Sliced space-filling designs with different levels of two-dimensional uniformity

Kang $\mathbf{L i}^{1}$, Bochuan Jiang ${ }^{1,2}$, Mingyao Ai $^{1 *}$
${ }^{1}$ LMAM, School of Mathematical Sciences and Center for Statistical Science, Peking University, Beijing 100871, China
${ }^{2}$ Science and Technology on Complex Land Systems Simulation Laboratory, Beijing 100012, China

Abstract

We consider sliced computer experiments where priori knowledge suggests that factors may have different levels of importance, and so some factors need to be paid more attention than others. A new class of sliced space-filling designs are proposed to deal with this type of sliced computer experiments, in which the whole design and each slice may have different levels of two-dimensional uniformity for different factors, besides they all achieve maximum stratification in univariate margins. They are generated by elaborately randomizing a special type of asymmetric orthogonal arrays, called asymmetric balanced sliced orthogonal arrays, which can be partitioned into several slices such that each slice is balanced and becomes an asymmetric orthogonal array after some level-collapsing. Several methods are developed to construct such asymmetric balanced sliced orthogonal arrays. MSC: Primary 62K15; Secondary 62K10.

Keywords: Asymmetric; Balanced; Computer experiment; Sliced orthogonal array; Sliced space-filling design.

1 Introduction

Sliced space-filling designs, proposed by Qian and Wu (2009), are intended for computer experiments with both qualitative and quantitative factors [Qian Wu and Wu (2008); Han et al.(2009)], linking parameters in engineering and cross-validation. For those sliced designs constructed by Qian and Wu (2009) and Qian (2012), each slice can not achieve the univariate and multiple-dimensional uniformity simultaneously. Recently, Xu, Haaland and Qian (2011) constructed Sudoku-based sliced space-filling designs in which the whole design and each slice all achieve maximum stratification in both univariate and bivariate margins. Ai, Jiang and Li (2014) proposed a general approach to constructing sliced space-filling designs by randomizing symmetric balanced sliced orthogonal arrays (BSOAs) so that the whole design

[^0]and each slice can achieve stratification in two- or more-dimensional projections, in addition to achieving maximum stratification in univariate margins.

In this article, we consider sliced computer experiments where priori knowledge suggests that some factors are more important than others, and so need to be paid more attention. To deal with this issue, we are ready to propose a new class of sliced space-filling designs, in which the whole design and each slice can achieve maximum stratification in any univariate margin, but have different levels of two-dimensional uniformity for different factors. The proposed designs are generated by randomizing asymmetric BSOAs, which are a special class of asymmetric orthogonal arrays whose rows can be partitioned into several slices such that each slice is balanced and also becomes an asymmetric orthogonal array after some level-collapsing. Thus, the more important factors can be assigned to the columns with higher level in an asymmetric BSOA.

The remainder of this article will unfold as follows. A formal definition of asymmetric BSOAs is given in Section 2. Section 3 and Section 4 provide the construction of asymmetric BSOAs via the Kronecker sum and the replacement of levels, respectively. The generation of sliced space-filling designs based on asymmetric BSOAs is presented in Section 5. Section 6 concludes this article with some discussions.

2 Definition of asymmetric BSOAs

An orthogonal array (OA), denoted by $O A\left(n, s_{1}^{\gamma_{1}} \cdots s_{k}^{\gamma_{k}}, t\right.$, with n runs, $m=\sum_{i=1}^{k} \gamma_{i}$ factors and strength $t(m \geq t \geq 1)$, is an $n \times m$ matrix in which the first γ_{1} columns have s_{1} levels from a set of s_{1} elements, the next γ_{2} columns have s_{2} levels from a set of s_{2} elements, and so on, such that every $n \times t$ submatrix contains all possible level combinations as rows with the same frequency. When $s_{1}=\cdots=s_{k}=s$, in particular, this special case is called a symmetric OA and denoted by $O A\left(n, s^{m}, t\right)$; otherwise, it is an asymmetric OA. An array is called balanced if it is an OA of strength one. Throughout, we consider only OAs of strength two and drop the strength parameter in $O A\left(n, s_{1}^{\gamma_{1}} \cdots s_{k}^{\gamma_{k}}, 2\right)$.

Let F be a set of s_{1} elements and G be a set of s_{2} elements with s_{2} dividing s_{1}, denoted by $s_{2} \mid s_{1}$. A level-collapsing projection from F to G, say δ, divides the elements of F into s_{2} groups, each of size $q=s_{1} / s_{2}$, and projects any two elements of F to the same element of G if and only if they belong to the same group. The kernel matrix of δ is an $s_{2} \times q$ matrix in which each row consists of the elements of F in the same group [Qian and Wu (2009)]. For a matrix \boldsymbol{A}, let \boldsymbol{A}^{\prime} denote its transpose. If \boldsymbol{A} takes entries from F, denote $\delta(\boldsymbol{A})$ as the array obtained from \boldsymbol{A} after its entries are collapsed according to δ.

The definition of asymmetric BSOAs is given as follows. Let \boldsymbol{H} be an $O A\left(n_{1}, s_{11}^{\gamma_{1}} \cdots s_{k 1}^{\gamma_{k}}\right)$. Suppose the n_{1} rows of \boldsymbol{H} can be partitioned into v subarrays each with n_{2} rows, denoted by $\boldsymbol{H}_{i}, i=1, \ldots, v$, and each \boldsymbol{H}_{i} becomes an $O A\left(n_{2}, s_{12}^{\gamma_{1}} \cdots s_{k 2}^{\gamma_{k}}\right)$ after the $s_{j 1}$ levels of the $s_{j 1}$-level factors are collapsed to $s_{j 2}$ levels according to some level-collapsing projection δ_{j}, for $j=1, \ldots, k$. Then \boldsymbol{H}, or more precisely $\left(\boldsymbol{H}_{1}^{\prime}, \ldots, \boldsymbol{H}_{v}^{\prime}\right)^{\prime}$, is called a sliced orthogonal array (SOA). For an SOA \boldsymbol{H} in which each slice \boldsymbol{H}_{i} is balanced, it is called a balanced SOA (BSOA). Provided that the $s_{j 1}$'s are not all the same, it is an asymmetric BSOA.

3 Construction of asymmetric BSOAs via Kronecker sum

Similar to the construction of nested OAs with mixed levels in Qian, Ai and Wu (2009), we propose three methods of constructing asymmetric BSOAs via the Kronecker sum. Throughout this section, we consider only the level-collapsing projection δ from an abelian group F to another abelian group G that has the additivity property, i.e., $\delta\left(f_{1}+f_{2}\right)=\delta\left(f_{1}\right)+\delta\left(f_{2}\right)$ for any $f_{1}, f_{2} \in F$.

The Kronecker sum of an $n \times m$ matrix $\boldsymbol{A}=\left(a_{i j}\right)$ and a $u \times v$ matrix $\boldsymbol{B}=\left(b_{l k}\right)$ based on the same abelian group with the addition operation ' + ', is defined to be the $n u \times m v$ matrix $\boldsymbol{A} \oplus \boldsymbol{B}=\left(a_{i j}+\boldsymbol{B}\right)$, where $a_{i j}+\boldsymbol{B}$ denotes the $u \times v$ matrix with entries $a_{i j}+b_{l k}, 1 \leq l \leq u$ and $1 \leq k \leq v$. Let $D(r, c, g)$ denote a difference matrix (DM), which is an $r \times c$ array based on an abelian group \mathcal{A} of g elements such that every element of \mathcal{A} appears equally often in the vector difference between any two columns of the array. Here we present an obvious conclusion for constructing asymmetric OAs in the following lemma for convenience of later use [Wang and Wu (1991)].

