we have, for (¢,z) € (5ng,00) X E,
Ly (t,x) < ebyy ()2, (3.50) [L11
We claim that, for any x € F,
(i)
lim limsupPs, (|R;(s)[3; |R;(s)[3 > M) =0, and (3.51) [2.44
M—o0 500
(i)
sup Ps, (Ai(s,z, Dj(t — s)bj) U Aa(s,x, Dj(t — s)bj)) — 0. (3.52)
te<s<t
Using these two claims we get that, as ¢ — oo,
LLg(t,l‘)
2
< = 3 (B (Rylmng + el [Ri(mno + ) > M)
+ ng
elt<m<ly
+MPs, (A(mng + e, x, D;i((ly —m)ng)b;)))
S S;lf]P’csz(\Rj(S)\%; |Rj(s)[5 > M) + Mtsilgt]P’gz(A(s,x, Dj(t = s)bj))
= limsupPs, (|R;(s)[3; |R;(s)]3 > M). (3.53)
S—00
Letting M — oo, we get
tlim Lis(t,z) = 0. (3.54) |L12
— 00
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Now we prove the two claims.
(i) For i =1,2,--- ,nj, define

Rja(s) = e (stno) /2< (¢]) Xstno) = (Tng (?R((;ﬁ?)),XQ

and

Rjia(s) = MO 2S(]), Xny) — (Ty (3(6])), Xo)-
:el 2.34 2.44
Using (he?@ﬁg and (@), we easily see that, to prove (m), we only need to show that, for k =1, 2,

i limsup s, (|R; 14 (s)] 2Ry x(s)]P > M) = 0. (3.55)

Repeating the proof of (Bﬁ) with s = ng, we see that (Bﬁ) is valid for f € L2(E,m) N L*(E,m).
Thus, for [ =1,2,--- ,n;, as s = 00,

]11 —>\/ G

where G ~ N (0, eM™ (Varg. (5)%(¢{),Xno>,1/11>m. And by (‘ﬁﬂ), we get, as s — 00,

Ps, (|Rj11(5)[*) = M T (Vars (R(]), Xno ) (x) = M7 (Vars (R(&]), Xng ), 1)1 ().
(3.56) [2.39
Let hpr(r) =7 on [0, M — 1], hps(r) = 0 on [M, o], and let hys be linear on [M — 1, M|]. By m,
we have that for any =z € F,

limsup Ps, (|R;11(s)%, [Rj 11 (s)* > M) < lin sup Ps, (| Rj1,1(5)[*) — Ps, (har (| Ry (s)*))
—00

5—00

= e)‘lno <(Var5, <§R(¢?), Xn0>, ¢1>m¢1 (l‘) - ]P)éac (hM(WOOG2))

By the monotone convergence theorem, we have that for any = € F,

Jim P, (hat (W G?)) = P, (WiaoG?) = P, (Wao)Ps, (G?) = 7™ ((Vars (R(¢]), Xng)s ¥1)md1(2),

which implies
lim limsupPs, (|R;11(5)%, [Rjn1(s)> > M) =0,

M—0 g—00

which says (B%sgl%lds for k = 1. Using similar arguments, we get (B%sgl%lds for k = 2.
(ii) Since T((b{) <vj, by (%), we get for 10tg < s,

P, |S)s(z)[5 S 8257 02T < 2, (3.57)
By (%), we get, for 10ty < s <'t,
Ps,|S;«(2)D;(t + 1 — s)b;|> < 291 + 270, (3.58) [3.34

.34
By Chebyshev’s inequality and (%), we have that, for any z € F, as t — oo

sup Ps, (Ai(s, 2, Dyt —s))) < sup ¢ % 2Py, |5 s (2) Dj(t + 1 — 5)b;|?

te<s<t te<s<t
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< e v 427y S 0.

~

It is easy to see that, under Ps,, for any ¢ > 0,
As(s, 2, D;(t — )b;) C {|Rj(8)Dj(t — 8)b;| > ce* (e5"0 - 1) s<2T<f>+1>/2}. (3.59) [4.24

By (ﬁ%@) and (Eﬁ), we get
Py, |R;(s)Dj(t — 5)bj|* S 27 Dby, (2)'/2.

