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Abstract

The research on the local correlation structure of copula function is an attractive topic.
This paper investigates bivariate copula function’s local correlation structure by defining its
concentration set. The concentration set of a copula function is defined in [0,1]2 with re-
strained Lebesgue measure such that the samples of the copula fall in the set with the largest
probability. The method for finding the concentration set is provided and the properties of
the concentration set are discussed. Based on the concentration set, a concentrated partition
of [0,1]2 for the copula function is introduced, and one measure for quantifying copula func-
tion’s local correlation is defined by applying our concentrated partition. An empirical study
is provided to support our idea of proposing the concentration set.

Key-words: Copula function, local correlation structure, concentration set, concentration
measure.

1 Introduction
Copula function is a multi-dimensional distribution function with uniform [0,1] margins. For a d-
dimensional distribution function H(u1, . . . ,ud) with marginal distributions Fi, i = 1, . . . ,d, Sklar’s
Theorem (Joe, 1997; Nelson, 2006) states that there exists a copula function C such that

H(u1, . . . ,ud) =C(F1(u1), . . . ,Fd(ud)), u1, . . . ,ud ∈ (−∞,∞),

and if the marginal distributions Fi, i = 1, . . . ,d are continuous, the copula function C is unique.
Sklar’s Theorem shows that the dependence structure in the distribution H can be fully captured
by the copula function C. For detailed introduction about copula function, we refer to McNeil et
al. (2005) and Nelson (2006). Now copula functions have been widely applied in finance and
insurance, e.g., see Cherubini et al. (2004).
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Due to the complexity of some copula functions, the approximation of copula function by some
specific copula families with desired properties is an interesting topic. The approximation meth-
ods include shuffle of min approximation (Mikusinski et al., 1992; Durante et al., 2009), checkmin
approximation (Mikusinski and Taylor, 2010), checkerboard approximation (Li et al., 1998; Dur-
rleman et al., 2000), Bernstein approximation (Scancetta and Satchell, 2004), and patched bivariate
Fréchet approximation (Zheng et al., 2011). In the above references, partition methods are applied
to divide the probability space into some subspaces and then approximate the conditional copula on
each subspace. More precisely, let C(u,v) be a copula function and (U1,U2) be its sample. Given
a positive integer m≥ 2, the first step of these approximation methods is to divide the unit square
[0,1]2 into subsets {Ii, j = ( i

m ,
i+1
m ]× ( j

m ,
j+1
m ], 0≤ i, j ≤ m−1}, then the conditional distributions

on the division Ai, j = {(U1,U2) ∈ Ii, j},0 ≤ i, j ≤ m− 1 of the probability space are considered.
However, this partition process does not consider the probability differences among the subsets.
Note that for one copula function, its sample has larger probability to fall in some subset of [0,1]2

than other subsets, thus it will be meaningful to discuss how to divide [0,1]2 into some subsets
through considering the corresponding probabilities.

Inspired by the partition methods of copula approximation, in this paper we will discuss the
local correlation structure of a copula function by defining its concentration set. More precisely,
for any copula function C, it is known that there exists a measure µC on [0,1]2 such that

µC(A) =
∫∫

A
dC(u1,u2) (1.1)

for any measurable set A⊆ [0,1]2. The quantity µC(A) measures the probability that (U1,U2) falls
in the set A, where (U1,U2) is a sample of copula function C. Given level a ∈ [0,1], we consider
two sets A,B ∈ {D ⊆ [0,1]2|µ(D) ≤ a} with µC(A) < µC(B), where µ is the Lebesgue measure.
Thus the probability that (U1,U2) falls in the set B is larger than that of the set A. Taking the above
ideas together, we define the concentration set B∗(a) of level a ∈ [0,1] by solving the following
optimization problem:

B∗(a) = arg max
B⊆[0,1]2,µ(B)≤a

µC(B). (1.2)

In other words, the concentration set B∗(a) is a set in the family {B ⊆ [0,1]2|µ(B) ≤ a} with the
largest probability max{P((U1,U2) ∈ B)|B⊆ [0,1]2,µ(B)≤ a}. Actually, the concentration set is
meaningful when we estimate or approximate a copula function. From the estimation viewpoint,
by the definition of the concentration set we can expect that there are more samples in the first
several concentration sets, then the estimations for the subsets would be relatively better due to the
relatively larger sample size. From the approximation viewpoint, when we want to approximate
copula functions by some objective copula functions, the approximation error would be mainly
determined by the approximation errors in the first several concentration sets. The concentration
set will help us to get more insights about the local correlation structure of copula functions.

In order to show the importance of the concentration set, we will consider the conditional
rank correlation measures on the concentration set, and the numerical results will provide detailed
information about the local correlation structure of the copula function. On the other hand, we
will propose a new partition method for copula functions, named concentrated partition, which
divides [0,1]2 into some concentration sets with different levels. The advantage of this partition
method is that the probabilities of the subsets are ordered purposely. Based on our concentrated
partition, we will define a measure named concentration measure for quantifying the concentration
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degree of a copula function. The concentration measure is an infinite-dimensional vector with zero
and one as the minimum and maximum of each component. If the support of the copula has zero
Lebesgue measure, the components in the concentration measure are all equal to one. And for the
independent copula, the components in the concentration measure are all equal to zero. Thus the
concentration measure can efficiently describe the concentration degree of copula functions.

This paper is organized as follows. In Section 2 we will discuss how to determine the concen-
tration set. In Section 3 we will introduce a partition method by applying concentration sets, and
a concentration measure based on the partition method will be defined. In Section 4, an empirical
analysis on China government bond will be given to support our methodology. Conclusions are
given in Section 5.

