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Abstract

The problem of regression shrinkage and selection for multivariate regression
is considered. The goal is to consistently identify those variables relevant for
regression. This is done not only for predictors but also for responses. To
this end, a novel relationship between multivariate regression and canonical
correlation is discovered. Subsequently, its equivalent least squares type for-
mulation is constructed, and then the well developed adaptive LASSO type
penalty and also a novel BIC-type selection criterion can be directly applied.
Theoretical results show that the resulting estimator is selection consistent
for not only predictors but also responses. Numerical studies are presented
to corroborate our theoretical findings.
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1. INTRODUCTION

Due to the fast advance of information technology, a lot of high dimen-
sional datasets have been collected across many different scientific disciplines,
such as biology, computer science, engineering, social science, and many oth-
ers. For those datasets, high dimensionality is a common feature. Then,
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statistically how to analyze those high dimensional data becomes an impor-
tant problem, for which the idea of variable selection has been found very
useful.

Under a linear regression setup and also the assumption of sparsity, it
has been well understood that correctly identifying sparse solutions can con-
siderably improve the model interpretability and also estimation accuracy.
To this end, various shrinkage methods have been developed. Specifically,
[18] developed the method of least absolute shrinkage and selection operator
(LASSO), which was subsequently further improved by [22], so that its im-
proved version (i.e., the Adaptive LASSO) enjoys the oracle property, in the
sense of [7]. To further extend the applicability of the LASSO method to the
situation with extra high dimensional predictor, the method of elastic net
was developed by [23] and [24]. Despite those pioneer methods’ usefulness,
none of them is capable of handling high dimensional multivariate responses.
This motivates us to develop a novel method to solve this problem.

Specifically, we find that the classical method of canonical correlation
analysis (CCA) has been popularly used as a regression method for mul-
tivariate responses; see for example [8, 9] and [1]. Recently, its successful
applications have been found in computer visual processing [12], gene expres-
sion data analysis [15], supervised learning [17], and many others. To fur-
ther extend CCA’s applicability to multivariate regression, we propose here
a method of adaptive sparse canonical correlation analysis (ASCCA). The
new method is obtained by re-casting the multivariate regression problem as
a classical CCA problem, for which a novel least squares type formulation
can be constructed. Subsequently, the well developed adaptive LASSO type
penalty together with a novel BIC-type selection criterion can be applied di-
rectly. We show theoretically that the new method is selection consistent [16]
for not only predictors but also responses. Numerical studies are presented
to corroborate our theoretical findings.

It is worthwhile to mention that our method is different from the meth-
ods of sparse principal component analysis (SPCA) of [25] and [13], where
no multivariate responses are involved. Our method is also different from
the sparse canonical correlation analysis (SCCA) of [15], where rather re-
strictive covariance assumptions have been made on both the predictors and
responses. Our proposal is also different from the penalized canonical corre-
lation analysis (PCCA) of [20], where no asymptotic theory has been devel-
oped.

The article is organized as follows. Next section introduces our ASCCA
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methodology together with asymptotic theories. Section 3 presents numerical
studies. Lastly, the article is concluded with a short conclusion in Section 4.

2. THE ASCCA METHODOLOGY

2.1. A Multivariate Regression Framework

Let (Xi, Yi) be the observation collected from the ith subject (1 ≤ i ≤ n).
Xi = (Xi1, · · · , Xip)

> ∈ Rp is the predictor and Yi = (Yi1, · · · , Yiq)
> ∈ Rq is

the multivariate response. Assume that E(Xi) = 0 and E(Yi) = 0. Next,
define cov(Xi) = Σxx ∈ Rp×p, cov(Yi) = Σyy ∈ Rq×q, and cov(Xi, Yi) =
Σxy = Σ>

yx ∈ Rp×q. Further assume that Σxx, Σyy are positive definite. To
model the regression relationship between Xi and Yi, the following model is
assumed