Similarly, by Chebyshev’s inequality, we have that, for any x € F, as t — oo,

sup Ps, Aa(s,x, Dj(t — s)bj)
te<s<t

< sup ¢ (e — 1)_26_2658_(1+2T(f))[@5x|Rj(S)Dj(t — 5)b;[?
te<s<t

< 6—266t(te)—(l+27'(f))t27'(f) 0.
L1l L12
Thus we have finished proving the two claims. Therefore, by (m) and (m), we get

limsup Ly (£, ) < eby, ()2,

t—00
Letting € — 0, we get
Jim Ly(t,2) = 0. (3.60)
Now we consider Lo(t,z). By (%), we have that for any z € E,
Fy(s,xz,D;j(t — s)bj)
2sUT2T NPy (|S;5()Dj(t + no — 8)bj|%; Aa(s, x, Dj(t — s)bj))
25(1427(H) e ps (]Sj,s(a:)Dj(t +ng — 8)bs|; | Rj(s)Dj(t — 8)bj| > ce® (20 — 1)3(2T(f)+1)/2>
2¢7 (20 — 1)e %Py, (1S,5(x)D;j(t + no — s)bj| - |R;(s)D;(t — s)bj|?)
e 0seMEtmlyT (DR (1S; o(x)]2(Vars, (BT D;(t — 5)bj, X)), Xs))

ey Pax|5a‘,s($)|§\/€”15pax (<Var6.((<1>]rDj(t — 5)bj, Xy )), Xs>2>-
By (ﬁ) and (ﬁﬂ), we get for s <,

Var5z(<q)§1Dj(t - S)bj’Xn0> < P5z|<¢?Dj(t - S)bj7Xn0>|2 S tzT(f)P(Sz <bt0(x)1/27Xn0>2'

Thus by (ﬁ) and (E:%), we have for 5ng < s <t

Fy(s,z, Dj(t — s)bj) < e 05t?(Dg¥i \/62’\15]1”5z ((bey (2)1/2, X5)?) S e 02T v

IN N

A

N

Thus, we get, as t — o0,

N

1
—§(mno—+er) (1+2v5)/2 < -
E e (mngy + €) =¥+ no

Ut
Z e—émno((m+ 1)n0)(1+2uj)/2 0.

m=>5
(3.61)

1
Lo(t,z) S

m=>5
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To finish the proof, we only need to show that for any = € F,

‘ 5ng + € 1+27(f)
tllglo < . > F(5n0 + €, z, Dj((ly — 4)ng)bj) = 0. (3.62)

2. ars
By (ﬁ) and (m), we get that for any x € F,

(510 + €) D F(5ng + €, 2, D (I — 4)no)b;)
< (6n0)TTY) sup Py, [S)6(x)Dy((1 — 4)no)bj|* < 127 (6n9) 2,

5ng<s<6ng
. . . L
which implies .

The proof is now complete. g
Lemma 3.4 Assume that f € Cs and h € C.. Define
Yi(t) = M2 ((f, X)) = Tif(x)),  Ya(t) := t— U722 (h X,) — Tyh(z)), >0,

and Yy :=Y1(t) + Ya(t), t > 0. Then for any ¢ >0, 6 > 0 and = € E, we have

lim P, (|n|2; vy > ceét) ~0. (3.63)
: :5.5
Proof: By (EﬁE and Lemma %ﬁﬁufﬁces to show that
lim P, (\Yl(t)\2; Vi ()] > ce&> ~0. (3.64) [3.55
— 00

If v(f) < o0, by (%), we get, as t — 00,

M2|T f ()] S 7P e/ 2R, ()12 — 0.

If v(f) = oo, by (ﬁﬁ we get, as t — oo, eMY2|T, f(x)| < eMY2by (2)'/? — 0. Thus, by Lemma

1 1 len:2.2

ﬁ%@%ﬂ W WoG1(f). By Lemmaﬁieha\’e
. 2 _ 2
Jim Py, ([Y1(t)]*) = 051 (x).

