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Abstract

The banding estimator of Bickel and Levina (2008a) and its tapering version

of Cai, Zhang and Zhou (2010), are important high dimensional covariance esti-

mators. Both estimators require choosing a band width parameter. We propose

a band width selector for the banding covariance estimator by minimizing an em-

pirical estimate of the expected squared Frobenius norms of the estimation error

matrix. The ratio consistency of the band width selector to the underlying band

width is established. We also provide a lower bound for the coverage probabil-

ity of the underlying band width being contained in an interval around the band

width estimate. Extensions to the band width selection for the tapering estimator

and threshold level selection for the thresholding covariance estimator are made.

Numerical simulations and a case study on sonar spectrum data are conducted

to confirm and demonstrate the proposed band width and threshold estimation

approaches.

Key Words and Phrases: Bandable covariance; Banding estimator; Large p, small n; Ratio-

consistency; Tapering estimator; Thresholding estimator.

1 Introduction

With the advance in the modern data collection technology, data of very high dimen-

sions are increasingly collected in scientific, social economic and financial studies, which

include the microarray data, the next generation sequencing data, recordings of huge

networks with their interactions and financial observations of large portfolios. Sup-

pose we observe independent and identically distributed p-dimensional random vari-
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ables X1, · · · , Xn with an unknown covariance matrix Σ = Var(X1). The covariance

matrix Σ provides a detailed account on the correlation among components of X,

and is of great importance in multivariate analysis. The classical sample covariance

Sn = n−1
∑n

i=1(Xi − X̄n)(Xi − X̄n)′ is a popular and valid estimator of Σ in conven-

tional settings where the dimension p is fixed and the sample size n is relative large.

However, for high dimensional data such that p/n → c ∈ (0,∞], it is known that Sn

is no longer consistent; see Bai and Ying (1993), Bai, Silverstein and Yin (1998) and

Johnstone (2001) for accounts of the issue.

There have been recent advances in constructing consistent covariance estimators for

high dimensional data via the regularization methods that typically involved thresh-

olding or truncation. Regularization based on the Cholesky decomposition has been

considered in Wu and Pourahmadi (2003), Huang, Liu, Pourahmadi and Liu (2006) and

Rothman, Levina and Zhu (2010) for estimating Σ and its inverse. In a significant de-

velopment, Bickel and Levina (2008a) proposed banding the sample covariance Sn that

truncates all sub-diagonal entries beyond certain band width to zero. Cai, Zhang and

Zhou (2010) investigated a tapering estimator which can be viewed as a soft banding on

the sample covariance, and demonstrated that it can attain the minimax optimal rate.

Fan, Fan and Lv (2008) estimated Σ based on a factor model. For random vectors which

do not have a natural ordering so that the elements of Σ do not necessarily decay as

they move away from the diagonal, Bickel and Levina (2008b) proposed a thresholding

estimator of the covariance, which was further developed by Rothman, Levina and Zhu

(2009) and Cai and Liu (2011). Regularized estimation of Σ−1 has also been developed

in Bickel and Levina (2008a), Cai, Liu and Luo (2011) and Xue and Zou (2012).

The banding and tapering estimators require specifying the band width parameter

that defines the number of sub-diagonals which are not truncated to zero. For the thresh-

olding estimator, a threshold level needs to be determined. Bickel and Levina (2008a,b)

and Cai, Zhang and Zhou (2010) showed that the performance of these estimators are

crucially dependent on the choice of the band width or the threshold level. In particu-

lar, these papers provided rates for the band width that depend on an unknown index

parameter of the bandable class to attain certain rate of convergence for the estimation

under the spectral norm.

Bickel and Levina (2008a,b) introduced cross-validation approximations to the Frobe-

nius risk of estimation by repeated random splitting of the sample to two segments. One

segment of the sample was used to estimate Σ and the other segment was employed to
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form cross-validation scores for the band width and the threshold level selection, re-

spectively. The conventional sample covariance was used to estimate Σ in the first

segment. This can adversely affect the performance of the tuning parameter (band

width or threshold level) selection due to the sample covariance’s known defects under

high dimensionality, as demonstrated in our numerical studies. For banded covariance

matrices, Qiu and Chen (2012) proposed a method to select the band width, using a

by-product of their test for the bandedness of Σ. Yi and Zou (2013) proposed a band

width selection for the tapering estimator by minimizing the expected squared Frobenius

norm of the estimation error matrix (Frobenius risk) for Gaussian distributed data. The

Frobenius norm (risk) was estimated by using the Stein’s unbiased risk estimator.

In this paper, we employ the Frobenius risk of the banding and the tapering estima-

tors as the objective function, and define the underlying band width as the smallest band

width that minimizes the objective function. By studying the properties of the objective

function under a general distributional framework, we investigate the basic properties of

the underlying band width under a new bandable covariance class that is better suited

for the Frobenius norm. An estimator of the band width is proposed by minimizing a

nonparametric estimator of the objective function. The use of the Frobenius norm, as

Yi and Zou (2013) have noted, confers easier tractability than that based on the spectral

norm. The ratio consistency of the proposed band width estimator to the underlying

band width is established. We also give a lower bound for the coverage probability of

the underlying band width being contained in an interval around the estimated band

width. Extensions to the tapering and thresholding estimators are considered. Numeri-

cal simulations and a case study on sonar spectrum data are conducted to confirm and

demonstrate the proposed band width and threshold selection approaches.

The paper is organized as follows. The new bandable covariance class and some

needed assumptions are outlined in Section 2. Section 3 defines the underlying band

width and gives its properties. A ratio consistent band width estimator is constructed

and its theoretical properties are investigated in Section 4. Section 5 provides an ex-

tension to the band width selection for the tapering estimator. Section 6 extends to

the threshold level selection for the thresholding estimator. Simulation results and a

real data analysis are presented in Sections 7 and 8, respectively. Technical proofs are

provided in the Appendix and the Supplementary Material, respectively.
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2 Bandable Classes and Assumptions

Let X1, X2, . . . Xn be independent and identically distributed (IID) p-dimensional ran-

dom vectors with mean µ and covariance matrix Σ = (σij)p×p. Throughout the paper,

|| · ||F , || · ||(2,2) and || · ||(1,1) denote the Frobenius, the spectral and the `1 norms of a

matrix, respectively; and C with or without subscripts denote positive constants whose

value may change on different occasions. We make the following assumptions.

Assumption 1. As n→∞, p = p(n)→∞ and lim sup
n→∞

n/p ≤ C <∞.

Assumption 2. (i) Xi = ΓZi + µ, where Γ is a p × m matrix of constants with

m ≥ p, ΓΓ′ = Σ, and Z1, · · · , Zn are IID m-dimensional random vectors such that

E(Z1) = 0 and Var(Z1) = Im. (ii) For Z1 = (Z11, . . . , Z1m)T , {Z1l}ml=1 are independent

with uniformly bounded 8-th moment, and there exist finite constants ∆ and ω such that

E(z41l) = 3 + ∆ and E(z31l) = ω for l = 1, · · · ,m.

Assumption 1 prescribes the asymptotic mechanism governing the sample size and the

dimensionality. The last part of Assumption 1 contains the “large p, small n” paradigm

where p can be much larger than n, as well as the case of p and n being the same

order. For the band width selection, no specific relationship between n and p is needed.

However, for the threshold level selection discussed in Section 6, a restriction in the form

of log p = o(n1/3) is required. Assumption 2 is the general multivariate model employed

in Bai and Saranadasa (1996) and Qiu and Chen (2012), where {Zil}ml=1 may be viewed

as the innovations of the data, borrowing a terminology from the time series analysis.

The requirements of common third and fourth moments of Z1l are not essential, but lead

to simpler notation.

Bickel and Levina (2008a) considered the following “bandable” class of covariances:

U1(α,C) =

{
Σ : max

l2

∑
|l1−l2|>k

|σl1 l2 | ≤ Ck−α for all k > 0

and 0 < ε1 ≤ λmin(Σ) ≤ λmax(Σ) ≤ ε−11

} (2.1)

for given positive constants α, C and ε1. For any p × p matrix M = (ml1l2)p×p, let

Bk(M) = (ml1l2I{|l1−l2| ≤ k})p×p be a banded version with a band width k ∈ {0, · · · , p−
1}. Bickel and Levina (2008a) proposed Bk(Sn) as an estimator of Σ, where Sn is the

sample covariance, and showed that

E||Bk(Sn)− Σ||2(2,2) = O
{

(log(p)/n)α/(1+α)
}

if k = {log(p)/n}−1/(2+2α).
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Cai, Zhang and Zhou (2010) considered a slightly different class

U2(α,C) =

{
Σ : max

l2

∑
|l1−l2|>k

|σl1 l2| ≤ Ck−α for all k > 0

and 0 < ε2 ≤ min{σll} ≤ max{σll} ≤ ε−12

}
.

(2.2)

They replaced the restriction on the eigenvalues in U1(α,C) with those on the diagonal

elements. For U2(α,C), Cai, Zhang and Zhou (2010) proposed the tapering estimator

Tk(Sn) = ΩT (k) ◦ Sn, (2.3)

where ◦ denotes the Hadamard product, and ΩT (k) =
(
ωl1l2

)
is the weighting matrix

with

ωl1l2 := k−1{(2k − |l1 − l2|)+ − (k − |l1 − l2|)+}.

Note that ωl1l2 = 1 for |l1− l2| ≤ k, ωl1l2 = 0 for |l1− l2| ≥ 2k and ωl1l2 decreases linearly

for k < |l1 − l2| < 2k. For easy algebraic manipulation, we use 2k as the effective band

width rather than k as in Cai, Zhang and Zhou (2010).

Cai, Zhang and Zhou (2010) showed that for k ∼ n1/(1+2α)

E||Tk(Sn)− Σ||2(2,2) = O{log(p)/n+ n−2α/(1+2α)},

which attains the minimax convergence rate over U2(α,C). The banding and tapering

estimators are not necessarily positive definite. One way to mitigate the problem is to

obtain the spectral decomposition of the covariance estimators and replace the negative

and zero eigenvalues with small positive values as suggested by Cai, Zhang and Zhou

(2010).