2 Concentration set and its properties
To begin with the optimization problem (1.2), we notice that for any set B ⊆ [0,1]2 satisfying
µ(B)≤ a, it holds that

µC(B∪B′)≥ µC(B)

for any measurable B′ ⊆ [0,1]2\B with µ(B′) = a− µ(B). Then µ(B∪B′) = a and µC(B∪B′) ≥
µC(B). It implies that we can find one solution to (1.2) in the family {B⊆ [0,1]2|µ(B) = a}. Thus
in the next we will discuss the following optimization problem

B∗(a) = arg max
B⊆[0,1]2,µ(B)=a

µC(B). (2.1)

The solution to the optimization problem (2.1) may not be unique. For example, let us consider
the independent copula C(u1,u2) = u1u2. For any B ⊆ [0,1]2, we have µC(B) = µ(B). Thus for
the independent copula, the solution to (2.1) is any subset B⊆ [0,1]2 with µ(B) = a.

Since the solution may not be unique, we will focus on the solution family {B∗(a),a ∈ [0,1]}
satisfying B∗(a) ⊆ B∗(b) for any 0 ≤ a ≤ b ≤ 1, and we call this kind of solution family enlarge-
ment family.

In the following discussion, we start to solve problem (2.1) by assuming that the density of the
copula function exists, then we extend the results to the general case.

2.1 Concentration set when copula’s density exists
Suppose that the density function of the copula C(u1,u2) exists, denoted as c(u1,u2). The objective
function in the optimization problem (2.1) can be expressed as

B∗(a) = arg max
B⊆[0,1]2,µ(B)=a

∫∫
B

c(u1,u2)du1du2.

We begin to solve the optimization problem (2.1) via finding the concentration set defined by
the copula density. Let

B(s) =
{
(u1,u2) ∈ [0,1]2|c(u1,u2)> s

}
,

D(s) =
{
(u1,u2) ∈ [0,1]2|c(u1,u2) = s

}
.
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Given a ∈ [0,1], we define s∗(a) = sup{s |µ(B(s))> a}. For simplicity, sometimes we write s∗(a)
as s∗. It is easy to verify that

µ(B(s∗(a)))+µ(D(s∗(a)))≥ a≥ µ(B(s∗(a))).

Based on the above notations, we have the following results.

Theorem 2.1. Let As∗(a)(a) ⊆ D(s∗(a)) be a set satisfying µ(As∗(a)(a)) = a− µ(B(s∗(a))). Then
the set B∗(a) defined by

B∗(a) = B(s∗(a))∪As∗(a)(a)

is one solution to the optimization problem (2.1).

Proof. Firstly we notice that for any (u1,u2) ∈ B∗(a), c(u1,u2) ≥ s∗(a) and for any (u1,u2) ∈
[0,1]2\B∗(a), c(u1,u2)≤ s∗(a). Then for any A⊆ [0,1]2 with µ(A) = a, it holds that

µC(B∗(a))−µC(A) =
∫∫

B∗(a)
c(u1,u2)du1du2−

∫∫
A

c(u1,u2)du1du2

=
∫∫

B∗(a)\A
c(u1,u2)du1du2−

∫∫
A\B∗(a)

c(u1,u2)du1du2

≥s∗(a) · {µ(B∗(a)\A)−µ(A\B∗(a))}
=s∗(a) · {µ(B∗(a))−µ(A)}= 0.

Thus B∗(a) is one solution to (2.1), and we have µ(B∗(a)) = µ(As∗(a)(a))+ µ(B(s∗(a))) = a, so
the proof is completed.

From the above theorem we can see that if µ(B(s∗(a))) = a, then B∗(a) = B(s∗(a)) solves
(2.1). In the case µ(B(s∗(a))) < a, we know that µ(D(s∗(a))) ≥ a− µ(B(s∗(a))), so we can
choose an adjustment subset As∗(a)(a) ⊆ D(s∗(a)) to guarantee that the Lebesgue measure of the
union B(s∗(a))∪As∗(a)(a) equals a. Actually, the adjustment subset is not unique. For consistency,
we need to establish rules for choosing the adjustment set.

As we mentioned before, we hope that the solution family {B∗(a),a ∈ [0,1]} is an enlargement
family. For this purpose, the adjustment sets As∗(a)(a) can be chosen by some specific rules. Some
rules are given in the following remark.

Remark 2.1. The adjustment sets As∗(a)(a),a ∈ [0,1] can be chosen according to one of the fol-
lowing rules:

(1) As∗(a)(a)⊆ D(s∗(a))∩{(u1,u2) ∈ [0,1]2|u1 ≤ x, x ∈ [0,1]};

(2) As∗(a)(a)⊆ D(s∗(a))∩{(u1,u2) ∈ [0,1]2|u2 ≤ x, x ∈ [0,1]};

(3) As∗(a)(a)⊆ D(s∗(a))∩{(u1,u2) ∈ [0,1]2|u1 +u2 ≤ 2x, x ∈ [0,1]}.

It is easy to verify that each of the rules guarantees that the concentration set family {B∗(a),a ∈
[0,1]} defined in Theorem 2.1 is an enlargement family.

In the next we give an example for using the above rules.
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Example 2.1. Consider the independent copula C(u1,u2) = u1u2. When we use adjustment rule
(1) in Remark 2.1, the solution to problem (2.1) is B∗(a) = [0,a]× [0,1]. For rule (3), the solution
is B∗(a) = {(u1,u2) ∈ [0,1]2|u1 +u2 ≤

√
2a} for 0≤ a < 1/2 and B∗(a) = {(u1,u2) ∈ [0,1]2|u1 +

u2 ≤ 2−
√

2−2a} for 1/2≤ a≤ 1.

Remark 2.2. Let B∗(a) be the concentration set defined in Theorem 2.1 with some level a ∈ [0,1].
Denote b = µC(B∗(a)). If the density function c(u1,u2) satisfies c(u1,u2) > 0 for all (u1,u2) ∈
[0,1]2, then B∗(a) is a solution of the dual problem

N∗(b) = arg min
B⊆[0,1]2,µC(B)=b

µ(B).

Because if there is a subset N ⊆ [0,1]2 satisfying µC(N) = b and µ(N) < a, then for any A ⊆
[0,1]2 \N with µ(A) = a− µ(N), the subset B = N ∪A satisfies µ(B) = a and µC(B) > b. It is
contradictory to that the concentration set B∗(a) solves (2.1).

2.2 Concentration set in the general case
In this subsection we will solve the optimization problem (2.1) for the general case.

