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Central Limit Theorems for Supercritical Branching

Nonsymmetric Markov Processes
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Abstract

In this paper, we establish a spatial central limit theorem for a large class of supercritical
branching, not necessarily symmetric, Markov processes with spatially dependent branching
mechanisms satisfying a second moment condition. This central limit theorem generalizes and
unifies all the central limit theorems obtained recently in

RSZ2
[23] for supercritical branching sym-

metric Markov processes. To prove our central limit theorem, we have to carefully develop the
spectral theory of nonsymmetric strongly continuous semigroups which should be of independent
interest.
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Keywords and Phrases: Central limit theorem, branching Markov process, supercritical, mar-

tingale.

1 Introduction

Central limit theorems for supercritical branching processes were initiated by Kesten and Stigum

in
KS, KS66
[11, 12]. In these two papers, they established central limit theorems for supercritical multi-

type Galton-Watson processes by using the Jordan canonical form of the expectation matrix M .

Then in
Ath69a, Ath69, Ath71
[4, 5, 6], Athreya proved central limit theorems for supercritical multi-type continuous

time branching processes, using the Jordan canonical form and the eigenvectors of the matrix Mt,

the mean matrix at time t. Asmussen and Keiding
AK
[3] used martingale central limit theorems to

prove central limit theorems for supercritical multi-type branching processes. In
AH83
[2], Asmussen

and Hering established spatial central limit theorems for general supercritical branching Markov

processes under a certain condition. However, the condition in
AH83
[2] is not easy to check and essentially

the only examples given in
AH83
[2] of branching Markov processes satisfying this condition are branching

diffusions in bounded smooth domains. We note that the limit normal random variables in
AH83
[2] may

be degenerate.

The recent study of spatial central limit theorem for branching Markov processes started with
RP
[1].

In this paper, Adamczak and Mi loś proved some central limit theorems for supercritical branching
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Fund for the Doctoral Program of Higher Education.

†Research supported in part by a grant from the Simons Foundation (208236).
‡Supported by the China Scholarship Council.
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Ornstein-Uhlenbeck processes with binary branching mechanism. We note that branching Ornstein-

Uhlenbeck processes do not satisfy the condition in
AH83
[2]. In

Mi
[20], Mi loś proved some central limit

theorems for supercritical super Ornstein-Uhlenbeck processes with branching mechanisms satis-

fying a fourth moment condition. Similar to the case of
AH83
[2], the limit normal random variables in

RP, Mi
[1, 20] may be degenerate. In

RSZ
[22], we established central limit theorems for supercritical super

Ornstein-Uhlenbeck processes with branching mechanisms satisfying only a second moment con-

dition. More importantly, the central limit theorems in
RSZ
[22] are more satisfactory since our limit

normal random variables are non-degenerate. In
RSZ2
[23], we obtained central limit theorems for a

large class of general supercritical branching symmetric Markov processes with spatially dependent

branching mechanisms satisfying only a second moment condition. In
RSZ3
[24], we obtained central limit

theorems for a large class of general supercritical superprocesses with symmetric spatial motions

and with spatially dependent branching mechanisms satisfying only a second moment condition.

Furthermore, we also obtained the covariance structure of the limit Gaussian field in
RSZ3
[24].

Compared with
Ath69a, Ath69, Ath71, KS, KS66
[4, 5, 6, 11, 12], the spatial processes in

RP, Mi, RSZ, RSZ2, RSZ3
[1, 20, 22, 23, 24] are assumed to be

symmetric. The reason for this assumption is that one of the main tools in
RP, Mi, RSZ, RSZ2, RSZ3
[1, 20, 22, 23, 24] is the

well-developed spectral theory of self-adjoint operators.

The main purpose of this paper is to establish central limit theorems for general supercritical

branching, not necessarily symmetric, Markov processes with spatially dependent branching mech-

anisms satisfying only a second moment condition. To accomplish this, we need to carefully develop

the spectral theory of not necessarily symmetric strongly continuous semigroups. We believe these

spectral results are of independent interest and should be very useful in studying non-symmetric

Markov processes.

In this paper, R and C stand for the sets of real and complex numbers respectively, all vectors in

Rn or Cn will be understood as column vectors. For any z ∈ C, we use ℜ(z) and ℑ(z) to denote real

and imaginary parts of z respectively. For a matrix A, we use A and AT to denote the conjugate

and transpose of A respectively.

1.1 Spatial process
subs:sp

In this subsection, we spell out our assumptions on the spatial Markov process. Throughout this

paper, E stands for a locally compact separable metric space, m is a σ-finite Borel measure on

E with full support and ∂ is a separate point not contained in E. ∂ will be interpreted as the

cemetery point. We will use E∂ to denote E ∪ {∂}. Every function f on E is automatically

extended to E∂ by setting f(∂) = 0. We will assume that ξ = {ξt,Πx} is a Hunt process on E and

ζ := inf{t > 0 : ξt = ∂} is the lifetime of ξ. We will use {Pt : t ≥ 0} to denote the semigroup of ξ.

Our standing assumption on ξ is that there exists a family of continuous strictly positive functions

{p(t, x, y) : t > 0} on E × E such that, for any t > 0 and nonnegative function f on E,

Ptf(x) =

∫

E
p(t, x, y)f(y)m(dy).
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For p ≥ 1, we define Lp(E,m;C) := {f : E → C :
∫
E |f(x)|pm(dx) < ∞} and Lp(E,m) := {f ∈

Lp(E,m;C) : f is real} . We also define

at(x) :=

∫

E
p(t, x, y)2m(dy), ât(x) :=

∫

E
p(t, y, x)2m(dy).

In this paper, we assume that

Assumption 1 (a) For all t > 0 and x ∈ E,
∫
E p(t, y, x)m(dy) ≤ 1.

(b) For any t > 0, at and ât are continuous functions in E and they belong to L1(E,m).

(c) There exists t0 > 0 such that at0 , ât0 ∈ L2(E,m).

It is easy to see that

p(t + s, x, y) =

∫

E
p(t, x, z)p(s, z, y)m(dz) ≤ (at(x))1/2(âs(y))1/2, (1.1) 1.1

which implies

at+s(x) ≤
∫

E
âs(y)m(dy)at(x) and ât+s(x) ≤

∫

E
as(y)m(dy)ât(x). (1.2)

So condition (c) above is equivalent to

(c′) There exists t0 > 0 such that for all t ≥ t0, at, ât ∈ L2(E,m).

It is well known and easy to check that, for p ∈ [1,∞), {Pt : t ≥ 0} is a strongly continuous

contraction semigroup on Lp(E,m;C). We claim that the function t→
∫
E at(x)m(dx) is decreasing.

In fact, by Fubini’s theorem and Hölder’s inequality, we get

at+s(x) =

∫

E
p(t+ s, x, y)

∫

E
p(t, x, z)p(s, z, y)m(dz)m(dy)

=

∫

E
p(t, x, z)

∫

E
p(t + s, x, y)p(s, z, y)m(dy)m(dz)

≤ at+s(x)1/2
∫

E
p(t, x, z)as(z)

1/2m(dz)

which implies

at+s(x) ≤
(∫

E
p(t, x, z)as(z)

1/2m(dz)

)2

≤
∫

E
p(t, x, z)as(z)m(dz). (1.3) 8.9

Thus, by Fubini’s theorem and condition (a), we get
∫

E
at+s(x)m(dx) ≤

∫

E
as(z)

∫

E
p(t, x, z)m(dx)m(dz) ≤

∫

E
as(z)m(dz). (1.4) 8.10

Therefore, the function t→
∫
E at(x)m(dx) is decreasing.

Now we give some examples of non-symmetric Markov processes satisfying the above assump-

tions. The purpose of these examples is to show that the above assumptions are satisfied by many

Markov processes. We will not try to give the most general examples possible. For examples of

symmetric Markov processes satisfying the above assumptions, see
RSZ2
[23].

3



examp0 Example 1.1 Suppose that E consists of finitely many points. If X = {Xt : t ≥ 0} is an irreducible

conservative Markov process in E, then X satisfies Assumption 1 for some finite measure m on E

with full support.

examp1 Example 1.2 Suppose that α ∈ (0, 2) and that Y = {Yt : t ≥ 0} is a strictly α-stable process in

Rd. Suppose that, in the case d ≥ 2, the spherical part η of the Lévy measure µ of Y satisfies the

following assumption: there exist a positive function Φ on the unit sphere S in Rd and κ > 1 such

that

Φ =
dη

dσ
and κ−1 ≤ Φ(z) ≤ κ on S

where σ is the surface measure on S. In the case d = 1, we assume that the Lévy measure of Y is

given by

µ(dx) = c1x
−1−α1{x>0} + c2|x|−1−α1{x<0}

with c1, c2 > 0. Suppose that D is an open set in Rd of finite Lebesgue measure. Let X be the

process in D obtained by killing Y upon exiting D. Then X satisfies Assumption 1 with E = D

and m being the Lebesgue measure. For details, see
KiSo09
[17, Example 4.1].

examp2 Example 1.3 Suppose that α ∈ (0, 2) and that Z = {Zt : t ≥ 0} is a truncated strictly α-stable

process in Rd, that is, Z is a Lévy process with Lévy measure given by

µ̃(dx) = µ(dx)1{|x|<1},

where µ is the Lévy measure of the process Y in the previous example. Suppose that D is a

connected open set in Rd of finite Lebesgue measure. Let X be the process in D obtained by killing

Z upon exiting D. Then X satisfies Assumption 1 with E = D and m being the Lebesgue measure.

For details, see
KiSo09
[17, Example 4.2 and Proposition 4.4].

examp3 Example 1.4 Suppose α ∈ (0, 2), Y = {Yt : t ≥ 0} is a strictly α-stable process in Rd satisfying

the assumptions in Example
examp1examp1
1.2 and that B is an independent Brownian motion in Rd. Let W

be the process defined by Wt = Yt + Bt. Suppose that D is an open set in Rd of finite Lebesgue

measure. Let X be the process in D obtained by killing W upon exiting D. Then X satisfies

Assumption 1 with E = D and m being the Lebesgue measure. For details, see
KiSo09
[17, Example 4.5

and Lemma 4.6].

examp4 Example 1.5 Suppose α ∈ (0, 2), Z = {Zt : t ≥ 0} is a truncated strictly α-stable process in Rd

satisfying the assumptions in Example
examp2examp2
1.3 and that B is an independent Brownian motion in Rd.

Let V be the process defined by Vt = Zt + Bt. Suppose that D is a connected open set in Rd of

finite Lebesgue measure. Let X be the process in D obtained by killing V upon exiting D. Then

X satisfies Assumption 1 with E = D and m being the Lebesgue measure. For details, see
KiSo09
[17,

Example 4.7 and Lemma 4.8].
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examp5 Example 1.6 Suppose d ≥ 3 and that µ = (µ1, · · · , µd), where each µj is a signed measure on Rd

such that

lim
r→0

sup
x∈Rd

∫

B(x,r)

|µj|(dy)

|x− y|d−1
= 0.

Let Y = {Yt : t ≥ 0} be a Brownian motion with drift µ in Rd, see
KiSo06
[13]. Suppose that D is a

bounded connected open set in Rd and suppose K > 0 is a constant such that D ⊂ B(0,K/2).

Put B = B(0,K). Let GB be the Green function of Y in B and define H(x) :=
∫
B GB(x, y)dy.

Then H is a strictly positive continuous function on B. Let X be the process obtained by killing

Y upon exiting D. Then X satisfies Assumption 1 with E = D and m being the measure defined

by m(dx) = H(x)dx. For details, see
ZLS
[28, Example 4.6] or

KiSo08, KiSo08c
[14, 16].

examp6 Example 1.7 Suppose d ≥ 2, α ∈ (1, 2), and that µ = (µ1, · · · , µd), where each µj is a signed

measure on Rd such that

lim
r→0

sup
x∈Rd

∫

B(x,r)

|µj|(dy)

|x− y|d−α+1
= 0.

Let Y = {Yt : t ≥ 0} be an α-stable process with drift µ in Rd, see
KiSo13
[18]. Suppose that D is a

bounded open set in Rd and suppose K > 0 is such that D ⊂ B(0,K/2). Put B = B(0,K). Let

GB be the Green function of Y in B and define H(x) :=
∫
B GB(x, y)dy. Then H is a strictly

positive continuous function on B. Let X be the process obtained by killing Y upon exiting D.

Then X satisfies Assumption 1 with E = D and m being the measure defined by m(dx) = H(x)dx.

For details, see
ZLS
[28, Example 4.7] or

CKS
[8].

1.2 Branching Markov Processes

The branching Markov process {Xt : t ≥ 0} on E we are going to work with is determined by three

parameters: a spatial motion ξ = {ξt,Πx} on E satisfying the assumptions at the beginning of the

previous subsection, a branching rate function β(x) on E which is a non-negative bounded mea-

surable function and an offspring distribution {pn(x) : n = 0, 1, , 2, . . . } satisfying the assumption

sup
x∈E

∞∑

n=0

n2pn(x) <∞. (1.5) 1.16

We denote the generating function of the offspring distribution by

ϕ(x, z) =
∞∑

n=0

pn(x)zn, x ∈ E, |z| ≤ 1.

Consider a branching system on E characterized by the following properties: (i) each individual

has a random birth and death time; (ii) given that an individual is born at x ∈ E, the conditional

distribution of its path is determined by Πx; (iii) given the path ξ of an individual up to time t

and given that the particle is alive at time t , its probability of dying in the interval [t, t + dt) is

β(ξt)dt + o(dt); (iv) when an individual dies at x ∈ E, it splits into n individuals all positioned at
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x, with probability pn(x); (v) when an individual reaches ∂, it disappears from the system; (vi) all

the individuals, once born, evolve independently.

Let Ma(E) be the space of finite integer-valued atomic measures on E, and let Bb(E) be

the set of bounded real-valued Borel measurable functions on E. Let Xt(B) be the number of

particles alive at time t located in B ∈ B(E). Then X = {Xt, t ≥ 0} is an Ma(E)-valued Markov

process. For any ν ∈ Ma(E), we denote the law of X with initial configuration ν by Pν . As usual,

〈f, ν〉 :=
∫
E f(x) ν(dx). For 0 ≤ f ∈ Bb(E), let

ω(t, x) := Pδxe
−〈f,Xt〉,

then ω(t, x) is the unique positive solution to the equation

ω(t, x) = Πx

∫ t

0
ψ(ξs, ω(t− s, ξs)) ds + Πx(e−f(ξt)), (1.6) 1.3

where ψ(x, z) = β(x)(ϕ(x, z) − z), x ∈ E, z ∈ [0, 1], while ψ(∂, z) = 0, z ∈ [0, 1]. By the branching

property, we have

Pνe
−〈f,Xt〉 = e〈logω(t,·),ν〉.

Define

α(x) :=
∂ψ

∂z
(x, 1) = β(x)

(
∞∑

n=1

npn(x) − 1

)
(1.7) e:alpha

and

A(x) :=
∂2ψ

∂z2
(x, 1) = β(x)

∞∑

n=2

(n− 1)npn(x). (1.8) e:A

By (
1.161.16
1.5), there exists K > 0, such that

sup
x∈E

(|α(x)| +A(x)) ≤ K. (1.9) 1.5

For any f ∈ Bb(E) and (t, x) ∈ (0,∞) × E, define

Ttf(x) := Πx

[
e
∫ t
0 α(ξs) dsf(ξt)

]
. (1.10) 1.26

It is well known that Ttf(x) = Pδx〈f,Xt〉 for every x ∈ E.

It is elementary to show that, see
RSZ4
[25, Lemma 2.1], that there exists a function q(t, x, y) on

(0,∞) × E × E which is continuous in (x, y) for each t > 0 such that

e−Ktp(t, x, y) ≤ q(t, x, y) ≤ eKtp(t, x, y), (t, x, y) ∈ (0,∞) × E × E (1.11) comp

and that for any bounded Borel function f on E and (t, x) ∈ (0,∞) × E,

Ttf(x) =

∫

E
q(t, x, y)f(y)m(dy).

Define

bt(x) :=

∫

E
q(t, x, y)2m(dy), b̂t(x) :=

∫

E
q(t, y, x)2m(dy).

6



The functions x→ bt(x) and x→ b̂t(x) are continuous. In fact, by (
1.11.1
1.1),

q(t, x, y) ≤ eKtp(t, x, y) ≤ eKtat/2(x)1/2ât/2(y)1/2. (1.12) 1.4

Since q(t, ·, y) and at/2 are continuous, by the dominated convergence theorem, we get bt is contin-

uous. Similarly, b̂t is also continuous. Thus, it follows from (
1.41.4
1.12) and the assumptions (b) and (c′)

in the previous subsection that bt and b̂t enjoy the following properties.

(i) For any t > 0, we have bt ∈ L1(E,m). Moreover, bt(x) and b̂t(x) are continuous in x ∈ E;

(ii) There exists t0 > 0 such that for all t ≥ t0, bt, b̂t ∈ L2(E,m).

1.3 Preliminaries

For p ≥ 1, {Tt : t ≥ 0} is a strongly continuous semigroup on Lp(E,m;C). In fact, by (
compcomp
1.11), we

get |Ttf(x)| ≤ eKtPt|f |(x). Thus,

‖Ttf‖p ≤ eKt‖Pt|f |‖p ≤ eKt‖f‖p. (1.13) Lp

For f, g ∈ L2(E,m;C), define

〈f, g〉m :=

∫

E
f(x)g(x)m(dx).

Let {T̂t, t > 0} be the adjoint semigroup of {Tt : t ≥ 0} on L2(E,m;C), that is, for f, g ∈
L2(E,m;C),

〈Ttf, g〉m = 〈f, T̂tg〉m. (1.14) adjiont

Thus,

T̂tg(x) =

∫

E
q(t, y, x)g(y)m(dy).

It is well known, see for instance
Pa
[21, Corollary 1.10.6, Lemma 1.10.1], that {T̂t : t ≥ 0} is a strongly

continuous semigroup on L2(E,m;C) and that

‖T̂t‖2 = ‖Tt‖2 ≤ eKt. (1.15) 1.66

For all t > 0 and f ∈ L2(E,m;C), Ttf and T̂tf are continuous. In fact, since q(t, x, y) is

continuous, by (
1.41.4
1.12) and Assumption 1(b), using the dominated convergence theorem, we get Ttf

and T̂tf are continuous.

It follows from (i) above that, for any t > 0, Tt and T̂t are compact operators on L2(E,m;C).

