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Abstract

This paper discusses the correlation structure between London Interbank Offered Rates

(LIBOR) by using copula function. We start from one simplified model of Brace, Gatarek

& Musiela (1997) and find out that the copula function between two LIBOR rates can be

expressed as a sum of infinite series, where the main term is a distribution function with

Gaussian copula. Partial differential equation (PDE) method is used for deriving the copula

expansion. Numerical results show that the copula of the LIBOR rates and Gaussian copula

are very close in the central region and differ in the tail, and in the normal situation the

Gaussian copula approximation to the copula function between the LIBOR rates provides

satisfying results.

Keywords : LIBOR rates, copula function, PDE.

1 Introduction

The London Interbank Offered Rate (LIBOR) is widely used in the financial market as a bench-

mark to define the interest rates. Suppose that the current time is 0 and consider a set of maturity
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dates {T0, T1, . . . , TN} with T0 < T1 < · · · < TN . The forward LIBOR rate Lk(t) = L(t, Tk−1, Tk)

is defined by

Lk(t) =
1

δk

(

P (t, Tk−1)

P (t, Tk)
− 1

)

, t ≤ Tk−1,

where the time fraction δk = Tk − Tk−1, 1 ≤ k ≤ N , and P (t, T ) is the price of the zero-coupon

bond at time t with maturity T . Note that Lk(t) is the annualized forward price at time t for

borrowing 1 dollar at a future time Tk−1 and paying back at Tk. Specially, Lk(Tk−1) is the

market price for borrowing 1 dollar at time Tk−1. Denote Qk to be the forward measure with

P (t, Tk) as its numéraire. With the assumption that the financial market is arbitrage-free, it

is known from Musiela & Rutkowski (2005) that the forward measure Qk is equivalent to the

risk-neutral measure Q and the Radon-Nikodym derivative exists. Furthermore, the process

{Lk(t), t ≤ Tk−1} is a martingale under Qk.

Brace, Gatarek & Musiela (1997) extended the Heath, Jarrow & Morton (HJM) (1992)

model, and derived the pricing formulas for caps and swaptions by assuming lognormal volatility

structures for LIBOR rates. Under their assumptions, for each k = 1, . . . , N the LIBOR rate

Lk(t) satisfies the following stochastic differential equation (SDE) under the forward measure

Qk,

dLk(t) = Lk(t)~σk(t)
T d ~Wk(t),

where ~σk(t)
T = (σk,1(t), . . . , σk,N (t)) is a deterministic vector function, and the component

volatility function σk,j(t), j = 1, . . . , N is positive, piecewise continuous and bounded. And

~W T
k = (Wk,1(t), . . . , Wk,N(t)) is an N -dimensional Wiener process under Qk such that each

component Wk,j(t), j = 1, . . . , N is a standard Wiener process and d ~Wkd ~W T
k = Ξdt, where Ξ is

a constant correlation matrix.

Based on Brace, Gatarek & Musiela (1997)’s work, applying the changing-measure formulas

by the Radon-Nikodym derivatives between any two forward measures in Musiela & Rutkowski

(2005, page 475), the dynamics of two LIBOR rates (L1(t), L2(t)) under the T1-forward measure

Q1 are given by














dL1(t) = L1(t)~σ1(t)
T d ~W1(t),

dL2(t) =
δ2L2(t)

2

1 + δ2L2(t)
~σ2(t)

T Ξ~σ2(t)dt + L2(t)~σ2(t)
T d ~W1(t),

(1.1)
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where 0 ≤ t ≤ T ≤ T0.

In the financial market, some derivatives are written on multiple LIBOR rates, such as

swaps and swaptions. The dependence structure between LIBOR rates plays an important role

for pricing these products. In empirical studies, some priori assumptions are made to simplify the

calibration. A typical way is to parameterize the volatility family, which can be found in Brigo,

Mercurio & Morini (2005). Another way is to approximate the drift terms in the dynamics. For

example, in Brigo & Mercurio (2001, page 250), the dynamics of (L1(t), L2(t)) in equation (1.1)

are approximated by











dL1(t) = L1(t)~σ1(t)
T d ~W1(t),

dL2(t) =
δ2L2(0)

1 + δ2L2(0)
L2(t)~σ2(t)

T Ξ~σ2(t)dt + L2(t)~σ2(t)
T d ~W1(t).

(1.2)

The same idea is also used in Hull & White (1999) and is referred to as the initial freeze

approximation in Henrard (2007) for pricing the rolled deposit options. This approximation

method has been tested by Monte-Carlo simulation in Hull & White (1999), but theoretical

evidences are not given to our knowledge.

Now copula method is widely used to model the correlation between risks. A copula function

is a multivariate distribution function with uniform marginal distributions on [0, 1]. The Sklar’s

theorem shows that a multivariate distribution function can be divided into two parts, its copula

function and marginal distributions. More details can be found in Nelsen (2006) and Cherubini,

Luciano & Vecchiato (2004). Gaussian copula is one widely used copula function in finance for

modeling the correlation between risks. Note that for the model (1.2), the dependence can be

captured by Gaussian copula.

In this paper, we will consider one simplified dynamic model of equation (1.1). We will

prove that the copula function between LIBOR rates (L1(t), L2(t)) can be expanded as a sum

of infinite series. We will also compare this copula function with the Gaussian copula and the

approximation error will be discussed. Numerical results will be provided for measuring the

distance between the real copula function and the Gaussian copula function, and we will show

that the first two terms of the copula function’s expansion can explain most of the information

of the dependence structure. In our discussion, PDE method will be used to obtain the joint
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density function of the LIBOR rates.

The paper is organized as follows. In Section 2 we give one simplified model of (1.1) and the

PDEs for the marginal and joint density functions of the LIBOR rates are obtained. In Section 3

we solve the PDE for the joint density and prove that the joint density function can be expressed

as a sum of an infinite series. In Section 4 we use the joint density function to obtain the copula

expansion, where the main term is a distribution function with Gaussian copula. In Section 5

numerical results are given to show the difference between the real copula and Gaussian copula.

Conclusions are given in Section 6. Some proofs are put in the Appendix.

2 Model Setup

In this paper, we consider a simplified model for LIBOR rates (L1(t), L2(t)) of (1.1). Assuming

that N = 2, ~σ1(t)
T = (σ1, 0), ~σ2(t)

T = (0, σ2), and Wi = W1,i, i = 1, 2 in model (1.1), the

dynamics of (L1(t), L2(t)) under Q1 are modeled by














dL1(t) = σ1L1(t)dW1(t),

dL2(t) =
δσ2

2L2(t)
2

1 + δL2(t)
dt + σ2L2(t)dW2(t),

(2.1)

where Wi, i = 1, 2 are the standard Wiener processes under Q1 with dW1(t)dW2(t) = ρdt.

Copula function is a multivariate distribution function with uniform [0,1] margins. By Sklar’s

theorem (see Nelsen (2006)), for any time 0 < t ≤ T , there exists a copula function C(u1, u2; t)

such that for any (x1, x2) ∈ R2,

Q1 (L1(t) ≤ x1, L2(t) ≤ x2) = C
(

Q1 (L1(t) ≤ x1) , Q1 (L2(t) ≤ x2) ; t
)

.

The above equation shows the fundamental relationship among the joint distribution, the marginal

distributions and the copula function. To find the copula function from the above equation, the

marginal distributions and the joint distribution are needed.

Note that the copula function is invariant under strictly monotone transformations. Consider

the following transformation

Xi(t) =
1

σi
ln

(

Li(t)

Li(0)

)

+
1

2
σit, i = 1, 2,
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then (X1(t),X2(t)) and (L1(t), L2(t)) have the same copula function C(u1, u2; t). From equation

(2.1) and Itô’s formula, the dynamics of (X1(t),X2(t)) are given by






















dX1(t) = dW1(t),

dX2(t) = θ(X2(t), t)dt + dW2(t),

X1(0) = X2(0) = 0,

(2.2)

where

θ(x2, t) =
σ2e

σ2x2−
1
2
σ2
2t

1/(δL2(0)) + eσ2x2−
1
2
σ2
2t

. (2.3)

The function θ and its partial derivative
∂θ

∂x2
are bounded on R× (0, T ], then for fixed t > 0 the

function θ(x2, t) is Lipshitz continuous with respect to x2. Thus by Øksendal (2000, page 66),

we know that the SDE (2.2) has a unique solution .

We will derive the marginal distributions and the joint distribution of (X1(t),X2(t)), then

find the copula function C(u1, u2; t). A powerful tool to solve the probability density function

of a stochastic process is the Fokker-Planck equation (see Grigoriu (2002, page 481)).

Lemma 2.1 (Fokker-Planck Equation). Suppose that ~Yt is a d-dimensional diffusion process

satisfying the stochastic differential equation

d~Yt = ~µ(~Yt, t)dt + R(~Yt, t)d~Zt,

where ~µ = (µ1, . . . , µd)
T is a vector function valued in Rd, R = (Rij)1≤i,j≤d is a matrix function

valued in Rd×d, and ~Zt is a d-dimensional standard Wiener process with independent compo-

nents. Let p(~y, t) be the density of ~Yt conditional on ~Y0 = ~y0. If p(~y, t) satisfies the conditions

lim
|~y|→∞

[µi(~y, t)p(~y, t)] = 0, i = 1, . . . , d, (2.4a)

lim
|~y|→∞

(

R(~y, t)R(~y, t)T
)

ij
p(~y, t) = 0, i, j = 1, . . . , d, (2.4b)

lim
|~y|→∞

∂
[

(

R(~y, t)R(~y, t)T
)

ij
p(~y, t)

]/

∂yi = 0, i, j = 1, . . . , d, (2.4c)

then p is the solution of the Fokker-Planck equation

∂p(~y, t)

∂t
= −

d
∑

i=1

∂

∂yi
[µi(~y, t)p(~y, t)] +

1

2

d
∑

i=1

d
∑

j=1

∂2

∂yi∂yj

[

(

R(~y, t)R(~y, t)T
)

ij
p(~y, t)

]

.
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For i = 1, 2, denote the density and distribution functions of Xi(t) by fi(x; t) and Fi(x; t)

respectively. The joint density and distribution of (X1(t),X2(t)) are denoted as f(x1, x2; t) and

H(x1, x2; t).

The following proposition gives the marginal densities and the PDE for the joint density.

We use φ and Φ to denote the density and the distribution of standard normal distribution

respectively, i.e.,

φ(x) =
1√
2π

e−x2/2, Φ(x) =

∫ x

−∞
φ(z)dz, x ∈ R.