Thus, for any M > 0, we have

Ps, (MO @) > e™) < Py, (VO ¥i(0)] > M) + M2Ps, (V)] > ce™)
=: Li(t,z, M)+ I5(t,xz, M).
Let hpr(r) =7 on [0, M — 1], hps(r) = 0 on [M, 0], and let hps be linear on [M — 1, M]. Then
: . 2 2y _ 2
i sup £ (1,7, M) < lim sup B, (Vi(9)?) ~ s, (ras (¥4 ()7) = 31 (2) B, (ras 161 (1) v/ Tl
—00 —00

By Chebyshev’s inequality, we have, as t — oo,
L(t,x, M) < M?*c 2 2'Ps_(|Y1(t)[*) — 0.
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Thus, we have

timsup Ps, (|Yi(6)[%5Yi(0)] > ce®) < 0361 (x) — By, (har (G2 ()v/Waol)*

t—00

Letting M — oo, by the monotone convergence theorem, we have that for any x € F,

Jim Py, (har (|G () VW, ool)? Gr1(f)*Weo) = oF¢1 (),

which implies (%) The proof is now complete. O
Lemma 3.5 Assume that f € Cs and h € C.. Then

(M1, Xo), 4= A2 ON2EN2 0, Xy M2, X1) ) 5 (Wooy v/ WasGa(h), VWasGa(f) )
(3.65)
where Ga(h) ~ N(0, p3) and G1(f) ~ N(O,UJ%). Moreover, Wuo, Go(h) and G1(f) are independent.

Proof: In this proof, we always assume t > 10ty, f € Cs and h € C.. We define an R3-valued

random variable by
Ui(t) := <6A1t<¢17Xt>7t—(1+27(h))/2e>\1t/2<h7Xt>7e)qt/2<f7 Xt>> '
For n > 2, we define
Ur(nt) = (M7 (61, Xo), (nt) 272N, X ) M2 (f, X))
Now we define another R3-valued random variable Us(n,t) by
Ua(n,t)

Mnt2((h X)) — (T 1yihy X
- (eAlt((bl,Xt% e Egn - 1§i)(1£2r((h))1); t>)’ehnt/2(<f= Xnt) = Ty Xt>)) .

We claim that

Us(n,t) (Woo, VWsGa(h \/WOOGl(f)> , ast— oo. (3.66)

Denote the characteristic function of Us(n,t) under P, by k2(61,62,603,n,t). Define
Ylu,t(s) — e)\ls/2<f7 Xsu,t>7 Y2u,t(s) — S_(1+2T(h))/2€)‘18/2<h,X;L’t>, s,t> 0.

We also define
Yi(s) = M2, X), Ya(s) i= s~ (FETD2es/ 20 )

and
Ys(eg, 93) = 92Y2(S) + 93Y1(S).

Given Fy, for k = 1,2, Yk"’t(s) has the same distribution as Yj(s) under Ps,, - Thus, for k = 1,2,
y]?t(s) = ]P5z (Yk%t(s)"ﬂ) = P5Zu(t)Yk(3)'
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22
Thus, by (ﬁ , we have

Us(n,t) = <€A1t(¢1th>, MY (¥ (0= 1)) — 3" ((n = 1)1)),

ueLly
M2 (Y (0= 1))~y (n — 1>t>>) . (367)
ueLly

Let h(s,x,0,02,03) = Ps, (exp{if(Ys(02,05) — Ps,Ys(62,03))}). Thus, we get

k2(01,0,03,m, 1) = Bs, <exp{i916)‘1t(¢1,Xt>} [T n(0n- 1)t,zu(t),e’\1t/2,92,93>> . (368)

ueLy

Let tp, mp — 00, as k — oco. Now we consider
mg
Sy, 1= eMt/2 Z(Y’W — Yk ), (3.69) [3.16
j=1

where Y}, ; has the same law as Y{,,_1);, (62, 03) under P6“kj and yi ; = ]P’(;aij(n_l)tk (02,03) with

ap; € . Further, for each positive integer k, Y} ;,7 = 1,2,... are independent. Denote V;*(x) :=
Vars,Y(,—1)¢(02,03). Suppose the following Lindeberg conditions hold:

(i) as k — oo,

my mg
At 2ty 2,
NN TB(Vig — yky)? = MY Vi (ar,) = 0%
P =1

(ii) for every ¢ > 0,
my
MY E (\Yk,j — Yl* Ve = yrgl > Ce_Alt’“ﬁ)
j=1

my,
= e)\ltk Z g(n—l)tk (ak,j7 627 03) — 07 k— o0,
j=1

where

9s(x,02,03) = Ps, (|Ys(92a 03) — Ps,Ys(02,03) [, Yy (02, 03) — Ps, (62, 03)] > ce_)‘ls/(z("_l))) .
Then S}, LA N(0,0?), which implies

mg
H h((n — D)tg, ar ;, M2 0, 05) — e 27 ask — 0. (3.70) |3.17
j=1
By the definition of Y, we get
Vi'(x) = Vars,Yn_1y(02,03) = 02Vars, Ya((n — 1)t) + 03Vars, Y1 ((n — 1)t)
+20505((n — 1))~ T2 RD2A=DiCoys (£, X, 13), (hy X(n_1)2))-
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11 1.4 :
Thus, by (%f ; (ﬁ) and (%VE%C we easily get
V(@) = (8307 + 6307)61(@)] £ (equonye + ¢+ 20D (b (2)'72 o by (2)),(3.71)
2.
where ¢, — 0 as t — co. By (ﬁl), we get, as t — o0,

NI |V @) — (6303 + 650361 (2)] (2) S ey + 174+ 7 OHTOD2) ML (B ) ) — 0,
which implies
tliglo eAltgtV; zu(t)) = hm M (B3 p7 + 030’f)(¢1,Xt> (0207 —1—930f)W (3.72) |3.38
in probability.
By Lemmaﬁ% get, as s — 00, gs(x, f2,603) — 0. Since
In—1y(z, 02,03) < V(@) S by (2)'? + byy (z) € L*(E,m),

by the dominated convergence theorem, we have that for any = € F,

Jim{|gn—1)e(2,02,63) ]2 = 0.

2.
By Lemmaﬁ we have that for any =z € F,
e)\lt]p6z <g(n—1)t('7627 93)7Xt> S/ ”g(n—l)t('7 92763)“2th (‘T)l/2 —0, as t—= o0,

which implies

S g1y (zult), 2, 63) = €M (g _1yi(x, 02, 05), Xi) = 0, (3.73) [3.21
ueLy

in probability. Thus, for any sequence s, — 0o, there exists a subsequence s). such that, if we let
ty = s), mp = | Xy | and {ay;,j = 1,...,m} = {zu(tx),u € Ly, }, then the Lindeberg conditions
hold Ps_ -a.s. Therefore, by , we have

lim h <(n — 1)t, 2z, (), M2 gy, 03) = exp{ (02ph + 930f) Weo } , in probability.

t—o0
ueLy
(3.74) |3.24
Hence by the dominated convergence theorem, we get
tli)m K2(91,92,93,n,t) =Ps, <eXp {i@lwoo}exp { (egph +93O-f) Weo }) , (3.75) 3.25

which implies our claim (%)
By (HEI) and the fact that eM™(p1, X)) — eM¥(p1, X;) — 0, in probability, as t — oo , we
easily get that

U3(7”L, t)
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e)‘lm/z(<h,Xnt> — <T(n_1)f,h,Xt>)

= (e)\lnt<¢17 Xnt>7 (nt)(1+27_(h))/2 ) e)\lnt/2(<f7 Xnt> - <T(n—l)tf7 Xt>))

Y

o 1\ (#2r(0)/2
<WOO, ( - > VWeeGa(h), \/WOOGl(f)) .

4.4
Using (ﬁ) with s = (n — 1)t, we get that, if y(f) < oo,

Ps, (Tin-1yf, Xo)? S (nt)*T D e by (2) 2 + ((n — 1)) e Mtem2hn =Dlp, ()12,

If v(f) = o0, using (% with s = (n — 1)t, we get
]P)éac <T(n—1)tfy Xt>2 S bto ($)1/2 + e_Altbto ($)1/2'

Therefore, we have
lim e)‘lm]P’(;z <T(n_1)tf7 Xt>2 =0.

t—00

4.4
By (m), when Ay = 2R, ;,), we get

t—2tg
/0 n—u[A(Tu+(n—1)th)2](x) du

t—2t
< e—)\lnt/ ’ (’LL + (’I’L _ 1)t)27(h) dubto (x)1/2 < n27’(h)t1+27(h)e—)\1ntbt0 (x)1/2.