Let A and Â be the infinitesimal generators of {Tt : t ≥ 0} and {T̂t : t ≥ 0} in L2(E,m;C)

respectively. Let σ(A) and σ(Â) be the spectra of A and Â respectively. It follows from
Pa
[21,

Theorem 2.2.4 and Corollary 2.3.7] that both σ(A) and σ(Â) consist of eigenvalues only, and that

A and Â have the same number, say N , of eigenvalues. Of course N might be finite or infinite. Let

I = {1, 2, . . . , N}, when N <∞; otherwise I = {1, 2, . . .}. Under the assumptions of Subsection
subs:spsubs:sp
1.1,

using (
compcomp
1.11) and Jentzsch’s theorem (

Sch
[26, Theorem V.6.6 on page 337], we know that the common
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value λ1 = supℜ(σ(A)) = supℜ(σ(Â)) is an eigenvalue of multiplicity one for both A and Â,

and that an eigenfunction φ1 of A associated with λ1 can be chosen to be strictly positive almost

everywhere with ‖φ1‖2 = 1 and an eigenfunction ψ1 of Â associated with λ1 can be chosen to be

strictly positive almost everywhere with 〈φ1, ψ1〉m = 1. We list the eigenvalues {−λk, k ∈ I} of

A in an order so λ1 < ℜ(λ2) ≤ ℜ(λ3) ≤ · · · . Then {−λk, k ∈ I} are the eigenvalues of Â. For

convenience, we define, for any positive integer k not belong to I, λk = λk = ∞. For k ∈ I, we

write ℜk := ℜ(λk) and ℑk := ℑ(λk). We use the convention ℜ∞ = ∞.

Let σ(Tt) be the spectrum of Tt in L2(E,m;C). It follows from
Pa
[21, Theorem 2.2.4] that

σ(Tt) \ {0} := {e−λkt : k ∈ I}. In particular, σ(T1) \ {0} = {e−λk , k ∈ I} .

rek4 Remark 1.8 It is easy to see that, there exists t∗ such that, for any k 6= j, e−λkt
∗ 6= e−λjt

∗
. So

without lose of generality, we assume that, for k 6= j, e−λk 6= e−λj . Otherwise, we can consider Tt∗

instead of T1 in the following arguments.

Now we recall some basic facts about spectral theory, for more details, see
BP
[7, Chapter 6]. For

any k ∈ I, we define Nk,0 := {0} and for n ≥ 1,

Nk,n := N ((e−λkI − T1)
n) = {f ∈ L2(E,m;C) : (e−λkI − T1)

nf = 0}

and

Rk,n := R((e−λkI − T1)n) = (e−λkI − T1)
n(L2(E,m;C)).

For each k ∈ I, there exists an integer νk ≥ 1 such that

Nk,n & Nk,n+1, n = 0, 1, · · · , νk − 1; Nk,n = Nk,n+1, n ≥ νk

and

Rk,n % Rk,n+1, n = 0, 1, · · · , νk − 1; Rk,n = Rk,n+1, n ≥ νk.

For all k ∈ I and n ≥ 0, Nk,n is a finite dimensional linear subspace of L2(E,m;C). Nk,n and

Rk,n are invariant subspaces of Tt. In fact, for any f ∈ Nk,n,

(e−λkI − T1)n(Ttf) = Tt(e
−λkI − T1)nf = 0,

which implies that Ttf ∈ Nk,n. If f = (e−λkI − T1)ng, then Ttf = Tt(e
−λkI − T1)ng = (e−λkI −

T1)nTtg ∈ Rk,n. Thus, {Tt|Nk,νk
, t > 0} is a semigroup on Nk,νk. We denote the corresponding

infinitesimal generator as Ak. By
BP
[7, Theorem 6.7.4], σ(T1|Nk,νk

) = {e−λk}. Since σ(Ak) ⊂ σ(A),

we have σ(Ak) = {−λk}. Define nk := dim(Nk,νk) and rk := dim(Nk,1). Then from linear algebra

we know that there exists a basis {φ(k)j , j = 1, 2, · · · , nk} of Nk,νk such that

Ak(φ
(k)
1 , φ

(k)
2 , · · · , φ(k)nk

) = (φ
(k)
1 , φ

(k)
2 , · · · , φ(k)nk

)




Jk,1 0
Jk,2

. . .

0 Jk,rk
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:= (φ
(k)
1 , φ

(k)
2 , · · · , φ(k)nk

)Dk, (1.16)

where

Jk,j =




−λk 1 0
−λk 1

. . .
. . .

−λk 1
0 −λk



, a dk,j × dk,j matrix (1.17) J_kj

with
∑rk

j=1 dk,j = nk. Dk is uniquely determined by the dimensions of Nk,n, n = 1, 2, · · · , νk (see
meyer
[19, Section 7.8] for more details). Here and in the remainder of this paper we use the convention

that when an operator, like A or Ak or Tt, acts on a vector-valued function, it acts componentwise.

For convenience, we define the following Cnk-valued functions:

Φk(x) :=
(
φ
(k)
1 (x), φ

(k)
2 (x), · · · , φ(k)nk

(x)
)T

.

Thus, we have, for a.e. x ∈ E,

Tt(Φk)T (x) = e−λkt(Φk(x))T




Jk,1(t) 0
Jk,2(t)

. . .

0 Jk,rk(t)




:= e−λkt(Φk(x))TDk(t), (1.18)

where Jk,j(t) is a dk,j × dk,j matrix given by

Jk,j(t) =




1 t t2/2! · · · tdk,j−1/(dk,j − 1)!
0 1 t t2/2! · · ·

. . .
. . .

1 t
0 1



. (1.19) J_kjt

More details can be found in
meyer
[19, p. 609]. Under our assumptions, Tt(Φk)T (x) is continuous. Thus,

by (
T-JordanT-Jordan
1.18), we can choose Φk to be continuous, which implies (

T-JordanT-Jordan
1.18) holds for all x ∈ E. We note that

here the matrix Dk(t) satisfies the semigroup property, that is, for t, s > 0, Dk(t+ s) = Dk(t)Dk(s)

and Dk(t) is invertible with Dk(t)−1 = Dk(−t).
For any vector a = (a1, · · · , an)T ∈ Cn, we define the Lp norm of a by |a|p :=

(∑n
j=1 |aj |p

)1/p

when 1 ≤ p <∞ and |a|∞ := maxi(|ai|) when p = ∞.

By Hölder’s inequality, |Tt(φ(k)j )(x)| ≤ bt(x)1/2. By (
T-JordanT-Jordan
1.18), we get (Φk)T = eλktTt(Φk)T (Dk(t))−1.

Thus,

|Φk(x)|∞ ≤ c(t, k)bt(x)1/2, (1.20) phi

where c(t, k) does not depend on x. When we choose t = t0, we get that φ
(k)
j ∈ L2(E,m;C) ∩

L4(E,m;C).
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Now we consider the corresponding formula for T̂t. We know that σ(T̂1) \ {0} = {e−λk , k ∈ I}.

Define

N̂k,n := N ((e−λkI − T̂1)n) = {f ∈ L2(E,m;C) : (e−λkI − T̂1)nf = 0}.

We have

(e−λkI − T1)n = e−nλkI −
n∑

j=1

e−(n−j)λkT j
1 . (1.21) 7.4

Since
∑n

j=1 e
−(n−j)λkT j

1 is also a compact operator, by
BP
[7, Theorem 6.6.13], N̂k,n is of the same

dimension as Nk,n. In particular, dim(N̂k,νk) = dim(Nk,νk) = nk. Thus we have

N̂k,n & N̂k,n+1, n = 0, 1, · · · , νk − 1; N̂k,n = N̂k,n+1, n ≥ νk.

Similarly, we can get, for all k ∈ I and n ≥ 0, N̂k,n is an invariant subspace of T̂t. Hence,

{T̂t|N̂k,νk

, t > 0} is a semigroup on N̂k,νk with infinitesimal generator Âk.

Let {ψ̂(k)
1 , ψ̂

(k)
2 , · · · , ψ̂(k)

nk
} be a basis of N̂k,νk such that

T̂t(ψ̂
(k)
1 , ψ̂

(k)
2 , · · · , ψ̂(k)

nk
) = (ψ̂

(k)
1 , ψ̂

(k)
2 , · · · , ψ̂(k)

nk
)D̂k(t), (1.22) 1.14

where D̂k(t) is an nk × nk invertible matrix. Since T̂t(ψ̂
(k)
1 , ψ̂

(k)
2 , · · · , ψ̂(k)

nk
)(x) is continuous, we can

choose (ψ̂
(k)
1 , ψ̂

(k)
2 , · · · , ψ̂(k)

nk
) to be continuous. We define an nk × nk matrix Ãk by

(Ãk)j,l := 〈φ(k)j , ψ̂
(k)
l 〉m. (1.23) A_k

lemma1.1 Lemma 1.9 For each k ∈ I,

L2(E,m;C) = Nk,νk ⊕ (N̂k,νk)⊥ = N̂k,νk ⊕ (Nk,νk)⊥. (1.24) 1.15

Morover, the matrix Ãk defined in (
A_kA_k
1.23) is invertible.

Proof: By
BP
[7, Theorem 6.6.7], we have L2(E,m;C) = Nk,νk ⊕ Rk,νk . It follows from

BP
[7, The-

orem 6.6.14] that Rk,νk = (N̂k,νk)⊥. Thus, L2(E,m;C) = Nk,νk ⊕ (N̂k,νk)⊥. Similarly, we have

L2(E,m;C) = N̂k,νk ⊕ (Nk,νk)⊥.

For any vector a = (a1, · · · , ank
)T ∈ Cnk , we have

Ãka = (〈φ(k)1 , h〉m, 〈φ(k)2 , h〉m, · · · , 〈φ(k)nk
, h〉m)T ,

where h = (ψ̂
(k)
1 , ψ̂

(k)
2 , · · · , ψ̂(k)

nk
)ā ∈ N̂k,νk .

If Ãka = 0, then h ∈ (Nk,νk)⊥. Since N̂k,νk ∩ (Nk,νk)⊥ = {0}, we have h = 0, which implies

a = 0. Therefore, Ãk is invertible. ✷

lemma T* Lemma 1.10 For any k ∈ I, define

(Ψk(x))T :=
(
ψ
(k)
1 (x), ψ

(k)
2 (x), · · · , ψ(k)

nk
(x)
)

:=
(
ψ̂
(k)
1 (x), ψ̂

(k)
2 (x), · · · , ψ̂(k)

nk
(x)
)
Ã−1

k .
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Then {ψ(k)
1 , ψ

(k)
2 , · · · , ψ(k)

nk
} is a basis of N̂k,νk such that the nk × nk matrix Ak := (〈φ(k)j , ψ

(k)
l 〉m)

satisfies

Ak = I (1.25) A

and for any x ∈ E,

T̂t(Ψk)(x) = e−λktDk(t)Ψk(x). (1.26) T^*

Moreover, the basis of N̂k,νk satisfying (
AA
1.25) is unique.

Proof: For any Cn-valued functions (f1(x), f2(x), · · · fn(x))T and (g1(x), g2(x), · · · gn(x))T , we use

〈(f1, f2, · · · fn), (g1, g2, · · · gn)〉m to denote the n × n matrix (〈fj, gl〉m). Since Ã−1
k is invertible,

{ψ(k)
1 , ψ

(k)
2 , · · · , ψ(k)

nk
} is a basis of N̂k,νk. By (

T-JordanT-Jordan
1.18) and (

1.141.14
1.22), we get

e−λkt(Dk(t))T Ãk =
〈
Tt

(
φ
(k)
1 , φ

(k)
2 , · · · , φ(k)nk

)
,
(
ψ̂
(k)
1 , ψ̂

(k)
2 , · · · , ψ̂(k)

nk

)〉
m

=
〈(
φ
(k)
1 , φ

(k)
2 , · · · , φ(k)nk

)
, T̂t

(
ψ̂
(k)
1 , ψ̂

(k)
2 , · · · , ψ̂(k)

nk

)〉
m

= ÃkD̂k(t).

Since Dk(t) is a real matrix, we have

e−λktÃ−1
k (Dk(t))T = D̂k(t)Ã−1

k . (1.27) 1.17

By (
1.141.14
1.22) and (

1.171.17
1.27), we have

T̂t

(
ψ
(k)
1 , ψ

(k)
2 , · · · , ψ(k)

nk

)
=
(
ψ̂
(k)
1 , ψ̂

(k)
2 , · · · , ψ̂(k)

nk

)
D̂k(t)Ã−1

k

= e−λkt
(
ψ̂
(k)
1 , ψ̂

(k)
2 , · · · , ψ̂(k)

nk

)
Ã−1

k (Dk(t))T = e−λkt
(
ψ
(k)
1 , ψ

(k)
2 , · · · , ψ(k)

nk

)
(Dk(t))T .

Assume that there exists another basis Ψ̃k(x) of N̂k,νk satisfying (
AA
1.25). Then there exists matrix

B such that (Ψ̃k(x))T = (Ψk(x))TB. Thus,

I = 〈(Φk)T , (Ψ̃k)T 〉m = 〈(Φk)T , (Ψk)T 〉mB = B,

which implies B = I. Thus, we get Ψ̃k(x) = Ψk(x). The proof is now complete. ✷

rek5 Remark 1.11 We know that Tt(ΦT
k )(x) = e−λktΦT

j (x)Dk(t). Thus e−λkt is also a eigenvalue of

Tt. Hence there exists a unique k′ such that λk′ = λk. It is obvious that Dk(t) = Dk′(t) and we

can choose Φk′(x) = Φk(x). By Lemma
lemma T*lemma T*
1.10, we have Ψk′(x) = Ψk(x). In particular, if λk is real,

then k′ = k.

lemma1.2 Lemma 1.12 For j, k ∈ I and j 6= k , we have

Nj,νj ⊂ Rk,νk = (N̂k,νk)⊥. (1.28) 1.18

In particular, Nj,νj ∩Nk,νk = {0}.
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Proof: Assume f ∈ Nj,νj , then (e−λjI − T1)νjf = 0. Since νj ≥ 1, we can define g = (e−λj I −
T1)νj−1f . Thus e−λjg = T1g. Hence, (e−λkI − T1)g = (e−λk − e−λj )g, which implies

(e−λkI − T1)
νkg = (e−λk − e−λj )νkg.

Therefore g = (e−λk − e−λj )−νk(e−λkI − T1)
νkg ∈ Rk,νk .

Assume f = f1 + f2 with f1 ∈ Nk,νk and f2 ∈ Rk,νk . Then (e−λjI − T1)νj−1f1 ∈ Nk,νk . On the

other hand, (e−λj I − T1)
νj−1f1 = g − (e−λj I − T1)

νj−1f2 ∈ Rk,νk . Thus (e−λj I − T1)
νj−1f1 = 0.

If νj = 1, then f = g ∈ Rk,νk . If νj > 1 and f1 6= 0, then e−λj ∈ σ(T1|Nk,νk
). By

BP
[7, Theorem

6.7.4], σ(T1|Nk,νk
) = {e−λk}. This is a contradiction. Thus, f1 = 0, which implies f = f2 ∈ Rk,νk .

Therefore Nj,νj ⊂ Rk,νk . ✷

By Lemma
lemma1.2lemma1.2
1.12, for k ∈ I, we can define

Mk := N1,ν1 ⊕N2,ν2 ⊕ · · · ⊕ Nk,νk and M̂k := N̂1,ν1 ⊕ N̂2,ν2 ⊕ · · · ⊕ N̂k,νk .

cor2 Corollary 1.13 For any k ∈ I,

L2(E,m;C) = Mk ⊕ (M̂k)⊥ = M̂k ⊕ (Mk)⊥. (1.29)

Proof: By (
1.151.15
1.24), (

2.12.1
1.29) holds for k = 1. Assume that (

2.12.1
1.29) holds for k − 1. Then

L2(E,m;C) = Mk−1 ⊕ (M̂k−1)
⊥. (1.30) 2.9

For any f ∈ (M̂k−1)⊥, by (
1.151.15
1.24), we have f = f3 + f4, where f3 ∈ Nk,νk and f4 ∈ (N̂k,νk)⊥. By

(
1.181.18
1.28), f3 ∈

⋂k−1
j=1(N̂j,νj)

⊥ = (M̂k−1)⊥, which implies f4 = f − f3 ∈ (Mk−1)
⊥. Thus, we obtain

f4 ∈ (N̂k,νk)⊥ ∩ (Mk−1)
⊥ = (Mk)⊥.

Hence

(Mk−1)
⊥ = Nk,νk ⊕ (Mk)⊥.

Therefore, by induction, the first part of (
2.12.1
1.29) holds for all k ∈ I.

The proof of L2(E,m;C) = M̂k ⊕ (Mk)⊥ is similar. ✷

rek2 Remark 1.14 Since −λ1 is simple, which means n1 = r1 = ν1 = 1, we know that Φ1(x) = φ1(x)

and Ψ1(x) = ψ1(x). Moreover, since Ttφ1(x) = e−λ1tφ1(x) and T̂tψ1(x) = e−λ1tψ1(x) for every x,

φ1 and ψ1 are continuous and strictly positive. It is easy to see that D1(t) ≡ 1.

By Lemma
lemma1.2lemma1.2
1.12, {φ(j)l , j = 1, · · · , k, l = 1, · · · , nj} is a basis of Mk and {ψ(j)

l , j = 1, · · · , k, l =

1, · · · , nj} is a basis of M̂k. By (
1.181.18
1.28) and (

AA
1.25), we get 〈φ(j)l , ψ

(k)
n 〉m = 1, when j = k and l = n;

otherwise 〈φ(j)l , ψ
(k)
n 〉m = 0.

In this paper, we always assume that the branching Markov process X is supercritical, that is,

Assumption 2 λ1 < 0.
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We will use {Ft : t ≥ 0} to denote the filtration of X, that is Ft = σ(Xs : s ∈ [0, t]). Using the

expectation formula of 〈φ1,Xt〉 and the Markov property of X, it is easy to show that (see Lemma
thrm1thrm1
3.1), for any nonzero ν ∈ Ma(E), under Pν , the process Wt := eλ1t〈φ1,Xt〉 is a positive martingale.

Therefore it converges:

Wt →W∞, Pν-a.s. as t→ ∞.

Using the assumption (
1.161.16
1.5) we can show that, as t → ∞, Wt also converges in L2(Pν), so W∞

is non-degenerate and the second moment is finite. Moreover, we have Pν(W∞) = 〈φ1, ν〉. Put

E = {W∞ = 0}, then Pν(E) < 1. It is clear that Ec ⊂ {Xt(E) > 0,∀t ≥ 0}.