Yi = B>Xi + Ei, (1)

where Ei = (εi1, · · · , εiq)
> ∈ Rq is the random noise and B = (bjk) ∈ Rp×q

is the coefficient matrix. Write αj = (bj1, · · · , bjq)
> ∈ Rq as the jth row

and βk = (b1k, · · · , bpk)
> ∈ Rp as the kth column. We know immediately

B = (β1, · · · , βq) = (α1, · · · , αp)
> ∈ Rp×q. We next use B0, α0j, and β0k to

represent the true values of B, αj, and βk, respectively. Obviously, only the
predictors with non-zero ‖α0j‖ are relevant to Yi, where ‖·‖ denotes L2 norm.
We thus collect all those indices by a set MT = {1 ≤ j ≤ p : ‖α0j‖ > 0}.
We call this as the predictor true model (PTM). Similarly, we can define a
predictor full model (PFM) as MF = {1, 2, · · · , p}.

We next consider what kind of responses can be viewed as “redundant”.
For convenience, we use NF = {1, 2, · · · , q} to denote a response full model
(RFM). For an arbitrary subset N ⊂ NF , we use notation Yi(N ) to denote
the subvector of Yi corresponding to N . Define N c = NF\N . We then
call N a “sufficient” response model (SRM) if the conditional distribution of
Yi(N c)|(Yi(N ), Xi) is the same as that of Yi(N c)|Yi(N ). Obviously there exists at
least one sufficient response model, because NF is a SRM. We then define NT

as the intersection of all SRMs. Under certain regularity conditions, one can
easily show that NT is also a SRM and thus is the smallest SRM. We then
call it the response true model (RTM). Then, our objective is identifying not
only the PTM MT but also the RTM NT consistently.

2.2. Canonical Correlation Analysis

As one can see, the definition of the RTM is very intuitive but less use-
ful practically. This is because a response’s relevance and/or irrelevance are
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not defined according to certain parameter’s (e.g., regression coefficient B0)
sparseness. As a consequence, identifying RTM should be much more diffi-
cult than identifying PTM. As an interesting solution, we find that whether a
response or predictor is relevant is closely related to its loadings on the canon-
ical correlation between Xi and Yi. Specifically, let K = min{p, q} and then
(µ>k Xi, ν

>
k Yi) with µk = (µk1, · · · , µkp)

> ∈ Rp and νk = (νk1, · · · , νkq)
> ∈ Rq

be the kth (1 ≤ k ≤ K) pairs of canonical variables. Then, by [11], µk

and νk are defined as the vectors, which maximize λk = µ>k Σxyνk but un-
der the constraint µ>k Σxxµk′ = ν>k Σyyνk′ = δkk′ for every 1 ≤ k′ ≤ k. Here
δkk′ = 1 if k = k′ and 0 otherwise. Obviously, we are only interested in
those positive canonical correlation coefficients, i.e., λk > 0. We thus write
K0 = max{1 ≤ k ≤ K : λk > 0}, which is referred to a structure dimension.
Then, the next theorem gives a useful upper bound for K0.

Theorem 1. Under model (1), assume Xi, Ei are independent normal, we
should have K0 = rank(Σxy) ≤ min{|MT |, |NT |}, where rank(Σxy) stands for
the rank of Σxy.

Its proof is given in Appendix A. By Theorem 1 we know that the number
of relevant canonical pairs is bounded by the sizes of MT and NT . For real
practice, very often we find both p and q are large. As a consequence, the
total number of canonical pairs delivered by a standard statistical software
(e.g., SAS) should be large, i.e., K = min{p, q}. Nevertheless, by Theorem
1, we know that only the first few leading pairs are truly relevant.

We next consider how the model structure, as specified in (1), will affect
the sparseness patterns on the canonical loadings, i.e., µk and νk for every
1 ≤ k ≤ K0.

Theorem 2. Define µ̃j = (µ1j, · · · , µK0j)
> ∈ RK0 and ν̃j = (ν1j, · · · , νK0j)

> ∈
RK0. Under model (1), assume Xi, Ei are independent normal. We then
should have: (1) ‖µ̃j‖ = 0 for every j 6∈ MT and ‖ν̃j‖ = 0 for every j 6∈ NT ;
(2) ‖µ̃j‖ > 0 for every j ∈MT and ‖ν̃j‖ > 0 for every j ∈ NT .