By Lebesgue’s decomposition theorem, the measure µC can be decomposed uniquely as

µC = ανc +(1−α)νd, (2.2)

where α ∈ [0,1], νc and νd are probability measures on [0,1]2 satisfying that νc is absolutely
continuous to the Lebesgue measure µ , and νd contains the discrete part and the singular part of
µC. Referring to Halmos (1970, page 134), there exists some B0 ⊆ [0,1]2 satisfying

µ(B0) = 0 and νd(B0) = 1. (2.3)

Notice that B0 may not be unique, but the difference between different versions of B0 must has
zero Lebesgue measure, and the choice of B0 has no effect on the following results.

In fact, νc and νd are probability measures on [0,1]2, not necessarily generated by copula
functions. Specifically, if α = 1, the probability measure νc = µC and it turns back to the case of
Theorem 2.1. In the case α ∈ [0,1), we can define B̃∗(a) according to the methodology in Theorem
2.1 with respect to the density function c̃(u1,u2) = dνc/dµ . Although c̃(u1,u2) is not necessarily
a copula density, it is easy to check that the result of Theorem 2.1 also holds for general bivariate
density functions, i.e., B̃∗(a) is one solution to the following optimization problem

B̃∗(a) = arg max
B⊆[0,1]2,µ(B)≤a

∫∫
B

c̃(u1,u2)du1du2.

Combining with the definition of B0 in (2.3), we know that

B∗(a) = B̃∗(a)∪B0 (2.4)

is one solution to the optimization problem (2.1). Moreover, the family {B∗(a),a ∈ [0,1]} defined
above is an enlargement family as long as {B̃∗(a),a ∈ [0,1]} is an enlargement family.
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2.3 The correlation measures in the concentration set
In this section, we consider conditional rank correlation measures in the concentration set.

For measuring the correlation between random variables, Kendall’s tau and Spearman’s rho
(Kruskal, 1958) are the most commonly used rank correlation measures. Considering a random
vector (X ,Y ) and its independent copy (X1,Y1), Kendall’s tau is defined as

τ(X ,Y ) = P((X−X1)(Y −Y1)> 0)−P((X−X1)(Y −Y1)< 0).

On the other hand, Spearman’s rho is the linear correlation of the probability-transformed random
variables, i.e.,

ρ(X ,Y ) = corr(FX(X),FY (Y )).

Actually, let C be the copula function of continuous random vector (X ,Y ), then we have

τC = τ(X ,Y ) = 4
∫ 1

0

∫ 1

0
C(u1,u2)dC(u1,u2)−1,

ρC = ρ(X ,Y ) = 12
∫ 1

0

∫ 1

0
(C(u1,u2)−u1u2)du1du2.

As for the local and regional dependence measure, Holland and Wang (1987a,1987b) considered
the dependence on the region of nonzero density function, Bjerve and Doksum (1993) defined a
local correlation measure based on conditional mean and variance, Drouet-Mari and Kotz (2001)
restricted Kendall’s tau and Spearman’s rho to an open neighborhood of a certain point in [0,1]2,
and Kolev et al. (2006) generalized Spearman’s rho to a conditional version. In this section, we
will consider the conditional Kendall’s tau and Spearman’s rho in the concentration set.

For a copula function C, its concentration set B∗(a) with level a ∈ (0,1] has been defined
above. Next we denote τ∗C(a) and ρ∗C(a) as the conditional Kendall’s tau and Spearman’s rho of
U1,U2 on {(U1,U2) ∈ B∗(a)} respectively, where (U1,U2) is a sample of copula C. In other words,
let the conditional copula of random vector (U1,U2) under {(U1,U2)∈B∗(a)} be denoted as CB∗(a),
therefore we have

τ
∗
C(a) = 4

∫ 1

0

∫ 1

0
CB∗(a)(u1,u2)dCB∗(a)(u1,u2)−1,

ρ
∗
C(a) = 12

∫ 1

0

∫ 1

0

(
CB∗(a)(u1,u2)−u1u2

)
du1du2.

From this definition, we know that the conditional rank correlations on the concentration set equal
the traditional global rank correlations when a = 1, i.e., τ∗C(1) = τC and ρ∗C(1) = ρC. As a general-
ization of the traditional rank correlations, τ∗C(a),ρ

∗
C(a),a ∈ [0,1] measure the local correlation of

a copula function through functional viewpoint.
As an example, we consider Gaussian copula, student T-copula, Clayton copula and Gumbel

copula. The conditional rank correlations on the concentration sets are shown in Figure 1. All of
the four copulas have the same Kendall’s tau, chosen as 0.3 in the example. Figure 1(a) shows
that τ∗C(a) of each copula is larger than 0.3 when a < 1, which means the concentration set is more
likely to be around the diagonal line u1 = u2 in these copulas. The curve of τ∗C(a) displays bimodal
in the case of Clayton copula, while in other cases the curves are unimodal. An interesting fact
is that the conditional Kendall’s tau performs no obvious difference among the four copulas when

6



a > 0.4, but the performance is quite different when a < 0.4, which means the four copulas have
very different features in the high density area.

By checking the performance of the conditional rank correlation, we can obtain detailed infor-
mation of the copula function itself. For example, for a small a the curve of conditional Kendall’s
tau of the student-T copula is above that of the Gaussian copula, which implies that student T-
copula has a larger correlation in the high density area.

Figure 1(b) shows the conditional Spearman’s rho measure on the concentration set. The per-
formance of ρ∗C(a) is similar to conditional Kendall’s tau except for being larger. One fact worthy
of mention is that the conditional Spearman’s rho of student T-copula is close to 1 when a≈ 0.22,
which means that the concentration set of level 0.22 is almost in the diagonal area.
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(a) Conditional Kendall’s Tau
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Figure 1: The curves τ∗C(a) and ρ∗C(a),a ∈ [0,1] of four different copulas. Kendall’s tau of each copula
equals 0.3. The correlation parameter of the Gaussian copula is 0.4540. The correlation parameter and the
freedom of the student T-copula is 0.4540 and 3 respectively. The parameters of the Clayton and the Gumbel
copula are 0.8571 and 1.4286 respectively.