1.4 Main results

For any k ∈ I, every function f ∈ L2(E,m;C) can be written uniquely as the sum of a function

fk ∈ Mk and a function in (M̂k)⊥. Similarly, every function f ∈ L2(E,m;C) can be written

uniquely as the sum of a function f̂k ∈ M̂k and a function in (Mk)⊥. Using (
AA
1.25), we can easily

get that

fk(x) =

k∑

j=1

(Φj(x))T 〈f,Ψj〉m ∈ Mk and f̂k(x) =

k∑

j=1

(Ψj(x))T 〈f,Φj〉m ∈ M̂k, (1.31) fk

where

〈f,Ψj〉m := (〈f, ψ(j)
1 〉m, 〈f, ψ(j)

2 〉m, · · · , 〈f, ψ(j)
nj

〉m)T

and

〈f,Φj〉m := (〈f, φ(j)1 〉m, 〈f, φ(j)2 〉m, · · · , 〈f, φ(j)nj
〉m)T .

For any f ∈ L2(E,m;C), we define

γ(f) := inf{j ∈ I : 〈f,Ψj〉m 6= 0},

where we use the usual convention that inf ∅ = ∞. If γ(f) <∞, define

ζ(f) := sup{j ∈ I : ℜj = ℜγ(f)}.

For each j ∈ I, every component of the function t :→ Dj(t)〈f,Ψj〉m is a polynomial of t. Denote

the degree of the l-th component of Dj(t)〈f,Ψj〉m by τj,l(f). We define

τ(f) := sup{τj,l(f) : γ(f) ≤ j ≤ ζ(f), 1 ≤ l ≤ nj}.

Then for any j with ℜj = ℜγ(f),

Ff,j := lim
t→∞

t−τ(f)Dj(t)〈f,Ψj〉m (1.32) 1.20

exists and there exists a j such that Ff,j 6= 0.
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Note that if g ∈ L2(E,m), then for any j ∈ I,

〈g,Ψj〉m = 〈g,Ψj〉m = 〈g,Ψj′〉m,

where j′ is defined in Remark
rek5rek5
1.11. For g(x) =

∑
k:λ1≥2ℜk

(Φk(x))T bk, we get bk = 〈g,Ψj〉m. Thus,

if g(x) is real, we get bk = bk′ . The following three subsets of L2(E,m) will be needed in the

statement of our main result:

Cl :=



g(x) =

∑

k∈I:λ1>2ℜk

(Φk(x))T bk : bk ∈ Cnk with bk = bk′



 ,

Cc :=



g(x) =

∑

k∈I:λ1=2ℜk

(Φk(x))T bk : bk ∈ Cnk with bk = bk′



 ,

and

Cs :=
{
g ∈ L2(E,m) ∩ L4(E,m) : λ1 < 2ℜγ(g)

}
.

1.4.1 Some basic law of large numbers

For any k ∈ I, we define an nk-dimensional random vector H
(k)
t as follows:

H
(k)
t := eλkt(〈φ(k)1 ,Xt〉, · · · , 〈φ(k)nk

,Xt〉)(Dk(t))−1.

One can show (see Lemma
thrm1thrm1
3.1 below) that, if λ1 > 2ℜk, then, for any ν ∈ Ma(E) and b ∈ Cnk ,

H
(k)
t b is a martingale under Pν and bounded in L2(Pν). Thus the limit H

(k)
∞ := limt→∞H

(k)
t exists

Pν-a.s. and in L2(Pν).

thrm2 Theorem 1.15 If f ∈ L2(E,m;C) ∩ L4(E,m;C) with λ1 > 2ℜγ(f), then for any nonzero ν ∈
Ma(E), as t → ∞,

t−τ(f)eℜγ(f)t〈f,Xt〉 −
ζ(f)∑

j=γ(f)

e−iℑjtH(j)
∞ Ff,j → 0, in L2(Pν).

rem:large Remark 1.16 Suppose f ∈ L2(E,m;C) ∩ L4(E,m;C) with γ(f) = 1. Then ζ(f) = 1. Since

D1(t) ≡ 1, τ(f) = 0. Thus H
(1)
t reduces to Wt and H

(1)
∞ = W∞. Therefore by Theorem

thrm2thrm2
1.15 and

the fact that Ff,1 = 〈f, ψ1〉m, we get that for any nonzero ν ∈ Ma(E),

eλ1t〈f,Xt〉 → 〈f, ψ1〉mW∞, in L2(Pν),

as t→ ∞. It is obvious that the convergence also holds in Pν-probability.

In particular, if f is non-zero and non-negative, then 〈f, ψ1〉m 6= 0 which implies γ(f) = 1. ✷
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1.4.2 Main result

For f ∈ Cs, define

σ2f :=

∫ ∞

0
eλ1s〈A|Tsf |2, ψ1〉m ds+ 〈|f |2, ψ1〉m. (1.33) e:sigma

For h =
∑

k:λ1=2ℜk
(Φk(x))T bk ∈ Cc, define

ρ2h := (1 + 2τ(h))−1 〈AFh, ψ1〉m , (1.34) e:rho

where Fh(x) :=
∑

k:λ1=2ℜk

∣∣(Φk(x))TFh,k

∣∣2. For g(x) =
∑

k:λ1>2ℜk
(Φk(x))T bk ∈ Cl, define

Isg(x) :=
∑

k:λ1>2ℜk

eλksΦk(x)TDk(s)−1bk, β2g :=

∫ ∞

0
e−λ1u〈A |Iug|2 , ψ1〉m du− 〈g2, ψ1〉m

and

Et(g) :=
∑

k:λ1>2ℜk

(
e−λktH(k)

∞ Dk(t)bk

)
.

The:1.3 Theorem 1.17 If f ∈ Cs, h ∈ Cc and g ∈ Cl, then σ2f , ρ2h and β2g all belong to (0,∞). Furthermore,

it holds that, under Pν(· | Ec), as t→ ∞,

(
eλ1t〈φ1, ,Xt〉,

〈g,Xt〉 − Et(g)√
〈φ1,Xt〉

,
〈h,Xt〉√

t1+2τ(h)〈φ1,Xt〉
,

〈f,Xt〉√
〈φ1,Xt〉

)

d→ (W ∗, G3(g), G2(h), G1(f)), (1.35)

where W ∗ has the same distribution as W∞ conditioned on Ec, G3(g) ∼ N (0, β2g ), G2(h) ∼ N (0, ρ2h)

and G1(f) ∼ N (0, σ2f ). Moreover, W ∗, G3(g), G2(h) and G1(f) are independent.

Whenever f ∈ Cs, we will use G1(f) to denote a normal random variable N (0, σ2f ). For f1, f2 ∈
Cs, define

σ(f1, f2) :=

∫ ∞

0
eλ1s〈A(Tsf1)(Tsf2), ψ1〉m ds+ 〈f1f2, ψ1〉m.

Cor:1 Corollary 1.18 If f1, f2 ∈ Cs, then, under Pν(· | Ec),

(
〈f1,Xt〉√
〈φ1,Xt〉

,
〈f2,Xt〉√
〈φ1,Xt〉

)
d→ (G1(f1), G1(f2)), t→ ∞,

and (G1(f1), G1(f2)) is a bivariate normal random variable with covariance

Cov(G1(f1), G1(f2)) = σ(f1, f2). (1.36) sigma(fg)

Proof: Using the convergence of the fourth component in Theorem
The:1.3The:1.3
1.17, we get

Pν

(
exp

{
iθ1

〈f1,Xt〉√
〈φ1,Xt〉

+ iθ2
〈f2,Xt〉√
〈φ1,Xt〉

}
| Ec

)
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= Pν

(
exp

{
i
〈θ1f1 + θ2f2,Xt〉√

〈φ1,Xt〉

}
| Ec

)

→ exp

{
−1

2
σ2(θ1f1+θ2f2)

}
, as t→ ∞,

where

σ2(θ1f1+θ2f2)
=

∫ ∞

0
eλ1s〈A(Ts(θ1f1 + θ2f2))

2, ψ1〉m ds+ 〈(θ1f1 + θ2f2)
2, ψ1〉m

= θ21σ
2
f1 + 2θ1θ2σ(f1, f2) + θ22σ

2
f2 .

Now (
sigma(fg)sigma(fg)
1.36) follows immediately. ✷

Whenever h ∈ Cc, we will use G2(h) to denote a normal random variable N (0, ρ2h). For h1, h2 ∈
Cc, define

ρ(h1, h2) := (1 + τ(h1) + τ(h2))−1 〈AFh1,h2 , ψ1〉m , (1.37) rho2

where

Fh1,h2(x) :=
∑

j:λ1=2ℜj

Φj(x)TFh1,jΦj′(x)TFh2,j′ =
∑

j:λ1=2ℜj

Φj(x)TFh1,jΦj(x)TFh2,j. (1.38) e:Ffg

cor:2 Corollary 1.19 If h1, h2 ∈ Cc, then we have, under Pν(· | Ec),

(
〈h1,Xt〉√

t1+2τ(h1)〈φ1,Xt〉
,

〈h2,Xt〉√
t1+2τ(h2)〈φ1,Xt〉

)
d→ (G2(h1), G2(h2)), t→ ∞,

and (G2(h1), G2(h2)) is a bivariate normal random variable with covariance

Cov(G2(h1), G2(h2)) = ρ(h1, h2).

Whenever g ∈ Cl, we will use G3(g) to denote a normal random variable N (0, β2g ). For

g1(x), g2(x) ∈ Cl, define

β(g1, g2) :=

∫ ∞

0
e−λ1s〈A(Isg1)(Isg2), ψ1〉m ds− 〈g1g2, ψ1〉m.

Using the convergence of the second component in Theorem
The:1.3The:1.3
1.17 and an argument similar to that

in the proof of Corollary
Cor:1Cor:1
1.18, we get

cor:3 Corollary 1.20 If g1(x), g2(x) ∈ Cl, then we have, under Pν(· | Ec),

(
〈g1,Xt〉 − Et(g1)√

〈φ1,Xt〉
,
〈g2,Xt〉 − Et(g2)√

〈φ1,Xt〉

)
d→ (G3(g1), G3(g2)),

and (G3(g1), G3(g2)) is a bivariate normal random variable with covariance

Cov(G3(g1), G3(g2)) = β(g1, g2).
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For any f ∈ L2(E,m) ∩ L4(E,m), define

f(s)(x) :=
∑

j:2ℜj<λ1

(Φj(x))T 〈f,Ψj〉m,

f(c)(x) :=
∑

j:2ℜj=λ1

(Φj(x))T 〈f,Ψj〉m,

f(l)(x) := f(x) − f(s)(x) − f(l)(x).

Then f(s) ∈ Cl, f(c) ∈ Cc and f(l) ∈ Cs.

r:critical Remark 1.21 If f ∈ L2(E,m) ∩ L4(E,m) with λ1 = 2ℜγ(f), then f = f(c) + f(l). Using the

convergence of the fourth component in Theorem
The:1.3The:1.3
1.17 for f(l), it holds under Pν(· | Ec) that

〈f(l),Xt〉√
t1+2τ(f)〈φ1,Xt〉

d→ 0, t→ ∞.

Thus using the convergence of the first and third components in Theorem
The:1.3The:1.3
1.17, we get, under

Pν(· | Ec), (
eλ1t〈φ1,Xt〉,

〈f,Xt〉√
t1+2τ(f)〈φ1,Xt〉

)
d→ (W ∗, G2(f(c))), t→ ∞,

where W ∗ has the same distribution as W∞ conditioned on Ec and G2(f(c)) ∼ N (0, ρ2f(c)). Moreover,

W ∗ and G2(f(c)) are independent.

large Remark 1.22 Assume f ∈ L2(E,m) ∩ L4(E,m) satisfies λ1 > 2ℜγ(f).

If f(c) = 0, then f = f(l)+f(s). Using the convergence of the first, second and fourth components

in Theorem
The:1.3The:1.3
1.17, we get for any nonzero ν ∈ Ma(E), it holds under Pν(· | Ec) that, as t→ ∞,


eλ1t〈φ1,Xt〉,

(
〈f,Xt〉 −

∑
k:2ℜk<λ1

e−λktH
(k)
∞ Dk(t)〈f,Ψk〉m

)

〈φ1,Xt〉1/2


 d→ (W ∗, G1(f(l)) +G3(f(s))),

where W ∗, G3(f(s)) and G1(f(l)) are the same as those in Theorem
The:1.3The:1.3
1.17. Since G3(f(s)) and G1(f(l))

are independent, G1(f(l)) +G3(f(s)) ∼ N
(

0, σ2f(l) + β2f(s)

)
.

If f(c) 6= 0, then as t→ ∞,

(
〈f(l) + f(s),Xt〉 −

∑
k:2ℜk<λ1

e−λktH
(k)
∞ 〈f,Ψk〉m

)

√
t1+2τ(f)〈φ1,Xt〉

d→ 0.

Then using the convergence of the first and third components in Theorem
The:1.3The:1.3
1.17, we get


eλ1t〈φ1,Xt〉,

(
〈f,Xt〉 −

∑
k:2ℜk<λ1

e−λktH
(k)
∞ Dk(t)〈f,Ψk〉m

)

√
t1+2τ(f)〈φ1,Xt〉


 d→ (W ∗, G2(f(c))),

where W ∗ and G2(f(c)) are the same as those in Remark
r:criticalr:critical
1.21. Thus

RSZ
[22, Theorem 1.13] is a

consequence of Theorem
The:1.3The:1.3
1.17.
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2 Estimates on the moments of X

In the remainder of this paper we will use the following notation: for two positive functions f(t, x)

and g(t, x), f(t, x) . g(t, x) means that there exists a constant c > 0 such that f(t, x) ≤ cg(t, x)

for all t, x.

2.1 Estimates on the first moment of X

lemma2.1 Lemma 2.1 For each k ∈ I, if a < ℜk+1, there exists a constant c(k, a) > 0 such that for all t > 0,

‖Tt|(M̂k)⊥
‖2 ≤ c(k, a)e−at and ‖T̂t|(Mk)⊥

‖2 ≤ c(k, a)e−at. (2.1) 2.4

Proof: Since (Mk)⊥ is invariant for T̂t, {T̂t|(Mk)⊥
: t > 0} is a semigroup on (Mk)⊥ . By

BP
[7,

Theorem 6.7.5], we have σ(T̂1|(Mk)⊥
) = {e−λj , k + 1 ≤ j ∈ I} ∪ {0}. Thus, if k + 1 ∈ I, the

spectral radius of T̂1|(Mk)⊥
is r(T̂t|(Mk)⊥

) = e−ℜk+1 < e−a. If k + 1 does not belong to I, then

r(T̂t|(Mk)⊥
) = 0 < e−a.

By
BP
[7, Theorem 6.3.10], r(T̂1|(Mk)⊥

) = limn→∞(‖T̂n|(Mk)⊥
‖2)1/n, thus there exists a constant

n1, such that

‖T̂n1 |(Mk)⊥
‖2 ≤ e−an1 . (2.2) 2.3

By (
1.661.66
1.15), we have

sup
0≤t≤n1

‖T̂t|(Mk)⊥
‖2 ≤ sup

0≤t≤n1

‖T̂t‖2 ≤ eKn1 . (2.3) 2.2

For any t > 0, there exist l ∈ N and r ∈ [0, n1) such that t = n1l + r. By (
2.32.3
2.2) and (

2.22.2
2.3), we have

‖T̂t|(Mk)⊥
‖2 ≤ ‖T̂n1 |(Mk)⊥

‖l2‖T̂r|(Mk)⊥
‖2 ≤ e−an1leKn1 ≤ eKn1

(
sup

0≤r≤n1

ear
)
e−at.

Thus we can find c(k, a) > 1 such that ‖T̂t|(Mk)⊥
‖2 ≤ c(k, a)e−at. Similarly, we can show that

‖Tt|(M̂k)⊥
‖2 ≤ c(k, a)e−at. ✷

lemma2.2 Lemma 2.2 For each k ∈ I and t1 > 0, if a < ℜk+1, there exists a constant c(k, a, t1) > 0 such

that for all (t, x, y) ∈ (2t1,∞) × E × E,

∣∣∣∣∣∣
q(t, x, y) −

k∑

j=1

e−λjt(Φj(x))TDj(t)Ψj(y)

∣∣∣∣∣∣
≤ ce−atbt1(x)1/2b̂t1(y)1/2. (2.4) density

Proof: Recall that for any f ∈ L2(E,m;C) and k ∈ I, f̂k is defined in the paragraph containing

(
fkfk
1.31). Since |〈f, φ(j)l 〉m| ≤ ‖f‖2, we have |f̂k(x)| ≤ ‖f‖2

∑k
j=1

∑nj

l=1 |ψ
(j)
l (x)|. Thus, we get

‖f̂k‖2 ≤ c1(k)‖f‖2. By Lemma
lemma2.1lemma2.1
2.1, for any a < ℜk+1, there exists a constant c2 = c2(k, a) > 0

such that for all t > 0,

‖T̂t(f − f̂k)‖2 ≤ c2e
−at‖f − f̂k‖2 ≤ c3e

−at‖f‖2, (2.5) 2.7
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where c3 = c2(1 + c1(k)). For t > t1, we have

q(t, x, y) =

∫

E
q(t1, x, z)q(t − t1, z, y)m(dz) = T̂t−t1(hx)(y),

where hx(z) = q(t1, x, z) ∈ L2(E,m). It is easy to see that

〈hx, φ(j)l 〉m =

∫

E
q(t1, x, z)φ

(j)
l (z)m(dz) = Tt1(φ

(j)
l )(x).

Let

hx,k(z) :=

k∑

j=1

nj∑

l=1

〈hx, φ(j)l 〉mψ(j)
l (z) =

k∑

j=1

Tt1((Φj)T )(x)Ψj(z).

By (
T-JordanT-Jordan
1.18) and (

T^*T^*
1.26), we have

T̂t−t1(hx,k)(y) =

k∑

j=1

Tt1(Φj)T (x)T̂t−t1(Ψj)(y) =

k∑

j=1

e−λjt(Φj(x))TDj(t1)Dj(t− t1)Ψj(y)

=

k∑

j=1

e−λjt(Φj(x))TDj(t)Ψj(y).