It is clear from the analysis in Bickel and Levina (2008a) and Cai, Zhang and Zhou

(2010) that the convergence rates of the banding and the tapering estimators are criti-

cally dependent on the band width k, whereas the band width k depends on the unknown

index parameter α of the bandable classes. However, estimating the index parameter is

a challenging problem.

We shall consider another “bandable” matrix class which is better suited for band

width selection based on the Frobenius norm. To define the new “bandable” covariance

class, let us define for k = {0, 1, · · · , p− 1},

h(k) :=
1

2(p− k)

∑
|l1−l2|=k

σ2
l1l2

=
1

p− k

p−k∑
l=1

σ2
l l+k
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to be the average of the squares of the k-th sub-diagonal entries.

For a fixed positive constant ν and the ∆ in Assumption 2, define a covariance matrix

class

G(ν, q0p) =
{

Σ : (i) ν−1 ≤ λmin(Σ) ≤ λmax(Σ) ≤ ν;

(ii) h(k) = o(k−1) and
∑

q>k h(q)→ 0 for k →∞ and p→∞;

(iii) there exists a sequence q0p →∞ and q0p = o(n) such that

nh(k) > (2 + |∆|)λ2max(Σ) for k ≤ q0p and n large
}
.

(2.4)

The bounded largest and smallest eigenvalues in Part (i) replicates that in U1(α,C).

Part (ii) of (2.4) prescribes that h(k) diminishes to zero at a rate faster than k−1 for k

large. It may be viewed as an analogue to the sparsity condition

max
l2

∑
|l1−l2|>k

|σl1 l2| ≤ Ck−α (2.5)

in U1(α,C) and U2(α,C). Note that for another covariance matrix class

F(β,M) = {Σ : |σlj| ≤M(1 + |l − j|)−β for some β > 1/2}, (2.6)

Part (ii) of (2.4) is satisfied. Cai et al. (2010) established the minimax convergence result

for the Frobenius norm under the class F(β,M) with β > 1. Hall and Jin (2010) also

considered this class in their innovated higher criticism test. Part (iii) of (2.4) requires

h(k) to maintain a sufficient amount of “energy” for smaller band widths so that h(k) is

at least of order n−1. We note that h(k) actually starts with quite high “energy” since

Part (i) implies that nh(0) = np−1
∑
σ2
ll →∞.

The reason for having the sample size n appeared in Part (iii) is because the banding

estimator depends on the sample size n. As shown in the next section, the criterion

function for the band width selection is based on the expected Frobenius norm of the

estimation error matrix of the banding estimator, which inevitably has n involved.

The main difference between G(ν, q0p) and U1(α,C) or U2(α,C) is that the sparsity

in G(ν, q0p) is written in terms of h(k) with respect to the sub-diagonals whereas the

sparsity in U1(α,C)/U2(α,C) are defined via
∑
|j−l|>k |σjl|. This difference reflects the

different matrix norms employed in these studies. The sparsity in U1(α,C) and U2(α,C)

is designed for the matrix (1, 1) norm which readily bounds the spectral norm. As we

use the Frobenius norm, it is natural to define the sparsity via h(k).

Two specific forms of h(k), which will be referred to repeatedly, are those which decay

exponentially and polynomially fast as k →∞. In the case of the exponential decay,

h(k) = Cp(k)θ−k for some θ > 1 ; (2.7)
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in the case of polynomial decay,

h(k) = Cp(k)k−β for some β > 1. (2.8)

In both cases {Cp(q)}p−1q=0 are sequences bounded within [C1, C2] for C1 ≤ C2. It can be

shown that Part (ii) of (2.4) is satisfied under (2.7) or (2.8) with q0p = log n/(2 log θ) for

the exponential decay and q0p = n1/(2β) for the polynomial decay.

3 Underlying Band Width

In this section, we define the underlying band width for the matrix class G(ν, q0p). The

properties of the underlying band width are given, which provide the basics for its

empirical estimation in the next section.

Consider the standardized square of Frobenius norm for Bk(Sn)− Σ,

p−1||Bk(Sn)− Σ||2F = p−1
∑

|l1−l2|≤k

(σ̂l1l2 − σl1l2)2 + p−1
∑

|l1−l2|>k

σ2
l1l2
. (3.1)

Comparing with the spectral norm, the Frobenius norm is more tractable in the context

of the band width estimation. The objective function is

ÕbjB(k) := p−1E{||Bk(Sn)− Σ||2F}.

The underlying band width is

kB = min{k′|k′ = argmin
0≤k<p

ÕbjB(k)}. (3.2)

As ÕbjB(k) is discrete, kB exists and we choose the smallest minimizer in the case of

multiplicity.

We now analyze the properties of kB for Σ ∈ G(ν, q0p). Denote fl1l2 =
∑

h Γ2
l1h

Γ2
l2h

,

where Γ = (Γjl)p×m is defined in Assumption 2. A derivation given in Appendix A.1

shows that

ÕbjB(k) =
1

np
tr(Σ2) + (1− n−1)Mn(k) +

∆

np
(1− n−1)2

∑
|l1−l2|≤k

fl1l2 , (3.3)

where

Mn(k) =
1

p

∑
|l1−l2|>k

σ2
l1l2

+
1

np

∑
|l1−l2|≤k

σl1l1σl2l2 . (3.4)
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As tr(Σ2)/(np) is irrelevant to k, we only minimize

ObjB(k) = Mn(k) + ∆
∑
q≤k

R(q), (3.5)

where R(q) = (np)−1(1−n−1)
∑
|l1−l2|=q fl1l2 . For Gaussian distributed data, ∆ = 0 and

ObjB(k) = Mn(k).

The first term of Mn(k) in (3.4) measures the bias caused by the banding estimation,

and the second term penalizes for larger k. Therefore, ObjB(k) can be viewed as a

penalized risk function of the band width. We note that ObjB(k) depends also on n due

to the presence of the banding estimator Bk(Sn). As a result, n is involved in both the

conditions and the results regarding the underlying band width.

The following lemma provides the basic properties of Mn(k) and R(k) in ObjB(k).

Lemma 1. For Σ ∈ G(ν, q0p),

(i) Mn(k) ∼ k/n+ p−1
∑
q>k

2(p− q)h(q)→ 0 for k →∞ and k = o(n) ;

(ii)

p−1∑
q=0

R(q) ≤ ν2/n.

Lemma 1 and (3.5) imply that Mn(k) is at least at the order k/n. Since
∑

q≤k R(q) ≤
C/n for a constant C, Mn(k) is the leading order of ObjB(k) as k →∞.

Let σ(1) ≤ σ(2) ≤ · · · ≤ σ(p) be the ordered diagonal elements {σll}pl=1 of Σ. Define

a = 2σ2
(p), b = σ2

(1)/2 and

ka,n = min{k : an−1 − h(k) > 0} − 1 and kb,n = max{k : bn−1 − h(k) < 0}. (3.6)

Denote k̃B be the smallest minimizer ofMn(k), and b·c be the integer truncation function.

The following lemma provides ranges for k̃B and kB.

Lemma 2. Under Assumptions 1 and 2 and for Σ ∈ G(ν, q0p),

(i) k̃B ∈ [ka,n, kb,n], ka,n ≥ q0p and kb,n = o(n);

(ii) kB ∈ [ka,n − L, kb,n + L] for L = b2|∆|ν4c+ 1.

The lemma shows that kB has a broader range than k̃B. This is due to the uncertainty

introduced by |∆|R(k) in (3.5). The ranges given in Lemma 2 prepare for k̃B/kB → 1

as n → ∞, the key result of this section. Since ka,n ≥ q0p → ∞, it follows from Lemma

1 that Mn(k) is the leading order term of ObjB(k) for k ∈ [ka,n − L, kb,n + L]. This

suggests that we can minimize Mn(k) directly.
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The main thrust of the paper is to minimize an empirical estimator of Mn(k) to

obtain an estimator of k̃B, which may be viewed as a kind of M-estimation, despite the

target “parameter” is the band width. As in the M-estimation, a condition is needed

to guarantee the existence of a unique and well-separated minimum of the objective

function. Since Mn(k) is the leading order term of ObjB(k), a condition that serves this

purpose is that, for any small δ > 0 and n large enough,

inf
k:|k−k̃B |>δk̃B

nk̃−1B
{
Mn(k)−Mn(k̃B)

}
> C. (3.7)

Condition (3.7) is similar to the second equation of (5.8) in van der Vaart (2000) for

the objective function in the M-estimation, except that (3.7) imposes a minimum rate

of separation k̃Bn
−1 between Mn(k) and Mn(k̃B). The latter is because that Mn(k̃B)

shrinks to zero at the rate of k̃B/n as revealed by Lemma 1.

The following lemma shows that under (3.7), kB and k̃B are ratioly equivalent.

Lemma 3. For Σ ∈ G(ν, q0p) and under (3.7), k̃B/kB → 1 as n→∞.

As the condition (3.7) is a key condition to the M-estimation for the underlying band

width, we provide two sufficient conditions to (3.7) in the Supplementary Material to

show it can be satisfied if h(k) decays either exponentially or polynomially.

Exponentially Decayed h(k). In this case h(k) = C(k)θ−k as specified in (2.7) with

{C(k)}p−1k=0 ⊂ [C1, C2]. It is shown in Appendix that kB ∼ log n/ log θ. A proof in the

Supplement Material shows that (3.7) is satisfied under the exponential decay.

Polynomially Decayed h(k). If h(k) decays polynomially as specified in (2.8), kB ∼
n1/β as shown in the Appendix. If max

k∈[ka,n,kb,n]
|C(k) − C| → 0 as n, p → ∞, and the

diagonal elements {σll}pl=1 are regulated in certain ways such that

max
k∈[ka,n,kb,n]

p−1
∑

|l1−l2|=q

σl1l1σl2l2 → 2C0 as p→∞, (3.8)

(3.7) is satisfied. One such situation is when all the diagonal elements are equal. If the

diagonal entries differ, but are independent realizations from m super-populations, for a

fixed integer m, such that {σll}hpml=(h−1)pm+1 ∼ Fh, where Fh is the h-th super-population

distribution with mean φh and finite variance for h = 1, · · · ,m and pm = p/m. It is

shown in the Supplementary Material that (3.8) is satisfied with C0 = m−1
∑m

h=1 φ
2
h.