Proposition 2.1. The marginal distributions of X1(t) and X2(t) are given by

f1(x1; t) =
1√
t
φ

(

x1√
t

)

, F1(x1; t) = Φ

(

x1√
t

)

,

f2(x2; t) = (1 − q)
1√
t
φ

(

x2√
t

)

+ q
1√
t
φ

(

x2 − σ2t√
t

)

,

F2(x2; t) = (1 − q)Φ

(

x2√
t

)

+ qΦ

(

x2 − σ2t√
t

)

,

where

q =
δL2(0)

1 + δL2(0)
.

And the joint density f(x1, x2; t) of (X1(t),X2(t)) is the solution to the following Cauchy problem










Lp = 0, (x1, x2, t) ∈ R2 × (0, T ],

p(x1, x2; 0) = δ(x1, x2), (x1, x2) ∈ R2,
(2.5)

where δ(x1, x2) is the 2-dimensional Dirac function, and the parabolic operator L is defined by

Lp =
∂p

∂t
− 1

2

∂2p

∂x2
1

− ρ
∂2p

∂x1∂x2
− 1

2

∂2p

∂x2
2

+
∂(θp)

∂x2
(2.6)

for any function p(x1, x2; t) such that the partial derivatives exist, where θ = θ(x2, t) is defined

in equation (2.3).

Proof. From Lemma 2.1, the marginal density function f1 of X1(t) satisfies the following Cauchy

problem














∂f1

∂t
(x1; t) =

1

2

∂2f1

∂x2
1

(x1; t), (x1, t) ∈ R × (0, T ],

f1(x1; 0) = δ(x1), x1 ∈ R,

(2.7)
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where the 1-dimensional Dirac function δ(·) has the property that for any smooth function u

with compact support,
∫

R

u(x)δ(x)dx = u(0),

and the initial value of f1 comes from the fact that X1(0) = 0. The first equation in (2.7) is the

standard heat equation, thus the unique solution is

f1(x1; t) =
1√
t
φ

(

x1√
t

)

.

The function f1 is actually the density of normal distribution and satisfies the conditions (2.4a)

to (2.4c).

Similarly, the marginal density function f2 of X2(t) satisfies the following Cauchy problem














∂f2

∂t
(x2; t) =

1

2

∂2f2

∂x2
2

(x2; t) −
∂(θf2)

∂x2
(x2; t), (x2, t) ∈ R × (0, T ],

f2(x2; 0) = δ(x2), x2 ∈ R.

(2.8)

For solving equation (2.8), denote

g(x2; t) =
f2(x2; t)

1−q
q + eσ2x2−

1
2
σ2
2t

. (2.9)

Then g(x2; t) satisfies the following Cauchy problem














∂g

∂t
(x2; t) =

1

2

∂2g

∂x2
2

(x2; t), (x2, t) ∈ R × (0, T ],

g(x2; 0) = qδ(x2), x2 ∈ R.

Again it is a heat equation and the solution is

g(x2; t) =
q√
t
φ

(

x2√
t

)

,

then (2.9) implies that the density f2(x2; t) of X2(t) has the form

f2(x2; t) = (1 − q)
1√
t
φ

(

x2√
t

)

+ q
1√
t
φ

(

x2 − σ2t√
t

)

.

The function f2 is actually a mixture of two normal density functions and also satisfies the

conditions (2.4a) to (2.4c). For i = 1, 2 the distribution function Fi can be derived by integrating

fi.
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Next we consider the joint density f . To apply Lemma 2.1 on SDE (2.2), we notice that

~µ(x1, x2, t) =





0

θ(x2, t)



 .

Since dW1(t)dW2(t) = ρdt, the two Wiener processes W1(t) and W2(t) in SDE (2.2) are not

independent when ρ 6= 0. However, there exists a 2-dimensional standard Wiener process

(W̃1(t), W̃2(t)), such that W̃1(t) is independent of W̃2(t), and





W1(t)

W2(t)



 =





1 0

ρ
√

1 − ρ2









W̃1(t)

W̃2(t)



 .

Then the SDE (2.2) can be expressed as





dX1(t)

dX2(t)



 =





0

θ(X2(t), t)



 dt +





1 0

ρ
√

1 − ρ2









dW̃1(t)

dW̃2(t)



 . (2.10)

It follows that the matrix function R(x1, x2, t) in Lemma 2.1 is

R(x1, x2, t) =





1 0

ρ
√

1 − ρ2



 ,

and

R(x1, x2, t)R(x1, x2, t)
T =





1 ρ

ρ 1



 .

Applying Lemma 2.1 to SDE (2.10), we conclude that

∂f

∂t
=

1

2

∂2f

∂x2
1

+ ρ
∂2f

∂x1∂x2
+

1

2

∂2f

∂x2
2

− ∂(θf)

∂x2
.

Thus the joint density f is one solution of (2.6). Thus we complete the proof of the proposition.

Proposition 2.1 shows that X1(t) follows a Gaussian distribution having no relationship with

q, σ2 and δ. The distribution of X2(t) is a mixture of two Gaussian distributions with weight q

depending on the initial value of LIBOR rate L2(0).

The marginal and joint distribution functions can be used for deriving the copula function.

From Proposition 2.1 we know that the inverse functions F−1
i of Fi, i = 1, 2 can be obtained for
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0 < t ≤ T . Recall that the joint distribution function of (X1(t),X2(t)) is denoted as H(x1, x2; t),

then the copula function C(u1, u2; t) can be expressed as

C(u1, u2; t) = H
(

F−1
1 (u1; t), F

−1
2 (u2; t); t

)

, (2.11)

and the density c(u1, u2; t) of copula C satisfies

c(u1, u2; t) =
f
(

F−1
1 (u1; t), F

−1
2 (u2; t); t

)

f1

(

F−1
1 (u1; t); t

)

f2

(

F−1
2 (u2; t); t

) , (2.12)

where the functions fi and Fi, i = 1, 2 are given in Proposition 2.1.

From equation (2.12) we can see that the key problem for getting the copula density function

c(u1, u2; t) is to find the joint density f . In the next section we will solve equation (2.5) for the

joint density f .

3 Solving PDE (2.5) for the Joint Density

In this section we will prove that the density function f is a unique solution to equation (2.5)

and can be expressed as a sum of an infinite series.

Denote

Z(~x, t; ~ξ, τ) =
1

2π
√

1 − ρ2(t − τ)
e
− (~x−~ξ)T A(~x−~ξ)

2(t−τ) ,

where ~x = (x1, x2)
T , ~ξ = (ξ1, ξ2)

T ∈ R2, 0 < τ < t ≤ T , and the matrix A =
1

1 − ρ2





1 −ρ

−ρ 1



.

The function Z(~x, t; ~ξ, τ) satisfies the following parabolic Cauchy problem










∂p

∂t
(~x; t) − 1

2

∂2p

∂x2
1

(~x; t) − ρ
∂2p

∂x1∂x2
(~x; t) − 1

2

∂2p

∂x2
2

(~x; t) = 0, (~x, t) ∈ R2 × (τ, T ],

p(~x, τ) = δ(~x − ~ξ), ~x ∈ R2,

where δ(·) is the Dirac function. Note that the function Z is smooth and shift-invariant, i.e.,

Z(~x, t; ~ξ, τ) = Z(~x − ~ξ, t − τ ;~0, 0),

and for any rapidly decreasing function g(~x) (i.e., for any non-negative integers n1, n2, m1 and

m2, the partial derivatives exist and satisfy sup
~x∈R2

∣

∣

∣

∣

xn1
1 xn2

2

∂m1+m2g(~x)

∂xm1
1 ∂xm2

2

∣

∣

∣

∣

< ∞),

lim
t→τ+

∫∫

R2

Z(~x, t; ~ξ, τ)g(~ξ)d~ξ = g(~x).
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In a special case that ρ = 0, the function Z is called the Gaussian kernel, which is discussed

in Friedman (1964, page 1). The definition of the fundamental solution of a parabolic operator

is given in Friedman (1964, page 3). We will use this concept to find the solution to equation

(2.5).

Definition 3.1 (Fundamental Solution). A function Ψ(~x, t; ~ξ, τ), ~x, ~ξ ∈ R2, 0 < τ < t ≤ T is

called the fundamental solution of the parabolic operator L in equation (2.6), if it satisfies the

following properties:

1. For fixed (~ξ, τ) ∈ R2 × (0, T ], LΨ = 0 holds for any (~x, t) ∈ R2 × (τ, T ];

2. For any continuous function g(~x), ~x ∈ R2 satisfying |g(~x)| ≤ Meh|~x|2, where h < λ
8T ,

λ = 2
1+|ρ| , and M is some constant,

lim
t→τ+

∫∫

R2

Ψ(~x, t; ~ξ, τ)g(~ξ)d~ξ = g(~x).

The fundamental solution is a basic concept in partial differential equations. Given the

fundamental solution, it is easy to find the solution of the original equation by convolution.

Next we will give the solution to equation (2.5) by using the fundamental solution of L. First

we need some lemmas.

Lemma 3.1. The function θ(x, t), (x, t) ∈ R × [0, T ] in equation (2.3) is a smooth function.

Further, for n,m ≥ 0 its partial derivative
∂m+nθ

∂xm∂tn
(x, t) is bounded, i.e., there exists some

constant α(m,n) < ∞ such that

∣

∣

∣

∣

∂m+nθ

∂xm∂tn
(x, t)

∣

∣

∣

∣

≤ α(m,n), for all (x, t) ∈ R × [0, T ].

Here α(0, 0) and α(1, 0) can be chosen as

α(0, 0) = σ2, α(1, 0) = σ2
2.

Proof. For m = n = 0, it holds that

0 ≤ θ(x, t) ≤ σ2, for all (x, t) ∈ R × [0, T ].
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By the chain rule we have the partial derivative of θ(x, t) for non-negative integers m and n

with m + n ≥ 1,

∂m+nθ

∂xm∂tn
(x, t)

=
(−2)−nσm+2n+1

2
(

(δL2(0))−1 + eσ2x− 1
2
σ2
2t
)m+n+1

m+n
∑

k=1

dm+n,k[(δL2(0))
−1]m+n−k+1(eσ2x− 1

2
σ2
2t)k,

where the constants dn,k, n ≥ 1, k = 1, . . . , n are given by

dn,1 = 1, dn,n = (−1)n−1, n ≥ 1,

dn,k = kdn−1,k + (k − n − 1)dn−1,k−1, n ≥ 3, k = 2, . . . , n − 1.

Thus
∂m+nθ

∂xm∂tn
(x, t) is a continuous function which tends to 0 as x → ±∞, and is bounded by

α(m,n), where

α(m,n) = 2−nσm+2n+1
2

m+n
∑

k=1

|dm+n,k|.

Specially, α(0, 0) = σ2 and α(1, 0) = σ2
2 |d1,1| = σ2

2 . Now we finish the proof of the lemma.