~ 0
By (%), (%) and (ﬁ), when A\; = 2R, ), we have
]P)cSz <T(n—1)thaXt>2 S n2r(h)tl+27'(f)e—)\1ntbt0 (x)1/2 + (nt)}r(h)e—)qntbto (x)1/2'

Therefore, we have

lim limsup(nt)_(H%(h))e)‘lntpéx (T(n—l)th,Xt>2 =0.

n—=o0 {00

(3.76)

(3.77)

(3.78)

Let D(nt) and D™(t) be the distributions of Uy (nt) and Us(n,t) respectively, and let D™ and D
be those of (Wae, (22) 702 726, (0), VTG (F) ) and (W, v/ WasGa(h), VWG ()

respectively. Then, using (Eﬁ), we have

lim sup 3(D(nt), D) < limsup[8(D(nt), D"(t)) + B(D"(t), D) + B(D", D)]

t—00 t—o00

. e an . 1
< 11?181113 ((nt) (r2r) et (T, 1y, Xi)? + MM (T 1y f, Xt>2)

—00

Using the definition of lim sup,_, ., (%) and (%), we easily get that

limsup 5(D(t), D) = limsup B(D(nt), D)
t—00

t—o0

< limsup(nt)~ 2D NIy (T h, X)) + B(DT, D).

t—o00
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Letting n — oo, we get lim SUD; 00 B(D(t), D) = 0. The proof is now complete.
COor:

Proof of Corollary Define

Vi(s) i= s~ 2eMa/2( X} Yy (s) = s~ (H2T D 20Ms/2 0,

and
Ys(eg, 93) = 92Y1(S) + 93Y2(S).

Thus, we have

Vars, Y, —1y1(02,03) = 63Vars,Y1((n — 1)t) + 05Vars, Ya((n — 1)t)
+260205Covs, (Y1((n — 1)t), Ya((n — 1)t)).

By (%) and (ﬁ), we get

(3.80)

‘Varng(n_l)t(Hg, 93) — (9%,0;2“ + 9%,0;%2 + 29293p(h1, hg))¢1 (a;)‘ 5 t_l (bto ($)1/2 + bto (1’)) .

X L. . lem:cs
Using arguments similar to those leading to Lemma @Tve get

lim Py, exp {i@le)‘lt(qﬁl, X;) + 02 () + i@ng(t)}

| =

= Ps, exp {z’@l Weo —

The proof of Corollary ﬂf‘ls now complete.
Recall that

g(x) = Z Op(2) by €C. and  Ig(x) = Z 5Dy ()T Dy (s) Loy

ki >2R, ki >2R;

We can show that Izg is real. In fact, for £ with \y > 2R, we have A\y > 2R;/. And

(9%,0%1 + nggm + 29293,0(}11, hg)) Woo} .

A5y (2) Dy (5) o = 0Dy ()T Dy (s) "' by = Moo Dy ()T Dy ()~ 1y,

which implies that Isg(z) is real. Define

Hy:= Y HPb.
k:A1>2Ry

1
By Lemma %Lwe have, as s — o0
(I,g,Xs) = Hy, Ps -as. andin L*(Ps,).

Since Ps, (I59, Xs) = g(z), we get

1.1
By dﬁ), we have

Ps, (Hoo) = g()-

Po (Lo X = [ T [41Lg] @) du + T (L)) o)
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(3.82)

(3.83)
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It is easy to see that,
Lo@Ps S ey (a).

ki >2Ry
Thus, by (%l), we have, for s > 2tg,
To|LgP(x) S D e by () S Y s ey, ()12, (3.84)
kX1 >2%R, k2R <A1

By (iﬁé), we get

| nlaine?] @

2to 00
5 </ 62§Rkuu2ukTu(b4t0)($) du +/ u2uke(2§Rk—)\1)u dubto ($)1/2>
kg >2%, 0 2to
< by (2)? € LAH(E,m) N LY(E, m).