Lemma 1. Suppose $\boldsymbol{A}=\left(\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k}\right)$ is an $O A\left(n, s_{1}^{\gamma_{1}} \cdots s_{k}^{\gamma_{k}}\right)$, where \boldsymbol{A}_{j} is the subarray corresponding to the s_{j}-level factors with levels from an abelian group \mathcal{A}_{j}. Let \boldsymbol{B}_{j} be a $D\left(r, c_{j}, s_{j}\right)$ based on \mathcal{A}_{j}, for $j=1, \ldots, k$. Then $\boldsymbol{H}=\left(\boldsymbol{A}_{1} \oplus \boldsymbol{B}_{1}, \ldots, \boldsymbol{A}_{k} \oplus \boldsymbol{B}_{k}\right)$ is an $O A\left(n r, s_{1}^{\gamma_{1} c_{1}} \cdots s_{k}^{\gamma_{k} c_{k}}\right)$.

3.1 Using sliced orthogonal arrays and difference matrices

This construction makes use of SOAs and difference matrices. For $j=1, \ldots, k$, let $s_{j 1} \geq s_{j 2}>1$ with $s_{j 2} \mid s_{j 1}, F_{j}$ be an abelian group of $s_{j 1}$ elements, G_{j} be an abelian group of $s_{j 2}$ elements, and δ_{j} be a level-collapsing projection from F_{j} to G_{j}, where the $s_{j 1}$'s are assumed to be all distinct. Suppose $\boldsymbol{A}=\left(\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k}\right)$ is an SOA with v slices, where \boldsymbol{A} is an $O A\left(n_{1}, s_{11}^{\gamma_{1}} \cdots s_{k 1}^{\gamma_{k}}\right), \boldsymbol{A}_{j}=\left(\boldsymbol{A}_{j 1}^{\prime}, \ldots, \boldsymbol{A}_{j v}^{\prime}\right)^{\prime}$ is the subarray of \boldsymbol{A} corresponding to the $s_{j 1^{-}}$ level factors with levels from F_{j}, and each slice $\left(\boldsymbol{A}_{1 i}, \ldots, \boldsymbol{A}_{k i}\right)$ becomes an $O A\left(n_{2}, s_{12}^{\gamma_{1}} \cdots s_{k 2}^{\gamma_{k}}\right)$ after the levels of the $s_{j 1}$-level factors are collapsed according to δ_{j}, for $j=1, \ldots, k$ and $i=1, \ldots, v$.

Furthermore, for $j=1, \ldots, k$, let \boldsymbol{B}_{j} be a $D\left(r, c_{j}, s_{j 1}\right)$ based on F_{j}. Put

$$
\boldsymbol{H}=\left(\boldsymbol{A}_{1} \oplus \boldsymbol{B}_{1}, \ldots, \boldsymbol{A}_{k} \oplus \boldsymbol{B}_{k}\right) \text { and } \boldsymbol{H}_{i}=\left(\boldsymbol{A}_{1 i} \oplus \boldsymbol{B}_{1}, \ldots, \boldsymbol{A}_{k i} \oplus \boldsymbol{B}_{k}\right)
$$

for $i=1, \ldots, v$. Note that $\delta_{j}\left(\boldsymbol{B}_{j}\right)$ is a $D\left(r, c_{j}, s_{j 2}\right)$, for $j=1, \ldots, k$. By using the additivity property of δ_{j} 's and Lemma 1, the following theorem is obtained.

Theorem 1. If each slice of \boldsymbol{A}_{j} is balanced or \boldsymbol{B}_{j} is balanced for $j=1, \ldots, k$, we have
(i) the matrix \boldsymbol{H} is an $O A\left(n_{1} r, s_{11}^{\gamma_{1} c_{1}} \cdots s_{k 1}^{\gamma_{k} c_{k}}\right)$;
(ii) each slice \boldsymbol{H}_{i} is balanced and becomes an $O A\left(n_{2} r, s_{12}^{\gamma_{1} c_{1}} \cdots s_{k 2}^{\gamma_{k} c_{k}}\right)$ after the levels of the $s_{j 1}$-level factors are collapsed according to δ_{j}, for $j=1, \ldots, k$ and $i=1, \ldots, v$.

Example 1. Let $\boldsymbol{A}=\left(\boldsymbol{A}_{1}, \boldsymbol{A}_{2}\right)$ be an $O A\left(24,6^{1} 4^{1}\right)$, where \boldsymbol{A}_{1} corresponds to the six-level factor with levels from the residue ring $\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$ and \boldsymbol{A}_{2} corresponds to the four-level factor with levels from $\mathbb{Z}_{2} \times \mathbb{Z}_{2}=\{00,01,10,11\}$. For $i_{1}, i_{2}=0,1$, let $\left(\boldsymbol{A}_{1,2 i_{1}+i_{2}}, \boldsymbol{A}_{2,2 i_{1}+i_{2}}\right)$ be the slice of \boldsymbol{A}, where $\boldsymbol{A}_{1,2 i_{1}+i_{2}}$ takes elements from $\left\{3 i_{1}, 3 i_{1}+1,3 i_{1}+2\right\}$ and $\boldsymbol{A}_{2,2 i_{1}+i_{2}}$ takes elements from $\left\{i_{2} 0, i_{2} 1\right\}$. Define the projection δ_{1} as $\{0,3\} \rightarrow 0,\{1,4\} \rightarrow 1$ and $\{2,5\} \rightarrow 2$, and δ_{2} as $\{00,10\} \rightarrow 0$ and $\{01,11\} \rightarrow 1$. Furthermore, let \boldsymbol{B}_{1} be the balanced $D(12,5,6)$ [Johnson, Dulmage and Mendelsohn (1961)], given in transpose by

$$
\left(\begin{array}{llllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 0 & 1 & 2 & 3 & 4 & 5 \\
0 & 3 & 0 & 1 & 3 & 5 & 2 & 2 & 5 & 4 & 1 & 4 \\
0 & 2 & 1 & 5 & 5 & 3 & 3 & 4 & 2 & 1 & 0 & 4 \\
0 & 4 & 5 & 4 & 2 & 1 & 2 & 0 & 3 & 1 & 3 & 5 \\
0 & 0 & 2 & 2 & 1 & 1 & 3 & 5 & 4 & 4 & 5 & 3
\end{array}\right)
$$

and \boldsymbol{B}_{2} be the balanced $D(12,11,4)$ [Seberry (1979)], given by

$$
\left(\begin{array}{lllllllllll}
00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 \\
00 & 00 & 01 & 01 & 01 & 11 & 11 & 11 & 10 & 10 & 10 \\
00 & 00 & 11 & 11 & 11 & 10 & 10 & 10 & 01 & 01 & 01 \\
11 & 01 & 10 & 01 & 11 & 01 & 10 & 00 & 11 & 00 & 10 \\
11 & 01 & 11 & 10 & 01 & 00 & 01 & 10 & 10 & 11 & 00 \\
11 & 01 & 01 & 11 & 10 & 10 & 00 & 01 & 00 & 10 & 11 \\
01 & 10 & 11 & 00 & 10 & 01 & 00 & 11 & 01 & 11 & 10 \\
01 & 10 & 10 & 11 & 00 & 11 & 01 & 00 & 10 & 01 & 11 \\
01 & 10 & 00 & 10 & 11 & 00 & 11 & 01 & 11 & 10 & 01 \\
10 & 11 & 01 & 10 & 00 & 01 & 11 & 10 & 01 & 00 & 11 \\
10 & 11 & 00 & 01 & 10 & 10 & 01 & 11 & 11 & 01 & 00 \\
10 & 11 & 10 & 00 & 01 & 11 & 10 & 01 & 00 & 11 & 01
\end{array}\right) .
$$