The next lemma can be easily verified by change of variables.

Lemma 3.2. For α, β < 2 and h > 0,

∫ t

τ

∫∫

R2

(t − σ)−αe
−

h|~x−~η|2
4(t−σ) (σ − τ)−βe

−
h|~η−~ξ|2
4(σ−τ) d~ηdσ

=
4π

h
B(2 − α, 2 − β)(t − τ)2−α−βe

−h|~x−~ξ|2
4(t−τ) ,

where the Beta function B(m,n) =

∫ 1

0
xm−1(1 − x)n−1dx for m,n > 0.

Define











(LZ)1(~x, t; ~ξ, τ) = −LZ(~x, t; ~ξ, τ),

(LZ)n(~x, t; ~ξ, τ) =

∫ t

τ

∫∫

R2

(LZ)1(~x, t; ~η, σ)(LZ)n−1(~η, σ; ~ξ, τ)d~ηdσ, n > 1.
(3.1)

Then it will be proved that the fundamental solution of L can be constructed by {(LZ)n, n ≥ 1}.
First we will show some properties of (LZ)n in the following lemma.
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Lemma 3.3. For 0 < τ < t ≤ T and n ≥ 1, there exists some constant C0 depending on ρ, T

and σ2 such that

|(LZ)n(~x, t; ~ξ, τ)| ≤ λCn
0

8πΓ(n
2 )

(t − τ)
n
2
−2e

−
λ|~x−~ξ|2
8(t−τ) (3.2)

and
∣

∣

∣

∣

∫ t

τ

∫∫

R2

Z(~x, t; ~η, σ)(LZ)n(~η, σ; ~ξ, τ) ~dηdσ

∣

∣

∣

∣

≤ 1

2π
√

1 − ρ2

Cn
0

Γ(n
2 + 1)

(t − τ)
n
2
−1e

−
λ|~x−~ξ|2
8(t−τ) . (3.3)

Here the Gamma function Γ(s) =

∫ ∞

0
xs−1e−xdx for s > 0.

Proof. We will prove the lemma by mathematical induction. From Lemma 3.1 we have |θ(x2, t)| ≤
σ2 and

∣

∣

∣

∣

∂θ

∂x2
(x2, t)

∣

∣

∣

∣

≤ σ2
2 . Then

|(LZ)1(~x, t; ~ξ, τ)| =

∣

∣

∣

∣

∂

∂x2

(

θ(x2, t)Z(~x, t; ~ξ, τ)
)

∣

∣

∣

∣

≤ σ2

∣

∣

∣

∣

∂Z

∂x2
(~x, t; ~ξ, τ)

∣

∣

∣

∣

+ σ2
2

∣

∣

∣
Z(~x, t; ~ξ, τ)

∣

∣

∣

=
|ρ(x1 − ξ1) − (x2 − ξ2)|

(1 − ρ2)(t − τ)

σ2

2π
√

1 − ρ2(t − τ)
e
− (~x−~ξ)T A(~x−~ξ)

2(t−τ)

+
σ2

2

2π
√

1 − ρ2(t − τ)
e
− (~x−~ξ)T A(~x−~ξ)

2(t−τ) .

Using the fact that

(~x − ~ξ)T A(~x − ~ξ) ≥ λ

2
|~x − ~ξ|2 (3.4)

and for all z ≥ 0

ze−
λz2

8 ≤ 2√
λe

,

from the above equation we can get the following estimation

|(LZ)1(~x, t; ~ξ, τ)|

≤ σ2

2π(1 − |ρ|) 3
2 (t − τ)

3
2

|~x − ~ξ|√
t − τ

e
−

λ|~x−~ξ|2
8(t−τ) e

−
λ|~x−~ξ|2
8(t−τ) +

σ2
2

2π
√

1 − ρ2(t − τ)
e
−

λ|~x−~ξ|2
8(t−τ)

≤ σ2

2π(1 − |ρ|) 3
2 (t − τ)

3
2

2√
λe

e
−λ|~x−~ξ|2

8(t−τ) +
σ2

2

2π
√

1 − ρ2(t − τ)
e
−λ|~x−~ξ|2

8(t−τ)

≤
(

σ2√
λeπ(1 − |ρ|) 3

2

+
σ2

2

√
T

2π
√

1 − ρ2

)

(t − τ)−
3
2 e

−λ|~x−~ξ|2
8(t−τ) .
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Denote

C0 =
8πΓ(1

2 )

λ

(

σ2√
λeπ(1 − |ρ|) 3

2

+
σ2

2

√
T

2π
√

1 − ρ2

)

,

then the inequality (3.2) is proved for n = 1. Now we assume that (3.2) is true for (LZ)1, . . . , (LZ)n,

n ≥ 1. Choosing α = 3
2 , β = 2 − n

2 , h = λ
2 in Lemma 3.2, we can get that

∣

∣

∣
(LZ)n+1(~x, t; ~ξ, τ)

∣

∣

∣

=

∣

∣

∣

∣

∫ t

τ

∫∫

R2

(LZ)1(~x, t; ~η, σ)(LZ)n(~η, σ; ~ξ, τ)d~ηdσ

∣

∣

∣

∣

≤
∫ t

τ

∫∫

R2

λC0

8πΓ(1
2 )

(t − σ)−
3
2 e

−λ|~x−~η|2
8(t−σ)

λCn
0

8πΓ(n
2 )

(σ − τ)
n
2
−2e

−λ|~η−~ξ|2
8(σ−τ) d~ηdσ

=
λC0

8πΓ(1
2 )

λCn
0

8πΓ(n
2 )

8π

λ
B

(

n

2
,
1

2

)

(t − τ)
n+1

2
−2e

−λ|~x−~ξ|2
8(t−τ)

=
λCn+1

0

8πΓ(n+1
2 )

(t − τ)
n+1

2
−2e

−
λ|~x−~ξ|2
8(t−τ) ,

which implies that (3.2) is true for n + 1. Thus (3.2) holds for all n ≥ 1.

Again from inequality (3.4),

|Z(~x, t; ~ξ, τ)| ≤ 1

2π
√

1 − ρ2(t − τ)
e
−

λ|~x−~ξ|2
8(t−τ) .

Combining the above inequality with (3.2) and choosing α = 1, β = 2 − n
2 , h = λ

2 in Lemma

3.2, we can get (3.3). Thus the proof is completed.

By (3.3), the function

Ψ(~x, t; ~ξ, τ) = Z(~x, t; ~ξ, τ) +
∞
∑

n=1

∫ t

τ

∫∫

R2

Z(~x, t; ~η, σ)(LZ)n(~η, σ; ~ξ, τ)d~ηdσ (3.5)

is well-defined. Note that

Ψ(~x, t;~0, 0) = Z(~x, t;~0, 0) +

∞
∑

n=1

∫ t

0

∫∫

R2

Z(~x, t; ~η, σ)(LZ)n(~η, σ;~0, 0)d~ηdσ.

Theorem 3.1 (Fundamental Solution). The function Ψ in equation (3.5) is the fundamental

solution of equation (2.5).

13



Proof. Define

G(~x, t; ~ξ, τ) =

∞
∑

n=1

(LZ)n(~x, t; ~ξ, τ).

Referring to Friedman (1964, pages 7–13) and Lemma 3.3, the function G is well-defined, dif-

ferentiable for t > τ and satisfies

G(~x, t; ~ξ, τ) = (LZ)1(~x, t; ~ξ, τ) +

∫ t

τ

∫∫

R2

(LZ)1(~x, t; ~η, σ)G(~η, σ; ~ξ, τ)d~ηdσ.

Notice that the function Ψ(~x, t; ~ξ, τ) satisfies the following integration equation

Ψ(~x, t; ~ξ, τ) = Z(~x, t; ~ξ, τ) +

∫ t

τ

∫∫

R2

Z(~x, t; ~η, σ)G(~η, σ; ~ξ, τ)d~ηdσ.

Then from Friedman (1964, pages 14–20), the function Ψ(~x, t; ~ξ, τ) is a fundamental solution of

L.

In the next theorem we will use the fundamental solution Ψ in equation (3.5) to prove that

the equation (2.5) has a unique solution, which is the joint density of (X1(t),X2(t)). First we

denote

vn(~x; t) =

∫ t

0

∫∫

R2

Z(~x, t; ~η, σ)(LZ)n(~η, σ;~0, 0)d~ηdσ. (3.6)

Then the function Ψ(~x, t;~0, 0) can be expressed as

Ψ(~x, t;~0, 0) = Z(~x, t;~0, 0) +

∞
∑

n=1

vn(~x; t).

Theorem 3.2. The function Ψ(~x, t;~0, 0) is the joint density of (X1(t),X2(t)), i.e.,

f(~x; t) = Ψ(~x, t;~0, 0).

Proof. We will prove that Ψ(~x, t;~0, 0) is the unique solution to equation (2.5) under the condition

that

sup
t∈(0,T ]

∫∫

R2

|p(~x; t)|d~x < ∞,

and we will also show that

∫∫

R2

Ψ(~x, t;~0, 0)d~x = 1 for any t ∈ (0, T ]. From Proposition 2.1,

we know that the density function f(~x; t) is a solution to equation (2.5), thus from the above

proved results we get that f(~x; t) = Ψ(~x, t;~0, 0) and the theorem is proved.
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For (~x, t) ∈ R2 × (0, T ], the function Ψ(~x, t;~0, 0) satisfies LΨ(~x, t;~0, 0) = 0. We only need

to check the initial condition in equation (2.5). Notice that for any continuous function g(~x)

defined on R2 satisfying |g(~x)| ≤ Meh|~x|2 , h < λ
8T and M is some constant,

lim
t→0+

∫∫

R2

Ψ(~x, t;~0, 0)g(~x)d~x

= lim
t→0+

∫∫

R2

Z(~x, t;~0, 0)g(~x)d~x

+ lim
t→0+

∞
∑

n=1

∫∫

R2

[
∫ t

0

∫∫

R2

Z(~x, t; ~η, σ)(LZ)n(~η, σ;~0, 0)g(~x)d~ηdσ

]

d~x. (3.7)

Then we will estimate the two terms of the right-hand side of equation (3.7) separately. From

Lemma 3.3, we have
∣

∣

∣

∣

∫∫

R2

[∫ t

0

∫∫

R2

Z(~x, t; ~η, σ)(LZ)n(~η, σ;~0, 0)g(~x)d~ηdσ

]

d~x

∣

∣

∣

∣

≤ MCn
0 t

n
2
−1

2π
√

1 − ρ2Γ(n
2 + 1)

∫∫

R2

e−( λ
8t
−h)|~x|2d~x

≤ M1C
n
0 t

n
2

Γ(n
2 + 1)

≤ M1C
n
0 T

n−1
2

Γ(n
2 + 1)

t
1
2

with M1 =
4M

√

1 − ρ2(λ − 8hT )
and the sum

∑

n≥1

M1C
n
0 T

n−1
2

Γ(n
2 + 1)

< ∞ for positive and finite T . Then

it follows that the sum of the infinite series in equation (3.7) tends to 0 uniformly as t → 0+.