Now let us put our analysis in the context of existing results on the banding and taper-

ing estimation. Recall that Bickel and Levina (2008) found that if k ∼ {log(p)/n}−1/(2α+2),
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the expectation of the squared spectral norm of the error matrix of the banding estima-

tor is Op{(log(p)/n)α/(α+1)} uniformly for Σ ∈ U1(α,C). Cai, Zhang and Zhou (2010)

showed that setting k ∼ n1/(2α+1) leads to the minimax optimal rate of Op{n−2α/(2α+1) +

log(p)/n} for the tapering estimator under the spectral norm for Σ ∈ U2(α,C).

While the above results are for the spectral norm, Cai, Zhang and Zhou (2010) also

provided the minimax rate under the Frobenius norm. They showed that the minimax

rate for the tapering estimator for Σ ∈ U2(α,C) is equivalent to the minimax rate for

the smaller class F(β,M) in (2.6) with β > 1, and the band width corresponding to the

minimax optimal rate is k ∼ n1/(2β). By inspecting the proofs of Cai, Zhang and Zhou

(2010), it can be shown that the banding estimator with k ∼ n1/(2β) can also attain the

minimax lower bound under the Frobenius norm. And the minimax rate of the banding

and tapering estimators under F(β,M) is attained at covariances with |σl j| = M |l−j|−β.

The latter model coincides with the polynomial decay model (2.8) with h(k) = Mk−2β.

We note that this minimax band width rate of k ∼ n1/(2β) is the rate of the kB under

the polynomial decay as shown in (A.15). Since kB minimizers the Frobenius risk, the

banding estimator with the kB should attain the minimax convergence rate under the

Frobenius norm as well.

Our analysis has indicated that the convergence rate of kB is quite responsive to the

behavior of h(k) within the class G(ν, q0p). Specifically, that h(k) decays exponentially

makes kB diverges more slowly than that when h(k) decays polynomially. This is due

to employing p−1E{||Bk(Sn)−Σ||2F} as the risk function for estimation rather than the

minimax risk. The latter tends to produce more stable rates for the band width.

4 Consistent Band Width Estimator

We consider in this section estimating the band width for the banding estimator Bk(Sn).

A proposal for the tapering estimator will be given in Section 5. As outlined in the

previous sections, there are two band widths kB and k̃B, which are asymptotically

equivalent to each other under (3.7). However, it is easier to estimate k̃B than kB

since Mn(k) is more readily estimated. Clearly, if ∆ = 0 as in the Gaussian case,

ObjB(k) = Mn(k) which implies kB = k̃B. However, if ∆ 6= 0, it is difficult to estimate

ObjB(k) = Mn(k)+∆
∑

q≤k R(q) due to its requiring estimating R(k) and ∆. Note that

R(k) depends on fl1l2 =
∑

h Γ2
l1h

Γ2
l2h

, which involves higher order moments of Xi.
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According to (3.4), in order to estimate Mn(k), we need to estimate

W (k) := p−1
∑

|l1−l2|>k

σ2
l1l2

and V (k) := p−1
∑

|l1−l2|≤k

σl1l1σl2l2 ,

respectively. Note that,

∑
|l1−l2|>k

σ2
l1l2

= 2

p−1∑
q=k+1

(p− q)h(q) and
∑

|l1−l2|≤k

σl1l1σl2l2 = g(0) + 2
k∑
q=1

g(q),

where g(q) :=
∑p−q

l=1 σllσl+q l+q. Define estimators of h(q) and g(q):

ĥ(q) = (p− q)−1
p−q∑
l=1

{ 1

P 2
n

∗∑
i,j

(XilXi l+q)(XjlXj l+q)− 2
1

P 3
n

∗∑
i,j,k

XilXk l+q(XjlXj l+q)

+
1

P 4
n

∗∑
i,j,k,m

XilXj l+qXklXm l+q

}
and

ĝ(q) =

p−q∑
l=1

{ 1

P 2
n

∗∑
i,j

X2
ilX

2
j l+q −

1

P 3
n

∗∑
i,j,k

(
XilXklX

2
j l+q +Xi l+qXk l+qX

2
jl

)
+

1

P 4
n

∗∑
i,j,k,m

XilXj l+qXklXml+q

}
,

where
∗∑

denotes summation over mutually different subscripts and P b
n = n!/(n − b)!.

These two estimators are linear combinations of U-statistics of different orders with the

first term being the dominating term, respectively.

Let Ŵ (k) := 2p−1
∑p−1

q=k+1(p − q)ĥ(q) and V̂ (k) := p−1{ĝ(0) + 2
∑k

q=1 ĝ(q)}, which

are unbiased estimators of W (k) and V (k), respectively. Then, an unbiased estimator

of Mn(k) is

M̂n(k) := Ŵ (k) + n−1V̂ (k). (4.1)

As Lemmas 2 and 3 indicate k̃B ∈ [ka,n, kb,n] and k̃B/kB → 1, kB can be estimated by

k̂B = argmin
k1,n≤k≤k2,n

M̂n(k) (4.2)

where [k1,n, k2,n] constitutes a range for the minimization. In light of the analysis given

in the previous section, we may choose k1,n = bka,n/r1c and k2,n = min{r2kb,n, n} for

some positive constants r1 and r2 ≥ 1. Although ka,n and kb,n are unknown, they can

be estimated via ĥ(q) and the largest and smallest marginal sample variances, σ̂(1) and

σ̂(p), respectively. Then, the estimates of ka,n and kb,n are

k̂a,n = min{k : ân−1 − ĥ(k) > 0} − 1 and k̂b,n = max{k : b̂n−1 − ĥ(k) < 0},
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where â = 2σ̂2
(p) and b̂ = σ̂2

(1)/2. Accordingly, we can choose k̂1,n = bk̂a,n/r1c and

k̂2,n = min{r2k̂b,n, n} upon given r1 and r2 ≥ 1. In practice, we may choose r1 = r2 = 2.

Alternatively, we can minimize M̂n(k) over a more conservative interval [0, n] so that

k̂B = argmin
0≤k≤n

M̂n(k), (4.3)

by making the relationship between n and p more restrictive.

Theorem 1. Under Assumptions 1 and 2, (3.7), if Σ ∈ G(ν, q0p) and (kb,n−ka,n)/ka,n ≤
C, then for k̂B given in (4.2), k̂B/k̃B

p→ 1 as n→∞.

As k̃B/kB → 1 under (3.7), Theorem 1 implies that k̂B is a ratioly consistent estimator

of kB. The same ratio consistency result of Theorem 1 can be established for the version

of the band width estimator (4.3) under Assumption 2, (3.7) and n = O(p1/3). The

latter is more restrictive than Assumption 1.

That (kb,n − ka,n)/ka,n ≤ C assumed in Theorem 1 implies that ka,n and kb,n are of

the same order. Derivations leading to (A.12) and (A.15) in the Appendix show that it

is satisfied under both the exponential and polynomial decays of h(k).

Recall that ObjB(kB) is the minimum of the Frobenius risk of the banding estimator.

The following corollary provides the difference of the Frobenius risk between the true

and the estimated band widths.

Corollary 1. For the exponentially decayed h(k), ObjB(k̂B)−ObjB(kB) = o{(log n)/n};
for the polynomially decayed h(k), ObjB(k̂B)−ObjB(kB) = o{n(1−β)/β}.

Note that ObjB(kB) are at the order log(n)/n and n(1−β)/β for exponentially and poly-

nomially decayed h(k), respectively. Corollary 1 implies that ObjB(k̂B) − ObjB(kB) =

o
{

ObjB(kB)
}

. Namely, the discrepancy between ObjB(k̂B) and ObjB(kB) is negligible

relative to ObjB(kB). The proof of Corollary 1 is given in the Supplementary Material.

In the following, we evaluate the estimation error of k̂B to k̃B by providing a lower

bound on the probability of k̃B being included in an interval around k̂B. To this end,

we need a condition on the behavior of Mn(k) in additional to (3.7).

Assumption 3. There exist a constant γ ≥ 1 and an integer τ ≥ 1 such that for any

small δ > 0, any τ < η < δk̃B and n large enough

inf
k∈Jη
{Mn(k)−Mn(k̃B)} ≥ Cηn−γ, (4.4)

where Jη = {k : η ≤ |k − k̃B| < 2η} ∩ [ka,n, kb,n].
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While (3.7) dictates that the absolute deviation between k̃B and any k outside (k̃B(1−
δ), k̃B(1+δ)) is at least a constant multiple of n−1k̃B, (4.4) prescribes that the deviation

between k̃B and k inside (k̃B(1− δ), k̃B(1 + δ)) is at least |k̃B − k|n−γ for γ ≥ 1, which

is much smaller than n−1k̃B.

Denote C1,p(k) = {2(p − k)}−1
∑
|l1−l2|=k σl1l1σl2l2 . In the following, we show that

Assumption 3 is satisfied for both the exponential and polynomial decay of h(k), whose

proof is in the Supplementary Material.

Proposition 2. For Σ ∈ G(ν, q0p), (i) if h(q) = C2,p(q)θ
−q for θ > 1, and max

q∈[ka,n,kb,n]
|Ci,p(q)−

Ci| → 0 as n→∞ for i = 1, 2, then Assumption 3 holds for τ = 1 and γ = 1;

(ii) if h(q) = C2,p(q)q
−β for β > 1 and max

q∈[ka,n,kb,n]
|Ci,p(q)− Ci| = o(n−1/β) as n→∞

for i = 1, 2, then Assumption 3 holds for τ = 1 and γ = 1 + 1/β.

Theorem 2. Under Assumptions 1, 2, 3 and (3.7), if Σ ∈ G(ν, q0p), (kb,n−ka,n)/ka,n ≤ C

and log(k2,n)
∑

q>k1,n

h(q) = o(1), then P (k̃B ∈ [k̂B − τ, k̂B + τ ]) = 1− o(n2γ−1p−1).

The proof of Theorem 2 is given in the Supplementary Material. Recall that k1,n =

bka,n/r1c and k2,n = min{r2kb,n, n} for r1, r2 ≥ 1. Derivations given in (A.14) and (A.16)

show that log(k2,n)
∑

q>k1,n
h(q) = o(1) under both the exponential and polynomial

decays respectively for any positive constants r1 and r2. Since τ is usually unknown,

[k̂B−τ, k̂B+τ ] is not a confidence interval of k̃B. We may call it a concentration interval.