Put $\boldsymbol{H}=\left(\boldsymbol{A}_{1} \oplus \boldsymbol{B}_{1}, \boldsymbol{A}_{2} \oplus \boldsymbol{B}_{2}\right)$ and $\boldsymbol{H}_{i}=\left(\boldsymbol{A}_{1, i} \oplus \boldsymbol{B}_{1}, \boldsymbol{A}_{2, i} \oplus \boldsymbol{B}_{2}\right)$ for $i=0,1,2,3$. From Theorem 1, we know that \boldsymbol{H} is an $O A\left(288,6^{5} 4^{11}\right)$, each slice \boldsymbol{H}_{i} is balanced and becomes an $O A\left(72,3^{5} 2^{11}\right)$ after the levels of the six-level factors are collapsed according to δ_{1} and the levels of the four-level factors are collapsed according to δ_{2}, for $i=0,1,2,3$.

3.2 Using orthogonal arrays and sliced difference matrices

This construction makes use of OAs and sliced difference matrices (SDMs). For $j=$ $1, \ldots, k$, let $s_{j 1} \geq s_{j 2}>1$ with $s_{j 2} \mid s_{j 1}, F_{j}$ be an abelian group of $s_{j 1}$ elements, G_{j} be an abelian group of $s_{j 2}$ elements, and δ_{j} be a level-collapsing projection from F_{j} to G_{j}, where the $s_{j 1}$'s are assumed to be all distinct. Suppose $\boldsymbol{A}=\left(\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k}\right)$ is an $O A\left(n, s_{11}^{\gamma_{1}} \cdots s_{k 1}^{\gamma_{k}}\right)$, where \boldsymbol{A}_{j} is the subarray of \boldsymbol{A} corresponding to the $s_{j 1}$-level factors with levels from F_{j}, for $j=1, \ldots, k$.

Furthermore, for $j=1, \ldots, k$, let $\boldsymbol{B}_{j}=\left(\boldsymbol{B}_{j 1}^{\prime}, \ldots, \boldsymbol{B}_{j v}^{\prime}\right)^{\prime}$ be an SDM with v slices, i.e., \boldsymbol{B}_{j} is a $D\left(r_{1}, c_{j}, s_{j 1}\right)$ based on F_{j}, each $\boldsymbol{B}_{j i}$ is a submatrix of \boldsymbol{B}_{j} and $\delta_{j}\left(\boldsymbol{B}_{j i}\right)$ is a $D\left(r_{2}, c_{j}, s_{j 2}\right)$, for $i=1, \ldots, v$. Put

$$
\boldsymbol{H}=\left(\boldsymbol{A}_{1} \oplus \boldsymbol{B}_{1}, \ldots, \boldsymbol{A}_{k} \oplus \boldsymbol{B}_{k}\right) \text { and } \boldsymbol{H}_{i}=\left(\boldsymbol{A}_{1} \oplus \boldsymbol{B}_{1 i}, \ldots, \boldsymbol{A}_{k} \oplus \boldsymbol{B}_{k i}\right)
$$

for $i=1, \ldots, v$. Note that $\left(\delta_{1}\left(\boldsymbol{A}_{1}\right), \ldots, \delta_{k}\left(\boldsymbol{A}_{k}\right)\right)$ is an $O A\left(n, s_{12}^{\gamma_{1}} \cdots s_{k 2}^{\gamma_{k}}\right)$. By using the additivity property of δ_{j} 's and Lemma 1 , the following theorem is obtained.

Theorem 2. For the matrix \boldsymbol{H} constructed above, we have
(i) the matrix \boldsymbol{H} is an $O A\left(n r_{1}, s_{11}^{\gamma_{1} c_{1}} \cdots s_{k 1}^{\gamma_{k} c_{k}}\right)$;
(ii) each slice \boldsymbol{H}_{i} is balanced and becomes an $O A\left(n r_{2}, s_{12}^{\gamma_{1} c_{1}} \cdots s_{k 2}^{\gamma_{k} c_{k}}\right)$ after the levels of the $s_{j 1}$-level factors are collapsed according to δ_{j}, for $j=1, \ldots, k$ and $i=1, \ldots, v$.

Galois fields are widely used to construct OAs and DMs in virtue of their attractive algebraic structures. For any prime p and integer $u \geq 1$, there exists a Galois field $G F\left(p^{u}\right)$ of order p^{u} with a primitive irreducible polynomial in x of degree u. Any element $f(x)$ of $G F\left(p^{u}\right)$ has the general expression $f(x)=a_{0}+a_{1} x+\cdots+a_{u-1} x^{u-1}$, where $a_{i} \in G F(p)$, $0 \leq i \leq u-1$ and $G F(p)=\{0,1, \ldots, p-1\}$ is the residue field modulo p. Taking advantage of Galois fields, we now give an example that implements the method in Theorem 2.