On the other hand, lim
t→0+

∫∫

R2

Z(~x, t;~0, 0)g(~x)d~x = g(~0), which leads to

lim
t→0+

∫∫

R2

Ψ(~x, t;~0, 0)g(~x)d~x = g(~0).

Therefore, Ψ(~x, t;~0, 0) is one solution to equation (2.5). We leave the proof of uniqueness in

Appendix A. Thus we complete the proof of the theorem.

Theorem 3.2 shows that the joint density f(~x; t) can be expressed as a sum of an infinite

series, and for each n ≥ 1 the term vn(~x; t) can be expressed as (3.6). Actually, the function

vn(~x; t) is the solution to the following parabolic equation














∂vn

∂t
=

1

2

∂2vn

∂x2
1

+ ρ
∂2vn

∂x1∂x2
+

1

2

∂2vn

∂x2
2

+ (LZ)n(~x, t;~0, 0), (~x, t) ∈ R2 × (0, T ],

vn(~x; 0) = 0, ~x ∈ R2.

Thus numerical method can be applied for computing vn(~x; t).

15



4 The Copula Function between LIBOR Rates

In this section we study the properties of copula function in equation (2.11). From Theorem

3.2, the joint density f(~x; t) of (X1(t),X2(t)) can be expressed as

f(~x; t) = Z(~x, t;~0, 0) +
∑

n≥1

∫ t

0

∫∫

R2

Z(~x, t; ~ξ, τ)(LZ)n(~ξ, τ ;~0, 0)d~ξdτ. (4.1)

Denote Φρ to be the distribution function of the 2-dimensional normal distribution with standard

normal margins and correlation index ρ. Notice that

Φρ(x1, x2) =

∫ x1

−∞

∫ x2

−∞
Z(~ξ, 1;~0, 0)dξ1dξ2.

Then the joint distribution function H(x1, x2; t) is given by integrating f in equation (4.1)

H(x1, x2; t) = Φρ

(

~x√
t

)

+
∑

n≥1

∫ t

0

∫∫

R2

Φρ

(

~x − ~ξ√
t − τ

)

(LZ)n(~ξ, τ ;~0, 0)d~ξdτ. (4.2)

In the above expansion we denote

Vn(~x; t) =

∫ t

0

∫∫

R2

Φρ

(

~x − ~ξ√
t − τ

)

(LZ)n(~ξ, τ ;~0, 0)d~ξdτ, n ≥ 1.

To find the copula function between LIBOR rates (L1(t), L2(t)), first we need the following

lemma.

Lemma 4.1. There exists a series of positive constants Mn,i, 0 ≤ i ≤ n, n = 1, 2, . . . , indepen-

dent of t, such that for 0 < τ < t ≤ T and ~x, ~ξ ∈ R2

∣

∣

∣
(LZ)n(~ξ, t; ~η, τ)

∣

∣

∣
≤

n
∑

i=0

Mn,i(t − τ)
n−2−i

2 |~ξ − ~η|iZ(~ξ, t; ~η, τ).

We put the proof of Lemma 4.1 in Appendix B. Note that we have obtained one estimation

of (LZ)n in Lemma 3.3. The two estimations are for different purposes.

Theorem 4.1. (a) The copula function C(u1, u2; t) between (L1(t), L2(t)) has the following ex-

pression

C(u1, u2; t) = Cg

(

u1, (F1 ◦ F−1
2 )(u2; t); ρ

)

+
∑

n≥1

∫ t

0

∫∫

R2

Φρ

(

F−1
1 (u1, t) − ξ1√

t − τ
,
F−1

2 (u2, t) − ξ2√
t − τ

)

(LZ)n(~ξ, τ ;~0, 0)d~ξdτ, (4.3)
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where (LZ)n is defined in equation (3.1) and Cg(u1, u2; ρ) is the Gaussian copula with pa-

rameter ρ,

Cg(u1, u2; ρ) = Φρ

(

Φ−1(u1),Φ
−1(u2)

)

.

(b) For n ≥ 1, we denote

V c
n (u1, u2; t) =

∫ t

0

∫∫

R2

Φρ

(

F−1
1 (u1, t) − ξ1√

t − τ
,
F−1

2 (u2, t) − ξ2√
t − τ

)

(LZ)n(~ξ, τ ;~0, 0)d~ξdτ

in equation (4.3). Then there exists a series of constants Dn,i, 0 ≤ i ≤ n, n = 1, 2, . . . ,

independent of t, such that V c
n (u1, u2; t) can be bounded by

|V c
n (u1, u2; t)| ≤

∫ F−1
1 (u1;t)

−∞

∫ F−1
2 (u2;t)

−∞

(

n
∑

i=0

Dn,it
n−i
2 |~ξ|i

)

Z(~ξ, t;~0, 0)d~ξ. (4.4)

Furthermore, the term V c
n (u1, u2; t) satisfies

lim
u→0+

V c
n (u, u; t)

u
= lim

u→1−

1 − 2u + V c
n (u, u; t)

1 − u
= 0.

Proof. (a) From the definition of copula C(u1, u2; t) in equation (2.11), by combining the ex-

pression of the joint distribution function H in equation (4.2) and the marginal distributions

Fi, i = 1, 2 in Proposition 2.1 we can get the result.

(b) From Lemma 4.1, the function vn(~x; t) in equation (3.6) satisfies the property that

|vn(~x; t)| =

∣

∣

∣

∣

∫ t

0

∫∫

R2

Z(~x, t; ~ξ, τ)(LZ)n(~ξ, τ ;~0, 0)d~ξdτ

∣

∣

∣

∣

≤
n
∑

i=0

Mn,i

∫ t

0

∫∫

R2

τ
n−2−i

2 |~ξ|iZ(~x, t; ~ξ, τ)Z(~ξ, τ ;~0, 0)d~ξdτ. (4.5)

Noticing that

Z(~x, t; ~ξ, τ)Z(~ξ, τ ;~0, 0)

=
1

2π
√

1 − ρ2(t − τ)

1

2π
√

1 − ρ2τ

× exp

{

− t

2(t − τ)τ

(

~ξ − τ

t
~x
)T

A
(

~ξ − τ

t
~x
)

− 1

2t
~xT A~x

}

= Z(~x, t;~0, 0)Z

(

~ξ,
(t − τ)τ

t
;
τ

t
~x, 0

)

,
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and for i = 0, 1, . . . ,

∫∫

R2

|~x|iZ(~x, 1;~0, 0)d~x ≤
∫∫

R2

[

2(x2 + y2)
]

i
2

1

2π
e−

x2+y2

2 dxdy = 2iΓ

(

1 +
i

2

)

, (4.6)

by making the linear transformation ~ξ =

√

(t−τ)τ
t ~η + τ

t ~x in (4.5) we can get that

|vn(~x; t)| ≤
n
∑

i=0

Mn,i

∫ t

0

∫∫

R2

τ
n−2−i

2 |~ξ|iZ(~x, t; ~ξ, τ)Z(~ξ, τ ;~0, 0)d~ξdτ

≤
n
∑

i=0

Mn,iZ(~x, t;~0, 0)

∫ t

0

∫∫

R2

τ
n−2−i

2 Z(~η, 1;~0, 0)

∣

∣

∣

∣

∣

√

(t − τ)τ

t
~η +

τ

t
~x

∣

∣

∣

∣

∣

i

d~ηdτ

≤
n
∑

i=0

2iMn,iZ(~x, t;~0, 0)

×
∫ t

0

∫∫

R2

τ
n−2−i

2 Z(~η, 1;~0, 0)

{

[

(t − τ)τ

t

]
i
2

|~η|i +
[τ

t

]i
|~x|i
}

d~ηdτ

≤
n
∑

i=0

2iMn,iZ(~x, t;~0, 0)

×
[

2iΓ

(

1 +
i

2

)

B

(

1 +
i

2
,
n

2

)

t
n
2 + |~x|iB

(

1,
n + i

2

)

t
n−i
2

]

. (4.7)

Writing

Dn,0 = Mn,0B
(

1,
n

2

)

+
n
∑

i=0

22iMn,iΓ

(

1 +
i

2

)

B

(

1 +
i

2
,
n

2

)

,

Dn,i = 2iMn,iB

(

1,
n + i

2

)

, 1 ≤ i ≤ n,

from (4.7) we know that

|vn(~x; t)| ≤
n
∑

i=0

Dn,it
n−i
2 |~x|iZ(~x, t;~0, 0).

Substituting the above inequality to the definition of V c
n (u1, u2; t) we can get

|V c
n (u1, u2; t)| =

∣

∣

∣

∣

∣

∫ F−1
1 (u1;t)

−∞

∫ F−1
2 (u1;t)

−∞
vn(~ξ; t)d~ξ

∣

∣

∣

∣

∣

≤
∫ F−1

1 (u1;t)

−∞

∫ F−1
2 (u1;t)

−∞

∣

∣

∣
vn(~ξ; t)

∣

∣

∣
d~ξ

≤
∫ F−1

1 (u1;t)

−∞

∫ F−1
2 (u2;t)

−∞

(

n
∑

i=0

Dn,it
n−i
2 |~ξ|i

)

Z(~ξ, t;~0, 0)d~ξ,
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then the boundary in (4.4) can be obtained.

To prove that lim
u→0+

V c
n (u, u; t)

u
= 0, it is sufficient to prove that for 0 ≤ i ≤ n,

lim
u→0+

1

u

∫ F−1
1 (u;t)

−∞

∫ F−1
2 (u;t)

−∞
|~ξ|iZ(~ξ, t;~0, 0)d~ξ = 0. (4.8)

Since F−1
1 (u; t) ≤ F−1

2 (u; t) for any u ∈ (0, 1),

0 ≤ lim
u→0+

1

u

∫ F−1
1 (u;t)

−∞

∫ F−1
2 (u;t)

−∞
|~ξ|iZ(~ξ, t;~0, 0)d~ξ

≤ lim
u→0+

1

u

∫ F−1
2 (u;t)

−∞

∫ F−1
2 (u;t)

−∞
|~ξ|iZ(~ξ, t;~0, 0)d~ξ

= lim
x→−∞

1

F2(x; t)

∫ x

−∞

∫ x

−∞
|~ξ|iZ(~ξ, t;~0, 0)d~ξ. (4.9)

Applying the L’Hôpital’s Rule,

lim
x→−∞

1

F2(x; t)

∫ x

−∞

∫ x

−∞
|~ξ|iZ(~ξ, t;~0, 0)d~ξ

= lim
x→−∞

2

f2(x; t)

∫ x

−∞
(x2 + ξ2

2)
i
2 Z((x, ξ2), t;~0, 0)dξ2

= lim
x→−∞

2f1(x; t)

f2(x; t)

∫

√

1−ρ
1+ρ

x

−∞

[

x2 + (ρx +
√

1 − ρ2y)2
]

i
2 1√

2πt
e−

y2

2t dy

= 0, (4.10)

where the last equality is from

lim
x→−∞

f1(x; t)

f2(x; t)
=

1

1 − q

and

lim
x→−∞

∫

√

1−ρ
1+ρ

x

−∞

[

x2 + (ρx +
√

1 − ρ2y)2
]

i
2 1√

2πt
e−

y2

2t dy = 0.