The proof of Theorem 2 can be found in Appendix B. By Theorem 2, we find
that whether a variable is relevant is fully determined by its loadings on the
canonical coefficients. Because canonical loadings are estimable, thus iden-
tifying relevant variables (particularly responses) becomes practically feasi-
ble. Subsequently, we are going to develop an estimate method for (µk, νk)
(1 ≤ k ≤ K0) to identify the sparse structure of those canonical loadings.
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2.3. A Least Squares Formulation

By Theorem 2, both the PTM and RTM can be correctly identified by
inferring sparseness about the canonical loadings. With a finite dataset
(Xi, Yi), 1 ≤ i ≤ n, which has been centered, define Σ̂xx = n−1

∑
XiX

>
i , Σ̂xy =

n−1
∑

XiY
>
i , and Σ̂yy = n−1

∑
YiY

>
i . Let T̂ = Σ̂

−1/2
xx Σ̂xyΣ̂

−1/2
yy , and its sin-

gular value decomposition (SVD) is T̂ = ÛD̂V̂ >, where Û = (û1, · · · , ûK) ∈
Rp×K and V̂ = (v̂1, · · · , v̂K) ∈ Rq×K are matrices with orthogonal columns,
and D̂ = diag{λ̂1, · · · , λ̂K} is a diagonal matrix, λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂K are

singular values of T̂ . Then µ̂k = Σ̂
−1/2
xx ûk and ν̂k = Σ̂

−1/2
yy v̂k are corresponding

sample canonical loadings, which are estimators for µk and νk respectively.
One can also see [1, 11] for more details about sample canonical loadings.
However, sample canonical loadings are not sparse in general. Thus, it is of
interest to develop a shrinkage method, so that the sparse structure of the
canonical loadings can be consistently identified with finite data.

To this end, a least squares type objective function is needed. In partic-
ular, one can verify that

µk ∝ µ∗k = arg min
µ

E(µ>X − ν>k Y )2, (2)

νk ∝ ν∗k = arg min
ν

E(µ>k X − ν>Y )2. (3)

By (2) and (3), we know that the sparse structure of (µk, νk) is the same as
that of (µ∗k, ν

∗
k). With a finite dataset, one can estimate µ∗k and ν∗k by µ̂∗k =

arg minµ

∑n
i=1(X

>
i µ− Y >

i ν̂k)
2 and ν̂∗k = arg minν

∑n
i=1(X

>
i µ̂k − Y >

i ν)2, here
µ̂k and ν̂k are the corresponding sample canonical loadings. To identify the
sparse solutions [22, 21] in (µ∗k, ν

∗
k), we propose the following two penalized

least squares functions

Qa
λ(µ) =

n∑
i=1

(
X>

i µ− Y >
i ν̂k

)2

+ λ

p∑
j=1

|µj|/|µ̂kj|, (4)

Qb
τ (ν) =

n∑
i=1

(
X>

i µ̂k − Y >
i ν

)2

+ τ

q∑
j=1

|νj|/|ν̂kj|. (5)

Here, µj(1 ≤ j ≤ p) and νj(1 ≤ j ≤ q) stand for the jth components of µ and
ν, respectively. Subsequently, shrinkage estimators for µ∗k and ν∗k are given by
µ̂∗λ,k = argminµQ

a
λ(µ) and ν̂∗τ,k = argminνQ

b
τ (ν), respectively. Furthermore,
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the shrinkage estimators for canonical loadings µk and νk can be achieved by

µ̂λ,k = µ̂∗λ,k/
√

µ̂∗>λ,kΣ̂xxµ̂∗λ,k and ν̂τ,k = ν̂∗τ,k/
√

ν̂∗>τ,kΣ̂yyν̂∗τ,k, respectively. As one

can see, both (4) and (5) are very standard Adaptive LASSO-type objective
functions. Thus, the well developed LARS algorithm [6] can be directly used
to obtain their piece-wise linear solution paths. Subsequently, the best model
can be selected out from the transitional points by minimizing the following
BIC criteria

BICa
λ,k = log

{
n−1

n∑
i=1

(
X>

i µ̂∗λ,k − Y >
i ν̂k

)2
}

+ d̂f
a

λ,k ×
log n

n
for µ̂∗λ,k, (6)