Example 2. According to the construction method in Theorem 6.6 of Hedayat, Sloane and Stufken (1999), we obtain a $D(8,8,4)$ based on $G F(4)$, denoted by \boldsymbol{D}_{1}. Let $\boldsymbol{c}=(0,1, x, x+1)^{\prime}$ based on $G F(4)$ and $\boldsymbol{a}=\left(0,1, x, x+1, x^{2}, x^{2}+1, x^{2}+x, x^{2}+x+1\right)^{\prime}$ based on $G F(8)$. Put $\boldsymbol{A}_{1}=\boldsymbol{c} \oplus \boldsymbol{D}_{1}, \boldsymbol{A}_{2}=\left(\boldsymbol{a}^{\prime}, \boldsymbol{a}^{\prime}, \boldsymbol{a}^{\prime}, \boldsymbol{a}^{\prime}\right)^{\prime}$ and $\boldsymbol{A}=\left(\boldsymbol{A}_{1}, \boldsymbol{A}_{2}\right)$. Following Theorem 9.15 of Hedayat, Sloane and Stufken (1999), we know that \boldsymbol{A} is an $O A\left(32,4^{8} 8^{1}\right)$. Let \boldsymbol{B}_{11} be the multiplication table of $G F(4)$ and $\boldsymbol{B}_{12}=\boldsymbol{B}_{11}+1$. It can be verified that $\boldsymbol{B}_{1}=\left(\boldsymbol{B}_{11}^{\prime}, \boldsymbol{B}_{12}^{\prime}\right)^{\prime}$ is a $D(8,4,4)$ and each $\delta_{1}\left(\boldsymbol{B}_{1 i}\right)$ is an $D(4,4,2)$ based on $G F(2)$ for $i=1,2$. Here δ_{1} is defined as $\{0, x\} \rightarrow 0$ and $\{1, x+1\} \rightarrow 1$. Furthermore, by using the method in Lemma 4 of Ai, Jiang and Li (2014), we can obtain an $S D M \boldsymbol{B}_{2}=\left(\boldsymbol{B}_{21}^{\prime}, \boldsymbol{B}_{22}^{\prime}\right)^{\prime}$, where \boldsymbol{B}_{2} is a $D(8,4,8)$ based on $G F(8)$ and each $\delta_{2}\left(\boldsymbol{B}_{2 i}\right)$ is a $D(4,4,4)$ based on $G F(4)$ for $i=1,2$. Here δ_{2} is defined as $\left\{0, x^{2}+x+1\right\} \rightarrow 0$, $\left\{1, x^{2}+x\right\} \rightarrow 1,\left\{x, x^{2}+1\right\} \rightarrow x$ and $\left\{x+1, x^{2}\right\} \rightarrow x+1$. From Theorem 2, we know that \boldsymbol{H} is an $O A\left(256,4^{32} 8^{4}\right)$, each slice \boldsymbol{H}_{i} is balanced and becomes an $O A\left(128,2^{32} 4^{4}\right)$ after the levels of the four-level factors are collapsed according to δ_{1} and the levels of the eight-level factors are collapsed according to δ_{2}, for $i=1,2$.

3.3 Using a special two-tuple column and difference matrices

Wang (1996) proposed an approach to constructing asymmetric OAs with more flexible runs by using a special two-tuple column and mixed DMs. Here we embed balanced and sliced structures in it to construct asymmetric BSOAs.

For $j=1,2$, let $s_{j 1} \geq s_{j 2}>1$ with $s_{j 2} \mid s_{j 1}, F_{j}$ be an abelian group of $s_{j 1}$ elements, G_{j} be an abelian group of $s_{j 2}$ elements, δ_{j} be a level-collapsing projection from F_{j} to G_{j}, and Γ_{j} be the $s_{j 2} \times q_{j}$ kernel matrix of δ_{j} with $q_{j}=s_{j 1} / s_{j 2}$. Denote by $F_{1} \times F_{2}$ the set $\left\{\left(f_{1}, f_{2}\right) \mid f_{1} \in F_{1}, f_{2} \in F_{2}\right\}$ and $G_{1} \times G_{2}$ is similarly defined. Let δ_{0} be the level-collapsing projection from $F_{1} \times F_{2}$ to $G_{1} \times G_{2}$, defined by $\delta_{0}\left(\left(f_{1}, f_{2}\right)\right)=\left(\delta_{1}\left(f_{1}\right), \delta_{2}\left(f_{2}\right)\right)$. Furthermore, for $j=1,2$, define $\sigma_{j}\left(\left(a_{1}, a_{2}\right)\right)=a_{j}$ for any two-tuple $\left(a_{1}, a_{2}\right)$ and $\sigma_{j}(\boldsymbol{A})$ to be the matrix obtained by putting the operation σ_{j} on all two-tuple entries of a matrix \boldsymbol{A}.

Let \boldsymbol{a} be the column consisting of all two-tuples in $F_{1} \times F_{2}$. For $l_{1}=1, \ldots, q_{1}$ and $l_{2}=1, \ldots, q_{2}$, take $i=\left(l_{1}-1\right) q_{2}+l_{2}$ and let \boldsymbol{a}_{i} be the slice consisting of all two-tuples with
the first element from the l_{1}-th column of $\boldsymbol{\Gamma}_{1}$ and the second one from the l_{2}-th column of $\boldsymbol{\Gamma}_{2}$. It can be seen that each $\delta_{0}\left(\boldsymbol{a}_{i}\right)$ is simply the column consisting of all two-tuples in $G_{1} \times G_{2}$, for $i=1, \ldots, q_{1} q_{2}$.

Furthermore, for $j=1,2$, let \boldsymbol{B}_{j} be a $D\left(r, k_{j}, s_{j 1}\right)$ based on F_{j}. Suppose we can further construct a $D\left(r, k_{0}, s_{11} s_{21}\right)$ based on $F_{1} \times F_{2}$, denoted by \boldsymbol{B}_{0}. Put

$$
\boldsymbol{H}=\left(\boldsymbol{a} \oplus \boldsymbol{B}_{0}, \sigma_{1}(\boldsymbol{a}) \oplus \boldsymbol{B}_{1}, \sigma_{2}(\boldsymbol{a}) \oplus \boldsymbol{B}_{2}\right) \text { and } \boldsymbol{H}_{i}=\left(\boldsymbol{a}_{i} \oplus \boldsymbol{B}_{0}, \sigma_{1}\left(\boldsymbol{a}_{i}\right) \oplus \boldsymbol{B}_{1}, \sigma_{2}\left(\boldsymbol{a}_{i}\right) \oplus \boldsymbol{B}_{2}\right)
$$

for $i=1, \ldots, q_{1} q_{2}$. The following result is obtained.
Theorem 3. If the three \boldsymbol{B}_{j} 's are all balanced, and both $\left(\sigma_{1}\left(\boldsymbol{B}_{0}\right), \boldsymbol{B}_{1}\right)$ and $\left(\sigma_{2}\left(\boldsymbol{B}_{0}\right), \boldsymbol{B}_{2}\right)$ are DMs, we have
(i) the matrix \boldsymbol{H} is an $O A\left(r s_{11} s_{21},\left(s_{11} s_{21}\right)^{k_{0}} s_{11}^{k_{1}} s_{21}^{k_{2}}\right)$;
(ii) each slice \boldsymbol{H}_{i} is balanced and becomes an $O A\left(r s_{12} s_{22},\left(s_{12} s_{22}\right)^{k_{0}} s_{12}^{k_{1}} s_{22}^{k_{2}}\right)$ after the levels of the $s_{11} s_{21}$-level factors are collapsed according to δ_{0} and the levels of the $s_{j 1}$-level factors are collapsed according to δ_{j}, for $j=1,2$ and $i=1, \ldots, q_{1} q_{2}$.

Proof. Note that \boldsymbol{a} is the column consisting of all two-tuples in $F_{1} \times F_{2}$. Under the conditions of Theorem 3, the unique theorem in Wang (1996) shows that the matrix \boldsymbol{H} constructed above is an $O A\left(\operatorname{rs}_{11} s_{21},\left(s_{11} s_{21}\right)^{k_{0}} s_{11}^{k_{1}} s_{21}^{k_{2}}\right)$. The part (i) of this theorem follows.