Thus combining (4.9) and (4.10) we conclude that (4.8) is true. Similarly it can be proved

that

lim
u→1−

1 − 2u + V c
n (u, u; t)

1 − u
= 0.

Thus the proof of the theorem is completed.
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By Theorem 4.1, the copula function C(u1, u2; t) between (L1(t), L2(t)) can be expanded as

a sum of infinite series, where the first term V c
0 (u1, u2; t) = Cg

(

u1, (F1 ◦ F−1
2 )(u2; t); ρ

)

is the

main term of the expansion and the second term V c
1 (u1, u2; t) is an adjustment to the main term.

The corresponding expansion of the copula density c(u1, u2; t) is

c(u1, u2; t) = cg

(

u1, (F1 ◦ F−1
2 )(u2; t); ρ

) f1(F
−1
2 (u2; t); t)

f2(F
−1
2 (u2; t); t)

+
∑

n≥1

∫ t

0

∫∫

R2

Z
(

(F−1
1 (u1, t), F

−1
2 (u2, t)), t; ~ξ, τ

)

f1(F
−1
1 (u2; t); t)f2(F

−1
2 (u2; t); t)

(LZ)n(~ξ, τ ;~0, 0)d~ξdτ, (4.11)

where cg(u1, u2; ρ) is the Gaussian copula density with correlation parameter ρ. In the above

expansion of the copula density we denote

vc
0(u1, u2; t) = cg

(

u1, (F1 ◦ F−1
2 )(u2; t); ρ

) f1(F
−1
2 (u2; t); t)

f2(F
−1
2 (u2; t); t)

,

and

vc
n(u1, u2; t) =

∫ t

0

∫∫

R2

Z
(

(F−1
1 (u1, t), F

−1
2 (u2, t)), t; ~ξ, τ

)

f1(F
−1
1 (u2; t); t)f2(F

−1
2 (u2; t); t)

(LZ)n(~ξ, τ ;~0, 0)d~ξdτ, n ≥ 1.

In the copula density’s expansion, the second term vc
1(u1, u2; t) is an adjustment term to the

first term vc
0(u1, u2; t). In the next section we can see from the numerical results that the first

and second terms in the copula expansion can explain most of the dependence information and

are important in the series expression.

Next we will show some properties of the copula function C(u1, u2; t). When t is small, the

distance between the copula function C(u1, u2; t) and the Gaussian copula is small, which is

mathematically presented in the following proposition.

Proposition 4.1. There exists some t0 > 0 and B < ∞, such that for all 0 < t < t0,

|C(u1, u2; t) − Cg(u1, u2; ρ)| ≤ B
√

t.

Proof. Theorem 4.1 shows that

C(u1, u2; t) − Cg(u1, u2; ρ) = [V c
0 (u1, u2; t) − Cg(u1, u2; ρ)] +

∞
∑

n=1

V c
n (u1, u2; t). (4.12)
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Then we will estimate each term of the right-hand side of equation (4.12) separately.

First recall that

Φ

(

x − σ2t√
t

)

≤ F2(x; t) ≤ Φ

(

x√
t

)

,

then
√

tΦ−1(u2) ≤ F−1
2 (u2; t) ≤

√
tΦ−1(u2) + σ2t. (4.13)

From Theorem 4.1 and the definition of Gaussian copula, the first term V c
0 (u1, u2; t) and Gaussian

copula function Cg(u1, u2; ρ) satisfy that

V c
0 (u1, u2; t) =

∫ F−1
1 (u1;t)

−∞

∫ F−1
2 (u2;t)

−∞
Z(~ξ, t;~0, 0)d~ξ

=

∫

F
−1
1

(u1;t)
√

t

−∞

∫

F
−1
2

(u2;t)
√

t

−∞
Z(~η, 1;~0, 0)d~η, (4.14)

and

Cg(u1, u2; ρ) =

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞
Z(~η, 1;~0, 0)d~η. (4.15)

Thus from equations (4.13) to (4.15) we have

0 ≤ V c
0 (u1, u2; t) − Cg(u1, u2; ρ)

=

∫ Φ−1(u1)

−∞

∫

F
−1
2

(u2;t)
√

t

Φ−1(u2)
Z(~η, 1;~0, 0)d~η

≤
(

F−1
2 (u2; t)√

t
− Φ−1(u2)

)

sup
η2∈R

{

∫ Φ−1(u1)

−∞
Z(~η, 1;~0, 0)dη1

}

≤ F−1
2 (u2; t)√

t
− Φ−1(u2)

≤ σ2

√
t.

To estimate the other terms in equation (4.12), Lemma 3.3 shows that for n ≥ 1 there exists

Cn =
1

2π
√

1 − ρ2

Cn
0

Γ(n
2 + 1)

such that

|vn(~x; t)| ≤ Cnt
n
2
−1 exp

(

−λ(x2
1 + x2

2)

8t

)

.

Then

|V c
n (u1, u2; t)| ≤

∫∫

R2

Cnt
n
2
−1 exp

(

−λ(x2
1 + x2

2)

8t

)

dx1dx2 =
8πCn

λ
t

n
2 .
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Notice that
∑

n≥1

Cn < ∞.

Then for sufficiently small 0 < t0 < 1 equation (4.12) can be estimated by

|C(u1, u2; t) − Cg(u1, u2; ρ)| ≤ σ2

√
t +

∑

n≥1

8πCn

λ
t

n
2

≤
√

t



σ2 +
∑

n≥1

8πCn

λ
t

n−1
2

0



 = B
√

t.

Here

B = σ2 +
∑

n≥1

8πCn

λ
t

n−1
2

0

is finite and positive. Thus we complete the proof of the proposition.

In the copula expansion, the change of the first term V c
0 (u1, u2; t) with respect to time t is

bounded. The result will be given in the following proposition.

Proposition 4.2. For 0 < t < t′ < T the first term V c
0 satisfies

∣

∣V c
0 (u1, u2; t

′) − V c
0 (u1, u2; t)

∣

∣ ≤ σ2√
2π

√
t′ − t.

Proof. Denote

z′ =
F−1

2 (u2; t
′)√

t′
, z =

F−1
2 (u2; t)√

t
.

First we will estimate |z − z′|. From the expression of F2(x2; t) in Proposition 2.1,

(1 − q)Φ(z) + qΦ(z − σ2

√
t) = u2 = (1 − q)Φ(z′) + qΦ(z′ − σ2

√
t′).

It follows that

(1 − q)
(

Φ(z) − Φ(z′)
)

= q
(

Φ(z′ − σ2

√
t′) − Φ(z − σ2

√
t)
)

. (4.16)

In equation (4.16) we notice that if z > z′,

z′ − σ2

√
t′ > z − σ2

√
t,
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which leads to a contradiction since t′ > t. It implies that z′ ≥ z and

z′ − σ2

√
t′ ≤ z − σ2

√
t.

In conclusion, for any 0 < t < t′ < T and u2 ∈ (0, 1) equation (4.16) implies that

0 ≤ F−1
2 (u2; t

′)√
t′

− F−1
2 (u2; t)√

t
≤ σ2

√
t′ − t.

Then

∣

∣V c
0 (u1, u2; t

′) − V c
0 (u1, u2; t)

∣

∣ ≤ sup
v∈[0,1]

∣

∣

∣

∣

∂Cg

∂v
(u1, v; ρ)

∣

∣

∣

∣

∣

∣F1 ◦ F−1
2 (u2; t

′) − F1 ◦ F−1
2 (u2; t)

∣

∣

≤
∣

∣

∣

∣

Φ

(

F−1
2 (u2; t

′)√
t′

)

− Φ

(

F−1
2 (u2; t)√

t

)∣

∣

∣

∣

≤ 1√
2π

∣

∣

∣

∣

F−1
2 (u2; t

′)√
t′

− F−1
2 (u2; t)√

t

∣

∣

∣

∣

≤ σ2√
2π

√
t′ − t.

Thus the proposition is proved.

In this section we find that the copula function C(u1, u2; t) between (L1(t), L2(t)) can be

expressed as a sum of an infinite series. In the next section we will provide numerical analysis

for measuring the approximation error of the first two terms of the series and compare it with

the Gaussian approximation.

5 Numerical Analysis

In this section we provide numerical results for the copula function C(u1, u2; t). We consider

the following two cases in our numerical analysis:

1. Case 1: L1(0) = 0.05, L2(0) = 0.06, σ1 = 15%, σ2 = 20%, ρ = 0.5, δ = 0.5.

2. Case 2: L1(0) = 0.05, L2(0) = 0.10, σ1 = 15%, σ2 = 35%, ρ = 0.5, δ = 0.5.

The parameter set in Case 1 describes the normal situation in the financial market such that

the interest rate and the volatility are low, which can be regarded as the basic case. In Case
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2, the market faces great challenge and the volatility of the LIBOR rate is higher than that in

Case 1, which can be regarded as an extreme case. From the expression of the copula function

C(u1, u2; t) we know that it is independent of the initial value and the volatility of L1(t), so

we do not make changes of σ1 and L1(0) in these two cases. The assumption for ρ > 0 is

reasonable because interest rates with close maturities are positive correlated in the sense that

when one rate goes up, the other is more likely to increase. This assumption is supported by

the calibration results in Brigo & Mercurio (2001, Chapter 7).

In this section we will first give the features of copula function between (L1(t), L2(t)) under

the above two parameter sets. Then we will analyze the influence of the first two terms in the

series of the copula expansion. Finally we will study the difference between the real copula

C(u1, u2; t) and Gaussian copula Cg(u1, u2; ρ). During our numerical calculating, the Crank-

Nicolson scheme (see Crank & Nicolson (1947)) is used to solve the joint density function f in

PDE (2.5), and linear interpolation method is used to calculate the copula density c(u1, u2; t)

in (2.12).