Therefore, by (%E and @), we get
Py, (Hoo)? = lim Py, (L, X,)|* = /OOO T, [A |1ug|2} (r)du € L2(B,m) N LAE,m).  (3.85) [L2H
Hence, we have
Vars, Hoo = Ps, (Hoo)? — (Ps, Hoo)? = /0 T (A \Iug\2) (z) du — g(z)>. (3.86)

The:1.3
Proof of Theorem ﬁRecaﬂ that

k2 <A1

Et<g>< > e HE Dy(t)by

and
Yi(t) = eMV2(F X)), Ya(t) =t~ U222y x ),

Consider an R*-valued random variable Uy(t) defined by:
[8:5)a(t) == (M0, X0), €M1/2 ({9, X1) = Er(9)) , Ya(£), V1(1))
:1.3
To get the conclusion of Theorem %}Tﬁ suffices to show that, under Ps_,

Us(t) % (Woos VWasGis(9), V/ WecGa (), VWosG (f) ) (3.87) [2.5a

where W, Gs(g), G2(h) and G1(f) are independent. Denote the characteristic function of Uy(t)
under Ps_ by r3(61,02,03,604,t). Then, we only need to prove

1
Jim rig(61, 02,05, 04,t) =P, <exp{i€1WOO} exp {—5(95/33 +02p7 + oza]%)woo}> . (3.88)
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‘thrml
Note that, by Lemma ﬁwe get

Ey(9) = lim (Iog, Xews) = ) lim (L9, X3).

§—00
ueLy

Since X' has the same law as X, under Ps, ) H% = lim, oo (Ig, X4 t) exists and has the same
law as Hoo under Ps_ . Thus, we get E(9) = >_ e, HY'. Let h(z,0) = P, exp {if(Hoo — g(z))}.

Therefore, we obtain that
k3(01,02,03,04,1)

— P, <exp{i91e)‘1t(¢1,Xt>+i93Y2( ) + 0,5 (¢ }Hh(zu GQe*lt/2>). (3.89)

uELy

Let V(x) = Vars, Hy,. We claim that
(i) as t — oo,

MY B, | HY = g(cu®)P = MV, X0) = (V,t)pWec, in probability;  (3.90)
ueLly

(ii) for any € > 0, as t — o0,

MNPy (|HE — g(zu()?, [HY = g(zu(8))] > e M1172)
ueLly
eMUk(-, ), X;) — 0, in probability, (3.91)

where k(z,t) := Py, (|Hoo — g(2)[2, |Hoo — g(z)| > ee=11/2).

:Cs
Then using arguments similar to those in the proof Lemma ﬁiwe have
1
H h <zu —fgePM1/2)t > — exp {—§0§<V, 1[)1>mWoo} , in probability. (3.92)
uELy

Now we prove the claims.

(i) By (%), we have V (z) € L*(E,m)NL*(E,m). By Remark%} follows immediately.
(ii) We easily see that k(z,t) | 0 as t T oo and k(z,t) < V(x) € L*(E,m) for any x € E. Thus,
limy o ||k(+, )|]2 = 0. So, byﬁ, we have that for any = € E,

P k(- 1), X)) S |[k(, 1) ||laby (2)Y2 =0, as t — oo,

which implies (ﬁﬂ)

By (%) (%) and the dominated convergence theorem, we get that as t — oo,

. 1 ) )
k3(01,02,03,04,t) — Ps, <eXP {(291 — §9§<V, V1) m )M (1, Xp) + i03Ya(t) + Z94%@)}) ‘

s, | ] » (zu 92e“1/2>t) —exp {—%93(% V1) meM (1, Xﬁ}‘ — 0. (3.93)

ueLy
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Ath69a

Ath69

Ath71

K

jas]
=

KS

KS66

KiSo06

KiSo08

lw]
=
o,
= Q
®
< wn

lem:cs
By Lemma me get

tligolo 53(917 927 037 947 t)

= lim P(gm <eXp {(291 — %9%“/, 1/)1>m)6>\1t<¢1, Xt> + Z@gYi(t) + 294Yé(t)}>

t—o0

. 1
= Pa, (cxp{itaWac) exp { —5 (BBV.vhn -+ 6358 + 0207) W | ).

By (Ekl), we get

(V1) = /O eMUATugl? ) dt — (g 1.

The proof is now complete. O
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