Theorem 2 shows that the probability that k̃B is included in the interval converges to 1

if n2γ−1p−1 is bounded from infinity.

For Gaussian data, ∆ = 0 and kB = k̃B. Hence, the above concentration interval is

also the one for kB. If ∆R(k) 6= 0, it may be shown that under certain conditions the

convergence of
∑
|l1−l2|=k fl1l2/p can be regulated, and |kB− k̃B| ≤ 1 for sufficiently large

n, which implies P (kB ∈ [k̂B − 2, k̂B + 2]) = 1− o(n2γ−1p−1).

5 Extension to Tapering Estimation

The analysis we have made for the banding estimator can be extended to the tapering

estimator of Cai, Zhang and Zhou (2010). The underling band width for the tapering

estimator Tk(Sn) given in (2.3) can be defined via the standardized squared Frobenius
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norm p−1||Tk(Sn)− Σ||2F . It can be verified that

1

p
||Tk(Sn)− Σ||2F (5.1)

=
1

p

{ ∑
|l1−l2|≤k

(σ̂l1l2 − σl1l2)2 +
∑

|l1−l2|>2k

σ2
l1l2

+
∑

k<|l1−l2|≤2k

(ωl1l2σ̂l1l2 − σl1l2)2
}
.

Taking the expectation, the risk of the tapering estimation is

ÕbjT (k) = p−1E{||Tk(Sn)− Σ||2F} = (np)−1tr(Σ2) + (1− 1/n) ObjT (k),

where

ObjT (k) = Nn(k) + ∆(np)−1(1− 1/n)
( ∑
|l1−l2|≤k

fl1l2 +
∑

k<|l1−l2|≤2k

ω2
l1l2
fl1l2

)
and

Nn(k) =
1

p

∑
|l1−l2|>2k

σ2
l1l2

+
1

np

∑
|l1−l2|≤k

σl1l1σl2l2 +
1

p

∑
k<|l1−l2|≤2k

(1− ωl1l2)2σ2
l1l2

+
1

np

∑
k<|l1−l2|≤2k

ω2
l1l2
σl1l1σl2l2 . (5.2)

The underlying band width kT for the tapering estimator is

kT = min{k′|k′ = argmin
0≤k<p/2

ÕbjT (k)}. (5.3)

Similar to the banding estimator, the minimizer of ÕbjT (k) is equivalent to that of

ObjT (k). Just like Mn(k) is the dominant term of ObjB(k), it can be shown that Nn(k)

dominates ObjT (k) and the minimization of ObjT (k) can be carried out approximately

by minimizing Nn(k).

Denote ωq to be the tapering weight for |l1 − l2| = q. Utilizing the estimators ĥ(q)

and ĝ(q) in the previous section, we define W̃ (k) := 2p−1
∑2k

q=k+1(1 − ωq)2(p − q)ĥ(q)

and Ṽ (k) := 2p−1
∑2k

q=k+1 ω
2
q ĝ(q), which are unbiased for p−1

∑
k<|l1−l2|≤2k

(1 − ωl1l2)
2σ2

l1l2

and p−1
∑

k<|l1−l2|≤2k
ω2
l1l2
σl1l1σl2l2 , respectively. From (5.2), an unbiased estimator of Nn(k)

is

N̂n(k) := Ŵ (2k) + W̃ (k) + n−1{V̂ (k) + Ṽ (k)}, (5.4)

where Ŵ (2k) and V̂ (k) are estimators used in the estimation of Mn(k) for the banding

estimation. The proposed estimator for kT is

k̂T = argmin
0≤2k≤n

N̂n(k) (5.5)
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by noting that the tapering estimator used 2k as the effective band width. Denote k̃T

to be the smallest minimizer of Nn(k). An analysis on the band widths kT and k̃T

may be carried out in a similar fashion to what we have done for kB and k̃B for the

banding estimator. The ratio convergence of k̂T to kT may be established under certain

conditions. However, it would be more involved to formally establish these results due to

the more complex weighting matrix ΩT (k). We will evaluate the empirical performance

of k̂T in the simulations and the case study in Sections 7 and 8.

6 Extension to Thresholding Estimation

Both the banding and tapering estimators require the variables in X having a natural

ordering such that the correlation decays as two variables are further apart. For covari-

ances not satisfying such ordering, Bickel and Levina (2008b) proposed the thresholding

estimator under the following covariance class:

V(q, c0(p),M) =

{
Σ : σl1l1 ≤M,

p∑
l2=1

|σl1 l2 |q ≤ c0(p), for all l1

}
(6.1)

for a q ∈ (0, 1) and some positive function c0(p). For any p× p matrix M = (ml1l2)p×p,

the thresholding operator is

Ds(M) = (ml1l2I{|ml1 l2| ≥ s})p×p

with a threshold level s. Bickel and Levina (2008b) proposed Dtn(Sn) as an estimator

of Σ, where tn =
√

2t(log p)/n for a positive threshold parameter t, and showed that, if

(log p)/n = o(1),

||Dtn(Sn)− Σ||(2,2) = O
{
c0(p)(log(p)/n)(1−q)/2

}
. (6.2)

Similar estimators have been studied in Rothman, Levina and Zhu (2009) and Cai and

Liu (2011).

Similar to the banding and tapering estimators, the Frobenius risk function for the

thresholding estimator can be explicitly expressed, as shown in the following proposition.

Let φ(·) and Φ̄(·) be the standard normal density and upper tail probability functions,

respectively, and ÕbjD(t,Σ) = E{||Dtn(Sn)− Σ||2F} for tn =
√

2t(log p)/n.

Proposition 3. Suppose log p = o(n1/3) and for any 1 ≤ l ≤ p, there exists a

positive constant Hl such that E
[

exp{t(X1l − µl)2}
]
< ∞ when |t| < Hl, then, for any
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Σ = (σl1l2)p×p, ÕbjD(t,Σ) = ObjD(t,Σ)
(
1 + o(1)

)
, where

ObjD(t,Σ) =

p∑
l1,l2=1

{
g2l1l2
n

[η
(1)
l1l2
φ(η

(1)
l1l2

) + Φ̄(η
(1)
l1l2

) + η
(2)
l1l2
φ(η

(2)
l1l2

) + Φ̄(η
(2)
l1l2

)]

+ σ2
l1l2

[Φ̄(−η(1)l1l2
)− Φ̄(η

(2)
l1l2

)]

}
,

(6.3)

η
(1)
l1l2

=
√
n(tn−σl1l2)/gl1l2, η

(2)
l1l2

=
√
n(tn +σl1l2)/gl1l2 and g2l1l2 = Var{(X1l1−µl1)(X1l2−

µl2)}.

The proof is given in the Supplementary Material. The sub-gaussian condition in

the theorem is required in order to utilize the moderate deviation results. However, if a

standardization is used so that sij =
∑n

l=1(Xli− µi)(Xlj − µj)/n is used to estimate the

underlying marginal variance as in Cai and Liu (2011), the sub-Gaussian assumption

can be relaxed. The standardization allows use of moderate deviation results for self-

normalized statistics, which requires less assumption as shown in Jing, Shao and Wang

(2003).

From Proposition 3, it is seen that ObjD(t,Σ) is the leading order term of ÕbjD(t,Σ).

We will use ObjD(t,Σ) as a substitute of ÕbjD(t,Σ). Under Assumption 2, it can be

shown that g2l1l2 = σl1l1σl2l2 + σ2
l1l2

+ ∆fl1l2 . For simplicity, we focus on the normally

distributed data in this section such that ∆ = 0 and g2l1l2 = σl1l1σl2l2 + σ2
l1l2

. Therefore,

in order to estimate g2l1l2 , it is suffice to estimate σl1l2 .

Note that η
(1)
l1l2

, η
(2)
l1l2

and tn are continuous and differentiable functions. So, ObjD(t,Σ)

is continuous and differentiable with respect to t. Therefore, the minimum of ObjD(t,Σ)

exists on any closed interval [0, B] for B > 0. Define the underlying threshold level as

t0(Σ) = arg min
t∈[0,B]

ObjD(t,Σ) (6.4)

Before we present an algorithm to find an estimate of t0(Σ), we review the cross

validation (CV) approach proposed in Bickel and Levina (2008b), which was designed

to approximate the Frobenius risk ÕbjD(t,Σ). They proposed splitting the original

sample into two groups of size n1 and n2 randomly for N times. In the v-th split, let

Sv1 and Sv2 be the sample covariances based on the two sub-samples, respectively. The

estimated Frobenius risk with respect to t is

R̂D(t) =
1

N

N∑
v=1

||Dtn(Sv1 )− Sv2 ||2F (6.5)
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and the estimated threshold level is

t̂BL = arg min
t∈[0,B]

R̂D(t). (6.6)

Similar approach has been used in Bickel and Levina (2008a) to select the band width for

the banding estimator, and in Cai and Liu (2011) for the adaptive thresholding estimator.

Due to the inconsistence of the sample covariance Sv2 under high dimensionality, R̂D(t)

can be unreliable for ÕbjD(t,Σ), which may result in unstable threshold selection as

revealed in our simulation study.

We propose an iterative procedure for selecting the threshold level t which makes use

of the derived expressions for the Frobenius risk in Proposition 3. We use ÔbjD(t,Dt̂n,BL
(Sn))

for t̂n,BL =
√

2t̂BL(log p)/n as an initial estimate of ObjD(t,Σ) where Dt̂n,BL
(Sn) is the

thresholding estimator of Σ with the Bickel and Levina’s threshold selector t̂BL. In the

computation of ÔbjD(t,Dt̂n,BL
(Sn)), all the gl1l2 , η

(1)
l1l2

and η
(2)
l1l2

appeared in (6.3) are

replaced by their estimates implied under Dt̂n,BL
(Sn). Then, the selected threshold level

in the first iteration is

t̂1 = arg min
t∈[0,B]

ÔbjD(t,Dt̂n,BL
(Sn)), (6.7)

which may be viewed as a refinement of Bickel and Levina’s approach.

Having acquired the t̂h−1 for a h ≥ 1, the h-th iterative threshold estimator is

t̂h = arg min
t∈[0,B]

ÔbjD(t,Dt̂n,h−1
(Sn)), (6.8)

where t̂n,h−1 =
√

2t̂h−1(log p)/n. Simulations given in the next section demonstrate that

the algorithm tends to converge within five iterations and had superior performance over

Bickel and Levina’s CV method.