5.1 General results

Figure 1 presents the shapes of the copula function C(u1, u2; t) and its density function c(u1, u2; t)

between (L1(t), L2(t)) for Case 1 and Case 2 at time t = 1.0. It can be found that the copula

C(u1, u2; 1) has similar appearance with the Gaussian family for that it has high density value

near (0, 0) and (1, 1) (for ρ > 0) and tends to 0 near (0, 1) and (1, 0).

We are also interested in the Spearman’s rho and Kendall’s tau, which are both indexes for

measuring the global correlation in the copula function. Spearman’s rho can be calculated by

ρS = 12

∫∫

uvdC(u, v) − 3,

which measures the distance between the copula function C and the independent copula Π(u, v) =

uv. Another measure of the correlation in copula is Kendall’s tau, which is given by

τK = 4

∫∫

C(u, v)dC(u, v) − 1.

For a Gaussian copula with parameter ρ = 0.5, these two measures are ρS = 0.4826 and
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Figure 1: Numerical results for the copula function C(u1, u2; t) and density c(u1, u2; t) for Case

1 and Case 2 at t = 1.0. Top: density and copula function in Case 1; Bottom: density and

copula function in Case 2.

τK = 0.3333. More properties about ρS and τK can be found in Cherubini, Luciano & Vecchiato

(2004, Chapter 1).

The two measures ρS and τK can be numerically computed by the copula function C(u1, u2; t)

and the results are given in Table 1 for t = 1.0. Both of them are smaller than the Gaussian

copula with the correlation index ρ = 0.5. It may suggest that the time-varying drift terms of

the LIBOR processes can bring down the correlation between the LIBOR Rates.

Case 1 Case 2

time ρS τK ρS τK

t = 0.5 0.4650428 0.3274752 0.4650357 0.3274682

t = 1.0 0.4650454 0.3274796 0.4650364 0.3274718

t = 1.5 0.4650461 0.3274773 0.4650372 0.3274693

t = 2.0 0.4650465 0.3273998 0.4650360 0.3273925

Table 1: Dynamic Spearman’s rho and Kendall’s tau for the copula C(u1, u2; 1) in Case 1 and

Case 2.
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Figure 2: Numerical results of the first term vc
0(u1, u2; t). In each sub-figure, left top:

vc
0(u1, u2; 0.5); right top to right bottom: the change of the first term to the case t = 0.5,

i.e., vc
0(u1, u2; t) − vc

0(u1, u2; 0.5) for t = 1.0, 1.5, 2.0. Left: Case 1. Right: Case 2.

5.2 On the Series Expansion about the Copula Function C(u1, u2; t)

As shown in Theorem 4.1, the copula function C(u1, u2; t) can be expanded as a sum of an

infinite series, and the first two terms in the copula density expansion are denoted by vc
i (u1, u2; t),

i = 0, 1, which is given in equation (4.11). Figure 2 implies that the first term vc
0(u1, u2; t) can

be regarded as a distortion from the Gaussian copula. The distortion effect becomes apparent

as time goes on. Comparing with the distortion effect in the left part of Figure 2, the increase

in volatility enlarges the effect, as shown in the right part. In Proposition 2.1, increasing σ2

and L2(0) effects the first term by enlarging the parameter q. When q increases, the difference

between the marginal distribution F2(x2; t) and Gaussian distribution becomes larger, thus the

distortion effect increases.

Unlike the first term vc
0(u1, u2; t), the second term vc

1(u1, u2; t) is an adjustment term to the

first term. Figure 3 shows the shapes of vc
1(u1, u2; t) for the two parameter cases, respectively.

The adjustment effect is small in the central region of the unit square, and apparent near (0, 0)

and (1, 1). It is also more obvious for Case 2 when the volatility is in a higher level.

Figure 4 gives the error of approximating the series of the copula with only the first term,
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Figure 3: Numerical results of the second term vc
1(u1, u2; t) for t = 0.5, 1.0, 1.5, 2.0. Left: Case

1. Right: Case 2.

which is measured by c(u1, u2; t)− vc
0(u1, u2; t). The approximation error is small in the central

region but the difference in the tail is not ignorable. We also find that the difference between

the copula and the first term becomes larger when t increases, which means that the distortion

impact of the remaining terms becomes larger as time goes on. The approximation error is

much reduced by adding the adjustment term vc
1(u1, u2; t), as shown in Figure 5, and the result

is more acceptable for Case 1 than Case 2.

5.3 Difference between the Real Copula and the Gaussian Copula

In this subsection we will study the error of the Gaussian approximation to the real copula

function C(u1, u2; t). Recall that cg(u1, u2; ρ) is the Gaussian copula density with correla-

tion parameter ρ. Then numerical results for the approximation error which is measured by

c(u1, u2; t)− cg(u1, u2; ρ) are shown in Figure 6. The traditional Gaussian approximation is not

good in the tail, which implies that when the interest rates are too high or too low, the Gaus-

sian correlation structure is not applicable. Comparing with the approximation using the first

two terms in Figure 5, Gaussian approximation seems worse than series approximation when

volatility is low.

It is useful to calculate the exact difference between the real copula and the Gaussian copula
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Figure 4: Numerical results of the difference between copula density and the first term

c(u1, u2; t) − vc
0(u1, u2; t), for t = 0.5, 1.0, 1.5, 2.0. Left: Case 1. Right: Case 2.
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Figure 5: Numerical results of the difference between copula density and the first two terms

c(u1, u2; t) − vc
0(u1, u2; t) − vc

1(u1, u2; t), for t = 0.5, 1.0, 1.5, 2.0. Left: Case 1. Right: Case 2.
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Figure 6: Numerical results of the difference between copula density and Gaussian density

c(u1, u2; t) − cg(u1, u2; ρ), for t = 0.5, 1.0, 1.5, 2.0. Left: Case 1. Right: Case 2.

and we will choose several points in the unit square to see how the two copula functions differ

at these points. Since the density functions of the real copula function C(u1, u2; t) and the

approximated Gaussian copula Cg(u1, u2; ρ) mainly differ in the tail, we choose several points

near (1, 1). Table 2 presents the values of the differences. From Table 2 we can see that neither

of the two densities is dominated by the other, which means that at some points the density

for the real copula is larger than the Gaussian density and at the other points the opposite is

true. And the difference between the real density c(u1, u2; t) and the Gaussian density is larger

for Case 2, which implies that the Gaussian approximation is worse when market volatility is

higher.

Next we will show the difference between the copula and Gaussian copula by calculating

conditional tail expectations of LIBOR-related variables. Suppose that (L1, L2) are LIBOR

rates at T = 2.0, and (U1, U2) are the associated transformed variables with Ui = Fi(Li;T ),

i = 1, 2. Table 3 and Table 4 examine the expected shortfall of two rates L1 and L2 when both

of them are above some thresholds K1 and K2 using the copula function C(u1, u2; t) and the

Gaussian copula Cg(u1, u2; ρ) for the two parameter cases. The difference is hard to observe

since the density function tends to 0 rapidly when the interest rates are large.
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Point Case 1 (×10−3) Case 2 (×10−3)

(u1, u2) c(u1, u2; t) − cg(u1, u2; ρ) c(u1, u2; t) − cg(u1, u2; ρ)

( 0.995 , 0.995 ) -0.5171 -2.2171

( 0.995 , 0.990 ) -0.5308 -1.8808

( 0.995 , 0.950 ) -0.0252 -0.1752

( 0.990 , 0.995 ) -0.2208 -1.0708

( 0.990 , 0.990 ) -0.4025 -1.3125

( 0.990 , 0.950 ) -0.1539 -0.4339

( 0.950 , 0.995 ) 0.2948 0.6848

( 0.950 , 0.990 ) 0.0461 0.1461

( 0.950 , 0.950 ) -0.1279 -0.3779

Table 2: Difference between the density functions for copula function C(u1, u2; t) and the ap-

proximated Gaussian copula at several points.

Table 5 and Table 6 present the expected shortfall of the transformed variables (U1, U2)

under two parameter sets. In the real copula case, (U1, U2) ∼ C(u1, u2;T ) and in the Gaussian

copula case, (U1, U2) ∼ Cg(u1, u2; ρ). Contrary to the numerical results in Table 3 and Table 4,

the expected shortfall of the real copula is larger than that of the Gaussian copula.

E[L1|L1 ≥ K1, L2 ≥ K2] E[L2|L1 ≥ K1, L2 ≥ K2]

K1 K2 Real copula Gaussian Real copula Gaussian

0.0801 0.1113 0.088003 0.088004 0.126541 0.126550

0.0693 0.0918 0.077700 0.077770 0.107276 0.107278

0.0642 0.0828 0.072893 0.072893 0.098569 0.098570

0.1000 0.1200 0.105829 0.105835 0.137100 0.137124

Table 3: Case 1, ρ = 0.5.
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E[L1|L1 ≥ K1, L2 ≥ K2] E[L2|L1 ≥ K1, L2 ≥ K2]

K1 K2 Real copula Gaussian Real copula Gaussian

0.0801 0.2798 0.087958 0.087963 0.354558 0.354772

0.0693 0.1997 0.077661 0.077663 0.266752 0.266807

0.0642 0.1668 0.072858 0.072859 0.230590 0.230617

0.1000 0.1200 0.105394 0.105400 0.302881 0.303237

Table 4: Case 2, ρ = 0.5.

E[U1|U1 ≥ K1, U2 ≥ K2] E[U2|U1 ≥ K1, U2 ≥ K2]

K1 K2 Real copula Gaussian Real copula Gaussian

0.99 0.95 0.994495 0.994317 0.979003 0.976499

0.99 0.90 0.994405 0.994266 0.961534 0.955124

0.95 0.90 0.976616 0.975267 0.957644 0.953186

Table 5: Case 1, ρ = 0.5.

5.4 Conclusion on the Numerical Results

In this section, we provide some numerical results for the copula between LIBOR rates and

conclude that:

(1) The shapes of the copula function and its density are close to those of the Gaussian copula.

The density functions are both high in the upper and lower tails, and flat in the central

region for positive correlation parameter.

(2) The copula between LIBOR rates can be expressed as a sum of an infinite series. The first

term can explain most information of the copula. The other terms are adjustments to the

first term. When volatility becomes larger, the distortion effect of the first term and the

impact of adjustment of the second term both increase.

(3) When the market volatility is low, the series approximation result using the first two terms

is acceptable. But when market volatility is high, more terms should be considered to

approximate the copula.
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E[U1|U1 ≥ K1, U2 ≥ K2] E[U2|U1 ≥ K1, U2 ≥ K2]

K1 K2 Real copula Gaussian Real copula Gaussian

0.99 0.95 0.994495 0.994317 0.979002 0.976499

0.99 0.90 0.994405 0.994266 0.961531 0.955124

0.95 0.90 0.976616 0.975267 0.957644 0.953186

Table 6: Case 2, ρ = 0.5.