Now we are ready to prove the part (ii). First, because the three \boldsymbol{B}_{j} 's are all balanced, we know that each slice \boldsymbol{H}_{i} is also balanced. Next, recall that each $\delta_{0}\left(\boldsymbol{a}_{i}\right)$ is exactly the column consisting of all two-tuples in $G_{1} \times G_{2}$ for $i=1, \ldots, q_{1} q_{2}$. Moreover, it is easy to verify that $\delta_{j}\left(\sigma_{j}\left(\boldsymbol{a}_{i}\right)\right)=\sigma_{j}\left(\delta_{0}\left(\boldsymbol{a}_{i}\right)\right)$ for $j=1,2$. Finally, by using the additivity property of δ_{j} 's, we know that the three \boldsymbol{B}_{j} 's, $\left(\sigma_{1}\left(\boldsymbol{B}_{0}\right), \boldsymbol{B}_{1}\right)$ and $\left(\sigma_{2}\left(\boldsymbol{B}_{0}\right), \boldsymbol{B}_{2}\right)$ are all still DMs after the above level-collapsings are performed. So the part (ii) of this theorem follows again by applying the theorem in Wang (1996).

Now we present a method modified from that in Lemma 7 of Qian, Ai and Wu (2009) to construct a class of the foregoing matrices $\boldsymbol{B}_{1}, \boldsymbol{B}_{2}$ and \boldsymbol{B}_{0}. For $j=1,2$, let $\tilde{\boldsymbol{B}}_{j}=\left(\tilde{\boldsymbol{B}}_{j 0}, \tilde{\boldsymbol{B}}_{j 1}\right)$ be a balanced $D\left(r_{j}, c_{j}, s_{j}\right)$ based on F_{j}, where $\tilde{\boldsymbol{B}}_{j 0}$ has c_{0} columns for some $1 \leq c_{0}<$ $\min \left(c_{1}, c_{2}\right)$. Denote $\mathbf{0}_{n}$ as an $n \times 1$ vector of zeros. Put $\boldsymbol{B}_{1}=\tilde{\boldsymbol{B}}_{11} \oplus \mathbf{0}_{r_{2}}$ and $\boldsymbol{B}_{2}=\mathbf{0}_{r_{1}} \oplus \tilde{\boldsymbol{B}}_{21}$. Finally, obtain an $r_{1} r_{2} \times c_{0}$ matrix \boldsymbol{B}_{0} whose $\left((i-1) r_{2}+j, k\right)$-th entry is the two-tuple with the first element being the (i, k)-th entry of \boldsymbol{B}_{10} and the second one being the (j, k)-th entry of $\tilde{\boldsymbol{B}}_{20}$, for $1 \leq i \leq r_{1}, 1 \leq j \leq r_{2}$ and $1 \leq k \leq c_{0}$. Then it can be verified that \boldsymbol{B}_{0} is a balanced $D\left(r_{1} r_{2}, c_{0}, s_{1} s_{2}\right), \boldsymbol{B}_{j}$ is a balanced $D\left(r_{1} r_{2}, c_{j}-c_{0}, s_{j}\right)$ and $\left(\sigma_{j}\left(\boldsymbol{B}_{0}\right), \boldsymbol{B}_{j}\right)$ is a $D\left(r_{1} r_{2}, c_{j}, s_{j}\right)$, for $j=1,2$.

Example 3. Let \boldsymbol{a} be the column consisting of all two-tuples in $G F(4) \times G F(3)$. The transpose of $\left(\boldsymbol{a}, \sigma_{1}(\boldsymbol{a}), \sigma_{2}(\boldsymbol{a})\right)$ is given by

$$
\left(\begin{array}{cccccccccccc}
(0,0) & (0,1) & (0,2) & (1,0) & (1,1) & (1,2) & (x, 0) & (x, 1) & (x, 2) & (x+1,0) & (x+1,1) & (x+1,2) \\
0 & 0 & 0 & 1 & 1 & 1 & x & x & x & x+1 & x+1 & x+1 \\
0 & 1 & 2 & 0 & 1 & 2 & 0 & 1 & 2 & 0 & 1 & 2
\end{array}\right) .
$$

Define the projection δ_{1} as $\{0, x\} \rightarrow 0$ and $\{1, x+1\} \rightarrow 1$, and δ_{2} to project any element to itself. Let \boldsymbol{a}_{1} be the first six elements of \boldsymbol{a} and \boldsymbol{a}_{2} be the remaining six elements. Furthermore, let

$$
\tilde{\boldsymbol{B}}_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 & x & x+1 \\
x & x+1 & 1 \\
x+1 & 1 & x
\end{array}\right) \quad \text { and } \quad \tilde{\boldsymbol{B}}_{2}=\left(\begin{array}{cc}
0 & 0 \\
1 & 2 \\
2 & 1
\end{array}\right) .
$$

It is obvious that $\tilde{\boldsymbol{B}}_{1}$ is a balanced $D(4,3,4)$ based on $G F(4)$ and $\tilde{\boldsymbol{B}}_{2}$ is a balanced $D(3,2,3)$ based on $G F(3)$. By taking $c_{0}=1$ in the preceding method, we can construct $\left(\boldsymbol{B}_{0}, \boldsymbol{B}_{1}, \boldsymbol{B}_{2}\right)$ as given in transpose by

$$
\left(\begin{array}{cccccccccccc}
(0,0) & (0,1) & (0,2) & (1,0) & (1,1) & (1,2) & (x, 0) & (x, 1) & (x, 2) & (x+1,0) & (x+1,1) & (x+1,2) \\
0 & 0 & 0 & x & x & x & x+1 & x+1 & x+1 & 1 & 1 & 1 \\
0 & 0 & 0 & x+1 & x+1 & x+1 & 1 & 1 & 1 & x & x & x \\
0 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 1
\end{array}\right) .
$$

Put $\boldsymbol{H}=\left(\boldsymbol{a} \oplus \boldsymbol{B}_{0}, \sigma_{1}(\boldsymbol{a}) \oplus \boldsymbol{B}_{1}, \sigma_{2}(\boldsymbol{a}) \oplus \boldsymbol{B}_{2}\right)$ and $\boldsymbol{H}_{i}=\left(\boldsymbol{a}_{i} \oplus \boldsymbol{B}_{0}, \sigma_{1}\left(\boldsymbol{a}_{i}\right) \oplus \boldsymbol{B}_{1}, \sigma_{2}\left(\boldsymbol{a}_{i}\right) \oplus \boldsymbol{B}_{2}\right)$ for $i=1,2$. From Theorem 3, \boldsymbol{H} is an $O A\left(144,12^{1} 4^{2} 3^{1}\right)$, each slice \boldsymbol{H}_{i} is balanced and becomes an $O A\left(72,6^{1} 2^{2} 3^{1}\right)$ after the levels of the 12-level factor are collapsed according to δ_{0} and the levels of the four-level factors are collapsed according to δ_{1}, for $i=1,2$.