Thus, by (
2.72.7
2.5), we have

∫

E
|q(t, x, y) −

k∑

j=1

e−λjt(Φj(x))TDj(t)Ψj(y)|2m(dy) ≤ (c3)2e−2a(t−t1)‖hx‖22 = c4e
−2atbt1(x),

where c4 = c4(k, a, t1) = c23e
−2at1 . Since q(t, x, y) is a real-valued function, we have, for t > t1,

∫

E
|q(t, x, y) −

k∑

j=1

e−λjt(Φj(x))TDj(t)Ψj(y)|2m(dy) ≤ c4e
−2atbt1(x). (2.6) 2.11

Repeating the above argument with Tt, we get that there exists c5 = c5(k, a, t1) > 0 such that

for t > t1, ∫

E
|q(t, z, y) −

k∑

j=1

e−λjt(Φj(z))
TDj(t)Ψj(y)|2m(dz) ≤ c5e

−2atb̂t1(y). (2.7) 2.15

Since Dj(t) = Dj(t/2)Dj(t/2), we get

e−λjt(Φj(x))TDj(t)Ψj(y) = e−λjt/2

∫

E
q(t/2, x, z)(Φj(z))

TDj(t/2)Ψj(y)m(dz), (2.8) 2.12

e−λjt(Φj(x))TDj(t)Ψj(y) = e−λjt/2

∫

E
q(t/2, z, y)(Φj(x))TDj(t/2)Ψj(z)m(dz), (2.9) 2.13

and by (
AA
1.25), we have

∫

E




k∑

j=1

e−λjt/2(Φj(x))TDj(t/2)Ψj(z)






k∑

j=1

e−λjt/2(Φj(z))
TDj(t/2)Ψj(y)


 m(dz)
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=

k∑

j=1

e−λjt(Φj(x))TDj(t/2)Dj(t/2)Ψj(y) =

k∑

j=1

e−λjt(Φj(x))TDj(t)Ψj(y). (2.10)

Thus, by the semigroup property of Tt and (
2.122.12
2.8)–(

2.142.14
2.10), we obtain

q(t, x, y) −
k∑

j=1

e−λjt(Φj(x))TDj(t)Ψj(y)

=

∫

E
q(t/2, x, z)q(t/2, z, y)m(dz) −

k∑

j=1

e−λjt/2

∫

E
q(t/2, x, z)(Φj(z))

TDj(t/2)Ψj(y)m(dz)

−
k∑

j=1

e−λjt/2

∫

E
q(t/2, z, y)(Φj(x))TDj(t/2)Ψj(z)m(dz)

+

∫

E




k∑

j=1

e−λjt/2(Φj(x))TDj(t/2)Ψj(z)






k∑

j=1

e−λjt/2(Φj(z))
TDj(t/2)Ψj(y)


 m(dz)

=

∫

E


q(t/2, x, z) −




k∑

j=1

e−λjt/2(Φj(x))TDj(t/2)Ψj(z)







q(t/2, z, y) −




k∑

j=1

e−λjt/2(Φj(z))
TDj(t/2)Ψj(y)




 m(dz).

Therefore, by Hölder’s inequality, (
2.112.11
2.6) and (

2.152.15
2.7), we get, for t > 2t1,

∣∣∣∣∣∣
q(t, x, y) −

k∑

j=1

e−λjt(Φj(x))TDj(t)Ψj(y)

∣∣∣∣∣∣
≤ √

c4c5e
−atbt1(x)1/2b̂t1(y)1/2.

✷

lemma2.3 Corollary 2.3 Assume f ∈ L2(E,m;C). If γ(f) <∞, then, for any t1 > 0, there exists a constant

c(f, t1) > 0 such that for all (t, x) ∈ (2t1,∞) × E,

∣∣∣∣∣∣
t−τ(f)eℜγ(f)tTtf(x) −

ζ(f)∑

j=γ(f)

e−iℑjt(Φj(x))TFf,j

∣∣∣∣∣∣
≤ c(f, t1)t−1bt1(x)1/2. (2.11) 1.31

Moreover, we have, for (t, x) ∈ (2t1,∞) ×E,

|Ttf(x)| . tτ(f)e−ℜγ(f)tbt1(x)1/2. (2.12) 1.23

If γ(f) = ∞, for any t1 > 0, we have, for (t, x) ∈ (2t1,∞) × E,

|Ttf(x)| . bt1(x)1/2. (2.13) 1.23’

Proof: First, we consider the case γ(f) < ∞, which implies γ(f) ∈ I. By the definition of ζ(f),

we have ℜγ(f) < ℜζ(f)+1. Since 〈f, (̂bt1)1/2〉m ≤ ‖b̂1/2t1 ‖2‖f‖2, applying Lemma
lemma2.2lemma2.2
2.2 with k = ζ(f)
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and a fixed a with ℜγ(f) < a < ℜζ(f)+1, we get that there exists c1 = c1(f, t1) > 0 such that for

(t, x) ∈ (2t1,∞) × E,
∣∣∣∣∣∣
Ttf(x) − e−ℜγ(f)t

ζ(f)∑

j=γ(f)

e−iℑjt(Φj(x))TDj(t)〈f,Ψj〉m

∣∣∣∣∣∣
≤ c1e

−atbt1(x)1/2. (2.14) 1.21

If τ(f) ≥ 1, the degree of each component of Dj(t)〈f,Ψj〉m − tτ(f)Ff,j is no larger than τ(f) − 1.

Thus, for t > 2t1,

|Dj(t)〈f,Ψj〉m − tτ(f)Ff,j |∞ . tτ(f)−1. (2.15) 1.22

If τ(f) = 0, Dj(t)〈f,Ψj〉m − tτ(f)Ff,j = 0. By (
phiphi
1.20), we get, for (t, x) ∈ (2t1,∞) × E,

∣∣∣∣∣∣

ζ(f)∑

j=γ(f)

e−iℑjt(Φj(x))TDj(t)〈f,Ψj(y)〉m − tτ(f)
ζ(f)∑

j=γ(f)

e−iℑjt(Φj(x))TFf,j

∣∣∣∣∣∣
. tτ(f)−1|Φj(x)|∞ . tτ(f)−1bt1(x)1/2. (2.16)

Now (
1.311.31
2.11) follows easily from (

1.211.21
2.14) and (

1.241.24
2.16). By (

1.311.31
2.11) and (

phiphi
1.20), we get (

1.231.23
2.12) immediately.

Now, we deal with the case γ(f) = ∞. Let k0 := sup{j : ℜj ≤ 0}. Thus, we have k0 ∈ I and

ℜk0+1 > 0. Since γ(f) = ∞, so for any k ∈ I, we have 〈f,Ψk〉m = 0. Now, applying Lemma
lemma2.2lemma2.2
2.2

with k = k0 and a = 0, we get (
1.23’1.23’
2.13) immediately. ✷

rek3 Remark 2.4 Since D1(t) ≡ 1, using (
densitydensity
2.4) with k = 1 and λ1 < a < ℜ2, we get that, for any

t1 > 0, there exists c1(t1, a) > 0 such that for any f ∈ L2(E,m) and (t, x) ∈ (2t1,∞) × E,

|eλ1tTtf(x) − 〈f, ψ1〉mφ1(x)| ≤ c1(t1, a)e−(a−λ1)t‖f‖2bt1(x)1/2, (2.17) 2.6

and hence there exists c2(t1, a) > 0 such that

eλ1t|Ttf(x)| ≤ c2‖f‖2bt1(x)1/2. (2.18) 2.8

2.2 Estimates on the second moment of X

We first recall the formula for the second moment of the branching Markov process {Xt : t ≥ 0}
(see, for example,

Sh
[27, Lemma 3.3]): for f ∈ Bb(E), we have for any (t, x) ∈ (0,∞) × E,

Pδx〈f,Xt〉2 =

∫ t

0
Ts[A|Tt−sf |2](x) ds + Tt(f

2)(x). (2.19) 1.19

For any f ∈ L2(E,m) ∩ L4(E,m) and x ∈ E, since (Tt−sf)2(x) ≤ eK(t−s)Tt−s(f
2)(x), we have

∫ t

0
Ts[A(Tt−sf)2](x) ds ≤ KeKtTt(f

2)(x) <∞,

which implies

∫ t

0
Ts[A(Tt−sf)2](x) ds + Tt(f

2)(x) ≤ (1 +KeKt)Tt(f
2)(x) <∞. (2.20) 2.27
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Thus, using a routine limit argument, one can easily check that (
1.191.19
2.19) also holds for f ∈ L2(E,m)∩

L4(E,m). Thus, for f ∈ L2(E,m;C) ∩ L4(E,m;C), we have

Pδx |〈f,Xt〉|2 = Pδx〈ℜ(f),Xt〉2 + Pδx〈ℑ(f),Xt〉2 =

∫ t

0
Ts[A|Tt−sf |2](x) ds + Tt(|f |2)(x). (2.21)

Let Varν be the variance under Pν . Then by the branching property, we have Varν〈f,Xt〉 =

〈Varδ·〈f,Xt〉, ν〉. By (
2.272.27
2.20) and (

2.82.8
2.18), we get, for t > 2t0,

Varδx〈f,Xt〉 ≤ Pδx |〈f,Xt〉|2 ≤ (1 +KeKt)Tt(|f |2)(x)

≤ (1 +KeKt)e−λ1tbt(x)1/2‖|f |2‖2 ∈ L2(E,m) ∩ L4(E,m). (2.22)

Recall that t0 is the constant in Assumption 1(c).

Lemma 2.5 Assume that f ∈ L2(E,m;C) ∩ L4(E,m;C). If λ1 > 2ℜγ(f), then for any (t, x) ∈
(10t0,∞) × E we have,

sup
t>10t0

t−2τ(f)e2ℜγ(f)tPδx |〈f,Xt〉|2 . bt0(x)1/2. (2.23) 1.51

Proof: In this proof, we always assume t > 10t0. For s ≤ 2t0, we have Tt−s[A|Tsf |2](x) ≤
KeKsTt(|f |2)(x) . Tt(|f |2)(x). Thus, by (

1.231.23
2.12), we have for t > 10t0,

∫ 2t0

0
Tt−s[A|Tsf |2](x) ds . Tt(|f |2)(x) . e−λ1tbt0(x)1/2. (2.24) 1.52

It follows from (
1.231.23
2.12) again that, for (s, x) ∈ (8t0,∞)×E, |Tsf(x)| . sτ(f)e−ℜγ(f)sb4t0(x)1/2 . Thus,

for (t, x) ∈ (10t0,∞) ×E,

∫ t

t−2t0

Tt−s[A|Tsf |2](x) ds . t2τ(f)
∫ t

t−2t0

e−2ℜγ(f)sTt−s(b4t0)(x) ds

= t2τ(f)e−2ℜγ(f)t

∫ 2t0

0
e2ℜγ(f)sTs(b4t0)(x) ds . t2τ(f)e−2ℜγ(f)t

∫ 2t0

0
Ts(b4t0)(x) ds. (2.25)

We now show that for any x ∈ E,
∫ 2t0
0 Ts(b4t0)(x) ds <∞. By (

8.98.9
1.3), we get

b4t0(x) ≤ e8Kt0a4t0(x) ≤ e10Kt0T2t0(a2t0)(x).

Thus, by (
2.82.8
2.18), we have

∫ 2t0

0
Ts(b4t0)(x) ds ≤ e10Kt0

∫ 2t0

0
Ts+2t0(a2t0)(x) ds .

∫ 2t0

0
e−λ1(s+2t0) dsbt0(x)1/2 . bt0(x)1/2.

(2.26) 1.37

By (
2.462.46
2.25) and (

1.371.37
2.26), we get

∫ t

t−2t0

Tt−s[A|Tsf |2](x) ds . t2τ(f)e−2ℜγ(f)tbt0(x)1/2. (2.27) 5.2
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For s ∈ [2t0, t − 2t0], by (
1.231.23
2.12), we have |Tsf(x)|2 . s2τ(f)e−2ℜγ(f)sbt0(x). By (

2.82.8
2.18), we get

Tt−s[A(Tsf)2](x) . s2τ(f)e−2ℜγ(f)se−λ1(t−s)bt0(x)1/2. So, for (t, x) ∈ (10t0,∞) × E,

∫ t−2t0

2t0

Tt−s[A|Tsf |2](x) ds . t2τ(f)e−λ1t

∫ t

0
e(λ1−2ℜγ(f))s dsbt0(x)1/2 (2.28)

. t2τ(f)e−2ℜγ(f)tbt0(x)1/2. (2.29)

Combining (
1.521.52
2.24), (

5.25.2
2.27) and (

1.541.54
2.29), when λ1 > 2ℜγ(f), we get

∫ t

0
Tt−s[A|Tsf |2](x) ds . t2τ(f)e−2ℜγ(f)tbt0(x)1/2.

Since λ1 > 2ℜγ(f), by (
2.82.8
2.18), we have, for (t, x) ∈ (10t0,∞) × E,

Tt(|f |2)(x) . e−λ1tbt0(x)1/2 . t2τ(f)e−2ℜγ(f)tbt0(x)1/2.

Now (
1.511.51
2.23) follows easily. ✷

lem:2.2 Lemma 2.6 Assume that f ∈ L2(E,m)∩L4(E,m). If λ1 < 2ℜγ(f), then for (t, x) ∈ (10t0,∞)×E,

∣∣∣eλ1tVarδx〈f,Xt〉 − σ2fφ1(x)
∣∣∣ . ct(bt0(x)1/2 + bt0(x)), (2.30) small

where ct is independent of x with limt→∞ ct = 0 and σ2f is defined in (
e:sigmae:sigma
1.33).

Proof: First, we consider the case γ(f) < ∞. In this proof, we always assume t > 10t0 and

f ∈ L2(E,m) ∩ L4(E,m). By (
1.231.23
2.12), we have

eλ1t/2|Pδx〈f,Xt〉| . tτ(f)e−(2ℜγ(f)−λ1)t/2bt0(x)1/2. (2.31) 1.6

We first show that σ2f <∞. For s ≤ 2t0, by (
LpLp
1.13), we have

‖A|Tsf |2‖2 ≤ K‖Tsf‖24 ≤ Ke2Ks‖f‖24. (2.32) 1.32

For s > 2t0, by (
1.231.23
2.12), |Tsf(x)| . e−ℜγ(f)ssτ(f)bt0(x)1/2. Thus, we have

∫ ∞

0
eλ1s〈A|Tsf |2, ψ1〉m ds ≤ K‖ψ1‖2

∫ ∞

0
eλ1s‖|Tsf |2‖2 ds

.

∫ 2t0

0
eλ1s ds+

∫ ∞

2t0

e(λ1−2ℜγ(f))ss2τ(f) ds <∞, (2.33)

from which we easily see that σ2f <∞. By (
1.131.13
2.21), we have

∣∣∣eλ1tPδx〈f,Xt〉2 − σ2fφ1(x)
∣∣∣

≤ eλ1t

∫ t−2t0

0

∣∣∣Tt−s[A|Tsf |2](x) − e−λ1(t−s)〈A|Tsf |2, ψ1〉mφ1(x)
∣∣∣ ds

+eλ1t

∫ t

t−2t0

Tt−s[A|Tsf |2](x) ds +

∫ ∞

t−2t0

eλ1s〈A|Tsf |2, ψ1〉m dsφ1(x)
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+|eλ1tTt(|f |2)(x) − 〈|f |2, ψ1〉mφ1(x)|
=: V1(t, x) + V2(t, x) + V3(t, x) + V4(t, x). (2.34)

First, we consider V1(t, x). By (
2.62.6
2.17), for t− s > 2t0, there exists a ∈ (λ1,ℜ2) such that

∣∣∣Tt−s[A|Tsf |2](x) − e−λ1(t−s)〈A|Tsf |2, ψ1〉mφ1(x)
∣∣∣ . e−a(t−s)‖A(Tsf)2‖2bt0(x)1/2.

Therefore, by (
1.231.23
2.12) and (

1.321.32
2.32), we have

V1(t, x) . eλ1tt2τ(f)
∫ t−2t0

2t0

e−a(t−s)e−2ℜγ(f)s ds bt0(x)1/2 + eλ1t

∫ 2t0

0
e−a(t−s) ds bt0(x)1/2

. e−(a−λ1)tt2τ(f)
∫ t

0
e(a−2ℜγ(f))s ds bt0(x)1/2 + e−(a−λ1)tbt0(x)1/2

. t2τ(f)
(
e(λ1−2ℜγ(f))t + e−(a−λ1)t

)
bt0(x)1/2. (2.35)

Now we deal with V2(t, x). By (
5.25.2
2.27), we have

V2(t, x) . t2τ(f)e(λ1−2ℜγ(f))tbt0(x)1/2. (2.36) V2

For V3(t, x), by (
1.341.34
2.33), we get

∫∞
t−2t0

eλ1s〈A|Tsf |2, ψ1〉m ds → 0, as t → ∞. By (
phiphi
1.20), we have

φ1(x) . bt0(x)1/2.

Finally, we consider V4(t, x). By (
2.62.6
2.17), we have

V4(t, x) . e−(a−λ1)tbt0(x)1/2. (2.37) V4

Thus, by (
V1V1
2.35)–(

V4V4
2.37), we have, for (t, x) ∈ (10t0,∞) × E,

∣∣∣eλ1tPδx〈f,Xt〉2 − σ2fφ1(x)
∣∣∣ . ctbt0(x)1/2, (2.38) 2.22

with limt→∞ ct = 0. Now (
smallsmall
2.30) follows immediately from (

1.61.6
2.31) and (

2.222.22
2.38).

Now, we consider the case γ(f) = ∞. The proof is similar to that of the case γ(f) < ∞, the

only difference being that we now use (
1.23’1.23’
2.13) instead of (

1.231.23
2.12). ✷

critical Lemma 2.7 Assume that f, h ∈ L2(E,m) ∩ L4(E,m). If λ1 = 2ℜγ(f) = 2ℜγ(h), then for (t, x) ∈
(10t0,∞) × E,

∣∣∣t−(1+τ(f)+τ(h))eλ1tCovδx(〈f,Xt〉, 〈h,Xt〉) − ρ(f, h)φ1(x)
∣∣∣ . t−1

(
bt0(x)1/2 + bt0(x)

)
, (2.39) 7.49

where Covδx is the covariance under Pδx and ρ(f, h) is defined by (
rho2rho2
1.37) with f and h in place of

h1 and h2 respectively. In particular, we have, for (t, x) ∈ (10t0,∞) × E,
∣∣∣t−(1+2τ(f))eλ1tVarδx〈f,Xt〉 − ρ2fφ1(x)

∣∣∣ . t−1
(
bt0(x)1/2 + bt0(x)

)
, (2.40) 1.49

where ρ2f is defined by (
e:rhoe:rho
1.34). Moreover, we have, for (t, x) ∈ (10t0,∞) × E,

t−(1+2τ(f))eλ1tVarδx〈f,Xt〉 .
(
bt0(x)1/2 + bt0(x)

)
. (2.41) 3.33
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Proof: In this proof we always assume t > 10t0 and f, h ∈ L2(E,m) ∩ L4(E,m). By (
1.131.13
2.21), we

have

Covδx(〈f,Xt〉, 〈h,Xt〉)

=
1

4
(Varδx〈(f + h),Xt〉 − Varδx〈(f − h),Xt〉)

=

∫ t

0
Tt−s [A(Tsf)(Tsh)] (x) ds + Tt(fh)(x) − Tt(f)(x)Tt(h)(x). (2.42)

Let

Cf (s, x) :=
∑

j:λ1=2ℜj

(
e−iℑjs(Φj(x))TFf,j

)
, Ch(s, x) :=

∑

j:λ1=2ℜj

(
e−iℑjs(Φj(x))TFh,j

)
.