(4) When the market volatility and the interest rate levels are low, Gaussian approximation

works well. But when the interest rate and volatility levels are high, their performances

differ in the tail.

6 Conclusion

This paper starts from the simplified BGM model and finds the expansion of the copula function

between the LIBOR rates by using PDE method. The copula function between two LIBOR rates

can be expressed as a sum of an infinite series, where the first term is a distribution function

with Gaussian copula and the other terms of the series are adjustments to the first term. The

numerical results are provided to present and compare the performances of the approximations

using the first two terms of the series and the Gaussian copula. The numerical results suggest

that the Gaussian approximation is acceptable when market volatility and interest rate are low,

and when the volatility increases, the approximated Gaussian copula and the original copula

differ in the tail.
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Appendix A Proof of Theorem 3.2: the Uniqueness Part

In this part we will prove that Ψ(~x, t;~0, 0) is the unique solution to equation (2.5) under the

condition that

sup
t∈(0,T ]

∫∫

R2

|p(~x; t)|d~x < ∞.

Further we will prove that for any t ∈ (0, T ], the function Ψ(~x, t;~0, 0) satisfies
∫∫

R2

Ψ(~x, t;~0, 0)d~x = 1,

thus complete the proof that f(~x; t) = Ψ(~x, t;~0, 0).

First we will verify that the function Ψ(~x, t;~0, 0) satisfies

sup
t∈(0,T ]

∫∫

R2

|Ψ(~x, t;~0, 0)|d~x < ∞.

In fact, by Theorem 11 in Chapter 2 of Friedman (1964) the function Ψ(~x, t;~0, 0) is positive.

Then
∫∫

R2

|Ψ(~x, t;~0, 0)|d~x =

∫∫

R2

Ψ(~x, t;~0, 0)d~x =

∫∫

R2

Z(~x, t; 0, 0)d~x +

∞
∑

n=1

∫∫

R2

vn(~x; t)d~x. (A.1)

It holds that
∫∫

R2

(LZ)1(~ξ, τ ; ~η, σ)d~ξ =

∫

R

[∫

R

∂

∂ξ2

(

θ(ξ2, τ)Z(~ξ, τ ; ~η, σ)
)

dξ2

]

dξ1 = 0,

which is followed by
∫∫

R2

(LZ)n(~ξ, τ ;~0, 0)d~ξ

=

∫∫

R2

[
∫ τ

0

∫∫

R2

(LZ)1(~ξ, τ ; ~η, σ)(LZ)n−1(~η, σ;~0, 0)d~ηdσ

]

d~ξ

= 0

for n ≥ 2. Then from the above equation we get
∫∫

R2

vn(~x; t)d~x

=

∫∫

R2

[
∫ t

0

∫∫

R2

Z(~x, t; ~ξ, τ)(LZ)n(~ξ, τ ;~0, 0)d~ξdτ

]

d~x

=

∫ t

0

∫∫

R2

(LZ)n(~ξ, τ ;~0, 0)d~ξdτ

= 0.
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Thus from equation (A.1) we conclude that
∫∫

R2

Ψ(~x, t;~0, 0) = 1.

Next we will prove the uniqueness part of the theorem. Suppose that K1(~x, t), K2(~x, t) both

solve equation (2.5), i.e., LK1 = LK2 = 0, for all (~x, t) ∈ R2 × (0, T ], and for any continuous

function g(~x), ~x ∈ R2 satisfying |g(~x)| ≤ Meh|~x|2 for some constant M ,

lim
t→0+

∫∫

R2

K1(~x, t)g(~x)d~x = lim
t→0+

∫∫

R2

K2(~x, t)g(~x)d~x = g(0).

Denote u = K1 − K2. It follows that Lu = 0 and

lim
t→0+

∫∫

R2

u(~x, t)g(~x)d~x = 0. (A.2)

In order to show that u(~x, t) = 0, for all (~x, t) ∈ R2 × (0, T ], define L∗ to be the adjoint operator

of L by

L∗p = −∂p

∂t
− 1

2

∂2p

∂x2
1

− ρ
∂2p

∂x1∂x2
− 1

2

∂2p

∂x2
2

− θ
∂p

∂x2

for any function p(~x, t) such that the derivatives exist. Then by Theorem 15 in Friedman (1964,

page 28) the fundamental solution Ψ∗ of L∗p = 0 exists and

Ψ∗(~ξ, τ ; ~x, t) = Ψ(~x, t; ~ξ, τ), 0 < τ < t ≤ T. (A.3)

Next we will define the function ϕR(~x). Fix (~x0, t0) ∈ R2 × (0, T ]. Denote

BR =
{

~y ∈ R2 : |~y − ~x0| < R
}

for R > 1. Then there exists a function ϕR(~ξ) such that

(a) 0 ≤ ϕR(~ξ) ≤ 1 . Moreover, ϕR(~ξ) = 1 for ~ξ ∈ BR, and ϕR(~ξ) = 0 for ~ξ ∈ R2 \ BR+1;

(b) The first and second partial derivatives of ϕR exist and are continuous. Furthermore,
2
∑

i=1

∣

∣

∣

∣

∣

∂ϕR(~ξ)

∂ξi

∣

∣

∣

∣

∣

+

2
∑

i=1

2
∑

j=1

∣

∣

∣

∣

∣

∂2ϕR(~ξ)

∂ξi∂ξj

∣

∣

∣

∣

∣

has a upper bound which is independent of R.

Now we begin to prove that for fixed (~x0, t0) ∈ R2 × (0, T ], u(~x0, t0) = 0. For u = u(~ξ, τ), v =

ϕR(~ξ)Ψ(~x0, t0; ~ξ, τ), we have

vLu − uL∗v =
∂(uv)

∂t
+

∂(θuv)

∂ξ2
− 1

2

∂

∂ξ1

(

v
∂u

∂ξ1
− u

∂v

∂ξ1

)

− ρ

(

∂

∂ξ1

(

v
∂u

∂ξ2

)

− ∂

∂ξ2

(

u
∂v

∂ξ1

))

− 1

2

∂

∂ξ2

(

v
∂u

∂ξ2
− u

∂v

∂ξ2

)

.
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Noticing that ϕR(ξ1, ξ2) and its first partial derivatives are 0 on the edge of BR+1 and integrating

the above equation on both sides for (~ξ, τ) ∈ BR+1 × (ε1, t0 − ε2), where ε1 and ε2 are small

positive real numbers satisfying ε1 < t0 − ε2, we have

−
∫ t0−ε2

ε1

∫∫

BR+1

uL∗vd~ξdτ (A.4)

=

∫∫

BR+1

ϕR(~ξ)Ψ(~x0, t0; ~ξ, t0 − ε2)u(~ξ, t0 − ε2)d~ξ −
∫∫

BR+1

ϕR(~ξ)Ψ(~x0, t0; ~ξ, ε1)u(~ξ, ε1)d~ξ.

By (A.3), the first term of the right-hand side of equation (A.4) satisfies

∫∫

BR+1

ϕR(~ξ)Ψ(~x0, t0; ~ξ, t0 − ε2)u(~ξ, t0 − ε2)d~ξ → ϕR(~x0)u(~x0, t0) = u(~x0, t0)

as ε2 → 0+, R → +∞. The second term of the right-hand side of equation (A.4) tends to

−
∫∫

R2

Ψ(~x0, t0; ~ξ, ε1)u(~ξ, ε1)d~ξ as R → +∞. When ε1 is small and positive, Ψ(~x0, t0; ~ξ, ε1) is

uniformly continuous with respect to ε1, then

lim
ε1→0

∫∫

R2

Ψ(~x0, t0; ~ξ, ε1)u(~ξ, ε1)d~ξ = lim
ε1→0

∫∫

R2

Ψ(~x0, t0; ~ξ, 0)u(~ξ, ε1)d~ξ = 0.

The above limit follows from the initial condition of u in equation (A.2). Thus we conclude from

equation (A.4) that

∫ t0−ε2

ε1

∫∫

BR+1

uL∗vd~ξdτ → u(~x0, t0), as ε1 → 0+, ε2 → 0+, R → +∞. (A.5)

On the other hand, similar to the proof with Lemma 3.3, for n ≥ 1, i = 1, 2, it holds that

∣

∣

∣

∣

∂(LZ)n
∂ξi

(~x0, t0; ~ξ, τ)

∣

∣

∣

∣

≤ Cn−1
0 D0

Γ
(

n−1
2

) (t0 − τ)
n−5

2 e
−

λ|~x0−~ξ|2
8(t0−τ) ,

where the constant C0 is defined in Lemma 3.3 and

D0 =
4σ2

λeπ(1 − |ρ|)5/2
+

σ2

2π(1 − |ρ|)3/2
+

σ2
2

√
T√

λeπ(1 − |ρ|)3/2
.
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It follows that

|Ψ(~x0, t0; ~ξ, τ)| +
2
∑

i=1

∣

∣

∣

∣

∂

∂ξi
Ψ(~x0, t0; ~ξ, τ)

∣

∣

∣

∣

≤ 1

2π
√

1 − ρ2(t0 − τ)
e
−

λ|~x0−~ξ|2
4(t0−τ) +

2
∑

i=1

∣

∣

∣

∣

∂Z

∂ξi
(~x0, t0; ~ξ, τ)

∣

∣

∣

∣

+

2
∑

i=1

∞
∑

n=1

∫ t

τ

∫∫

R2

Z(~x0, t0; ~η, σ)

∣

∣

∣

∣

∂(LZ)n
∂ξi

(~η, σ; ~ξ, τ)

∣

∣

∣

∣

d~ηdσ

≤
√

T

2π
√

1 − ρ2(t0 − τ)3/2
e
−

λ|~x0−~ξ|2
8(t0−τ) +

2
∑

i=1

|~x − ~ξ|
(1 − |ρ|)(t − τ)

Z(~x0, t0; ~ξ, τ)

+

2
∑

i=1

∞
∑

n=1

∫ t

τ

∫∫

R2

1

2π
√

1 − ρ2(t0 − σ)
e
−

λ|~x0−~η|2
8(t0−σ)

Cn−1
0 D0

Γ
(

n−1
2

) (σ − τ)
n−5

2 e
−λ|~η−~ξ|2

8(σ−τ) d~ηdσ

≤
√

T

2π
√

1 − ρ2(t0 − τ)3/2
e
−

λ|~x0−~ξ|2
8(t0−τ) +

2√
λeπ(1 − |ρ|)3/2(t0 − τ)3/2

e
−

λ|~x0−~ξ|2
8(t0−τ)