7 Simulation Results

We report results of simulation studies which were designed to evaluate the empirical

performance of the proposed band width and threshold estimators for the banding,

tapering and thresholding covariance estimators. We also compared with the cross-

validation estimator of Bickel and Levina (2008a,b) and SURE of Yi and Zou (2013).

Independent and identically distributed p-dimensional random vectors were generated

according to

Xi = Σ
1
2Zi, (7.1)
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where Zi = (Zi1, · · · , Zip)
′

and the innovations {Zij}pj=1 were i.i.d. from (i) N(0, 1)

and (ii) the standardized t-distribution with degree of freedom 10 so that they have

zero mean and unit variance. For the tapering estimation, we compared the proposed

band width estimator with SURE of Yi and Zou (2013) for N(0, 1), and the standardized

Gamma(1, 0.5), Gamma(0.5, 1), Gamma(0.3, 1) and Gamma(0.1, 1) distributed innova-

tions, which correspond to the excess kurtosis ∆ being 0, 6, 12, 20 and 60, respectively.

Two designs of covariance structures for Σ = (σl1l2)p×p were considered

(A): σl1l2 = θ−|l1−l2| for θ > 1;

(B): σl1l2 = I(l1 = l2) + ξ|l1 − l2|−βI(l1 6= l2) for ξ ∈ (0, 1) and β > 1,
(7.2)

which prescribe the exponential and polynomial decay, respectively. In the simulation,

we chose θ = 0.7−1, 0.9−1, and ξ = 0.5 and β = 1.5, respectively.

We also considered a covariance structure to confirm the discussion made regard-

ing the unequal diagonal entries associated with the polynomial decay in Section 3.

Specifically, let {σll}hp
′

l=(h−1)p′+1

iid∼ χ2
h for h = 1, · · · , 10, and p′ = p/10. Let Λ =

diag(σ
1/2
11 , · · · , σ

1/2
pp ). The third design (Design (C)) of Σ was

Σ = ΛΨΛ and Ψ = (ρl1l2) with

ρl1l2 = I(l1 = l2) + 0.5|l1 − l2|−1.5I(l1 6= l2).
(7.3)

The random generation of the diagonal elements made the column series {Xi1, · · · , Xip}
under Design (C) non-stationary. Similar designs have been considered in Cai, Liu and

Xia (2013).

When evaluating the thresholding estimator, the normally distributed data were gen-

erated for the covariance structure (A) in (7.2) with θ = 0.7−1 and 0.9−1, as well as a

block diagonal covariance (Design (D)):

Σp×p = diag(Σ
(1)
p/2×p/2,Σ

(2)
p/2×p/2) where Σ(1) and Σ(1) follow

structure (A) with θ = 0.3−1 and 0.9−1, respectively.
(7.4)

To mimic the “large p, small n” paradigm, we chose n = 40, 60 and p = 40, 200, 400

and 1000, respectively. We considered the more conservative band width estimator in

(4.3) that has a wider span of search region. For the banding estimation, comparison has

been made with the cross-validation approach of Bickel and Levina (2008a,b). Similar

to (6.5), the empirically estimated Frobenius risk with respect to the band width k is

R̂(k) =
1

N

N∑
v=1

||Bk(Σ̂
v
1)− Σ̂v

2||2F (7.5)
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and the band width estimator is k̂BL = arg min
k

R̂(k). According to Bickel and Levina

(2008b), we chose n1 = n(1 − 1/ log n) and the number of random splits N = 50. We

choose B = 2.5 in (6.5), (6.7) and (6.8) in the algorithm for the threshold levels. All the

simulation results reported in this section were based on 500 replications.

Tables 1, 2 and 3 report the averages and the standard deviations of the proposed band

width estimators for both the banding and the tapering estimation, and those of Bickel

and Levina (2008a) (BL)’s CV band width estimator, under both the Gaussian and the

standardized t-distributed (degree of freedom 10) innovations with the covariance designs

(A), (B) and (C) specified in (7.2) and (7.3). The tables also provide the underlying

band widths kB and kT , respectively.

It is observed from Tables 1-2 that the proposed band width had smaller bias and

standard deviation than those of the Bickel and Levina’s CV estimators for almost all

the cases in the simulations. The bias and standard deviation of the proposed band

width selector were consistently less than 0.5 for larger p, which may be viewed as

confirmatory to the finding in Theorem 2 that the underlying band widths are within

O1 = [k̂B − 1, k̂B + 1] with overwhelming probability. It is also observed that as p was

increased, both the bias and the standard deviation of the proposed band width estimator

were reduced. This was not necessarily the case for the CV band width selector, most

likely caused by inconsistency sample covariance estimator in the procedure.

Comparing the results of the band widths for the banding and the tapering estimators

in Table 1 and 3 under Design (A), we found that the underlying kB and kT (which were

the same as k̃B and k̃T , respectively) were more responsive to the increase of the sample

size n than to the increase of the dimension p. This may be understood by the fact

that the penalty term (np)−1
∑

|l1−l2|≤k
σl1l1σl2l2 in the objective function decreases as n is

increased. Although there is a division of p in the penalty term, it is absorbed as part of

the averaging process. As a result, the underlying band widths were not sensitive to p

upon given a particular covariance design. It was then not that surprising to see a slight

increase in the variability of the band width estimates with respect to the increase of n.

It is noted from Tables 1 to 3 that the underlying band widths in all the cases satisfied

kT ≤ kB ≤ 2kT , where 2kT was the effective band width of the tapering estimator. This

ordering may be understood by the fact that the weight of the soft thresholding tapering

estimator starts to decline from 1 at band width k to 0 at band width 2k. Under both

the standardized normal and t-distributed (degree of freedom 10) innovations, it was

found that kB = k̃B and kT = k̃T for all the (p, n) combinations under the covariance
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Designs (A)-(C). This was not necessarily the case for more skewed data, for instance the

standardized Gamma(0.1, 1) innovation (which was experimented as part of simulation

for Figure 3), where kB = k̃B − 1 under the covariance Design (A) with θ = 0.7−1,

Designs (B) and (C) for n = 40.

Table 4 reports the average and the standard deviations of the selected threshold

levels by the proposed iterative approach and Bickel and Levina (2008b)’s CV method.

It shows that the selected threshold level from the first iteration were already better

than those of the CV method for having smaller bias and being less variable. The second

iteration improved those of the first significantly, and the improvement continued as the

iteration went. A convergence was largely established within five iterations.

In addition to evaluate the performance of the band width estimation, we also com-

puted the estimation loss for the covariance matrix Σ with the estimated band widths,

and Bickel and Levina’s (BL) as well as Cai and Yuan (2012)’s (CY) adaptive blocking

estimation. Let Σ̂k̂B
and Σ̂k̂T

be the banding and the tapering estimators with the pro-

posed band width selection, respectively; and Σ̂k̂BL
and Σ̂CY be the banding estimator

with BL’s band width selection and Cai and Yuan’s adaptive blocking estimation, re-

spectively. For each of the covariance estimators, say Σ̂, we gathered the spectral loss

||Σ̂ − Σ||(2,2) and the Frobenius loss ||Σ̂ − Σ||F . Figure 1 displays the box plots of the

estimation losses under Design (A) with θ = 0.7−1, Design (B) with ξ = 0.5 and β = 1.5

and the Gaussian innovations. The estimation losses with the standardized t-distributed

(degree of freedom 10) innovation are displayed in Figure 2.

We observe from Figures 1 and 2 that under the spectral norm, the estimation losses

of Σ̂k̂BL
encountered large variance under both the spectral and Frobenius norms, which

was likely caused by the large variation of the BL’s band width estimator shown in Tables

1 and 2. The performance of the block thresholding estimator Σ̂CY was quite variable.

It endured quite large estimation errors in terms of the Frobenius norm under all the

cases considered. While its relative performance was improved under the spectral norm,

the errors were still larger than those of the banding and tapering estimators with the

proposed band width selection methods under the covariance Designs (A) and (B). Under

the Frobenius norm, we observe a significant advantage of the covariance estimation with

the proposed band width selection method. In particular, the losses of the banding and

the tapering estimators with the proposed band widths were substantially less than those

of Σ̂CY and Σ̂k̂BL
. Although Σ̂k̂BL

’s median loss was less than that of Σ̂CY in most cases,

it was much more variable. In contrast, the banding and the tapering estimation with

20



the proposed band widths had the smallest medians and variation. We also observe

that the estimation loss of the tapering estimator was smaller than that of the banding

estimator under Design (A). This is due to that the h(k) function decays gradually as

the band width k was increased. Therefore, the tapering estimator fits these covariance

structures better than the banding estimator. However, under Design (B), the advantage

of the tapering estimator over the banding estimator was much reduced.

The relative performance of the proposed band width selection for the tapering esti-

mator to that of the SURE of Yi and Zou (2013) is displayed in Figure 3. The figure plots

the differences in the absolute bias and the standard deviation between the SURE and

the proposed band width selection under covariance Design (A) with θ = 0.7−1. The

comparison was made under the Gaussian innovation (∆ = 0), and the standardized

Gamma innovations with ∆ = 6, 12, 20 and 60. We recall that ∆ measures the excessive

kurtosis over that of the Gaussian. We observed that the performance of SURE and the

proposed were largely comparable for smaller ∆ and larger n (n = 60). As ∆ got larger

so that the data deviate more from the Gaussian, the performance of SURE was ad-

versely affected. The standard deviation and the bias of the proposed banding estimates

were largely stable with respect to the changing ∆. It is noted that SURE is proposed

under Gaussianity whereas the proposed banding estimation is largely nonparametric.

8 Empirical Study

In this section, we reported an empirical study on a sonar spectrum data set by con-

ducting the banding and tapering covariance estimation with the proposed band width

selection methods. Gorman and Sejnowski (1988a and 1988b) and Yi and Zou (2013)

had analyzed the same data, which are publicly available at the University of California

Irvine Machine Learning Repository. The data set collects the so-called sonar returns

which are the amplitudes of bouncing signals off an object, essentially the return signal

strength over time. The sonar returns were collected from bouncing signals off a metal

cylinder and a cylindrically shaped rock, respectively positioned on a sandy ocean floor.