3 Concentrated partition and concentration measure
As mentioned in the introduction section, the regular partition method is applied in the approxima-
tion of copula functions. The partition process did not distinguish the probability of each subset.
In this section, we will give one partition method by applying concentration sets with different
levels, named concentrated partition, in which the probability of every subset is considered during
the partition process. Followed the concentrated partition, a new measure named concentration
measure is proposed for measuring the concentration degree of copula functions.

3.1 Concentrated partition
For the copula function C and fixed m≥ 2, we will use concentration sets of copula C to divide the
space [0,1]2 into some subsets.

Given a = (a1, . . . ,am) with ai > 0 and ∑
m
i=1 ai = 1, for the copula function C we firstly find

its concentration set B∗1(a) ⊆ [0,1]2 with level a1. Then we consider the subspace [0,1]2/B∗1(a)
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and find another concentration subset B∗2(a) in the space [0,1]2/B∗1(a) such that µ(B∗2(a)) = a2.
Sequently, we can obtain the sequence B∗n(a), n = 3, . . . ,m.

The above methodology can be summarized as the following optimization problem: finding
disjoint subsets {B∗1(a), . . . ,B∗m(a)} of [0,1]2 such that

B∗i (a) = argmax µC(B), s.t. B⊆ [0,1]2
∖
∪i−1

j=1 B∗j(a), µ(B) = ai, (3.1)

where we use the notation ∪0
j=1B∗j(a) = /0. Notice that B∗m(a) = [0,1]2\∪m−1

j=1 B∗j(a). The above
partition divides the space [0,1]2 into m disjoint subsets B∗1(a),B

∗
2(a), . . . ,B

∗
m(a) by using the con-

centration sets. Thus we call B∗1(a),B
∗
2(a), . . . ,B

∗
m(a) the copula C’s concentrated m-partition of

[0,1]2 with level a = (a1, . . . ,am). And Ai = {(U1,U2) ∈ B∗i (a)}, i = 1, . . . ,m is called the copula
C’s concentrated m-partition of probability space with level a = (a1, . . . ,am). In the special case
ai = 1/m, i = 1, . . . ,m, we have µ(B∗1(a)) = µ(B∗2(a)) = · · ·= µ(B∗m(a)) = 1/m.

Next we will use the essential infimum and supremum of functions in our proof. The essential
infimum of function f is defined as

essinf f = sup{b |µ{x | f (x)≤ b}= 0},

and the essential supremum of function f is defined as

esssup f = inf{b |µ{x | f (x)≥ b}= 0}.

Theorem 3.1. Assume that the family {B∗(a),a ∈ [0,1]} is an enlargement family solving the
optimization problem (2.1). Then

B∗1(a) = B∗(a1), B∗i (a) = B∗(a1 + · · ·+ai)\B∗(a1 + · · ·+ai−1), i = 2, . . . ,m (3.2)

is one solution to the optimization problem (3.1). Moreover, let Ai = {(U1,U2) ∈ B∗i (a)}, i =
1, . . . ,m, then

P(A1)

a1
≥ P(A2)

a2
≥ ·· · ≥ P(Am)

am
. (3.3)

Proof. Since the concentration sets {B∗(a),a ∈ [0,1]} is an enlargement family, so the subsets
B∗i (a), i = 2, . . . ,m is well defined. By checking the definition of concentration set B∗(a1 + · · ·+
ai), i = 1, . . . ,m, it is obvious that B∗i (a), i = 1, . . . ,m defined in (3.2) solve the optimization prob-
lem (3.1).

To prove P(Ai)/ai is a decreasing series, we firstly consider the case that the copula density
c(u1,u2) exists. For i = 1, . . . ,m−1,

P(Ai)/ai ≥ essinf(u1,u2)∈B∗i (a)c(u1,u2)≥ esssup(u1,u2)∈B∗i+1(a)
c(u1,u2)≥ P(Ai+1)/ai+1.

For the general case, using the similar argument and (2.4) we can obtain the conclusion.

Remark 3.1. Theorem 3.1 shows that the unit square [0,1]2 can be divided into m subsets by using
concentration sets. Note that Ai = {(U1,U2) ∈ B∗i (a)}, i = 1, . . . ,m is an ordered partition of the
probability space in the case a1 = · · ·= am = 1/m, in the sense that

P(A1)≥ P(A2)≥ ·· · ≥ P(Am) (3.4)
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Hence the above ordered partition leads to an ordered copula decomposition as following

C(u1,u2) =
n

∑
i=1

P(Ai) ·P(U1 ≤ u1,U2 ≤ u2|Ai)

=
n

∑
i=1

P(Ai) ·Ci(Fi(u1),Gi(u2)), (3.5)

where for each i the function Ci is the conditional copula function on Ai, and Fi,Gi are the condi-
tional marginal distributions on Ai.

The next corollary expresses the concentrated partition by using copula density functions.

Corollary 3.1. (a) Suppose that the density c of the copula function C exists, and µ(D(s)) = 0 for
all s≥ 0. Then there exists s1 > s2 > · · ·> sm−1 > 0 such that

B∗1(a) =
{
(u1,u2) ∈ [0,1]2 |c(u1,u2)> s1

}
,

B∗n(a) =
{
(u1,u2) ∈ [0,1]2 |sn < c(u1,u2)≤ sn−1

}
, n = 2, . . . ,m−1,

B∗m(a) =
{
(u1,u2) ∈ [0,1]2 |c(u1,u2)≤ sm−1

}
is copula C’s concentrated m-partition of [0,1]2 with level a = (a1, . . . ,am).
(b) Suppose that for the copula function C the decomposition (2.2) holds. Let B̃∗1(a), . . . , B̃

∗
m(a) be

the corresponding optimization solution in (3.2) with respect to the density function c̃(u1,u2) =
dνc/dµ , then

B∗1(a) = B̃∗1(a)∪B0, and B∗i (a) = B̃∗i (a)\B0, i = 2, . . . ,m (3.6)

is copula C’s concentrated m-partition of [0,1]2 with level a = (a1, . . . ,am), where B0 is defined in
(2.3).