+

∞
∑

n=1

4Cn−1
0 D0

√

1 − ρ2Γ
(

n+1
2

)(t0 − τ)
n−3

2 e
−

λ|~x0−~ξ|2
8(t0−τ)

≤ C1(t0 − τ)3/2e
−

λ|~x0−~ξ|2
8(t0−τ)

for some constant C1. Since L∗v = 0 for any ~ξ ∈ BR, the left-hand side of equation (A.4) can

be bounded by

∣

∣

∣

∣

∣

∫ t0−ε2

ε1

∫∫

BR+1

uL∗vd~ξdτ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ t0−ε2

ε1

∫∫

BR+1\BR

u

[

2

(

−1

2

∂ϕR

∂ξ1

∂Ψ

∂ξ1
− ρ

2

(

∂ϕR

∂ξ1

∂Ψ

∂ξ2
+

∂ϕR

∂ξ2

∂Ψ

∂ξ1

)

− 1

2

∂ϕR

∂ξ2

∂Ψ

∂ξ2

)

−
(

1

2

∂2ϕR

∂ξ2
1

+ ρ
∂2ϕR

∂ξ1∂ξ2
+

1

2

∂2ϕR

∂ξ2
2

)

Ψ − θ
∂ϕR

∂ξ2
Ψ

]

d~ξdτ

∣

∣

∣

∣

≤ C2e
−λR2

16T

∫ t0

0

∫∫

BR+1\BR

|u(~ξ, τ)|d~ξdτ → 0, as R → +∞

under the condition that

sup
t∈(0,T ]

∫∫

R2

|u(~x; t)|d~x < ∞,

where C2 is some constant. The above inequality holds for any arbitrary small positive ε1 and
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ε2, which implies that

∫ t0−ε2

ε1

∫∫

BR+1

uL∗vd~ξdτ → 0, as ε1 → 0+, ε2 → 0+, R → +∞. (A.6)

Combining equations (A.5) and (A.6), we conclude that u(~x0, t0) = 0 for any fixed point (~x0, t0).

Thus we complete the proof of the theorem.

Appendix B Proof of Lemma 4.1

To prove the lemma, first we need some inequalities. From equation (4.6) we know that

∫∫

R2

|~x|iZ(~x, 1;~0, 0)d~x ≤ 2iΓ

(

1 +
i

2

)

. (B.1)

For n ≥ 2, 0 ≤ i ≤ n we have

∫ t

τ

∫∫

R2

(t − σ)−
1
2 (σ − τ)

n−3−i
2 |~y − ~η|iZ(~ξ, t; ~y, σ)Z(~y, σ; ~η, τ)d~ydσ

=

∫ t

τ

∫∫

R2

(t − σ)−
1
2 (σ − τ)

n−3−i
2 |~y − ~η|iZ(~ξ, t; ~η, τ)

×Z

(

~y,
(t − σ)(σ − τ)

t − τ
;
σ − τ

t − τ
~ξ +

t − σ

t − τ
~η, 0

)

d~ydσ

=

∫ t

τ

∫∫

R2

(t − σ)−
1
2 (σ − τ)

n−3−i
2

∣

∣

∣

∣

∣

√

(t − σ)(σ − τ)

t − τ
~x +

σ − τ

t − τ
(~ξ − ~η)

∣

∣

∣

∣

∣

i

×Z(~x, 1;~0, 0)Z(~ξ, t; ~η, τ)d~xdσ

≤ 2iZ(~ξ, t; ~η, τ)

[

∫∫

R2

|~x|iZ(~x, 1;~0, 0)d~x

∫ t

τ

(t − σ)
i−1
2 (σ − τ)

n−3
2

(t − τ)
i
2

dσ

+|~ξ − ~η|i
∫ t

τ

(t − σ)−
1
2 (σ − τ)

n−3+i
2

(t − τ)i
dσ

]

.

Then from (B.1) and using the definition of the Beta function, we have

∫ t

τ

∫∫

R2

(t − σ)−
1
2 (σ − τ)

n−3−i
2 |~y − ~η|iZ(~ξ, t; ~y, σ)Z(~y, σ; ~η, τ)d~ydσ

≤ Z(~ξ, t; ~η, τ)

[

22iΓ

(

1 +
i

2

)

B

(

i + 1

2
,
n − 1

2

)

(t − τ)
n−2

2

+ 2i|~ξ − ~η|iB
(

1

2
,
n − 1 + i

2

)

(t − τ)
n−2−i

2

]

. (B.2)

37



For n ≥ 2, 0 ≤ i ≤ n we also have
∫ t

τ

∫∫

R2

(t − σ)−1(σ − τ)
n−3−i

2 |~ξ − ~y||~y − ~η|iZ(~ξ, t; ~y, σ)Z(~y, σ; ~η, τ)d~ydσ

=

∫ t

τ

∫∫

R2

(t − σ)−1(σ − τ)
n−3−i

2

∣

∣

∣

∣

∣

t − σ

t − τ
(~ξ − ~η) −

√

(t − σ)(σ − τ)

t − τ
~x

∣

∣

∣

∣

∣

×
∣

∣

∣

∣

∣

√

(t − σ)(σ − τ)

t − τ
~x +

σ − τ

t − τ
(~ξ − ~η)

∣

∣

∣

∣

∣

i

Z(~x, 1;~0, 0)Z(~ξ, t; ~η, τ)d~xdσ

≤ 2iZ(~ξ, t; ~η, τ)

[

∫∫

R2

|~x|i+1Z(~x, 1;~0, 0)d~x

∫ t

τ

(t − σ)
i−1
2 (σ − τ)

n−2
2

(t − τ)
i+1
2

dσ

+ |~ξ − ~η|
∫∫

R2

|~x|iZ(~x, 1;~0, 0)d~x

∫ t

τ

(t − σ)
i
2 (σ − τ)

n−3
2

(t − τ)
i
2
+1

dσ

+ |~ξ − ~η|i
∫∫

R2

|~x|Z(~x, 1;~0, 0)d~x

∫ t

τ

(t − σ)−
1
2 (σ − τ)

n−2+i
2

(t − τ)
1
2
+i

dσ

+ |~ξ − ~η|i+1

∫ t

τ

(σ − τ)
n−3+i

2

(t − τ)1+i
dσ

]

.

Similarly we get that
∫ t

τ

∫∫

R2

(t − σ)−1(σ − τ)
n−3−i

2 |~ξ − ~y||~y − ~η|iZ(~ξ, t; ~y, σ)Z(~y, σ; ~η, τ)d~ydσ

≤ Z(~ξ, t; ~η, τ)

[

22i+1Γ

(

i + 3

2

)

B

(

i + 1

2
,
n

2

)

(t − τ)
n−2

2

+ |~ξ − ~η|i+12iB

(

1,
n − 1 + i

2

)

(t − τ)
n−3−i

2

+ |~ξ − ~η|22iΓ

(

i + 2

2

)

B

(

i + 2

2
,
n − 1

2

)

(t − τ)
n−3

2

+ |~ξ − ~η|i2i+1Γ

(

3

2

)

B

(

1

2
,
n + i

2

)

(t − τ)
n−2−i

2

]

. (B.3)

Now we begin to prove the lemma. Applying Lemma 3.1 for n = 1,

|(LZ)(~ξ, t; ~η, τ)| =

∣

∣

∣

∣

∂θ

∂x2
(x2, t)Z(~ξ, t; ~η, τ) + θ(x2, t)

∂Z

∂x2
(~ξ, t; ~η, τ)

∣

∣

∣

∣

≤ σ2
2

∣

∣

∣Z(~ξ, t; ~η, τ)
∣

∣

∣+ σ2

∣

∣

∣

∣

∂Z

∂x2
(~ξ, t; ~η, τ)

∣

∣

∣

∣

=

(

σ2
2 +

σ2|ρ(ξ1 − η1) − (ξ2 − η2)|
(1 − ρ2)(t − τ)

)

Z(~ξ, t; ~η, τ)

≤
(

σ2
2

√
T

(t − τ)
1
2

+
2σ2|~ξ − ~η|

(1 − ρ2)(t − τ)

)

Z(~ξ, t; ~η, τ).
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Denoting

M1,0 = σ2
2

√
T , M1,1 =

2σ2

1 − ρ2
,

the lemma is true for n = 1. For n ≥ 2, 0 ≤ i ≤ n define Mn,i by the following formulas

Mn,0 = M1,0Mn−1,0B

(

1

2
,
n − 1

2

)

+ 2M1,1Mn−1,0Γ

(

3

2

)

B

(

1

2
,
n

2

)

+

n−1
∑

i=0

22iMn−1,i

[

M1,0Γ

(

1 +
i

2

)

B

(

i + 1

2
,
n − 1

2

)

+2M1,1Γ

(

i + 3

2

)

B

(

i + 1

2
,
n

2

)]

,

Mn,1 = 2M1,0Mn−1,1B

(

1

2
,
n

2

)

+ 4M1,1Mn−1,1Γ

(

3

2

)

B

(

1

2
,
n + 1

2

)

+ M1,1Mn−1,0B

(

1,
n − 1

2

)

+
n−1
∑

i=0

M1,1Mn−1,i2
2iΓ

(

i + 2

2

)

B

(

i + 2

2
,
n − 1

2

)

,

Mn,n = M1,1Mn−1,n−12
n−1B(1, n − 1),

and for n ≥ 3, 2 ≤ i ≤ n − 1,

Mn,i = M1,0Mn−1,i2
iB

(

1

2
,
n − 1 + i

2

)

+ M1,1Mn−1,i2
i+1Γ

(

3

2

)

B

(

1

2
,
n + i

2

)

+ M1,1Mn−1,i−12
i−1B

(

1,
n − 2 + i

2

)

.

Now assume that the lemma is true for 1, 2, . . . , n − 1. Then
∣

∣

∣(LZ)n(~ξ, t; ~η, τ)
∣

∣

∣ =

∣

∣

∣

∣

∫ t

τ

∫∫

R2

(LZ)(~ξ, t; ~y, σ)(LZ)n−1(~y, σ; ~η, τ)d~ydσ

∣

∣

∣

∣

≤
∫ t

τ

∫∫

R2

(

M1,0(t − σ)−
1
2 + M1,1(t − σ)−1|~ξ − ~y|

)

×
n−1
∑

i=0

Mn−1,i(τ − σ)
n−3−i

2 |~y − ~η|iZ(~ξ, t; ~y, σ)Z(~y, σ; ~η, τ)d~ydσ.

Applying equations (B.2) and (B.3) and the definition of the series {Mn,i : n ≥ 2, 0 ≤ i ≤ n}
to the above equation, we can get the conclusion. Thus we complete the proof.
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