The data set contains 208 returns, 111 of them from the metal cylinder and 97 from

the rock. A data preprocessing based on the Fourier transform was applied to obtain

the spectral envelope for each sonar return, and each spectral envelope composed of 60

numerical readings in the range 0.0 to 1.0, with each reading representing the energy

within a particular frequency band. Hence, the data dimension p = 60, and there were
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two samples of sizes 111 and 97 respectively.

Gorman and Sejnowski (1988) analyzed the data set by the neural network, aiming

to classify sonar targets to two groups. Yi and Zou (2013) found that there was a quite

obvious decay among entries of the sample covariance along the off-diagonals. They

estimated the covariance matrices for the metal and the rock groups by their SURE-

tuned tapering estimation method. Their analysis suggested the effective band width of

the tapering estimator to be 34 for the rock group.

We consider estimating the covariance matrices by the banding and tapering esti-

mators with the proposed band width selection. The estimated h(k) for the rock and

metal groups are displayed in the upper panel of Figure 4, from which we see that h(k)

decays rapidly as the band width k increases, indicating potential bandable structure

of the covariance. The estimated Frobenius loss M̂n(k) and N̂n(k) for both groups are

displayed in the two lower panels of Figure 4 for both the banding and tapering esti-

mators, respectively. These graphs showed that the band widths which minimize the

Frobenius losses of the banding estimation were 26 and 37 for the rock group and metal

group, respectively. The estimated band widths for the tapering estimation were 17 and

25, and hence the effective band widths were 34 and 50 for the two groups, respectively.

This respected the ordering that kB is between kT and 2kT , which we have observed in

the simulation study.

9 Discussion

Cai and Yuan (CY) (2012) proposed an adaptive covariance estimator through a block

thresholding approach for the normally distributed data with the covariance matrix

class U1(α,C). They showed that such adaptive estimator can achieve the minimax

convergence rate under the spectral norm. The approach of Cai and Yuan (2012) is

“data-driven” up to the initial block size k0 and a thresholding parameter λ, which were

set to be blog pc and 6, respectively. The initial block size k0 functions similarly as the

band width in the banding and tapering estimation. While fixing the initial block size

k0 attains simplicity, it may be less responsive to the different underlying covariance

structures.

The block thresholding estimator can attain the minimax rate of convergence, so can

the tapering estimator of Cai, Zhang and Zhou (2010). It is important and assuring to

have minimax properties. However, the minimax rate tends to be less sensitive when the
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matrix class under consideration is large, for instance the U1(α,C) class. As shown in

Section 3, the rates of the underlying band width kB, which minimizes the Frobenius risk

for the banding estimation are quite responsive to the different forms of sparsity of Σ.

Specifically, the exponential and polynomial decays lead to different rates for kB. This

responsive feature can produce less estimation error. Our simulation study showed that

the banding and the tapering estimators with the proposed band widths outperformed

the block thresholding estimator consistently under the Frobenius norm for all three

covariance designs used in the simulation, which was also the case under the spectral

norm for the two covariance designs with the exponential and polynomial decays. For

the third design of covariance (Design (C)), the performance of the CY’s estimator was

comparable to those of the banding and tapering estimators.

It can be shown that the banding estimation can also reach the minimax convergence

rate under the Frobenius norm at kB, the underlying banding width that minimizes the

Frobenius risk. Under the matrix class considered in Theorem 1, the difference between

ObjB(k̂B) and ObjB(kB) is negligible comparing to ObjB(kB), as revealed by Corollary

1. This leads to the belief that the banding estimation with the estimated banding width

k̂B should also attain the minimax rate under the Frobenius norm for the matrix class

G(ν, q0p). Confirming this theoretically would be an interesting future reserach topic,

given the limited space available for this poaper.

Appendix

A.1 Derivation of (3.3)

In this section, we derive the Frobenius risk for the banding estimation. Without loss

of generality, we assume µ = 0.

The first term on the right hand side of (3.1) can be decomposed as∑
|l1−l2|≤k

(σ̂l1l2 − σl1l2)2 = A1 + A3 − 2A2, (A.1)

where

A1 =
∑

|l1−l2|≤k

(
1

n

n∑
i=1

Xil1Xil2 − σl1l2

)2

, A2 =
∑

|l1−l2|≤k

(
1

n

n∑
i=1

Xil1Xil2 − σl1l2

)
X̄l1X̄l2 ,

A3 =
∑

|l1−l2|≤k

(X̄l1X̄l2)
2.
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Note that

A1 =
1

n2

∑
|l1−l2|≤k

∑
i,j

Xil1Xil2Xjl1Xjl2 −
2

n

∑
|l1−l2|≤k

∑
i

Xil1Xil2σl1l2 +
∑

|l1−l2|≤k

σ2
l1l2
.

Let fl1l2 =
∑

h Γ2
l1h

Γ2
l2h

. For the first term on the right side of the above equation, from

Assumption 2, we have

E
∑

|l1−l2|≤k

∑
i,j

Xil1Xil2Xjl1Xjl2

=
∑

|l1−l2|≤k

{
∗∑
i,j

E(Xil1Xil2)E(Xjl1Xjl2) +
∑
i

E(X2
il1
X2
il2

)}

=
∑

|l1−l2|≤k

{n(n+ 1)σ2
l1l2

+ ∆nfl1l1l2l2 + nσl1l1σl2l2}.

Note that En−1
(∑

iXil1Xil2

)
= σl1l2 . By combining the three parts together,

E(A1) = n−1
∑

|l1−l2|≤k

(σ2
l1l2

+ σl1l1σl2l2 + ∆fl1l2).

For the second term A2, note that

A2 =
∑

|l1−l2|≤k

{
n−3

∑
i,j,m

Xil1Xil2Xjl1Xml2 − n−2
∑
j,m

Xjl1Xml2σl1l2
}
.

The expectation of the first term on the right side of the equation equals to zero whenever

j 6= m. Hence, the expectation of this term equals to E
∑

i,j Xil1Xil2Xjl1Xjl2 , which has

been established above. Also note that the expectation of the second term equals to

n−1σ2
l1l2

. Combine both the terms together, we have the expression for E(A2) as below.

The result for A3 can be derived similarly. To sum up, we have

E(A1) = n−1
∑

|l1−l2|≤k

(σ2
l1l2

+ σl1l1σl2l2 + ∆fl1l2),

E(A2) = n−2
∑

|l1−l2|≤k

(σ2
l1l2

+ σl1l1σl2l2 + ∆fl1l2) and (A.2)

E(A3) = n−2
∑

|l1−l2|≤k

(2σ2
l1l2

+ σl1l1σl2l2 + ∆n−1fl1l2).

Substituting these into (A.1), we have from (3.1) that

ÕbjB(k) =
1

np

∑
|l1−l2|≤k

(σ2
l1l2

+ σl1l1σl2l2 + ∆fl1l2) +
1

p

∑
|l1−l2|>k

σ2
l1l2

− 1

n2p

∑
|l1−l2|≤k

{σl1l1σl2l2 + (2− n−1)∆fl1l2}

=
1

np
tr(Σ2) + (1− n−1)Mn(k) +

∆

np
(1− n−1)2

∑
|l1−l2|≤k

fl1l2 ,

(A.3)
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which leads to (3.3) with Mn(k) being defined in (3.4). �

A.2 Proofs for Results in Section 3

Proof of Lemma 1. The first claim is a direct implication of part (i) of G(ν, q0p), the

definition of h(k) and (3.4).

Since for any Σ ∈ G(ν, q0p), λmax(Σ) < ν < ∞. Let A = Γ′Γ = (Al1l2)m×m, then it

follows that

p−1∑
q=0

∑
|l1−l2|=q

fl1l2 =
∑
l1,l2

fl1l2 =
∑
h

A2
hh ≤ tr(Σ2) ≤ λ2max(Σ)p ≤ ν2p.

Therefore, for the summation of q over any J ⊂ {0, · · · , p− 1}, we have∑
q∈J

|∆|R(q) ≤ |∆|λ2max(Σ)/n ≤ |∆|ν2/n, (A.4)

which implies the second statement. �

Define first order differences of ObjB(q) as:

DiffB(k) := ObjB(k)−ObjB(k − 1) = DM(k) + ∆R(k), (A.5)

where R(k) = (np)−1(1− n−1)
∑
|l1−l2|=k fl1l2 and

DM(k) = Mn(k)−Mn(k − 1) = p−1
∑
|l−j|=k

{n−1σllσjj − h(k)}. (A.6)

In the following, we prove a more detailed version of Lemma 2, which implies that Mn(k)

decrease sharply for k < ka,n and increases sharply for k > kb,n.

Lemma 2A. Under Assumptions 1 and 2 and for Σ ∈ G(ν, q0p), for any constant c ∈
(0, 1) and sufficiently large n,

(i) there exist positive constants C̃1 and C̃2 such that DM(k) < −C̃1/n for k < ka,n

and DM(k) > C̃2/n for kb,n < k < cp;

(ii) k̃B ∈ [ka,n, kb,n] where ka,n ≥ q0p and kb,n = o(n);

(iii) kB ∈ [ka,n − L, kb,n + L] where L = b2|∆|ν4c+ 1.

Proof. Note that for any Σ ∈ G(ν, q0p) and any q,

2(p− q)p−1{σ2
(1)/n− h(q)} ≤ DM(q) ≤ 2(p− q)p−1{σ2

(p)/n− h(q)}. (A.7)
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From (iii) of (2.4), an−1 − h(q) < 0 for q ≤ q0p and n large, which implies that ka,n ≥ q0p

for n large. For any ε > 0, note that, h(q) = o(1/n) for q > εn and n large. Hence,

b/n− h(q) > 0 for any q > εn, which leads to kb,n < εn. Therefore, ka,n ≤ kb,n = o(n).

For the first claim, from (A.7), we have

DM(q) ≤ −2(p− q)p−1σ2
(p)n

−1 ≤ −ν−2n−1 (A.8)

for any q ≤ ka,n, and

DM(q) ≥ 2(1− q/p){σ2
(1)/n− h(q)} ≥ (1− q/p)σ2

(1)/n > (1− c)ν−2n−1 (A.9)

for any kb,n < q < cp.