Proof. We only give the proof of the first part. The proof of the second part is simple and omitted.
If µ (D(s)) = 0 for any s, µ(B(s)) is a continuous decreasing function of s with µ(B(0)) =

1 and µ(B(∞)) = 0. Therefore for any a ∈ [0,1], we have µ(B(s∗(a))) = a, in which s∗(a) =
sup{s |µ(B(s))> a}. Combining with the results in Theorem 3.1, we obtain the above expressions
of B∗i (a).

3.2 Examples
In this subsection, we discuss our concentrated partition by focusing on Clayton copula, Gaussian
copula and Fréchet copula.

Example 3.1 (Clayton Copula). Archimedean copula is defined as

C(u1,u2) = φ
−1 (φ(u1)+φ(u2)) ,u1,u2 ∈ [0,1]

where the generator φ is a decreasing function from [0,1] to [0,∞], satisfying φ(0) = ∞ and φ(1) =
0. Clayton copula is a member of Archimedean family. The generator of Clayton copula is φ(t) =
(t−θ − 1)/θ . Figure 2(a) shows the concentrated 3-partition of Clayton copula with level a =
(1/3,1/3,1/3), in which the parameter of the Clayton copula θ =0.8571, and its Kendall’s tau
equals 0.3. In this example, we have P(A1) = 0.4958, P(A2) = 0.3418, P(A3) = 0.1624.
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(b) Partition of Gaussian Copula
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(a) Partition of Clayton Copula
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Figure 2: Concentrated partition of Clayton copula and Gaussian copula with level a = (1/3,1/3,1/3).
The parameter of Clayton copula is 0.8571, and the correlation parameter of Gaussian copula is 0.4540.
Kendall’s tau of the two copulas both equal 0.3. According to Corollary 3.1, the edges of each part are
contour lines of copula density functions.

Clayton copula has a positive lower tail dependence coefficient, i.e., limu↓0C(u,u)/u > 0,
which means that there is a comovement near (0,0). Hence we can see an obvious asymmetry
between the lower left and upper right corner in Figure 2(a).

Beyond the Archimedean copula family, Gaussian copula is also an important parametric cop-
ula family. It has the advantage that the Gaussian copula can illustrate the dependence structure
only using the correlation coefficient, which is easy to calibrate and apply in practice.

Example 3.2 (Gaussian Copula). Figure 2(b) shows the concentrated 3-partition of Gaussian cop-
ula with level a = (1/3,1/3,1/3), where the correlation parameter ρ = 0.4540. We notice that
the first concentration set with level 1/3 is near the points (0,0) and (1,1). It is because that
Gaussian copula with positive correlation parameter has large density near these two points. In
this case, we have P(A1) = 0.4811, P(A2) = 0.3402, P(A3) = 0.1787. Figure 3 shows the con-
centrated partitions of Gaussian copula and student T-copula. From the concentrated partitions,
we can see tail dependence of student T-copula is higher than Gaussian copula. In the view of the
information content, the area near the left lower tail is valuable for calculating risk measures such
as Value-at-Risk and expected shortfall (McNeil et al., 2005).

In the next example, we consider a copula which is not absolutely continuous to the Lebesgue
measure.

Example 3.3 (Fréchet Copula). Fréchet copula has the following form

C(u1,u2) = α ·min(u1,u2)+ γ ·max(u1 +u2−1,0)+(1−α− γ)u1u2, u1,u2 ∈ [0,1] (3.7)

where α,γ ≥ 0 and α + γ ≤ 1. For the level a = (a1, . . . ,am), ai > 0 with ∑
m
i=1 ai = 1, we use

the adjustment rule (1) in Remark 2.1. Let B0 be the set defined in (2.3), so B0 = {[0,1]2 |u1 =
u2 or u1 +u2 = 1}, then the concentrated partition of Fréchet copula is

B∗1(a) = ([0,a1)× [0,1])∪B0,

B∗k(a) =

([
k−1

∑
i=1

ai,
k

∑
i=1

ai

]
× [0,1]

)
∩Bc

0, k = 2, . . . ,m.
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(a) Partition of Gaussian Copula (m=8)
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(b) Partition of Gaussian Copula (m=16)
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(c) Partition of T−Copula (m=16, ν=3)
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(d) Partition of T−Copula (m=16, ν=6)
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Figure 3: Concentrated partition of Gaussian copula and student T-copula with level a = (1/m, . . . ,1/m).
Kendall’s tau of the copulas all equal 0.3. The freedom parameters of the T-copula in subplot (c) and (d) are
3 and 6 respectively.

Note that the set B0 contains the support of the comonotonic copula min(u1,u2) and the counter-
monotonic copula max(u1+u2−1,0) in Fréchet copula. Then P(A1) = α +γ +(1−α−γ)a1 and
P(Ak) = (1−α − γ)ak for k = 2, . . . ,m. Recalling the decomposition in equation (3.5), we can
compute the conditional margins as following. The marginal distributions can be expressed as

F1(u) =P(U1 ≤ u|A1) = (αu+ γu+(1−α− γ)min(u,a1))/P(A1),

Fk(u) =P(U1 ≤ u|Ak) = min(max(u−
k−1

∑
i=1

ai,0)/ak,1), k = 2, . . . ,m.

And Gk(u)=P(U2≤ u|Ak)= u for all k = 1, . . . ,m. It is easy to verify that for k≥ 2, the conditional
copula Ck on Ak is the independent copula u1u2. For the conditional copula C1, we have

C1(u1,u2) =
{

α min(F−1
1 (u1),u2)+ γ max(F−1

1 (u1)+u2−1,0)

+ (1−α− γ)min(F−1
1 (u1),a1)u2

}
/P(A1),

where

F−1
1 (x) =

{
P(A1)x, 0≤ x≤ a1/P(A1);
a1 +(1−a1)

P(A1)x−a1
P(A1)−a1

, a1/P(A1)< x≤ 1.
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Compared with the regular partition (e.g. Zheng et al., 2011), the concentrated partition is
more efficient to describe the correlation structure. For instance, for the bivariate upper bound
copula min(u,v), the regular partition (e.g. Zheng et al., 2011) considers m2 squares {Ii× I j, i, j =
1, . . . ,m}with Ii =

[ i−1
m , i

m

)
, and there are m subsets with positive probabilities. However, applying

our concentrated partition method, only the first concentration set has positive probability, so all
the correlation information is concentrated in the first partition subset.