Define

V5(t, x) := eλ1t

∫ t−2t0

2t0

Tt−s[A(Tsf)(Tsh))](x) ds,

V6(t, x) := eλ1t

∫ t−2t0

2t0

sτ(f)+τ(h)e−λ1sTt−s[ACf (s, ·)Ch(s, ·)](x) ds,

V7(t, x) :=

∫ t−2t0

2t0

sτ(f)+τ(h)〈ACf (s, ·)Ch(s, ·), ψ1〉m dsφ1(x)

and

V8(t, x) :=

∫ t−2t0

2t0

sτ(f)+τ(h)〈AFf,h, ψ1〉m dsφ1(x),

where Ff,h is defined in (
e:Ffge:Ffg
1.38) with f and h in place of h1 and h2 respectively. It is easy to see

from the definition of ρ(f, h) that

ρ(f, h) = t−(1+τ(f)+τ(h))

∫ t

0
sτ(f)+τ(h)〈AFf,h, ψ1〉m ds.

Thus we have
∣∣∣∣eλ1t

∫ t

0
Tt−s[A(Tsf)(Tsh)](x) ds − t1+τ(f)+τ(h)ρ(f, h)φ1(x)

∣∣∣∣

≤ eλ1t

(∫ 2t0

0
+

∫ t

t−2t0

)
Tt−s[A|Tsf ||Tsh|](x) ds + |V5(t, x) − V6(t, x)| + |V6(t, x) − V7(t, x)|

+|V7(t, x) − V8(t, x)| +

(∫ 2t0

0
+

∫ t

t−2t0

)
sτ(f)+τ(h) ds〈AFf,h, ψ1〉mφ1(x). (2.43)

By (
2.82.8
2.18), for s ≤ t− 2t0, we have

Tt−s[A|Tsf ||Tsh|](x) . e−λ1(t−s) ‖A|Tsf ||Tsh|‖2 (bt0(x))1/2.

By (
LpLp
1.13), it is easy to see that ‖A|Tsf ||Tsh|‖2 ≤ K‖Tsf‖4‖Tsh‖4 ≤ Ke2Ks‖f‖4‖h‖4. Thus,

eλ1t

∫ 2t0

0
Tt−s[A|Tsf ||Tsh|](x) ds .

∫ 2t0

0
eλ1s ds(bt0(x))1/2 . (bt0(x))1/2. (2.44) 7.3
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For s > t− 2t0, using arguments similar to those leading to (
5.25.2
2.27), we get

eλ1t

∫ t

t−2t0

Tt−s [A|Tsf ||Tsh|] (x) ds . tτ(f)+τ(h)eλ1te−(ℜγ (h)+ℜγ(f))t(bt0(x))1/2 (2.45)

= tτ(f)+τ(h)(bt0(x))1/2. (2.46)

By (
phiphi
1.20), it is easy to see that

(∫ 2t0

0
+

∫ t

t−2t0

)
sτ(f)+τ(h) ds〈AFf,h, ψ1〉mφ1(x) . tτ(f)+τ(h)bt0(x)1/2. (2.47) 1.42

Next we consider |V5(t, x) − V6(t, x)|. By (
1.311.31
2.11), we have, for (s, x) ∈ (2t0,∞) × E,

|Tsf(x) − sτ(f)e−λ1s/2Cf (s, x)| . sτ(f)−1e−λ1s/2bt0(x)1/2.

The same is also true for h. Thus by (
1.231.23
2.12) and (

phiphi
1.20), we get, for (s, x) ∈ (2t0,∞) × E,

∣∣∣|Tsf(x)Tsh(x)| − sτ(f)+τ(h)e−λ1sCf (s, x)Ch(s, x)
∣∣∣

.
∣∣∣Tsf(x) − sτ(f)e−λ1s/2Cf (s, x)

∣∣∣
∣∣∣Tsh(x) − sτ(h)e−λ1s/2Ch(s, x)

∣∣∣

+sτ(h)e−λ1s/2
∣∣∣Tsf(x) − sτ(f)e−λ1s/2Cf (s, x)

∣∣∣ |Ch(s, x)|

+sτ(f)e−λ1s/2
∣∣∣Tsh(x) − sτ(h)e−λ1s/2Ch(s, x)

∣∣∣ |Cf (s, x)|

. sτ(f)+τ(h)−1e−λ1sbt0(x). (2.48)

Therefore, by (
2.82.8
2.18), we have, for (t, x) ∈ (10t0,∞) × E,

|V5(t, x) − V6(t, x)| .
∫ t−2t0

2t0

sτ(f)+τ(h)−1eλ1(t−s)Tt−s(bt0)(x) ds

.

∫ t−2t0

2t0

sτ(f)+τ(h)−1 dsbt0(x)1/2 . tτ(f)+τ(h)bt0(x)1/2. (2.49)

For |V6(t, x) − V7(t, x)|, by (
2.62.6
2.17), there exists λ1 < a < ℜ2, such that, for t− s > 2t0,

∣∣∣eλ1(t−s)Tt−s [ACf (s, ·)Ch(s, ·)] (x) − 〈ACf (s, ·)Ch(s, ·), ψ1〉mφ1(x)
∣∣∣

. e−(a−λ1)(t−s)‖Cf (s, ·)Ch(s, ·)‖2bt0(x)1/2.

By (
phiphi
1.20), we get, for s > 2t0, |Cf (s, x)Ch(s, x)| . bt0(x). Thus, we get

|V6(t, x) − V7(t, x)| .
∫ t−2t0

2t0

sτ(f)+τ(h)e−(a−λ1)(t−s) dsbt0(x)1/2

. tτ(f)+τ(h)

∫ t−2t0

2t0

e−(a−λ1)(t−s) dsbt0(x)1/2 . tτ(f)+τ(h)bt0(x)1/2. (2.50)

Now we deal with |V7(t, x) − V8(t, x)|. We can check that Ch(s, x) is real. In fact, for each j

with λ1 = 2ℜj , we also have λ1 = 2ℜj′ and e−iℑj′s(Φj′(x))TFh,j′ = e−iℑjs(Φj(x))TFh,j. Thus, we

have Ch(s, x) = Ch(s, x) =
∑

j:λ1=2ℜj

(
eiℑjs(Φj(x))TFh,j

)
. Therefore,

Cf (s, x)Ch(s, x) =
∑

j:λ1=2ℜj

Φj(x))TFf,j(Φj(x))TFh,j
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+
∑

γ(f)≤j 6=l≤ζ(f)

(
e−i(ℑj−ℑl)s(Φj(x))TFf,j(Φl(x))TFh,l

)
.

When j 6= l, since λj 6= λl and ℜj = ℜl, we have ℑj 6= ℑl.

We claim that for any non-zero θ ∈ R and n ≥ 0, we have for t > 2t0,

∣∣∣∣
∫ t−2t0

2t0

sneiθs ds

∣∣∣∣ . tn. (2.51) 2.26

Then, using (
e:Ffge:Ffg
1.38), we get

|V7(t, x) − V8(t, x)|

.
∑

γ(f)≤j 6=l≤ζ(f)

∣∣∣∣
∫ t−2t0

2t0

sτ(f)+τ(h)e−i(ℑj−ℑl)s ds

∣∣∣∣
∣∣∣〈(Φj(x))TFf,j(Φl(x))TFh,l, ψ1〉m

∣∣∣φ1(x)

. tτ(f)+τ(h)bt0(x)1/2. (2.52)

Now we prove (
2.262.26
2.51). Using integration by parts, for n ≥ 1, we get

∣∣∣∣
∫ t−2t0

2t0

sneiθs ds

∣∣∣∣ =

∣∣∣∣∣
sneiθs|t−2t0

2t0
−
∫ t−2t0
2t0

nsn−1eiθs ds

iθ

∣∣∣∣∣ . tn +

∫ t−2t0

2t0

sn−1 ds . tn.

For n = 0, we have ∣∣∣∣
∫ t−2t0

2t0

eiθs ds

∣∣∣∣ =

∣∣∣∣∣
eiθ(t−2t0) − ei2θt0

iθ

∣∣∣∣∣ ≤ 2/|θ|.

Therefore, (
2.262.26
2.51) follows immediately.

Combining (
7.37.3
2.44), (

7.67.6
2.46), (

1.421.42
2.47), (

1.441.44
2.49), (

1.381.38
2.50) and (

1.411.41
2.52), we get (t, x) ∈ (10t0,∞) × E,

∣∣∣∣eλ1t

∫ t

0
Tt−s[A(Tsf)(Tsh)](x) ds − t1+τ(f)+τ(h)ρ(f, h)φ1(x)

∣∣∣∣ . tτ(f)+τ(h)bt0(x)1/2. (2.53) 1.46

By (
2.82.8
2.18), we have, for (t, x) ∈ (10t0,∞) × E,

eλ1tTt(|fh|)(x) . bt0(x)1/2.

And by (
2.62.6
2.17) and λ1 = 2ℜγ(f),

eλ1t|Ttf(x)||Tth(x)| . tτ(f)+τ(h)bt0(x).

Now (
7.497.49
2.39) follows immediately. ✷

and critical Lemma 2.8 Assume that f ∈ L2(E,m)∩L4(E,m) with λ1 < 2ℜγ(f) and h ∈ L2(E,m)∩L4(E,m)

with λ1 = 2ℜγ(h). Then, for any (t, x) ∈ (10t0,∞) × E,

eλ1tCovδx(〈f,Xt〉, 〈h,Xt〉) . ((bt0(x))1/2 + bt0(x)). (2.54) cov:sc
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Proof: In this proof, we always assume that t > 10t0, f ∈ L2(E,m) ∩ L4(E,m) with λ1 < 2ℜγ(f)

and h ∈ L2(E,m) ∩ L4(E,m) with λ1 = 2ℜγ(h). First, we assume γ(f) <∞. By (
7.17.1
2.42), we have

Covδx(〈f,Xt〉, 〈h,Xt〉) =

∫ t

0
Tt−s [A(Tsf)(Tsh)] (x) ds + Tt(fh)(x) − Tt(f)(x)Tt(h)(x).

By (
7.37.3
2.44) and (

7.57.5
2.45), we have, for (t, x) ∈ (10t0,∞) × E,

eλ1t

(∫ 2t0

0
+

∫ t

t−2t0

)
Tt−s [A|Tsf ||Tsh|] (x) ds

. bt0(x)1/2 + tτ(f)+τ(h)e(λ1/2−ℜγ(f))t(bt0(x))1/2 . (bt0(x))1/2.

By (
1.231.23
2.12), we have

eλ1t

∫ t−2t0

2t0

Tt−s [A|Tsf ||Tsh|] (x) ds . eλ1t

∫ t−2t0

2t0

sτ(f)+τ(h)e−(λ1/2+ℜγ(f))sTt−s(bt0)(x) ds

.

(∫ t−2t0

2t0

sτ(f)+τ(h)e(λ1/2−ℜγ(f))s ds

)
bt0(x)1/2 . bt0(x)1/2. (2.55)

Thus, we have

eλ1t

∣∣∣∣
∫ t

0
Tt−s [A(Tsf)(Tsh)] (x) ds

∣∣∣∣ . (bt0(x))1/2. (2.56) 1.61

By (
2.82.8
2.18), we get

eλ1t|Tt(fh)(x)| ≤ eλ1tTt(|fh|)(x) . bt0(x)1/2.

By (
1.231.23
2.12), for (t, x) ∈ (10t0,∞) × E, we have

eλ1t|Ttf(x)Tth(x)| . tτ(f)+τ(h)e(λ1/2−ℜγ(f))tbt0(x) . bt0(x).

Now (
cov:sccov:sc
2.54) follows immediately.

Repeating the proof above by using (
1.23’1.23’
2.13) instead of (

1.231.23
2.12), we get (

cov:sccov:sc
2.54) also holds when

γ(f) = ∞. ✷

3 Proofs of Main Results

In this section, we will prove the main results of this paper. When referring to individuals in X

we will use the classical Ulam-Harris notation so that every individual in X has a unique label, see
HH
[10]. For each individual u ∈ T we shall write bu and du for its birth and death times respectively

and {zu(r) : r ∈ [bu, du]} for its spatial trajectory. Define

Lt = {u ∈ T , bu ≤ t < du}, t ≥ 0.

Thus, Xs+t has the following decomposition:

Xs+t =
∑

u∈Lt

Xu,t
s , (3.1) 3.22

where given Ft, X
u,t
s , u ∈ Lt, are independent and Xu,t

s has the same law as Xs under Pδzu(t)
.
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3.1 A basic law of large numbers

Recall that

H
(k)
t := eλkt(〈φ(k)1 ,Xt〉, · · · , 〈φ(k)nk

,Xt〉)(Dk(t))−1.

thrm1 Lemma 3.1 Assume that b is an nk-dimensional vector. If λ1 > 2ℜk, then, for any ν ∈ Ma(E),

H
(k)
t b is a martingale under Pν. Moreover, the limit

H(k)
∞ := lim

t→∞
H

(k)
t (3.2) 1.48

exists Pν-a.s. and in L2(Pν).

Proof: By the branching property, it suffices to prove the lemma for ν = δx with x ∈ E. By

(
T-JordanT-Jordan
1.18), we have

PδxH
(k)
t b = eλktTt((Φk)T )(x)(Dk(t))−1b = (Φk(x))T b.

Thus, by the Markov property, we get that H
(k)
t b is a martingale under Pδx. We claim that, for

(t, x) ∈ (2t0,∞) × E,

Pδx |H
(k)
t b|2 . |b|2∞bt0(x)1/2, (3.3) 1.47

from which (
1.481.48
3.2) follows immediately.

Now we prove the claim. Let ft(x) = eλktbT (Dk(t)−1)TΦk(x). Then H
(k)
t b = 〈ft,Xt〉, and by

(
T-JordanT-Jordan
1.18), for s < t, we have

Ts(ft)(x) = eλk(t−s)bT (Dk(t− s)−1)TΦk = ft−s(x).

By (
1.131.13
2.21), we have

Pδx |H
(k)
t b|2 = Pδx |〈ft,Xt〉|2 =

∫ t

0
Ts[A|fs|2](x) ds + Tt(|ft|2)(x). (3.4) 1.50

Since each component of Dk(s)−1 = Dk(−s) is a polynomial of s with degree no larger than νk, we

get |Dk(s)−1|∞ . (1 + sνk). Thus, for all s > 0, we have

|fs| . eℜks|b|∞|Dk(s)|∞|Φk(x)|∞ . |b|∞(1 + sνk)eℜksb4t0(x)1/2. (3.5) 7.8

By (
2.82.8
2.18), we have, for (s, x) ∈ (2t0,∞) × E,

Ts(|fs|2)(x) . e−λ1s‖|fs|2‖2bt0(x)1/2 . |b|2∞(1 + s2νk)e−(λ1−2ℜk)sbt0(x)1/2. (3.6) 1.56

Thus, we have ∫ t

2t0

Ts[A|fs|2](x) ds . |b|2∞bt0(x)1/2. (3.7) 7.7

By (
7.87.8
3.5) and (

1.371.37
2.26), we get

∫ 2t0

0
Ts[A|fs|2](x) ds . |b|2∞

∫ 2t0

0
Tsb4t0(x) ds . |b|2∞bt0(x)1/2. (3.8) 1.59
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Thus, by (
7.77.7
3.7) and (

1.591.59
3.8), we have

∫ t

0
Ts[A|fs|2](x) ds . |b|2∞bt0(x)1/2. (3.9) 1.55

Since λ1 > 2ℜk, we have sups>2t0(1 + s2νk)e−(λ1−2ℜk)s <∞. Thus, by (
1.561.56
3.6), we get

Tt(|ft|2)(x) . |b|2∞bt0(x)1/2,

from which (
1.471.47
3.3) follows immediately. ✷

Now, we present the proof of Theorem
thrm2thrm2
1.15.

Proof of Theorem
thrm2thrm2
1.15: By the branching property, it suffices to prove the theorem for

ν = δx with x ∈ E. Put

f∗(x) :=

ζ(f)∑

j=γ(f)

Φj(x)T 〈f,Ψj〉, f̃(x) := f(x) − f∗(x)

and ft(x) :=
∑ζ(f)

j=γ(f) Φj(x)TDj(t)
−1Ff,j . Then

t−τ(f)f∗(x) − ft(x) =

ζ(f)∑

j=γ(f)

Φj(x)TDj(t)
−1
(
t−τ(f)Dj(t)〈f,Ψj〉 − Ff,j

)
.

By (
1.471.47
3.3) and (

1.221.22
2.15), we have, for (t, x) ∈ (2t0,∞) ×E,

Pδx

∣∣∣t−τ(f)eℜγ(f)t〈f∗,Xt〉 − eℜγ(f)t〈ft,Xt〉
∣∣∣
2

.