4 Construction of asymmetric BSOAs via the replacement of levels

In this section, we propose another approach to constructing asymmetric BSOAs from symmetric BSOAs by applying the replacement of levels [Hedayat, Sloane and Stufken (1999)]. Suppose $\boldsymbol{A}=\left(\boldsymbol{A}_{1}^{\prime}, \ldots, \boldsymbol{A}_{v}^{\prime}\right)^{\prime}$ is a symmetric BSOA, where \boldsymbol{A} is an $O A\left(n_{1}, s_{1}^{m_{1}}\right)$, each \boldsymbol{A}_{i} is balanced and there is a level-collapsing projection δ_{1} such that $\delta_{1}\left(\boldsymbol{A}_{i}\right)$ is an $O A\left(n_{2}, s_{2}^{m_{1}}\right)$, for $i=1, \ldots, v$. Furthermore, suppose $\boldsymbol{B}=\left(\boldsymbol{B}_{1}^{\prime}, \ldots, \boldsymbol{B}_{q}^{\prime}\right)^{\prime}$ is a symmetric SOA, where $q=s_{1} / s_{2}, \boldsymbol{B}$ is an $O A\left(s_{1}, r_{1}^{m_{2}}\right)$ and there is a level-collapsing projection δ_{2} such that each $\delta_{2}\left(\boldsymbol{B}_{i}\right)$ is the same $O A\left(s_{2}, r_{2}^{m_{2}}\right)$, for $i=1, \ldots, q$. Let $\boldsymbol{\Gamma}_{1}$ be the $s_{2} \times q$ kernel matrix of δ_{1}. For each of the first $k\left(\leq m_{1}\right)$ factors in \boldsymbol{A}, take the following two steps.

Labeling: Arbitrarily label the s_{2} rows of $\boldsymbol{\Gamma}_{1}$ by $1,2, \ldots, s_{2}$. Then label the i-th rows of $\boldsymbol{B}_{1}, \ldots, \boldsymbol{B}_{q}$ by a random permutation of the q levels in the row of $\boldsymbol{\Gamma}_{1}$ labeled by i, for $i=1, \ldots, s_{2}$.

Replacing: Replace each level of the factor in \boldsymbol{A} with the row of \boldsymbol{B} labeled by the level.
Let $\boldsymbol{H}=\left(\boldsymbol{H}_{1}^{\prime}, \ldots, \boldsymbol{H}_{v}^{\prime}\right)^{\prime}$ denote the resulting matrix after the above process is successively carried out for each of the first k factors in \boldsymbol{A}. The following result is obtained.

Theorem 4. For the matrix \boldsymbol{H} constructed above, we have
(i) the matrix \boldsymbol{H} is an $O A\left(n_{1}, r_{1}^{k m_{2}} s_{1}^{m_{1}-k}\right)$;
(ii) each slice \boldsymbol{H}_{i} is balanced and becomes an $O A\left(n_{2}, r_{2}^{k m_{2}} s_{2}^{m_{1}-k}\right)$ after the levels of the r_{1} level factors are collapsed according to δ_{2} and the levels of the s_{1}-level factors are collapsed according to δ_{1}, for $i=1, \ldots, v$.

Proof. By noting that the s_{1} levels of each of the first k factors in \boldsymbol{A} are replaced by the s_{1} rows of \boldsymbol{B} one by one, part (i) of Theorem 4 is easy to verify.

Each \boldsymbol{A}_{i} is balanced, so each \boldsymbol{H}_{i} is also balanced for $i=1, \ldots, v$. Since the levels in the same row of $\boldsymbol{\Gamma}_{1}$ are collapsed to the same one and $\delta_{2}\left(\boldsymbol{B}_{i}\right)$ is the same $O A\left(s_{2}, r_{2}^{m_{2}}\right)$, it can be seen that the s_{2} levels of each of the first k factors in $\delta_{1}\left(\boldsymbol{A}_{i}\right)$ are actually replaced by the s_{2} rows of the $O A\left(s_{2}, r_{2}^{m_{2}}\right)$ one by one, and thus part (ii) of Theorem 4 follows.

Example 4. By using the construction method in Theorem 5 of Ai, Jiang and Li (2014), we can obtain a BSOA $\boldsymbol{A}=\left(\boldsymbol{A}_{1}^{\prime}, \ldots, \boldsymbol{A}_{16}^{\prime}\right)^{\prime}$, where \boldsymbol{A} is an $O A\left(256,16^{5}\right)$ with levels from $G F(16)$ and each $\delta_{1}\left(\boldsymbol{A}_{i}\right)$ is an $O A\left(16,4^{5}\right)$ with levels from $G F(4)$, for $i=1, \ldots, 16$. Here δ_{1} is defined as $\left\{0, x^{2}, x^{3}+x+1, x^{3}+x^{2}+x+1\right\} \rightarrow 0,\left\{1, x^{2}+1, x^{3}+x, x^{3}+x^{2}+x\right\} \rightarrow$ $1,\left\{x, x^{2}+x, x^{3}+1, x^{3}+x^{2}+1\right\} \rightarrow x^{2}+x$ and $\left\{x+1, x^{2}+x+1, x^{3}, x^{3}+x^{2}\right\} \rightarrow x^{2}+x+1$. We can also obtain a $B S O A B=\left(\boldsymbol{B}_{1}^{\prime}, \ldots, \boldsymbol{B}_{4}^{\prime}\right)^{\prime}$, where \boldsymbol{B} is an $O A\left(16,4^{3}\right)$ with levels from $G F(4)$ and each $\delta_{2}\left(\boldsymbol{B}_{i}\right)$ is the same $O A\left(4,2^{3}\right)$ with levels from $G F(2)$, for $i=1, \ldots, 4$. Here δ_{2} is defined as $\{0, x+1\} \rightarrow 0$ and $\{1, x\} \rightarrow 1$. For example, \boldsymbol{B} in transpose is given by

$$
\left(\begin{array}{cccccccccccccccc}
0 & 1 & x & x+1 & 0 & 1 & x & x+1 & x+1 & x & 1 & 0 & x+1 & x & 1 & 0 \\
0 & x & x+1 & 1 & x+1 & 1 & 0 & x & 0 & x & x+1 & 1 & x+1 & 1 & 0 & x \\
0 & x+1 & 1 & x & x+1 & 0 & x & 1 & x+1 & 0 & x & 1 & 0 & x+1 & 1 & x
\end{array}\right) .
$$

According to the labeling step, we label the 16 rows of \boldsymbol{B} in order by $0,1, x, x+1, x^{2}, x^{2}+$ $1, x^{2}+x, x^{2}+x+1, x^{3}+x+1, x^{3}+x, x^{3}+1, x^{3}, x^{3}+x^{2}+x+1, x^{3}+x^{2}+x, x^{3}+x^{2}+1$ and $x^{3}+x^{2}$. Then replace each level of the first factor in \boldsymbol{A} with the row of \boldsymbol{B} labeled by the level. From Theorem 4, we know that \boldsymbol{H} is an $O A\left(256,4^{3} 16^{4}\right)$, each \boldsymbol{H}_{i} is balanced and becomes an $O A\left(16,2^{3} 4^{4}\right)$ after the levels of the four-level factors are collapsed according to δ_{2} and the levels of the 16 -level factors are collapsed according to δ_{1}, for $i=1, \ldots, 16$.