3.3 Concentration measure of copula functions
Given positive integer m > 1, we set a = (1/m, . . . ,1/m) in this subsection. Recall that for a copula
function C, we can find its concentrated m-partition {B∗i (a),1≤ i≤m} in Theorem 3.1. Following
the concentrated partition, we define

λC(m) = max
2≤i≤m

(
µC(B∗i−1(a))−µC(B∗i (a))

)
. (3.8)

From the definition of the concentration sets, we know that the solution B∗i (a) may not be unique,
but λC(m) is independent of this choice.

For any copula function C, we can calculate the sequence λC(2),λC(3), . . .. Hence we call the
vector

ΓC = (λC(2),λC(3), . . .)

the concentration measure of the copula function C. Note that this measure consists of infinite
components, and for each m≥ 2,

0≤ λC(m)≤ 1.

It is easy to check that ΓC = (1,1, . . .) when the Lebesgue measure of the support of C equals to
zero, and ΓC = (0,0, . . .) when C is the independent copula. And if λC1(m) > λC2(m) for each
m≥ 2, then we can conclude that C1 is more concentrated than C2.

For some special copula functions, we will show the linearity of the measure ΓC in the next
theorem.

Theorem 3.2. (I) If λC(m) = 0 for some m≥ 2, then C must be the independent copula Π(u1,u2) =
u1u2,u1,u2 ∈ [0,1] and ΓC = (0,0, . . .).

(II) If copula C and C1 satisfy C = γC1 +(1− γ)Π for some γ ∈ [0,1], we have ΓC = γΓC1 .

Proof. Given m≥ 2 and a = (1/m, . . . ,1/m).
(I) Recall the decomposition in (2.2). Denote the concentrated partition with respect to C by

B∗m,i, i = 2, . . . ,m, and denote the concentrated partition with respect to the continuous part νc by
B̃∗m,i, i = 2, . . . ,m.

The fact λC(m) = 0 implies that for any 2≤ i≤ m,

µC(B∗m,i−1) = µC(B∗m,i). (3.9)

Next we will prove that the density of C exists almost surely. Then it will be proved that the density
of C equals 1 almost surely.

Denote B0 as the support of νd defined in (2.3). Corollary 3.1 says that

B∗m,1 = B̃∗m,1∪B0 and B∗m,i = B̃∗m,i \B0 , i = 2, . . . ,m.
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On the other hand, νc(B̃∗m,1)≥ νc(B̃∗m,2) owing to the conclusion in (3.4). Combining with µ(B0) =
0, we have if α < 1,

µC(B∗m,1) =µC(B̃∗m,1∪B0) = µC(B0)+µC(B̃∗m,1 \B0)

=1−α +µC(B̃∗m,1 \B0) = 1−α +α ·νc(B̃∗m,1 \B0)

=1−α +α ·νc(B̃∗m,1)> α ·νc(B̃∗m,1)≥ α ·νc(B̃∗m,2)

=α ·νc(B̃∗m,2 \B0) = µC(B̃∗m,2 \B0) = µC(B∗m,2),

contradictory to (3.9). Therefore we conclude α = 1, then the density function of copula C ex-
ists. Next we continue to prove that this density function c(u1,u2) equals 1 almost surely. From
Theorem 3.1, we know that for any 2≤ i≤ m,

µC(B∗m,i−1)≥ essinf(u1,u2)∈B∗m,i−1
c(u1,u2)/m≥ esssup(v1,v2)∈B∗m,i

c(v1,v2)/m≥ µC(B∗m,i),

where the equalities hold if and only if

c(u1,u2) = essinf(w,z)∈B∗m,i−1
c(w,z) = esssup(w,z)∈B∗m,i

c(w,z) = c(v1,v2)

almost surely for any (u1,u2) ∈ B∗m,i−1 and any (v1,v2) ∈ B∗m,i. It follows that c(u1,u2) = 1 almost
surely in [0,1]2. Therefore, the copula C is the independent copula, and ΓC = (0,0, . . .).

(II) Denote the concentrated partition with respect to C1 by A∗m,i, i = 2, . . . ,m. We will prove
that A∗m,i is also a solution to (3.1) with respect to C.

Firstly we will prove that if B∗(a) is a solution to (2.1) with respect to C1 for a ∈ [0,1], then it
is also a solution to this problem with respect to C. In fact, for any B ⊆ [0,1]2 with µ(B) = a, we
have µC1(B

∗(a))≥ µC1(B) owing to the definition of B∗(a), then

µC(B∗(a)) = γµC1(B
∗(a))+(1− γ)µΠ(B∗(a))

≥ γµC1(B)+(1− γ)µΠ(B)
= µC(B).

The above inequality implies that B∗(a) is the solution to (2.1) with respect to C. According to
Theorem 3.1, we know that {A∗m,i, i = 1, . . . ,m} is also a solution to (3.1) with respect to C. Then
we can get

λC(m) = max
2≤i≤m

(
µC(A∗m,i−1)−µC(A∗m,i)

)
= max

2≤i≤m

(
γ ·µC1(A

∗
m,i−1)− γ ·µC1(A

∗
m,i)
)

= γ ·λC1(m).

Hence the proof is completed.

Theorem 3.2 shows that the concentration measure ΓC reaches its minimum if and only if
C is an independent copula. Thus ΓC can be regarded as a measure for the distance from the
independent copula. When the concentration measure is large, the samples of the copula will
concentrate in some small area.

Different from the traditional association measures, the concentration measure ΓC is an infinite-
dimensional vector. Through the components of the vector, we can obtain detailed information
about the local correlation structure of copula functions.
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Theorem 3.3. Assume that the probability measure µC generated by copula C has the decomposi-
tion in (2.2).