ζ(f)∑

j=γ(f)

|t−τ(f)Dj(t)〈f,Ψj〉 − Ff,j |2∞bt0(x)1/2 . t−2bt0(x)1/2. (3.10)

By the definition of H
(j)
t and (

1.481.48
3.2), we have, as t→ ∞,

eℜγ(f)t〈ft,Xt〉 −
ζ(f)∑

j=γ(f)

(
e−iℑjtH(j)

∞ Ff,j

)
=

ζ(f)∑

j=γ(f)

(
e−iℑjt(H

(j)
t −H(j)

∞ )Ff,j

)
→ 0, (3.11) 2.16

in L2(Pδx). Thus, by (
2.172.17
3.10) and (

2.162.16
3.11), we obtain that, as t → ∞,

t−τ(f)eℜγ(f)t〈f∗,Xt〉 −
ζ(f)∑

j=γ(f)

(
e−iℑjtH(j)

∞ Ff,j

)
→ 0, in L2(Pδx). (3.12) 2.18

Now, to complete the proof, we only need to show that, as t→ ∞,

t−2τ(f)e2ℜγ(f)tPδx |〈f̃ ,Xt〉|2 → 0. (3.13) 2.21

(1) If λ1 > 2ℜ
γ(f̃)

, then by (
1.511.51
2.23), we get, for (t, x) ∈ (2t0,∞) ×E, as t→ ∞,

t−2τ(f)e2ℜγ(f)tPδx|〈f̃ ,Xt〉|2 . t−2τ(f)t2τ(f̃)e
2(ℜγ(f)−ℜ

γ(f̃)
)t
bt0(x)1/2 → 0.
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(2) If λ1 = 2ℜ
γ(f̃)

, then by (
1.491.49
2.40), we get, as t→ ∞,

t−2τ(f)e2ℜγ(f)tPδx |〈f̃ ,Xt〉|2 = t−2τ(f)t(1+2τ(f̃))te(2ℜγ(f)−λ1)tt−(1+2τ(widef))teλ1tPδx |〈f̃ ,Xt〉|2 → 0.

(3) If λ1 < 2ℜ
γ(f̃)

, then by (
smallsmall
2.30), we get, as t→ ∞,

t−2τ(f)e2ℜγ(f)tPδx|〈f̃ ,Xt〉|2 = t−2τ(f)e(2ℜγ(f)−λ1)teλ1tPδx |〈f̃ ,Xt〉|2 → 0.

Combining the three cases above, we get (
2.212.21
3.13). The proof is now complete. ✷

3.2 Proof of the main theorem
s:3

First, we recall a metric on the space of distributions on Rd. For f : Rd → R, define

‖f‖BL := ‖f‖∞ + sup
x 6=y

|f(x) − f(y)|
|x− y| .

For any distributions ν1 and ν2 on Rd, define

β(ν1, ν2) := sup

{∣∣∣∣
∫
f dν1 −

∫
f dν2

∣∣∣∣ : ‖f‖BL ≤ 1

}
.

Then β is a metric. It follows from
Dudley
[9, Theorem 11.3.3] that the topology generated by this metric

is equivalent to the weak convergence topology. From the definition, we can easily see that, if ν1

and ν2 are the distributions of two Rd-valued random variables X and Y respectively, then

β(ν1, ν2) ≤ E‖X − Y ‖ ≤
√

E‖X − Y ‖2. (3.14) 5.20

lem:small Lemma 3.2 If f ∈ Cs, then σ2f ∈ (0,∞) and, for any nonzero ν ∈ Ma(E), it holds under Pν that

(
eλ1t〈φ1,Xt〉, eλ1t/2〈f,Xt〉

)
d→
(
W∞, G1(f)

√
W∞

)
, t→ ∞,

where G1(f) ∼ N (0, σ2f ). Moreover, W∞ and G1(f) are independent.

Proof: The proof is similar that of
RSZ2
[23, Theorem 1.8 ]. We define an R2-valued random variable

U1(t) by

U1(t) :=
(
eλ1t〈φ1,Xt〉, eλ1t/2〈f,Xt〉

)
. (3.15) 6.4

To prove this lemma, it suffices to show that, for any x ∈ E, under Pδx ,

U1(t)
d→
(
W∞,

√
W∞G1(f)

)
, (3.16) 6.5

where G1(f) ∼ N (0, σ2f ) is independent of W∞. In fact, if ν =
∑n

j=1 δxj
, n = 1, 2, . . . , {xj ; j =

1, · · · , n} ⊂ E, then

Xt =

n∑

j=1

Xj
t ,
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where Xj
t is a branching Markov process starting from δxj

, j = 1, . . . , n, and Xj , j = 1, · · · , n, are

independent. If (
6.56.5
3.16) is valid, we put W j

∞ := limt→∞ eλ1t〈φ1,Xj
t 〉. Then we easily get that, under

Pν , W∞ =
∑n

j=1W
j
∞. Since λ1 < 2ℜγ(f),

Pν exp
{
iθ1e

λ1t〈φ1,Xt〉 + iθ2e
(λ1/2)t〈f,Xt〉

)

=

n∏

j=1

Pδxj
exp

{
iθ1e

λ1t〈φ1,Xj
t 〉 + iθ2e

(λ1/2)t〈f,Xj
t 〉
)

→
n∏

j=1

Pδxj
exp

{
iθ1W

j
∞ − 1

2
θ22σ

2
fW

j
∞

)

= Pν exp

{
iθ1W∞ − 1

2
θ22σ

2
fW∞

)
,

which implies that (
6.56.5
3.16) is valid for Pν.

Now we show that (
6.56.5
3.16) is valid. In the remainder of this proof, we assume s, t > 10t0 and

write

U1(s+ t) =
(
eλ1(s+t)〈φ1,Xt+s〉, e(λ1/2)(s+t)〈f,Xs+t〉

)
.

Recall the decomposition of Xs+t in (
3.223.22
3.1). Define

Y u,t
1 (s) := eλ1s/2〈f,Xu,t

s 〉 and yu,t1 (s) := Pδx(Y u,t
1 (s)|Ft). (3.17) e:new

Given Ft, Y
u,t
1 (s) has the same law as Y1(s) := eλ1s/2〈f,Xs〉 under Pδzu(t)

. Then we have

e(λ1/2)(s+t)〈f,Xs+t〉 = e(λ1/2)t
∑

u∈Lt

Y u,t
1 (s)

= e(λ1/2)t
∑

u∈Lt

(Y u,t
1 (s) − yu,ts ) + e(λ1/2)(t+s)Pδx(〈f,Xs+t〉|Ft)

=: J1(s, t) + J2(s, t). (3.18)

We first consider J2(s, t). By the Markov property, we have

J2(s, t) = e(λ1/2)(s+t)〈Tsf,Xt〉.

By (
1.131.13
2.21), we get

Pδx〈Tsf,Xt〉2 =

∫ t

0
Tt−u[A(Tu+s(f))2](x) du+ Tt(Tsf)2(x).

First, we consider the case γ(f) <∞. Since u+ s ≥ s > 10t0, by (
1.231.23
2.12), we get

|Tu+sf(x)|2 . (u+ s)2τ(f)e−2ℜγ(f)(u+s)b4t0(x). (3.19) 9.1

Thus, for t > 10t0, we have

∫ t−2t0

0
Tt−u[A(Ts+uf)2](x) du
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. e−2sℜγ(f)

∫ t−2t0

0
(u+ s)2τ(f) e−2ℜγ(f)uTt−u(b4t0)(x) du

. e−2sℜγ(f)

∫ t−2t0

0
(u+ s)2τ(f) e−2ℜγ(f)ue−λ1(t−u) dubt0(x)1/2. (3.20)

. e−λ1te−2ℜγ(f)s

(∫ t−2t0

0
u2τ(f)e(λ1−2ℜγ(f))u du+ s2τ(f)

∫ t−2t0

0
e(λ1−2ℜγ(f))u du

)
bt0(x)1/2

. s2τ(f)e−λ1te−2ℜγ(f)sbt0(x)1/2.

The second inequality above follows from (
2.82.8
2.18). And by (

9.19.1
3.19) and (

1.371.37
2.26), we have

∫ t

t−2t0

Tt−u[A(Ts+uf)2](x) du

. (t+ s)2τ(f)e−2ℜγ(f)(t+s−2t0)

∫ t

t−2t0

Tt−u(b4t0)(x) du

. (t+ s)2τ(f)e−2ℜγ(f)(t+s)bt0(x)1/2. (3.21)

By (
1.231.23
2.12), we get that |Tsf(x)|2 . s2τ(f)e−2ℜγ(f)sbt0(x). Thus, we have

Tt(Tsf)2(x) . s2τ(f)e−λ1te−2ℜγ(f)sbt0(x)1/2. (3.22) 4.3

Consequently, we have

Pδx〈Tsf,Xt〉2 . (t + s)2τ(f)e−2ℜγ(f)(t+s)bt0(x)1/2 + s2τ(f)e−λ1te−2ℜγ(f)sbt0(x)1/2. (3.23) 4.49

Therefore, we have

lim sup
t→∞

PδxJ2(s, t)
2 = lim sup

t→∞
eλ1(t+s)Pδx〈Tsf,Xt〉2 . s2τ(f)e(λ1−2ℜγ(f))sbt0(x)1/2. (3.24) 6.7

Similarly, for the case γ(f) = ∞, we have

Pδx〈Tsf,Xt〉2 . bt0(x)1/2 + e−λ1tbt0(x)1/2. (3.25) 4.49’

Thus,

lim sup
t→∞

PδxJ2(s, t)2 = lim sup
t→∞

eλ1(t+s)Pδx〈Tsf,Xt〉2 . eλ1sbt0(x)1/2. (3.26) 6.7’

Combining (
6.76.7
3.24) and (

6.7’6.7’
3.26), we get

lim sup
s→∞

lim sup
t→∞

PδxJ2(s, t)2 = 0. (3.27) 6.7’’

Next we consider J1(s, t). We define an R2-valued random variable U2(s, t) by

U2(s, t) :=
(
eλ1t〈φ1,Xt〉, J1(s, t)

)
.

Let Vs(x) := VarδxY1(s). We claim that, for any x ∈ E, under Pδx ,

U2(s, t)
d→
(
W∞,

√
W∞G1(s)

)
, as t→ ∞, (3.28) 6.1
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where G1(s) ∼ N (0, σ2f (s)) is independent of W∞ and σ2f (s) = 〈Vs, φ1〉. Denote the characteristic

function of U2(s, t) under Pδx by κ(θ1, θ2, s, t):

κ(θ1, θ2, s, t) = Pδx

(
exp

{
iθ1e

λ1t〈φ1,Xt〉 + iθ2e
(λ1/2)t

∑

u∈Lt

(Y u,t
1 (s) − yu,t1 (s))

})

= Pδx

(
exp{iθ1eλ1t〈φ1,Xt〉}

∏

u∈Lt

hs(zu(t), e(λ1/2)tθ2)

)
, (3.29)

where

hs(x, θ) := Pδxe
iθ(Y1(s)−PδxY1(s)).

Let tk,mk → ∞, as k → ∞, and ak,j ∈ E, j = 1, 2, · · ·mk. Now we consider

Sk := eλ1tk/2
mk∑

j=1

(Yk,j − yk,j), (3.30) 6.16

where Yk,j has the same law as Y1(s) under Pδak,j
and yk,j = Pδak,j

Y1(s). Further, Yk,j, j = 1, 2, . . .

are independent. Suppose the following Lindeberg conditions hold:

(i) as k → ∞,

eλ1tk

mk∑

j=1

E(Yk,j − yk,j)
2 = eλ1tk

mk∑

j=1

Vs(ak,j) → σ2;

(ii) for any ǫ > 0,

eλ1tk

mk∑

j=1

E
(
|Yk,j − yk,j|2, |Yk,j − yk,j| > ǫe−λ1tk/2

)

= eλ1tk

mk∑

j=1

g(ak,j , s, tk) → 0, as k → ∞

where g(x, s, t) = Pδx

(
|Y1(s) − PδxY1(s)|2, |Y1(s) − PδxY1(s)| > ǫe−λ1t/2

)
.

Then using the Lindeberg-Feller theorem, we have Sk
d→ N (0, σ2), which implies

mk∏

j=1

hs(ak,j, e
λ1tk/2θ) → e−

1
2
σ2θ2 . (3.31) 6.17

By (
varvar
2.22), we get Vs ∈ L2(E,m) ∩ L4(E,m). So using Remark

rem:largerem:large
1.16, we have

eλ1t
∑

u∈Lt

Vs(zu(t)) = eλ1t〈Vs,Xt〉 → 〈Vs, φ1〉W∞, in probability, as t→ ∞. (3.32) 6.18

We note that g(x, s, t) ↓ 0 as t ↑ ∞ and g(x, s, t) ≤ Vs(x) for any x ∈ E. Thus by (
2.82.8
2.18) we

have for any x ∈ E,

eλ1tPδx〈g(·, s, t),Xt〉 . ‖g(·, s, t)‖2bt0(x)1/2 → 0, as t→ ∞,
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which implies

eλ1t
∑

u∈Lt

g(zu(t), s, t) → 0, as t→ ∞, (3.33) 6.19

in Pδx-probability. Therefore, for any sequence sk → ∞, there exists a subsequence s′k such that,

if we let tk = s′k, mk = |Xs′k
| and {ak,j, j = 1, 2 · · ·mk} = {zu(s′k), u ∈ Ls′k

}, then the Lindeberg

conditions hold Pδx-a.s. for any x ∈ E, which implies

lim
k→∞

∏

u∈Ls′
k

hs(zu(s′k), e(λ1/2)s′kθ2) = exp

{
−1

2
θ22〈Vs, φ1〉W∞

}
, Pδx-a.s. (3.34) 6.25

Consequently, we have

lim
t→∞

∏

u∈Lt

hs(zu(t), e(λ1/2)tθ2) = exp

{
−1

2
θ22〈Vs, φ1〉W∞

}
, in probability. (3.35) 6.20

Hence by the dominated convergence theorem, we get

lim
t→∞

κ(θ1, θ2, s, t) = Pδx exp {iθ1W∞} exp

{
−1

2
θ22〈Vs, ψ1〉mW∞

}
, (3.36) 6.21

which implies our claim (
6.16.1
3.28). Thus, we easily get that, for any x ∈ E, under Pδx ,

U3(s, t) :=
(
eλ1(t+s)〈φ1,Xt+s〉, J1(s, t)

)
d→
(
W∞,

√
W∞G1(s)

)
, as t→ ∞.

By (
smallsmall
2.30), we have lims→∞〈Vs, ψ1〉m = σ2f . Let G1(f) be a N (0, σ2f ) random variable independent

of W∞. Then

lim
s→∞

β(G1(s), G1(f)) = 0. (3.37) 6.22

Let D(s + t) and D̃(s, t) be the distributions of U1(s + t) and U3(s, t) respectively, and let D(s)

and D be the distributions of (W∞,
√
W∞G1(s)) and (W∞,

√
W∞G1(f)) respectively. Then, using

(
5.205.20
3.14), we have

lim sup
t→∞

β(D(s+ t),D) ≤ lim sup
t→∞

[β(D(s + t), D̃(s, t)) + β(D̃(s, t),D(s)) + β(D(s),D)]

≤ lim sup
t→∞

(PδxJ2(s, t)2)1/2 + 0 + β(D(s),D). (3.38)

Using this and the definition of lim supt→∞, we easily get that

lim sup
t→∞

β(D(t),D) = lim sup
t→∞

β(D(s+ t),D) ≤ lim sup
t→∞

(PδxJ2(s, t)2)1/2 + β(D(s),D).

Letting s→ ∞, we get lim supt→∞ β(D(t),D) = 0. The proof is now complete. ✷

lem:5.5 Lemma 3.3 Assume f(x) =
∑

j:λ1=2ℜj
(Φj(x))T bj ∈ Cc, where bj ∈ Cnj . Define

Stf(x) := t−(1+2τ(f))/2e(λ1/2)t(〈f,Xt〉 − Ttf(x)), (t, x) ∈ (0,∞) ×E.

Then for any c > 0, δ > 0 and x ∈ E, we have

lim
t→∞

Pδx

(
|Stf(x)|2; |Stf(x)| > ceδt

)
= 0. (3.39) 4.5
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Proof: In this proof, we always assume t > 10t0. For each j, define

Sj,t(x) := t−(1+2τ(f))/2eλ1t/2
(
〈ΦT

j ,Xt〉 − e−λjt(Φj(x))TDj(t)
)
.

Thus, Stf(x) =
∑

j:λ1=2ℜj
Sj,t(x)bj . Using the fact that for every n ≥ 1,

∣∣∣∣∣
n∑

l=1

xl

∣∣∣∣∣

2

1|
∑n

l=1 xl|2>M ≤ n

n∑

l=1

|xl|21|xl|2>M/n, (3.40) e:elem

we see that, to prove (
4.54.5
3.39), it suffices to show that, as t → ∞,

F (t, x, bj) := Pδx

(
|Sj,t(x)bj |2; |Sj,t(x)bj | > ceδt

)
→ 0.

Choose an integer n0 > 2t0. We write t = ltn0 + ǫt, where lt ∈ N and 0 ≤ ǫt < n0. By (
T-JordanT-Jordan
1.18), we

easily get Tu(ΦT
j )(x) = e−λjuΦj(x)TDj(t). Since λ1 = 2ℜj , for any (t, x) ∈ (0,∞) × E, we have

Sj,t+n0(x) =

(
1

t+ n0

)1/2+τ(f)

eλ1(t+n0)/2
(
〈ΦT

j ,Xt+n0〉 − 〈e−λjn0ΦT
j ,Xt〉Dj(n0)

)

+

(
1

t+ n0

)1/2+τ(f)

e−iℑjn0eλ1t/2
(
〈ΦT

j ,Xt〉 − e−λjt(Φj(x))TDj(t)
)
Dj(n0)

=

(
1

t+ n0

)1/2+τ(f)

Rj(t) + e−iℑjn0

(
t

t+ n0

)1/2+τ(f)

Sj,t(x)Dj(n0), (3.41)

where

Rj(t) := e(λ1/2)(t+n0)
(
〈ΦT

j ,Xt+n0〉 − 〈e−λj ΦT
j ,Xt〉Dj(n0)

)
.

Hence, for any (t, x) ∈ (0,∞) × E, we have

F (t+ n0, x, bj)

≤ Pδx

(
|Sj,t+n0(x)bj |2; |Sj,t(x)Dj(n0)bj | > ceδt

)

+Pδx

(
|Sj,t+n0(x)bj |2; |Sj,t(x)Dj(n0)bj | ≤ ceδt, |Sj,t+n0(x)bj | > ceδ(t+n0)

)

=: M1(t, x) +M2(t, x).

Put

A1(t, x, bj) := {|Sj,t(x)Dj(n0)bj | > ceδt},
A2(t, x, bj) := {|Sj,t(x)Dj(n0)bj | ≤ ceδt, |Sj,t+n0(x)bj | > ceδ(t+n0)}

and

A(t, x, bj) := A1(t, x, bj) ∪A2(t, x, bj).