5 Generation of sliced space-filling designs based on asymmetric BSOAs

In this section, we generate sliced space-filling designs by randomizing the asymmetric BSOAs obtained in the previous sections. The randomization approach is a generalization of that in Ai, Jiang and $\mathrm{Li}(2014)$ and covers both symmetric and asymmetric BSOAs. We assume that each of the quantitative factors takes values in the interval $[0,1]$. Suppose $\boldsymbol{H}=\left(\boldsymbol{H}_{1}^{\prime}, \ldots, \boldsymbol{H}_{v}^{\prime}\right)^{\prime}$ is a BSOA, where \boldsymbol{H} is an $O A\left(n_{1}, s_{11}^{\gamma_{1}} \cdots s_{k 1}^{\gamma_{k}}\right)$ with $m=\sum_{j=1}^{k} \gamma_{j}$, each \boldsymbol{H}_{i} is balanced and becomes an $O A\left(n_{2}, s_{12}^{\gamma_{1}} \cdots s_{k 2}^{\gamma_{k}}\right)$ after the levels of the $s_{j 1}$-level factors are collapsed to $s_{j 2}$ levels according to some level-collapsing projection δ_{j}, for $j=1, \ldots, k$ and $i=1, \ldots, v$. The randomization approach is described as follows.

For $j=1, \ldots, k$, let $\boldsymbol{\Gamma}_{j}$ denote the $s_{j 2} \times q_{j}$ kernel matrix of δ_{j}, where $q_{j}=s_{j 1} / s_{j 2}$. Arbitrarily label the $s_{j 2}$ rows of $\boldsymbol{\Gamma}_{j}$ by $1,2, \ldots, s_{j 2}$, and then relabel the q_{j} levels in the row
labeled by l as a random permutation of $\left\{(l-1) q_{j}+1, \ldots,(l-1) q_{j}+q_{j}\right\}$ for $l=1, \ldots, s_{j 2}$. Now the levels of the $s_{j 1}$-level factors in \boldsymbol{H} are $1, \ldots, s_{j 1}$.

For $j=1, \ldots, k$, let $w_{j}=n_{1} / s_{j 1}$ and $e_{j}=n_{2} / s_{j 1}$. For $l=1, \ldots, s_{j 1}$, let $\boldsymbol{M}_{j l}$ be the $e_{j} \times v$ matrix given by

$$
\left(\begin{array}{cccc}
(l-1) w_{j}+1 & (l-1) w_{j}+2 & \cdots & (l-1) w_{j}+v \\
(l-1) w_{j}+v+1 & (l-1) w_{j}+v+2 & \cdots & (l-1) w_{j}+2 v \\
\vdots & \vdots & & \vdots \\
(l-1) w_{j}+\left(e_{j}-1\right) v+1 & (l-1) w_{j}+\left(e_{j}-1\right) v+2 & \cdots & (l-1) w_{j}+w_{j}
\end{array}\right) .
$$

For $r=1, \ldots, \gamma_{j}$, obtain a new matrix $\boldsymbol{M}_{j l r}$ by randomly shuffling the entries in each row of $\boldsymbol{M}_{j l}$. For $i=1, \ldots, v$, replace the e_{j} entries of level l in the r-th $s_{j 1}$-level factors in \boldsymbol{H}_{i} by a random permutation of the e_{j} elements in the i-th column of $\boldsymbol{M}_{j l r}$. Denote by $\boldsymbol{L}=\left(\boldsymbol{L}_{1}^{\prime}, \ldots, \boldsymbol{L}_{v}^{\prime}\right)^{\prime}$ the resulting matrix after such replacement is done for all the columns of \boldsymbol{H}, where \boldsymbol{L}_{i} is the submatrix of \boldsymbol{L} corresponding to \boldsymbol{H}_{i}.

Finally, generate an $n_{1} \times m$ matrix \boldsymbol{D} whose (i, j)-th entry is $\left(l_{i j}-u_{i j}\right) / n_{1}$, where $l_{i j}$ is the (i, j)-th entry of \boldsymbol{L} and $u_{i j}$'s are independent random variables with uniform distributions on $(0,1]$, for $i=1, \ldots, n_{1}$ and $j=1, \ldots, m$. Denote by \boldsymbol{D}_{i} the submatrix of \boldsymbol{D} corresponding to \boldsymbol{L}_{i}.

It is easy to see that \boldsymbol{L} is obtained by replacing the w_{j} entries of level l in each of the $s_{j 1}$-level factors in \boldsymbol{H} with a permutation of $\left\{(l-1) w_{j}+1, \ldots,(l-1) w_{j}+w_{j}\right\}$, for $l=1, \ldots, s_{j 1}$ and $j=1, \ldots, k$. Thus, \boldsymbol{L} is a Latin hypercube based on $O A\left(n_{1}, s_{11}^{\gamma_{1}} \cdots s_{k 1}^{\gamma_{k}}\right)$ [Tang (1993)]. Similarly, it can be shown that each \boldsymbol{L}_{i} becomes a Latin hypercube based on $O A\left(n_{2}, s_{12}^{\gamma_{1}} \cdots s_{k 2}^{\gamma_{k}}\right)$ after the level z of \boldsymbol{L} is collapsed to $\lceil z / v\rceil$ for $z=1, \ldots, n_{1}$ and $i=1, \ldots, v$, where $\lceil a\rceil$ is the smallest integer not less than a. According to McKay, Beckman and Conover (1979), the final matrix \boldsymbol{D} obtained from \boldsymbol{L} is a Latin hypercube design in the unit cube $[0,1]^{m}$. Note that each factor in \boldsymbol{D} now has n_{1} levels. For $j=1, \ldots, m$, we use $b_{j 1}$ to denote the number of levels of the j-th factor in the BSOA \boldsymbol{H} and $b_{j 2}$ to denote that in its each projected slice. Then the following theorem is obtained.

Theorem 5. For the design $\boldsymbol{D}=\left(\boldsymbol{D}_{1}^{\prime}, \ldots, \boldsymbol{D}_{v}^{\prime}\right)^{\prime}$ obtained above, we have
(i) the design \boldsymbol{D} and each slice \boldsymbol{D}_{i} achieve maximum stratification in any one-dimensional projection;
(ii) when projected onto the two dimensions of the j_{1}-th and j_{2}-th factors $\left(j_{1} \neq j_{2}\right)$, the design \boldsymbol{D} achieves the stratification on the $b_{j_{1} 1} \times b_{j_{2} 1}$ grids and each slice \boldsymbol{D}_{i} achieves the stratification on the $b_{j_{1} 2} \times b_{j_{2} 2}$ grids, for $i=1, \ldots, v$.

Example 5. Consider the asymmetric $B S O A \boldsymbol{H}=\left(\boldsymbol{H}_{1}^{\prime}, \boldsymbol{H}_{2}^{\prime}\right)^{\prime}$ obtained in Example 3, where \boldsymbol{H} is an $O A\left(144,12^{1} 4^{2} 3^{1}\right)$, each slice \boldsymbol{H}_{i} is balanced and collapsed into an $O A\left(72,6^{1} 2^{2} 3^{1}\right)$ for $i=1,2$. The four columns of \boldsymbol{H} are represented by the four factors x_{1}, x_{2}, x_{3} and x_{4}, respectively. Following the randomization approach, we first relabel the levels for each factor in \boldsymbol{H}. Table 1 presents the first slice \boldsymbol{H}_{1} after the relabeling is carried out. Next, we use the new \boldsymbol{H} to construct a Latin hypercube design $\boldsymbol{D}=\left(\boldsymbol{D}_{1}^{\prime}, \boldsymbol{D}_{2}^{\prime}\right)^{\prime}$ accordingly. From Theorem