Since DM(k) changes sign at k̃B from negative to positive and DM(k) > 0 for any

q > kb,n, the first claim indicates k̃B ∈ [ka,n, kb,n]. For k > kb,n + L, we have from (A.4)

and (A.9) that

ObjB(k)−ObjB(kb,n) ≥ Lν−2/(2n)− |∆|ν2/n > 0.

It follows that kB ≤ kb,n + L. Similarly, it can be shown kB ≥ ka,n − L. Therefore, we

have kB ∈ [ka,n − L, kb,n + L] for a positive constant L. �

Proof of Lemma 3. We first prove that (3.7) is equivalent to the statement that for

any small δ > 0 and n large enough,

inf
k:|k−k̃B |>δk̃B

nk̃−1B
{

ObjB(k)−ObjB(k̃B)
}
> C. (A.10)

Note that for any k > k̃B, from (A.5),

nk̃−1B {ObjB(k)−ObjB(k̃B)} = nk̃−1B {Mn(k)−Mn(k̃B)}+ nk̃−1B

k∑
q=k̃B+1

∆R(q).

From (ii) of Lemma 1, for a positive constant C̃, we have
∣∣nk̃−1B ∑k

q=k̃B+1 ∆R(q)
∣∣ ≤ C̃/k̃B,

which converge to 0 since k̃B → ∞ as n → ∞. Therefore, if (3.7) is satisfied, then for

any k such that k− k̃B > δk̃B, nk̃−1B {ObjB(k)−ObjB(k̃B)} > C/2 for n large. The case

for k − k̃B < δk̃B can be proved similarly. Similarly, it can be shown that (A.10) leads

to (3.7). Once (A.10) is satisfied, it directly implicates k̃B/kB → 1. �

Rate of kB under exponential decay sub-class. Suppose h(q) = C(q)θ−q for θ > 1

and {C(q)}p−1q=0 ∈ [C1, C2]. Consider two equations:

a/n = C1θ
−k and b/n = C2θ

−k
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which represent interceptions of two horizontal lines at a/n and b/n to the lower and

upper bound functions of h(k), respectively. The solutions for k are, respectively,

sa,n = (log n− log a+ logC1)/ log θ and sb,n = (log n− log b+ logC2)/ log θ.

Note that for q ≤ sa,n, a/n − h(q) ≤ a/n − C1θ
−q ≤ a/n − C1θ

−sa,n = 0. So, we have

ka,n ≥ sa,n. Similarly, for q ≥ sb,n, b/n− h(q) ≥ b/n− C2θ
−sb,n = 0, which implies that

kb,n < sb,n. Therefore,

k̃B, kB ∼ log(n)/ log(θ) and (A.11)

kb,n − ka,n
ka,n

≤ sb,n − sa,n
sa,n

=
log{(aC2)/(bC1)}

log n− log a+ logC1

→ 0. (A.12)

Also, note that

h(k) ≤ C2θ
−k ≤ C2θ

−sa,n = aC2/(C1n) (A.13)

for any k ∈ [ka,n, kb,n]. And, for any constant r1 ≥ 1,∑
q>k1,n

h(q) ≤
∑

q>sa,n/r1

C2θ
−q ≤ Cθ

− logn
r1 log θ = Cn−1/r1 , (A.14)

where k1,n = ka,n/r1. �

Rate of kB under polynomial decay sub-class. Suppose h(q) = C(q)q−β for

β > 1 and {C(q)}p−1q=0 ∈ [C1, C2]. Similar to the exponential decay sub-class, consider the

equations: a/n = C1q
−β and b/n = C2q

−β. And, their solutions are sa,n = (C1n/a)1/β

and sb,n = (C2n/b)
1/β, respectively. Therefore, we have

k̃B, kB ∼ n1/β and (kb,n − ka,n)/ka,n ≤ C̃ (A.15)

for a positive constant C̃, and∑
q>k1,n

h(q) ≤
∑

q>sa,n/r1

C2q
−β ≤ C2

{
(C1n/a)1/βr−11

}1−β
= Cn(1−β)/β, (A.16)

for any constant r1 ≥ 1. �

A.3 Proof of Theorem 1

To prove Theorem 1, first, we intend to calculate the variance of (p − q)ĥ(q) and ĝ(q).

To this end, we introduce some notations. For q = 0, · · · , p− 1, define
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F1,q =
1

P 2
n

p−q∑
l=1

∗∑
i,j

(XilXi l+q)(XjlXj l+q),

F2,q =
1

P 3
n

p−q∑
l=1

∗∑
i,j,k

XilXk l+q(XjlXj l+q),

F3,q = G3,q =
1

P 4
n

p−q∑
l=1

∗∑
i,j,k,m

XilXj l+qXklXml+q,

G1,q =
1

P 2
n

p−q∑
l=1

∗∑
i,j

X2
ilX

2
j l+q and

G2,q =
1

P 3
n

p−q∑
l=1

∗∑
i,j,k

(
XilXklX

2
j l+q +Xi l+qXk l+qX

2
jl

)
.

Then, Ŵ (k) = 2p−1
∑p−1

q=k+1(F1,q − 2F2,q + F3,q) and V̂ (k) = p−1{G1,0 − G2,0 + G3,0 +

2
∑k

q=1(G1,q − G2,q + G3,q)}. As both ĥ(q) and ĝ(q) are invariant with respect to the

location shift, so is M̂n(k). Hence, without loss of generality, we can assume µ = E(X) =

0. The following lemma presents the variances of Fi,q and Gi,q for i = 1, 2, 3, whose proof

can be found in the Supplementary Material.

Lemma A.1 Under Assumptions 2, if λmax(Σ) ≤ C <∞, for any q = 0, · · · , p− 1,

(i) Var(F1,q) = O{ph(q)n−1+pn−2}, Var(F2,q) = O{ph(q)n−2+pn−3} and Var(F3,q) =

Var(G3,q) = O(pn−4);

(ii) Var(G1,q) = O(pn−1) and Var(G2,q) = O(pn−2).

Proof of Theorem 1. Let S0 = [k1,n, k2,n]. For any δ > 0 and every n, define S1 =

{k : |k − k̃B| ≥ δk̃B} ∩ S0. Then, if k̂B ∈ S1,n, we have supk∈S1
{M̂n(k̃B)− M̂n(k)} ≥ 0.

It follows that,

P (|k̂B − k̃B| ≥ δk̃B) = P (k̂B ∈ S1) ≤ P [sup
k∈S1

{M̂n(k̃B)− M̂n(k)} ≥ 0].

For the term on the right side of the inequality, noting by (3.7), we have infk∈S1{Mn(k)−
Mn(k̃B)} ≥ Ck̃Bn

−1. Hence,

P [sup
k∈S1

{M̂n(k̃B)− M̂n(k)} ≥ 0]

≤P [sup
k∈S1

{M̂n(k̃B)− M̂n(k) +Mn(k)−Mn(k̃B)} ≥ Ck̃Bn
−1].

(A.17)
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Note that E{M̂n(k̃B)− M̂n(k)} = Mn(k̃B)−Mn(k) and

M̂n(k̃B)− M̂n(k) =
2

np

3∑
i=1

k̃B∑
q=k+1

Gi,q −
2

p

3∑
i=1

k̃B∑
q=k+1

Fi,q for k < k̃B, and

M̂n(k̃B)− M̂n(k) =
2

p

3∑
i=1

k∑
q=k̃B+1

Fi,q −
2

np

3∑
i=1

k∑
q=k̃B+1

Gi,q for k > k̃B.

By Lemma A.1, it follows that

Var{M̂n(k̃B)− M̂n(k)} ≤C|k − k̃B|
∑

q∈[k̃B ,k]

{
(pn)−1h(q) + p−1n−2

}
=C{|k − k̃B|(pn)−1o(1) + (k − k̃B)2p−1n−2}.

Therefore, by Chebyshev’s inequality, the probability on the right side of (A.17) can be

bounded by a constant times∑
k∈S1

(pn)−1{|k − k̃B|o(1) + (k − k̃B)2n−1}
k̃2Bn

−2
≤ C

∑
k∈S1

{n(pk̃B)−1o(1) + p−1},

where the inequality above comes from the condition (kb,n − ka,n)/ka,n ≤ C. Note that

|S1| ≤ C(kb,n − ka,n) for a positive constant C. It follows that,

P [sup
k∈S1

{M̂n(k̃B)− M̂n(k)} ≥ 0]

≤ C(kb,n − ka,n){n(pk̃B)−1o(1) + p−1} = O{np−1o(1) + kb,np
−1},

Since kb,n = o(n), the last term in the inequality above is the small order term of np−1.

Noting that n = O(p) by Assumption 1, we have P (|k̂B − k̃B| ≥ δk̃B) = o(n/p)→ 0 for

any δ > 0, which leads to the conclusion that k̂B/k̃B → 1, as n→∞. �
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Table 1: Average and standard deviation in parentheses of the proposed band width

estimators and Bickel and Levina’s CV estimators (BL) for the banding estimation under

the covariance Design (A) with θ−1 = 0.7 and θ−1 = 0.9 in (7.2) for the standardized

normal and t-distributed (degree of freedom 10) innovations.