Since A1(t, x, bj) ∈ Ft and Pδx(Rj(t)|Ft)=0 for any (t, x) ∈ (0,∞) × E, we have by (
4.84.8
3.41) that

M1(t, x) =

(
1

t+ n0

)1+2τ(f)

Pδx

(
|Rj(t)bj |2;A1(t, x, bj)

)
+

(
t

t+ n0

)1+2τ(f)

F (t, x,Dj(n0)bj)
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and

M2(t, x) ≤ 2

(
1

t+ n0

)1+2τ(f)

Pδx

(
|Rj(t)bj |2;A2(t, x, bj)

)

+2

(
t

t+ n0

)1+2τ(f)

Pδx

(
|Sj,t(x)Dj(n0)bj |2;A2(t, x.bj)

)
.

Thus, for any (t, x) ∈ (0,∞) × E, we have

F (t + n0, x, bj) ≤
(

t

t+ n0

)1+2τ(f)

F (t, x,Dj(n0)bj)

+

(
1

t+ n0

)1+2τ(f)

(F1(t, x, bj) + F2(t, x, bj)), (3.42)

where

F1(t, x, bj) := 2Pδx

(
|Rj(t)bj |2;A1(t, x, bj) ∪A2(t, x, bj)

)
,

F2(t, x, bj) := 2t1+2τ(f)Pδx

(
|Sj,t(x)Dj(n0)bj |2;A2(t, x, bj)

)
.

Iterating (
4.94.9
3.42), we get for t large enough,

F (t+ n0, x, bj)

≤
(

1

t+ n0

)1+2τ(f) lt∑

m=5

(F1(mn0 + ǫt, x,Dj((lt −m)n0)bj))

(
1

t+ n0

)1+2τ(f) lt∑

m=5

(F2(mn0 + ǫt, x,Dj((lt −m)n0)bj))

+

(
5n0 + ǫt
t+ n0

)1+2τ(f)

F (5n0 + ǫt, x,Dj((lt − 4)n0)bj)

=: L1(t, x) + L2(t, x) +

(
5n0 + ǫt
t+ 1

)1+2τ(f)

F (5n0 + ǫt, x,Dj((lt − 4)n0)bj). (3.43)

First, we consider L1(t, x). By the definition of τ(f), we have for s > 0,

|Dj(s)bj |2 . |Dj(s)bj|∞ . 1 + sτ(f). (3.44) 2.33

Thus, we have for 0 ≤ s ≤ t and t ≥ 2t0,

|Rj(s)Dj(t− s)bj|2 ≤ |Rj(s)|22|Dj(t− s)bj |22 . t2τ(f)|Rj(s)|22. (3.45) R2

It follows that for any ǫ ∈ (0, 1),

L1(t, x) ≤ 2

t+ n0

∑

5≤m≤ǫlt

Pδx

(
|Rj(mn0 + ǫt)|22

)

+
2

t+ n0

∑

ltǫ≤m≤lt

Pδx

(
|Rj(mn0 + ǫt)|22;A(mn0 + ǫt, x,Dj((lt −m)n0)bj)

)
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=: L1,1(t, x) + L1,2(t, x). (3.46)

By the definition of Rj(s), we have

|Rj(s)|22 = eλ1(s+n0)

nj∑

l=1

|〈φ(j)l ,Xs+n0〉 − 〈Tn0(φ
(j)
l ),Xs〉|2. (3.47) 2.34

Note that

|〈φ(j)l ,Xs+n0〉 − 〈Tn0(φ
(j)
l ),Xs〉|2 = |〈ℜ(φ

(j)
l ),Xs+n0〉 − 〈Tn0(ℜ(φ

(j)
l )),Xs〉|2

+ |〈ℑ(φ
(j)
l ),Xs+n0〉 − 〈Tn0(ℑ(φ

(j)
l )),Xs〉|2.

Thus, we have

Pδx |〈φ
(j)
l ,Xs+n0〉 − 〈Tn0(φ

(j)
l ),Xs〉|2 = Ts(Varδ·〈ℜ(φ

(j)
l ),Xn0〉)(x) + Ts(Varδ·〈ℑ(φ

(j)
l ),Xn0〉)(x).

(3.48) 2.35

Hence, by (
2.82.8
2.18), we get, for s ≥ 5n0 > 2t0,

Pδx |Rj(s)|22 = eλ1(s+n0)

nj∑

l=1

Pδx |〈φ
(j)
l ,Xt+n0〉 − 〈Tn0(φ

(j)
l ),Xt〉|2 . bt0(x)1/2. (3.49) 2.37

Therefore, we have, for (t, x) ∈ (5n0,∞) × E,

L1,1(t, x) . ǫbt0(x)1/2. (3.50) L11

We claim that, for any x ∈ E,

(i)

lim
M→∞

lim sup
s→∞

Pδx(|Rj(s)|22; |Rj(s)|22 > M) = 0, and (3.51) 2.44

(ii)

sup
tǫ≤s≤t

Pδx(A1(s, x,Dj(t− s)bj) ∪A2(s, x,Dj(t− s)bj)) → 0. (3.52) Ato0

Using these two claims we get that, as t→ ∞,

L1,2(t, x)

≤ 2

t+ n0

∑

ǫlt≤m≤lt

(
Pδx

(
|Rj(mn0 + ǫt)|22; |Rj(mn0 + ǫt)|22 > M

)

+MPδx (A(mn0 + ǫt, x,Dj((lt −m)n0)bj)))

. sup
s≥tǫ

Pδx(|Rj(s)|22; |Rj(s)|22 > M) +M sup
tǫ≤s≤t

Pδx(A(s, x,Dj(t− s)bj))

→ lim sup
s→∞

Pδx(|Rj(s)|22; |Rj(s)|22 > M). (3.53)

Letting M → ∞, we get

lim
t→∞

L1,2(t, x) = 0. (3.54) L12
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Now we prove the two claims.

(i) For l = 1, 2, · · · , nj, define

Rj,l,1(s) := eλ1(s+n0)/2〈ℜ(φjl ),Xs+n0〉 − 〈Tn0(ℜ(φjl )),Xs〉

and

Rj,l,2(s) := eλ1(s+n0)/2〈ℑ(φjl ),Xs+n0〉 − 〈Tn0(ℑ(φjl )),Xs〉.

Using (
e:eleme:elem
3.40) and (

2.342.34
3.47), we easily see that, to prove (

2.442.44
3.51), we only need to show that, for k = 1, 2,

lim
M→∞

lim sup
s→∞

Pδx(|Rj,l,k(s)|2, |Rj,l,k(s)|2 > M) = 0. (3.55) to-prove

Repeating the proof of (
6.16.1
3.28) with s = n0, we see that (

6.16.1
3.28) is valid for f ∈ L2(E,m) ∩L4(E,m).

Thus, for l = 1, 2, · · · , nj, as s→ ∞,

Rj,l,1(s)
d→
√
W∞G,

where G ∼ N (0, eλ1n0〈Varδ·〈ℜ(φjl ),Xn0〉, ψ1〉m. And by (
2.62.6
2.17), we get, as s→ ∞,

Pδx(|Rj,l,1(s)|2) = eλ1(s+n0)Ts(Varδ·〈ℜ(φjl ),Xn0〉)(x) → eλ1n0〈(Varδ·〈ℜ(φjl ),Xn0〉, ψ1〉mφ1(x).

(3.56) 2.39

Let hM (r) = r on [0,M − 1], hM (r) = 0 on [M,∞], and let hM be linear on [M − 1,M ]. By (
2.392.39
3.56),

we have that for any x ∈ E,

lim sup
s→∞

Pδx(|Rj,l,1(s)|2, |Rj,l,1(s)|2 > M) ≤ lim sup
t→∞

Pδx(|Rj,l,1(s)|2) − Pδx(hM (|Rj,l,1(s)|2))

= eλ1n0〈(Varδ·〈ℜ(φjl ),Xn0〉, ψ1〉mφ1(x) − Pδx(hM (W∞G
2)).

By the monotone convergence theorem, we have that for any x ∈ E,

lim
M→∞

Pδx(hM (W∞G
2)) = Pδx(W∞G

2) = Pδx(W∞)Pδx(G2) = eλ1n0〈(Varδ·〈ℜ(φjl ),Xn0〉, ψ1〉mφ1(x),

which implies

lim
M→∞

lim sup
s→∞

Pδx(|Rj,l,1(s)|2, |Rj,l,1(s)|2 > M) = 0,

which says (
to-proveto-prove
3.55) holds for k = 1. Using similar arguments, we get (

to-proveto-prove
3.55) holds for k = 2.

(ii) Since τ(φjl ) ≤ νj, by (
3.333.33
2.41), we get for 10t0 ≤ s,

Pδx |Sj,s(x)|22 . s1+2νjs−(1+2τ(f)) ≤ s2νj . (3.57) vars

By (
2.332.33
3.44), we get, for 10t0 ≤ s ≤ t,

Pδx |Sj,s(x)Dj(t+ 1 − s)bj|2 . s2νj(1 + t2τ(f)). (3.58) 3.34

By Chebyshev’s inequality and (
3.343.34
3.58), we have that, for any x ∈ E, as t→ ∞

sup
tǫ≤s≤t

Pδx(A1(s, x,Dj(t− s))) ≤ sup
tǫ≤s≤t

c−2e−2δsPδx |Sj,s(x)Dj(t+ 1 − s)bj|2
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. e−2δǫtt2νj (1 + t2τ(f)) → 0.

It is easy to see that, under Pδx , for any t > 0,

A2(s, x,Dj(t− s)bj) ⊂
{
|Rj(s)Dj(t− s)bj | > ceδs

(
eδn0 − 1

)
s(2τ(f)+1)/2

}
. (3.59) 4.24

By (
R2R2
3.45) and (

2.372.37
3.49), we get

Pδx|Rj(s)Dj(t− s)bj|2 . t2τ(f)bt0(x)1/2.

Similarly, by Chebyshev’s inequality, we have that, for any x ∈ E, as t→ ∞,

sup
tǫ≤s≤t

PδxA2(s, x,Dj(t− s)bj)

≤ sup
tǫ≤s≤t

c−2(eδn0 − 1)−2e−2δss−(1+2τ(f))Pδx |Rj(s)Dj(t− s)bj|2

. e−2δǫt(tǫ)−(1+2τ(f))t2τ(f) → 0.

Thus we have finished proving the two claims. Therefore, by (
L11L11
3.50) and (

L12L12
3.54), we get

lim sup
t→∞

L1(t, x) . ǫbt0(x)1/2.

Letting ǫ → 0, we get

lim
t→∞

L1(t, x) = 0. (3.60) L1to0

Now we consider L2(t, x). By (
4.244.24
3.59), we have that for any x ∈ E,

F2(s, x,Dj(t− s)bj)

= 2s(1+2τ(f))Pδx

(
|Sj,s(x)Dj(t + n0 − s)bj|2;A2(s, x,Dj(t− s)bj)

)

≤ 2s(1+2τ(f))ceδsPδx

(
|Sj,s(x)Dj(t+ n0 − s)bj |; |Rj(s)Dj(t− s)bj| > ceδs(eδn0 − 1)s(2τ(f)+1)/2

)

≤ 2c−1(eδn0 − 1)e−δsPδx

(
|Sj,s(x)Dj(t + n0 − s)bj| · |Rj(s)Dj(t− s)bj |2

)

. e−δseλ1(s+n0)tτ(f)Pδx

(
|Sj,s(x)|2〈Varδ·(〈ΦT

j Dj(t− s)bj ,Xn0〉),Xs〉
)

. e−δstτ(f)
√

Pδx |Sj,s(x)|22
√
e2λ1sPδx

(
〈Varδ·(〈ΦT

j Dj(t− s)bj,Xn0〉),Xs〉2
)
.

By (
3.333.33
2.41) and (

phiphi
1.20), we get for s ≤ t,

Varδx(〈ΦT
j Dj(t− s)bj ,Xn0〉 ≤ Pδx |〈ΦT

j Dj(t− s)bj,Xn0〉|2 . t2τ(f)Pδx〈bt0(x)1/2,Xn0〉2.

Thus by (
varsvars
3.57) and (

1.511.51
2.23), we have for 5n0 ≤ s ≤ t

F2(s, x,Dj(t− s)bj) . e−δst2τ(f)sνj
√
e2λ1sPδx

(
〈bt0(x)1/2,Xs〉2

)
. e−δst2τ(f)sνj .

Thus, we get, as t→ ∞,

L2(t, x) .
1

t+ n0

lt∑

m=5

e−δ(mn0+ǫt)(mn0 + ǫt)
(1+2νj )/2 ≤ 1

t+ n0

lt∑

m=5

e−δmn0((m+ 1)n0)(1+2νj )/2 → 0.

(3.61) L2to0
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To finish the proof, we only need to show that for any x ∈ E,

lim
t→∞

(
5n0 + ǫt
t+ n0

)1+2τ(f)

F (5n0 + ǫt, x,Dj((lt − 4)n0)bj) = 0. (3.62) L3

By (
2.332.33
3.44) and (

varsvars
3.57), we get that for any x ∈ E,

(5n0 + ǫt)
1+2τ(f)F (5n0 + ǫt, x,Dj((lt − 4)n0)bj)

≤ (6n0)1+2τ(f) sup
5n0≤s≤6n0

Pδx |Sj,s(x)Dj((lt − 4)n0)bj|2 . t2τ(f)(6n0)
2νj ,

which implies (
L3L3
3.62).

The proof is now complete. ✷

lem:5.6 Lemma 3.4 Assume that f ∈ Cs and h ∈ Cc. Define

Y1(t) := eλ1t/2 (〈f,Xt〉 − Ttf(x)) , Y2(t) := t−(1+τ(h)/2)eλ1t/2 (〈h,Xt〉 − Tth(x)) , t > 0,

and Yt := Y1(t) + Y2(t), t > 0. Then for any c > 0, δ > 0 and x ∈ E, we have

lim
t→∞

Pδx

(
|Yt|2; |Yt| > ceδt

)
= 0. (3.63) 4.6

Proof: By (
e:eleme:elem
3.40) and Lemma

lem:5.5lem:5.5
3.3, it suffices to show that

lim
t→∞

Pδx

(
|Y1(t)|2; |Y1(t)| > ceδt

)
= 0. (3.64) 3.55

If γ(f) <∞, by (
1.231.23
2.12), we get, as t→ ∞,

eλ1t/2|Ttf(x)| . tτ(f)e(λ1/2−ℜγ(f))tbt0(x)1/2 → 0.

If γ(f) = ∞, by (
1.23’1.23’
2.13), we get, as t → ∞, eλ1t/2|Ttf(x)| . eλ1t/2bt0(x)1/2 → 0. Thus, by Lemma

lem:smalllem:small
3.2, Y1(t)

d→
√
W∞G1(f). By Lemma

lem:2.2lem:2.2
2.6, we have

lim
t→∞

Pδx

(
|Y1(t)|2

)
= σ2fφ1(x).

Thus, for any M > 0, we have

Pδx

(
|Y1(t)|2; |Y1(t)| > ceδt

)
≤ Pδx

(
|Y1(t)|2; |Y1(t)| > M

)
+M2Pδx

(
|Y1(t)| > ceδt

)

=: I1(t, x,M) + I2(t, x,M).

Let hM (r) = r on [0,M − 1], hM (r) = 0 on [M,∞], and let hM be linear on [M − 1,M ]. Then

lim sup
t→∞

I1(t, x,M) ≤ lim sup
t→∞

Pδx

(
|Y1(t)|2

)
−Pδx(hM (|Y1(t)|)2) = σ2fφ1(x)−Pδx(hM (|G1(f)

√
W∞|)2.

By Chebyshev’s inequality, we have, as t→ ∞,

I2(t, x,M) ≤M2c−2e−2δtPδx

(
|Y1(t)|2

)
→ 0.
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Thus, we have

lim sup
t→∞

Pδx

(
|Y1(t)|2; |Y1(t)| > ceδt

)
≤ σ2fφ1(x) − Pδx(hM (|G1(f)

√
W∞|)2.

Letting M → ∞, by the monotone convergence theorem, we have that for any x ∈ E,

lim
M→∞

Pδx(hM (|G1(f)
√
W∞|)2 = Pδx(G1(f)2W∞) = σ2fφ1(x),

which implies (
3.553.55
3.64). The proof is now complete. ✷

lem:cs Lemma 3.5 Assume that f ∈ Cs and h ∈ Cc. Then

(
eλ1t〈φ1,Xt〉, t−(1+2τ(h))/2eλ1t/2〈h,Xt〉, eλ1t/2〈f,Xt〉

)
d→
(
W∞,

√
W∞G2(h),

√
W∞G1(f)

)
,

(3.65) cs

where G2(h) ∼ N (0, ρ2h) and G1(f) ∼ N (0, σ2f ). Moreover, W∞, G2(h) and G1(f) are independent.

Proof: In this proof, we always assume t > 10t0, f ∈ Cs and h ∈ Cc. We define an R3-valued

random variable by

U1(t) :=
(
eλ1t〈φ1,Xt〉, t−(1+2τ(h))/2eλ1t/2〈h,Xt〉, eλ1t/2〈f,Xt〉

)
.

For n > 2, we define

U1(nt) =
(
eλ1nt〈φ1,Xnt〉, (nt)−(1+2τ(h))/2eλ1nt/2〈h,Xnt〉, eλ1nt/2〈f,Xnt〉

)
.

Now we define another R3-valued random variable U2(n, t) by

U2(n, t)

:=

(
eλ1t〈φ1,Xt〉,

eλ1nt/2(〈h,Xnt〉 − 〈T(n−1)th,Xt〉)
((n− 1)t)(1+2τ(h))/2

, eλ1nt/2(〈f,Xnt〉 − 〈T(n−1)tf,Xt〉)
)
.

We claim that

U2(n, t)
d→
(
W∞,

√
W∞G2(h),

√
W∞G1(f)

)
, as t→ ∞. (3.66) 9.5

Denote the characteristic function of U2(n, t) under Pµ by κ2(θ1, θ2, θ3, n, t). Define

Y u,t
1 (s) := eλ1s/2〈f,Xu,t

s 〉, Y u,t
2 (s) := s−(1+2τ(h))/2eλ1s/2〈h,Xu,t

s 〉, s, t > 0.

We also define

Y1(s) := eλ1s/2〈f,Xs〉, Y2(s) := s−(1+2τ(h))/2eλ1s/2〈h,Xs〉

and

Ys(θ2, θ3) := θ2Y2(s) + θ3Y1(s).