Table 1: The matrix \boldsymbol{H}_{1} in Example 5

Run\#	x_{1}	x_{2}	x_{3}	x_{4}	Run\#	x_{1}	x_{2}	x_{3}	x_{4}	Run\#	x_{1}	x_{2}	x_{3}	x_{4}
1	1	1	1	1	25	9	1	1	3	49	7	3	3	2
2	5	1	1	3	26	1	1	1	2	50	11	3	3	1
3	9	1	1	2	27	5	1	1	1	51	3	3	3	3
4	3	2	4	1	28	11	2	4	3	52	5	4	2	2
5	7	2	4	3	29	3	2	4	2	53	9	4	2	1
6	11	2	4	2	30	7	2	4	1	54	1	4	2	3
7	2	4	3	1	31	10	4	3	3	55	8	2	1	2
8	6	4	3	3	32	2	4	3	2	56	12	2	1	1
9	10	4	3	2	33	6	4	3	1	57	4	2	1	3
10	4	3	2	1	34	12	3	2	3	58	6	1	4	2
11	8	3	2	3	35	4	3	2	2	59	10	1	4	1
12	12	3	2	2	36	8	3	2	1	60	2	1	4	3
13	5	1	1	2	37	3	3	3	1	61	11	3	3	3
14	9	1	1	1	38	7	3	3	3	62	3	3	3	2
15	1	1	1	3	39	11	3	3	2	63	7	3	3	1
16	7	2	4	2	40	1	4	2	1	64	9	4	2	3
17	11	2	4	1	41	5	4	2	3	65	1	4	2	2
18	3	2	4	3	42	9	4	2	2	66	5	4	2	1
19	6	4	3	2	43	4	2	1	1	67	12	2	1	3
20	10	4	3	1	44	8	2	1	3	68	4	2	1	2
21	2	4	3	3	45	12	2	1	2	69	8	2	1	1
22	8	3	2	2	46	2	1	4	1	70	10	1	4	3
23	12	3	2	1	47	6	1	4	3	71	2	1	4	2
24	4	3	2	3	48	10	1	4	2	72	6	1	4	1

5, we know that \boldsymbol{D} and each slice \boldsymbol{D}_{i} achieve maximum stratification in univariate margins, but have different levels of two-dimensional uniformity for different factors. Figure 1 depicts the two-dimensional projections of \boldsymbol{D}_{1}. It is shown that \boldsymbol{D}_{1} achieves maximum stratification in any univariate margin. Furthermore, in bivariate margins, the design points of \boldsymbol{D}_{1} are evenly scattered on the 6×2 grids in the dimensions of x_{1} and x_{2} or x_{1} and x_{3}, on the 6×3 grids in those of x_{1} and x_{4}, on the 2×2 grids in those of x_{2} and x_{3}, and on the 2×3 grids in those of x_{2} and x_{4} or x_{3} and x_{4}.

6 Discussions

In this article, we propose a new class of sliced space-filling designs in which both the whole design and each slice can achieve maximum stratification in univariate margins, but have different levels of two-dimensional uniformity for different factors. They are useful for

Figure 1: Bivariate projections of \boldsymbol{D}_{1} in Example 5.
designing sliced computer experiments with qualitative and quantitative factors or multiple models, linking parameters in engineering and cross-validation where priori knowledge suggests that some factors are more important than others and should be paid more attention. Besides, these designs can also be applied to design nested computer experiments with two codes of different levels of accuracy, as the whole design and each slice constitute a nested design [Qian, Ai and Wu (2009); Qian and Ai (2010)].

These new sliced designs are generated by elaborately randomizing asymmetric balanced sliced orthogonal arrays (BSOAs) such that not only the whole design but each slice is an asymmetric OA-based Latin hypercube design. Several methods to construct asymmetric BSOAs are developed. Since the asymmetric BSOAs constructed in this article have only strength two, the corresponding sliced space-filling designs are guaranteed to achieve stratification in two-dimensional projections. If one is interested in sliced designs with better space-filling properties in higher dimensions, it is worth to develop methods to construct asymmetric BSOAs with strength three or higher. Finally, as a great many sliced spacefilling designs can be generated based on a given BSOA, we can search for the optimal ones by using the maximin distance [Johnson, Moore and Ylvisaker (1990)], discrepancy measures [Fang, Li and Sudjianto (2006)], or other optimality criteria.

Acknowledgements

The work is partially supported by NSFC grants 11271032 and 11331011, and BCMIIS.

References

Ai, M., Jiang, B. and Li, K. (2014). Construction of sliced space-filling designs based on balanced sliced orthogonal arrays. Statist. Sinica, in print.

Fang, K. T., Li, R. Z. and Sudjianto, A. (2006). Design and Modeling for Computer Experiments, Chapman and Hall/CRC, New York.

Han, G., Santner, T. J., Notz, W. I. and Bartel, D. L. (2009). Prediction for computer experiments having quantitative and qualitative input factors. Technometrics 51, 278288.

Hedayat, A. S., Sloane, N. J. A. and Stufken, J. (1999). Orthogonal Arrays: Theory and Applications. Springer, New York.

Johnson, D. M., Dulmage, A. L. and Mendelsohn, N. S (1961). Orthomorphisms of groups and orthogonal Latin squares I. Canad. J. Math. 13, 356-372.

Johnson, M. E., Moore, L. M., and Ylvisaker, D. (1990). Minimax and Maximin Distance Designs. J. Statist. Plann. Inference 26, 131-148.

McKay, M. D., Beckman, R. J. and Conover, W. J. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239-245.

Qian, P. Z. G. (2012). Sliced Latin hypercube designs. J. Amer. Statist. Assoc. 107, 393-399.

Qian, P. Z. G. and Ai, M. (2010). Nested lattice sampling: a new sampling scheme derived by randomizing nested orthogonal arrays. J. Amer. Statist. Assoc. 105, 1147-1155.

Qian, P. Z. G., Ai, M. and Wu, C. F. J. (2009). Construction of nested space-filling designs. Ann. Statist. 37, 3616-3643.

Qian, P. Z. G. and Wu, C. F. J. (2009). Sliced space-filling designs. Biometrika 96, 945-956.
Qian, P. Z. G., Wu, H. and Wu, C. F. J. (2008). Gaussian process models for computer experiments with qualitative and quantitative factors. Technometrics 50, 383-396.

Seberry, J. (1979). Some remarks on generalised Hadamard matrices and theorems of Rajkundlia on SBIBD's. In Combinatorial Mathematics. VI (A. F. Horadam and W. D. Wallis, eds.) 154-164. Springer, Berlin.

Tang, B. (1993). Orthogonal array-based Latin hypercubes. J. Amer. Statist. Assoc. 88, 1392-1397.

Wang, J. C. (1996). Mixed difference matrices and the construction of orthogonal arrays. Statist. Probab. Letters 28, 121-126.

Wang, J. C. and Wu, C. F. J. (1991). An approach to the construction of asymmetrical orthogonal arrays. J. Amer. Statist. Assoc. 86, 450-455.

Xu, X., Haaland, B. and Qian, P. Z. G. (2011). Sudoku-based space-filling designs. Biometrika 98, 711-720.

[^0]: ${ }^{*}$ Corresponding author. E-mail address: myai@math.pku.edu.cn (Ai).