Covariance (A) with θ−1 = 0.7

Normal t-distribution

n p True Proposed BL True Proposed BL

40 40 5 4.65(1.059) 4.40(1.616) 5 4.82(1.131) 4.69(1.906)

40 200 5 4.71(0.528) 5.06(2.206) 5 4.71(0.537) 5.09(2.315)

40 400 5 4.73(0.442) 5.43(2.516) 5 4.70(0.459) 5.32(2.812)

40 1000 5 4.87(0.332) 5.98(3.510) 5 4.86(0.348) 6.40(3.689)

60 40 5 5.35(1.169) 5.35(1.799) 5 5.34(1.075) 5.46(1.874)

60 200 5 5.26(0.483) 5.65(2.149) 5 5.29(0.482) 6.06(2.367)

60 400 5 5.16(0.372) 6.28(2.865) 5 5.17(0.373) 6.29(2.694)

60 1000 5 5.11(0.308) 6.93(3.695) 5 5.08(0.272) 7.16(3.524)

Covariance (A) with θ−1 = 0.9

40 40 17 17.45(6.329) 17.99(8.154) 17 17.65(6.711) 18.17(8.646)

40 200 17 17.23(2.614) 16.37(4.970) 17 17.27(2.798) 16.22(5.244)

40 400 17 17.12(1.738) 16.38(5.316) 17 17.11(1.938) 16.22(5.489)

40 1000 17 17.02(1.084) 17.84(7.044) 17 16.99(1.049) 17.82(7.257)

60 40 19 19.58(6.894) 22.24(11.38) 19 19.61(6.332) 23.79(10.50)

60 200 19 19.01(2.750) 17.69(4.537) 19 19.09(2.738) 19.18(5.595)

60 400 19 19.05(1.766) 18.89(5.294) 19 18.90(1.769) 18.90(6.969)

60 1000 19 19.00(1.063) 19.93(6.696) 19 18.98(1.167) 20.33(6.887)
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Table 2: Average and standard deviation in parentheses of the proposed band width

estimators and Bickel and Levina’s CV estimators (BL) for the banding estimation under

the covariance Design (B) and (C) with ξ = 0.5 and β = 1.5 in (7.2) for the standardized

normal and t-distributed (degree of freedom 10) innovations.

Covariance (B)

Normal t-distribution

n p True Proposed BL True Proposed BL

40 40 2 1.70(0.585) 1.81(0.948) 2 1.68(0.627) 1.99(1.112)

40 200 2 1.88(0.330) 2.38(1.497) 2 1.88(0.326) 2.47(1.477)

40 400 2 1.96(0.200) 2.81(1.914) 2 1.93(0.256) 3.09(2.095)

40 1000 2 2.00(0.063) 3.33(2.611) 2 1.99(0.082) 3.77(3.060)

60 40 2 2.08(0.511) 2.16(1.079) 2 2.12(0.485) 2.25(1.211)

60 200 2 2.01(0.099) 2.59(1.406) 2 2.01(0.082) 2.91(1.855)

60 400 2 2.00(0.045) 2.98(1.949) 2 2.00( 0 ) 3.08(2.011)

60 1000 2 2.00( 0 ) 3.81(2.769) 2 2.00( 0 ) 4.27(3.040)

Covariance (C)

40 40 2 1.74(0.842) 1.90(1.022) 2 1.80(0.852) 1.98(1.099)

40 200 2 1.76(0.462) 2.38(1.470) 2 1.75(0.461) 2.52(1.636)

40 400 2 1.85(0.369) 2.88(2.060) 2 1.87(0.339) 3.49(2.849)

40 1000 2 1.95(0.214) 3.23(2.360) 2 1.95(0.226) 3.81(3.034)

60 40 2 2.17(0.869) 2.23(1.185) 2 2.16(0.822) 2.38(1.288)

60 200 2 2.05(0.219) 2.74(1.570) 2 2.06(0.273) 2.79(1.689)

60 400 2 2.02(0.147) 3.02(1.874) 2 2.01(0.110) 3.36(2.099)

60 1000 2 2.00 ( 0 ) 3.79(2.666) 2 2.00(0.063) 3.92(2.899)
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Table 3: Average and standard deviation in parentheses of the proposed band width

estimators for the tapering estimation under the covariance Design (A) with θ−1 = 0.7

and θ−1 = 0.9, (B) and (C) with ξ = 0.5 and β = 1.5 in (7.2) and (7.3) for the

standardized normal and t-distributed (degree of freedom 10) innovations.

Normal t-distribution Normal t-distribution

Covariance (A) with θ−1 = 0.7 Covariance (A) with θ−1 = 0.9

n p True Proposed True Proposed True Proposed True Proposed

40 40 3 3.42(0.741) 3 3.50(0.729) 11 10.97(3.251) 11 11.49(3.612)

40 200 3 3.40(0.490) 3 3.38(0.492) 11 11.47(1.691) 11 11.40(1.588)

40 400 3 3.36(0.479) 3 3.29(0.455) 11 11.47(1.205) 11 11.43(1.212)

40 1000 3 3.27(0.442) 3 3.26(0.441) 11 11.37(0.744) 11 11.34(0.766)

60 40 4 3.83(0.789) 4 3.84(0.726) 12 12.26(3.595) 12 12.24(3.118)

60 200 4 3.90(0.342) 4 3.91(0.330) 13 12.61(1.757) 13 12.58(1.420)

60 400 4 3.97(0.176) 4 3.97(0.180) 13 12.66(1.209) 13 12.62(1.157)

60 1000 4 4.00( 0 ) 4 4.00( 0 ) 13 12.70(0.738) 13 12.69(0.818)

Covariance (B) Covariance (C)

n p True Proposed True Proposed True Proposed True Proposed

40 40 2 1.60(0.549) 2 1.62(0.539) 2 1.64(0.677) 2 1.65(0.652)

40 200 2 1.81(0.391) 2 1.81(0.396) 2 1.69(0.463) 2 1.70(0.464)

40 400 2 1.91(0.281) 2 1.90(0.305) 2 1.80(0.400) 2 1.79(0.411)

40 1000 2 1.98(0.140) 2 1.98(0.151) 2 1.92(0.272) 2 1.92(0.278)

60 40 2 1.94(0.403) 2 1.95(0.328) 2 1.93(0.618) 2 1.94(0.629)

60 200 2 2.00( 0 ) 2 2.00( 0 ) 2 1.99(0.155) 2 1.99(0.147)

60 400 2 2.00( 0 ) 2 2.00( 0 ) 2 2.00(0.045) 2 2.00( 0 )

60 1000 2 2.00( 0 ) 2 2.00( 0 ) 2 2.00( 0 ) 2 2.00( 0 )
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Table 4: Empirical average and standard deviation in parentheses of the proposed thresh-

old estimators and Bickel and Levina (BL)’s under the covariance Design (A) in (7.2)

and (D) in (7.4) for the normal distributed data.

Covariance (A) with θ = 0.7−1

n p True BL 1st iteration 2nd iteration 5th iteration

40 40 0.64 0.92(0.177) 0.76(0.104) 0.70(0.090) 0.66(0.095)

40 200 0.86 1.28(0.078) 1.05(0.053) 0.98(0.049) 0.95(0.046)

40 400 0.89 1.38(0.061) 1.13(0.042) 1.06(0.039) 1.03(0.038)

40 1000 0.92 1.48(0.047) 1.21(0.033) 1.15(0.031) 1.13(0.030)

60 40 0.64 0.85(0.171) 0.72(0.120) 0.67(0.116) 0.64(0.121)

60 200 0.85 1.20(0.063) 1.00(0.041) 0.94(0.037) 0.92(0.036)

60 400 0.88 1.25(0.042) 1.05(0.031) 1.00(0.029) 0.98(0.028)

60 1000 0.91 1.31(0.031) 1.11(0.021) 1.06(0.019) 1.04(0.019)

Covariance (A) with θ = 0.9−1

40 40 0 0.09(0.133) 0.06(0.099) 0.04(0.082) 0.02(0.063)

40 200 0.56 0.79(0.098) 0.65(0.070) 0.60(0.064) 0.57(0.064)

40 400 0.65 0.95(0.074) 0.78(0.052) 0.72(0.046) 0.70(0.044)

40 1000 0.72 1.09(0.052) 0.90(0.040) 0.84(0.037) 0.82(0.036)

60 40 0 0.08(0.153) 0.05(0.113) 0.04(0.098) 0.03(0.084)

60 200 0.56 0.76(0.075) 0.64(0.053) 0.60(0.051) 0.58(0.052)

60 400 0.65 0.89(0.059) 0.74(0.040) 0.70(0.035) 0.68(0.034)

60 1000 0.72 1.00(0.037) 0.84(0.028) 0.80(0.026) 0.78(0.025)

Covariance (D)

40 40 0.58 0.76(0.241) 0.62(0.164) 0.58(0.144) 0.54(0.149)

40 200 0.73 1.07(0.082) 0.87(0.054) 0.81(0.050) 0.78(0.051)

40 400 0.78 1.17(0.063) 0.95(0.041) 0.90(0.038) 0.87(0.037)

40 1000 0.83 1.28(0.042) 1.05(0.030) 0.99(0.028) 0.97(0.027)

60 40 0.61 0.79(0.196) 0.67(0.125) 0.63(0.111) 0.61(0.108)

60 200 0.73 1.00(0.079) 0.84(0.049) 0.79(0.046) 0.77(0.047)

60 400 0.78 1.08(0.052) 0.91(0.034) 0.87(0.032) 0.85(0.031)

60 1000 0.82 1.17(0.034) 0.98(0.025) 0.94(0.023) 0.92(0.023)
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Figure 1: Box-plots of the Frobenius and Spectral loss of the banding estimator with

the proposed band width selector (PB) and Bickel and Levina’s selector (BL), the taper-

ing estimator with the proposed band width selector (PT) and Cai and Yuan’s adaptive

blocking estimator (CY) for covariance Deign (A) with θ = 0.7−1 and Design (B) with

ξ = 0.5 and β = 1.5, n = 40, p = 1000 and Gaussian data.

36



P.B. P.T. CY BL

30
40

50
60

70

Frobenius Loss under Design (A)

P.B. P.T. CY BL

80
10

0
12

0
14

0
16

0

Frobenius Loss under Design (C)

P.B. P.T. CY BL

6
8

10
12

14

Spectral Loss under Design (A)

P.B. P.T. CY BL

20
30

40
50

Spectral Loss under Design (C)

Figure 2: Box-plots of the Frobenius and Spectral loss of the banding estimator with the

proposed band width selector (PB) and Bickel and Levina’s selector (BL), the tapering

estimator with the proposed band width selector (PT) and Cai and Yuan’s adaptive block-

ing estimator (CY) for covariance Deign (A) with θ = 0.9−1 and Design (C), n = 60,

p = 1000 and standardized t-distributed (degree of freedom 10) innovation.
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Figure 3: Differences in the absolute bias and standard deviation of SURE and the

proposed band width estimator (SURE minus Proposed) for the tapering estimation under

covariance (A) with θ = 0.7−1 and N(0, 1) (∆ = 0), standardized Gamma distributed

innovation with ∆ = 6, 12, 20, 60.
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Figure 4: Estimated h(k) and estimated Frobenius loss of the banding and the tapering

estimators for the metal and the rock groups of the sonar spectrum data.
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