(I) We have lim
m→∞

λC(m) = 1−α . Furthermore, if lim
m→∞

λC(m) = 0, then C has density function.

(II) If ΓC = (λ ,λ , . . .), then λ = 1−α and νc in (2.2) is a probability measure generated by
the independent copula.

Proof. Suppose that for m≥ 2, the concentrated partition for νc is denoted as B̃∗m,i, i = 1 . . . ,m, and
the concentrated partition for µC is denoted as B∗m,i, i = 1 . . . ,m.

(I) Firstly we will prove that the limit of λC(m) exists and equals 1−α .
If α = 0, we know that µC(B∗m,1) = 1. It follows that λC(m) = 1 for any m and we can get the

conclusion. Now we assume that α ∈ (0,1]. Since νc is absolutely continuous to the Lebesgue
measure, we have

0≤ lim
m→∞

max
2≤i≤m

(
νc(B̃∗m,i−1)−νc(B̃∗m,i)

)
≤ lim

m→∞
max

2≤i≤m
νc(B̃∗m,i−1) = lim

m→∞
νc(B̃∗m,1) = 0.

Therefore, we obtain

lim
m→∞

λC(m) = 1−α +α · lim
m→∞

max
2≤i≤m

(
νc(B̃∗m,i−1)−νc(B̃∗m,i)

)
= 1−α.

If lim
m→∞

λC(m) = 0, then from the above equation we know that α = 1 in (2.2), which implies that
the density of copula C exists.

(II) Now we assume that λC(m) = λ ∈ [0,1] for all m ≥ 2, then limm→∞ λC(m) = λ = 1−α .
On the other hand, λC(m) = 1− α implies νc(B̃∗m,i) = νc(B̃∗m,i−1) for any 2 ≤ i ≤ m. By the
same argument in the proof of Theorem 3.2, we conclude that c̃(u,v) = 1 on [0,1]2 almost surely.
Therefore νc is a probability measure generated by the independent copula.

Next we will give some examples for a better understanding of the concentration measure ΓC.

Example 3.4. For the Fréchet copula C defined in (3.7), ΓC = (α +γ,α +γ, . . .). We know that the
Fréchet copula C is a mixture of the comonotonic copula, the countermonotonic copula and the
independent copula, so λC(m) is the sum of the weights of the comonotonic and countermonotonic
parts. Thus λC(m) measures the difference between the Fréchet copula and the independent copula.

Example 3.5. For Gaussian copula CN
ρ with correlation ρ ∈ [0,1), we can calculate the measure

λCN
ρ
(m) numerically for different m, which is shown in Figure 4. For ρ ∈ (−1,0) we know that

λCN
ρ
(m) = λCN

−ρ
(m) from the symmetry of Gaussian copula density. From Figure 4 we can see that

λCN
ρ
(m) is positively correlated with ρ . It is because the difference between the Gaussian copula

Cρ

N and the independent copula becomes larger when ρ increases. For a fixed ρ , the measure
λC(m) becomes smaller when m increases, and tends to 0 as m→ ∞.

4 Empirical support for the concentration sets
In this section, we apply the concentrated partition to the copula of level and slope factors in
Chinese government bond yield and give the empirical support for our methodology.
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Figure 4: Concentration measure of Gaussian copula with different ρ and m.

4.1 Data description and modeling
In this subsection we introduce the Nelson-Siegel model to determine the level factor lt and the
slope factor st in Chinese government bond yield data.

Nelson-Siegel (NS) model is widely used to describe the term structure of interest rates. This
model is firstly introduced by Nelson and Siegel (1987) and supported by a number of papers such
as Diebold and Li (2006) and Luo et al. (2012). In this model the instantaneous forward rate f (t,τ)
satisfies the following equation

f (t,τ) = lt + ste−λτ + ctλτe−λτ , (4.1)

where t is the current time, τ is the time to maturity and λ is the scale parameter. The three factors
lt , st and ct are the level, slope and curvature factors of the yield curve, respectively. Therefore, the
yield term structure is

y(t,τ) = lt + st

(
1− e−λτ

λτ

)
+ ct

(
1− e−λτ

λτ
− e−λτ

)
. (4.2)

We use daily Chinese inter-bank treasury bond yields from January 1, 2006 to September 30,
2012 with 1689 trading days from the China bond website∗. Following Diebold and Li (2006), we
set λ = 0.16 as a pre-specified constant, then we use ordinary least squares (OLS) to estimate the
level, slope and curvature factors for each day.

Next we focus on the daily difference of the level and slope factors, i.e., we study the historical
copula function of Xt = lt− lt−1 and Yt = st−st−1. Precisely, we estimate the marginal distributions
of Xt and Yt empirically, then we use Beta kernel function to estimate the copula density function.

Essentially, the pseudo-sample points are defined as

Ût =
rank(Xt)

T +1
=

1
T +1

T

∑
k=1

1Xk≤Xt , V̂t =
rank(Yt)

T +1
=

1
T +1

T

∑
k=1

1Yk≤Yt , (4.3)

∗http://www.chinabond.com.cn
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where T = 1688 is the length of samples (Xt ,Yt). The pseudo-samples are shown in Figure 5(a).
Based on the pseudo samples Ût and V̂t defined in (4.3), the Beta kernel estimation (Charpentier et
al., 2007) for the density c is

ĉ(u1,u2) =
1
T

T

∑
t=1

K
(

Ût ;
u1

h
+1,

1−u1

h
+1
)
×K

(
V̂t ;

u2

h
+1,

1−u2

h
+1
)
, (4.4)

where (u1,u2) ∈ (0,1)2, h is the window width, and K(·;α,β ) is the Beta kernel function

K(x;α,β ) =
xα−1(1− x)β−1

B(α,β )
, x ∈ (0,1), α,β > 0,

in which the Beta function B(α,β ) =
∫ 1

0 sα−1(1− s)β−1ds. The Beta kernel function K(·;α,β ) is
chosen to meet the natural property that the copula density is defined on the set [0,1]2. Furthermore,
it is free of boundary bias and can improve the accuracy of estimation. Figure 5(b) is the copula
kernel density, and the window width h is chosen to be 0.031, which is optimized according to
Chen (1999).
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Figure 5: (a) Pseudo-samples of daily difference of the level and slope factors. (b) Copula density estimated
by Beta kernel function. (c) Concentrated partition with level a = (1/3,1/3,1/3). (d) The concentration
measure λm(C).
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4.2 Concentrated partition of the copula between level and slope Factors
In this subsection, we apply our concentrated partition to the above fitted copula, and the result of
the empirical study shows our partition is more meaningful than the traditional regular partition.