Given Ft, for k = 1, 2, Y u,t
k (s) has the same distribution as Yk(s) under Pδzu(t)

. Thus, for k = 1, 2,

yu,tk (s) := Pδx(Y u,t
k (s)|Ft) = Pδzu(t)

Yk(s).
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Thus, by (
3.223.22
3.1), we have

U2(n, t) =

(
eλ1t〈φ1,Xt〉, eλ1t/2

∑

u∈Lt

(Y u,t
2 ((n − 1)t) − yu,t2 ((n− 1)t)),

eλ1t/2
∑

u∈Lt

(Y u,t
1 ((n− 1)t) − yu,t1 ((n− 1)t))

)
. (3.67)

Let h(s, x, θ, θ2, θ3) = Pδx(exp{iθ(Ys(θ2, θ3) − PδxYs(θ2, θ3))}). Thus, we get

κ2(θ1, θ2, θ3, n, t) = Pδx

(
exp{iθ1eλ1t〈φ1,Xt〉}

∏

u∈Lt

h
(

(n− 1)t, zu(t), eλ1t/2, θ2, θ3

))
. (3.68) 4.1

Let tk,mk → ∞, as k → ∞. Now we consider

Sk := eλ1tk/2
mk∑

j=1

(Yk,j − yk,j), (3.69) 3.16

where Yk,j has the same law as Y(n−1)tk(θ2, θ3) under Pδak,j
and yk,j = Pδak,j

Y(n−1)tk(θ2, θ3) with

ak,j ∈ E. Further, for each positive integer k, Yk,j, j = 1, 2, . . . are independent. Denote V n
t (x) :=

VarδxY(n−1)t(θ2, θ3). Suppose the following Lindeberg conditions hold:

(i) as k → ∞,

eλ1tk

mk∑

j=1

E(Yk,j − yk,j)
2 = eλ1tk

mk∑

j=1

V n
tk

(ak,j) → σ2;

(ii) for every c > 0,

eλ1tk

mk∑

j=1

E
(
|Yk,j − yk,j|2, |Yk,j − yk,j| > ce−λ1tk/2

)

= eλ1tk

mk∑

j=1

g(n−1)tk (ak,j, θ2, θ3) → 0, k → ∞,

where

gs(x, θ2, θ3) = Pδx

(
|Ys(θ2, θ3) − PδxYs(θ2, θ3)|2, |Ys(θ2, θ3) − PδxYs(θ2, θ3)| > ce−λ1s/(2(n−1))

)
.

Then Sk
d→ N (0, σ2), which implies

mk∏

j=1

h((n − 1)tk, ak,j, e
λ1tk/2, θ2, θ3) → e−

1
2
σ2θ2 , as k → ∞. (3.70) 3.17

By the definition of Ys, we get

V n
t (x) := VarδxY(n−1)t(θ2, θ3) = θ22VarδxY2((n − 1)t) + θ23VarδxY1((n− 1)t)

+2θ2θ3((n− 1)t)−(1+2τ(h))/2eλ1(n−1)tCovδx(〈f,X(n−1)t〉, 〈h,X(n−1)t〉).
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Thus, by (
smallsmall
2.30), (

1.491.49
2.40) and (

cov:sccov:sc
2.54), we easily get

∣∣V n
t (x) − (θ22ρ

2
h + θ23σ

2
f )φ1(x)

∣∣ .
(
c(n−1)t + t−1 + t−(1+2τ(h))/2

)
(bt0(x)1/2 + bt0(x)),(3.71)

where ct → 0 as t→ ∞. By (
2.82.8
2.18), we get, as t → ∞,

eλ1tTt
∣∣V n

t (x) − (θ22ρ
2
h + θ23σ

2
f )φ1(x)

∣∣ (x) .
(
c(n−1)t + t−1 + t−(1+2τ(h))/2

)
eλ1tTt(

√
bt0 +bt0)(x) → 0,

which implies

lim
t→∞

eλ1t
∑

u∈Lt

V n
t (zu(t)) = lim

t→∞
eλ1t(θ22ρ

2
h + θ23σ

2
f )〈φ1,Xt〉 = (θ22ρ

2
h + θ23σ

2
f )W∞, (3.72) 3.38

in probability.

By Lemma
lem:5.6lem:5.6
3.4, we get, as s→ ∞, gs(x, θ2, θ3) → 0. Since

g(n−1)t(x, θ2, θ3) ≤ V n
t (x) . bt0(x)1/2 + bt0(x) ∈ L2(E,m),

by the dominated convergence theorem, we have that for any x ∈ E,

lim
t→∞

‖g(n−1)t(x, θ2, θ3)‖2 = 0.

By Lemma
2.82.8
2.18, we have that for any x ∈ E,

eλ1tPδx〈g(n−1)t(·, θ2, θ3),Xt〉 . ‖g(n−1)t(·, θ2, θ3)‖2bt0(x)1/2 → 0, as t→ ∞,

which implies

eλ1t
∑

u∈Lt

g(n−1)t(zu(t), θ2, θ3) = eλ1t〈g(n−1)t(x, θ2, θ3),Xt〉 → 0, (3.73) 3.21

in probability. Thus, for any sequence sk → ∞, there exists a subsequence s′k such that, if we let

tk = s′k, mk = |Xtk | and {ak,j, j = 1, . . . ,mk} = {zu(tk), u ∈ Ltk}, then the Lindeberg conditions

hold Pδx-a.s. Therefore, by (
3.173.17
3.70), we have

lim
t→∞

∏

u∈Lt

h
(

(n− 1)t, zu(t), eλ1t/2, θ2, θ3

)
= exp

{
−1

2

(
θ22ρ

2
h + θ23σ

2
f

)
W∞

}
, in probability.

(3.74) 3.24

Hence by the dominated convergence theorem, we get

lim
t→∞

κ2(θ1, θ2, θ3, n, t) = Pδx

(
exp {iθ1W∞} exp

{
−1

2

(
θ22ρ

2
h + θ23σ

2
f

)
W∞

})
, (3.75) 3.25

which implies our claim (
9.59.5
3.66).

By (
9.59.5
3.66) and the fact that eλ1nt〈φ1,Xnt〉 − eλ1t〈φ1,Xt〉 → 0, in probability, as t → ∞ , we

easily get that

U3(n, t)
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:=

(
eλ1nt〈φ1,Xnt〉,

eλ1nt/2(〈h,Xnt〉 − 〈T(n−1)th,Xt〉)
(nt)(1+2τ(h))/2

, eλ1nt/2(〈f,Xnt〉 − 〈T(n−1)tf,Xt〉)
)

d→
(
W∞,

(
n− 1

n

)(1+2τ(h))/2√
W∞G2(h),

√
W∞G1(f)

)
.

Using (
4.494.49
3.23) with s = (n− 1)t, we get that, if γ(f) <∞,

Pδx〈T(n−1)tf,Xt〉2 . (nt)2τ(f)e−2ntℜγ(f)bt0(x)1/2 + ((n− 1)t)2τ(f)e−λ1te−2ℜγ(f)(n−1)tbt0(x)1/2.

If γ(f) = ∞, using (
4.49’4.49’
3.25) with s = (n− 1)t, we get

Pδx〈T(n−1)tf,Xt〉2 . bt0(x)1/2 + e−λ1tbt0(x)1/2.

Therefore, we have

lim
t→∞

eλ1ntPδx〈T(n−1)tf,Xt〉2 = 0. (3.76) 4.7

By (
4.44.4
3.20), when λ1 = 2ℜγ(h), we get

∫ t−2t0

0
Tt−u[A(Tu+(n−1)th)2](x) du

. e−λ1nt

∫ t−2t0

0
(u+ (n − 1)t)2τ(h) dubt0(x)1/2 . n2τ(h)t1+2τ(h)e−λ1ntbt0(x)1/2. (3.77)

By (
9.39.3
3.77), (

9.79.7
3.21) and (

4.34.3
3.22), when λ1 = 2ℜγ(h), we have

Pδx〈T(n−1)th,Xt〉2 . n2τ(h)t1+2τ(f)e−λ1ntbt0(x)1/2 + (nt)2τ(h)e−λ1ntbt0(x)1/2.

Therefore, we have

lim
n→∞

lim sup
t→∞

(nt)−(1+2τ(h))eλ1ntPδx〈T(n−1)th,Xt〉2 = 0. (3.78) 4.2

Let D(nt) and D̃n(t) be the distributions of U1(nt) and U3(n, t) respectively, and let Dn and D
be those of

(
W∞,

(
n−1
n

)(1+2τ(h))/2 √
W∞G2(h),

√
W∞G1(f)

)
and

(
W∞,

√
W∞G2(h),

√
W∞G1(f)

)

respectively. Then, using (
5.205.20
3.14), we have

lim sup
t→∞

β(D(nt),D) ≤ lim sup
t→∞

[β(D(nt), D̃n(t)) + β(D̃n(t),Dn) + β(Dn,D)]

≤ lim sup
t→∞

(
(nt)−(1+2τ(h))eλ1ntPµ〈T(n−1)th,Xt〉2 + eλ1ntPµ〈T(n−1)tf,Xt〉2

)1/2
+ 0 + β(Dn,D).

(3.79)

Using the definition of lim supt→∞, (
4.74.7
3.76) and (

4.24.2
3.78), we easily get that

lim sup
t→∞

β(D(t),D) = lim sup
t→∞

β(D(nt),D)

≤ lim sup
t→∞

(nt)−(1+2τ(h))entλ1tPδx〈T(n−1)th,Xt〉2 + β(Dn,D).
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Letting n→ ∞, we get lim supt→∞ β(D(t),D) = 0. The proof is now complete. ✷

Proof of Corollary
cor:2cor:2
1.19: Define

Y1(s) := s−(1+2τ(h1))/2eλ1s/2〈h1,Xs〉, Y2(s) := s−(1+2τ(h2))/2eλ1s/2〈h2,Xs〉

and

Ys(θ2, θ3) := θ2Y1(s) + θ3Y2(s).

Thus, we have

VarδxY(n−1)t(θ2, θ3) = θ22VarδxY1((n − 1)t) + θ23VarδxY2((n − 1)t)

+2θ2θ3Covδx(Y1((n − 1)t), Y2((n − 1)t)). (3.80)

By (
7.497.49
2.39) and (

1.491.49
2.40), we get

∣∣VarδxY(n−1)t(θ2, θ3) − (θ22ρ
2
h1

+ θ23ρ
2
h2

+ 2θ2θ3ρ(h1, h2))φ1(x)
∣∣ . t−1

(
bt0(x)1/2 + bt0(x)

)
.

Using arguments similar to those leading to Lemma
lem:cslem:cs
3.5, we get

lim
t→∞

Pδx exp
{
iθ1e

λ1t〈φ1,Xt〉 + iθ2Y1(t) + iθ3Y2(t)
}

= Pδx exp

{
iθ1W∞ − 1

2

(
θ22ρ

2
h1

+ θ23ρ
2
h2

+ 2θ2θ3ρ(h1, h2)
)
W∞

}
. (3.81)

The proof of Corollary
cor:2cor:2
1.19 is now complete. ✷

Recall that

g(x) =
∑

k:λ1>2ℜk

Φk(x)T bk ∈ Cc and Isg(x) =
∑

k:λ1>2ℜk

eλksΦk(x)TDk(s)−1bk.

We can show that Isg is real. In fact, for k with λ1 > 2ℜk, we have λ1 > 2ℜk′ . And

eλk′sΦk′(x)TDk′(s)
−1bk′ = eλksΦk(x)TDk(s)−1bk = eλksΦk(x)TDk(s)−1bk,

which implies that Isg(x) is real. Define

H∞ :=
∑

k:λ1>2ℜk

H(k)
∞ bk.

By Lemma
thrm1thrm1
3.1, we have, as s→ ∞

〈Isg,Xs〉 → H∞, Pδx-a.s. and in L2(Pδx).

Since Pδx〈Isg,Xs〉 = g(x), we get

Pδx(H∞) = g(x). (3.82) L1H

By (
1.131.13
2.21), we have

Pδx〈Isg,Xs〉2 =

∫ s

0
Tu

[
A |Iug|2

]
(x) du + Ts[(Isg)

2](x). (3.83)
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It is easy to see that,

|Isg(x)|2 .
∑

k:λ1>2ℜk

e2ℜkss2νkb4t0(x).

Thus, by (
2.82.8
2.18), we have, for s > 2t0,

Ts|Isg|2(x) .
∑

k:λ1>2ℜk

e2ℜkss2νkTs(bt0)(x) .
∑

k:2ℜk<λ1

s2νke(2ℜk−λ1)sbt0(x)1/2. (3.84) 5.5

By (
1.371.37
2.26), we get

∫ ∞

0
Tu

[
A |Iug|2

]
(x) du

.
∑

k:λ1>2ℜk

(∫ 2t0

0
e2ℜkuu2νkTu(b4t0)(x) du+

∫ ∞

2t0

u2νke(2ℜk−λ1)u dubt0(x)1/2
)

. bt0(x)1/2 ∈ L2(E,m) ∩ L4(E,m).

Therefore, by (
var:Iuvar:Iu
3.83) and (

5.55.5
3.84), we get

Pδx(H∞)2 = lim
s→∞

Pδx |〈Isg,Xs〉|2 =

∫ ∞

0
Tu

[
A |Iug|2

]
(x) du ∈ L2(E,m) ∩ L4(E,m). (3.85) L2H

Hence, we have

VarδxH∞ = Pδx(H∞)2 − (PδxH∞)2 =

∫ ∞

0
Tu

(
A |Iug|2

)
(x) du− g(x)2. (3.86) LH

Proof of Theorem
The:1.3The:1.3
1.17: Recall that

Et(g) =


 ∑

k:2λk<λ1

e−λktH(k)
∞ Dk(t)bk




and

Y1(t) := eλ1t/2〈f,Xt〉, Y2(t) := t−(1+2τ(h))/2eλ1t/2〈h,Xt〉.

Consider an R4-valued random variable U4(t) defined by:

8.5U4(t) :=
(
eλ1t〈φ1,Xt〉, eλ1t/2 (〈g,Xt〉 −Et(g)) , Y2(t), Y1(t)

)
.

To get the conclusion of Theorem
The:1.3The:1.3
1.17, it suffices to show that, under Pδx ,

U4(t)
d→
(
W∞,

√
W∞G3(g),

√
W∞G2(h),

√
W∞G1(f)

)
, (3.87) 2.5a

where W∞, G3(g), G2(h) and G1(f) are independent. Denote the characteristic function of U4(t)

under Pδx by κ3(θ1, θ2, θ3, θ4, t). Then, we only need to prove

lim
t→∞

κ3(θ1, θ2, θ3, θ4, t) = Pµ

(
exp{iθ1W∞} exp

{
−1

2
(θ22β

2
g + θ23ρ

2
h + θ24σ

2
f )W∞

})
. (3.88) 8.7
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Note that, by Lemma
thrm1thrm1
3.1, we get

Et(g) = lim
s→∞

〈Isg,Xt+s〉 =
∑

u∈Lt

lim
s→∞

〈Isg,Xu,t
s 〉.

Since Xu,t
s has the same law as Xs under Pδzu(t)

, Hu,t
∞ := lims→∞〈Isg,Xu,t

s 〉 exists and has the same

law as H∞ under Pδzu(t)
. Thus, we get Et(g) =

∑
u∈Lt

Hu,t
∞ . Let h(x, θ) = Pδx exp {iθ(H∞ − g(x))}.

Therefore, we obtain that

κ3(θ1, θ2, θ3, θ4, t)

= Pδx

(
exp

{
iθ1e

λ1t〈φ1,Xt〉 + iθ3Y2(t) + iθ4Y1(t)
} ∏

u∈Lt

h
(
zu(t),−θ2eλ1t/2

))
. (3.89)

Let V (x) = VarδxH∞. We claim that

(i) as t→ ∞,

eλ1t
∑

u∈Lt

Pδx|Hu,t
∞ − g(zu(t))|2 = eλ1t〈V,Xt〉 → 〈V, ψ1〉mW∞, in probability; (3.90) 8.1

(ii) for any ǫ > 0, as t→ ∞,

eλ1t
∑

u∈Lt

Pδx(|Hu,t
∞ − g(zu(t))|2, |Hu,t

∞ − g(zu(t))| > ǫe−λ1t/2)

= eλ1t〈k(·, t),Xt〉 → 0, in probability, (3.91)

where k(x, t) := Pδx(|H∞ − g(x)|2, |H∞ − g(x)| > ǫe−λ1t/2).

Then using arguments similar to those in the proof Lemma
lem:cslem:cs
3.5, we have

∏

u∈Lt

h
(
zu(t),−θ2e(λ1/2)t

)
→ exp

{
−1

2
θ22〈V, ψ1〉mW∞

}
, in probability. (3.92) 8.4

Now we prove the claims.

(i) By (
L2HL2H
3.85), we have V (x) ∈ L2(E,m)∩L4(E,m). By Remark

rem:largerem:large
1.16, (

8.18.1
3.90) follows immediately.

(ii) We easily see that k(x, t) ↓ 0 as t ↑ ∞ and k(x, t) ≤ V (x) ∈ L2(E,m) for any x ∈ E. Thus,

limt→∞ ‖k(·, t)‖2 = 0. So, by
2.82.8
2.18, we have that for any x ∈ E,

eλ1tPδx〈k(·, t),Xt〉 . ‖k(·, t)‖2bt0(x)1/2 → 0, as t→ ∞,

which implies (
8.28.2
3.91).

By (
8.68.6
3.89), (

8.48.4
3.92) and the dominated convergence theorem, we get that as t→ ∞,

∣∣∣∣κ3(θ1, θ2, θ3, θ4, t) − Pδx

(
exp

{
(iθ1 −

1

2
θ22〈V, ψ1〉m)eλ1t〈φ1,Xt〉 + iθ3Y2(t) + iθ4Y1(t)

})∣∣∣∣

≤ Pδx

∣∣∣∣∣
∏

u∈Lt

h
(
zu(t),−θ2e(λ1/2)t

)
− exp

{
−1

2
θ22〈V, ψ1〉meλ1t〈φ1,Xt〉

}∣∣∣∣∣→ 0. (3.93)
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By Lemma
lem:cslem:cs
3.5, we get

lim
t→∞

κ3(θ1, θ2, θ3, θ4, t)

= lim
t→∞

Pδx

(
exp

{
(iθ1 −

1

2
θ22〈V, ψ1〉m)eλ1t〈φ1,Xt〉 + iθ3Y1(t) + iθ4Y2(t)

})

= Pδx

(
exp{iθ1W∞} exp

{
−1

2

(
θ22〈V, ψ1〉m + θ23ρ

2
h + θ24σ

2
f

)
W∞

})
.

By (
LHLH
3.86), we get

〈V, ψ1〉m =

∫ ∞

0
e−λ1u〈A |Iug|2 , ψ1〉m du− 〈g2, ψ1〉m.

The proof is now complete. ✷
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