From the pseudo-sample scatter plot in Figure 5(a), we find that the points gather at the corners
(0,0) and (1,1), and are around the line {u1 +u2 = 1}, which is the support of the countermono-
tonic copula. Also in the estimated copula density in Figure 5(b), the density function is obviously
higher in these regions.

Figure 5(c) shows the concentrated 3-partition, in which the Lebesgue measure of each part is
1/3. The concentrated partition finds out the most important set, which illustrates the main feature
of the correlation between the two factors. The partition result shows that samples concentrate at
the corners (0,0) and (1,1) as well as along the line {u1 +u2 = 1}.

Figure 5(d) shows the concentration measure λC(m) for the fitted copula. When m = 3, the
measure is about 0.3, which implies that the difference between the probabilities of the copula on
the three subsets is fairly large. And when m is large, the partition becomes dense and λC(m) is
close to 0.

By investigating the details of the dependence structure between Xt = ∆lt and Yt = ∆st , we can
find that the daily change of short rate has large kurtosis. According to equation (4.2), we have
limτ→0 y(t,τ) = lt + st . Hence for a small time-to-maturity τ , the daily change of y(t,τ) is more
likely to be small if ∆lt and ∆st are countermonotonic, and daily change of y(t,τ) is more likely to
be large if ∆lt and ∆st are comonotonic, so the daily change of short rate should have obvious peak
and fat tail. In fact, during January 2006 to September 2012, the kurtosis of the first difference of
one-year rate is 14, while that of ten-year rate is 6. Therefore, looking into the copula function
between ∆lt and ∆st provides more detailed information of term structure.

5 Conclusion
In this paper we defined the concentration set of a copula function for discussing the local cor-
relation structure of a copula function. Based on the concentration set, we also established a
concentrated partition for copula function. The properties of the concentration set and the concen-
trated partition were discussed. Based on the concentrated partition, concentration measure were
defined for measuring copula function’s local correlation structure. At last, an empirical study was
provided to support our idea of establishing the concept of concentration set.
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of China (Grants No. 11271033).

References
[1] Bjerve, S., Doksum, K. (1993). Correlation curves: measures of association as function of

covariates values. Annals of Statistics 21, 890-902.

[2] Charpentier, A., Fermanian, J.D., Scaillet, O. (2007). The estimation of copulas: theory
and practice. Copulas: from theory to application in finance, 35-60. Risk Publications,

17



London. Available at http://www.crest.fr/ckfinder/userfiles/files/Pageperso/fermania/chapter-
book-copula-density-estimation.pdf.

[3] Chen, S.X. (1999). Beta kernel estimators for density functions. Computational Statistics and
Data Analysis 31, 131–145.

[4] Cherubini, U., Luciano, E., Vecchiato, W. (2004). Copula Methods in Finance. John Wiley
and Sons, England.

[5] Diebold, F.X., Li, C. (2006). Forecasting the term structure of government bond yields. Jour-
nal of Econometrics 130, 337-364.

[6] Drouet-Mari, D., Kotz, S. (2001). Correlation and Dependence. Imperial College Press, Lon-
don.

[7] Durante, F., Sarkoci, P., Sempi, C. (2009). Shuffle of copulas. Journal of Mathematical Anal-
ysis and Applications 352, 914-921.

[8] Durrleman, V., Nikeghbali, A., Roncalli, T. (2000). Copulas approximation and new families.
Working paper.

[9] Halmos, P.R. (1970). Measure Theory. Springer-Verlag, New York.

[10] Holland, P.W., Wang, Y.J. (1987a). Regional dependence for continuous bivariate densities.
Communications in Statistics: Theory and Methods 16, 193-206.

[11] Holland, P.W., Wang, Y.J. (1987b). Dependence function for continuous bivariate densities.
Communications in Statistics: Theory and Methods 16, 863-876.

[12] Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman and Hall, London.

[13] Kolev, N., Anjos, U., Mendes, B. (2006). Copulas: a review and recent developments.
Stochastic Models 22, 617-660.

[14] Kruskal, W.H. (1958). Ordinal measures of association. Journal of the American Statistical
Association 53, 814-861.

[15] Li, X., Mikusinski, P., Taylor M.D. (1998). Strong approximations of copulas. Journal of
Mathematical Analysis and Applications 225(2), 608-623.

[16] Luo, X., Han, H., Zhang J.E. (2012). Forecasting the term structure of Chinese treasury
yields. Pacific-Basin Finance Journal 20, 639-659.

[17] McNeil, A.J., Frey, R., Embrechts, P. (2005). Quantitative Risk Management: Concepts,
Techniques, and Tools. Princeton University Press, Princeton.

[18] Mikusinski, P., Sherwood, H., Taylor, M.D. (1992). Shuffles of min. Stochastica, XIII, 61-74.

[19] Mikusinski, P., Taylor, M.D. (2010). Some approximations of n-copulas. Metrika 72(3), 385-
414.

18



[20] Nelsen, R.B. (2006). An Introduction to Copulas, 2nd Edition. Springer, New York.

[21] Nelson, C.R., Siegel, A.F. (1987). Parsimonious modeling of yield curve. Journal of Business
60, 473-489.

[22] Scancetta, A., Satchell, S. (2004). The Bernstein copula and its applications to modelling and
approximations of multivariate distributions. Econometic Theory 20, 535-562.

[23] Zheng, Y., Yang, J., Huang, J.Z. (2011). Approximation of bivariate copulas by patched bi-
variate Fréchet copulas. Insurance: Mathematics and Economics 48(2), 246-256.

19