BICb
τ,k = log

{
n−1

n∑
i=1

(
X>

i µ̂k − Y >
i ν̂∗τ,k

)2
}

+ d̂f
b

τ,k ×
log n

n
for ν̂∗τ,k. (7)

Here d̂f
a

λ,k and d̂f
b

τ,k stand for the numbers of nonzero loadings in µ̂∗λ,k and
ν̂∗τ,k respectively, which are simple estimators for the degrees of freedom.
[26] showed that the number of nonzero parameter estimation is an unbi-
ased estimator for the degrees of freedom of the lasso. The resulting opti-
mal tuning parameters are λ̂a

k = arg minλ BICa
λ,k, and τ̂ b

k = arg minτ BICb
τ,k.

Further, the final shrinkage estimators are µ̂∗
λ̂a

k,k
and ν̂∗

τ̂b
k ,k

. With a slight

abuse of the notation, we still use µ̂∗k and ν̂∗k to represent them for conve-
nience. Then, the models identified by those shrinkage estimators are given
by M̂ = {1 ≤ j ≤ p : µ̂∗kj 6= 0 for some 1 ≤ k ≤ K0} and N̂ = {1 ≤
j ≤ q : ν̂∗kj 6= 0 for some 1 ≤ k ≤ K0}. In the next subsection, one can see

that P (M̂ = MT ) → 1 and P (N̂ = NT ) → 1. This means the proposed
estimators are selection consistent for both PTM and RTM.

2.4. Consistency Property

Some asymptotic properties are established in this subsection. Selection
consistency of our method is also included. We here assume variable dimen-
sions p and q are both fixed, and the situation that p, q grow together with
sample size will be considered in next subsection. we make the following two
technical assumptions in this subsection.

(a1)
√

n(Σ̂xx(k,l)−Σxx(k,l)),
√

n(Σ̂xy(k,l)−Σxy(k,l)), and
√

n(Σ̂yy(k,l)−Σyy(k,l))
are all asymptotically normal distributed for every k, l. Here for an
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arbitrary matrix Ω, Ω(k,l) denotes the element corresponding to the kth
row and the lth column of Ω.

(a2) For every k ≤ K0,
√

n(µ̂k−µk) and
√

n(ν̂k−νk) are both asymptotically
normal distributed.

When Xi and Yi are normal distributed, the moments E(X2
ijX

2
ij′), E(X2

ijY
2
ij′)

and E(Y 2
ijY

2
ij′) for every j and j′ are all bounded, hence by the central limit

theorem(CLT) one can see that the claim of the assumption (a1) is true.
Further, if the nonzero population canonical correlations are all distinct (i.e.
λ1 > · · · > λK0), the canonical loadings µ1, · · · , µK0 , ν1, · · · , νK0 are uniquely
determined except for multiplication by −1. To eliminate this indeterminacy
we can require that for every k ≤ K0, the first nonzero element of µk is
positive and denote it by µkjk

. And for sample canonical loadings µ̂k, we also
require that µ̂kjk

is positive. One can refer to [2, 5, 10] for the asymptotic
properties of sample canonical loadings. [2] showed that for every k ≤ K0,√

n(µ̂k−µk) and
√

n(ν̂k− νk) are asymptotically normal distributed and the
asymptotic covariances are also obtained in [2]. Hence the assumption (a2) is
reasonable. The two assumptions (a1) and (a2) will be used in proof details.

For every 1 ≤ k ≤ K0, let Ak =
{
j : µ∗kj 6= 0

}
and Âλ,k =

{
j : µ̂∗λ,kj 6= 0

}
.

Then we have the following theorem.

Theorem 3. If λ → ∞, and n−1/2λ → 0, then for every k ≤ k0, we have
(1) µ̂∗λ,k − µ∗k = Op(n

−1/2), and (2) P (Âλ,k = Ak) → 1.

The proof of Theorem 3 is given in Appendix C. The similar technical proof
has appeared in much literature, one can also refer to [7, 22, 21], and so on.
By Theorem 3, we know that as long as λ satisfies the conditions in Theorem
3, the resulting estimator µ̂∗λ,k is

√
n−consistent, and all nonzero loadings

can be identified consistently. Next we will show the selection consistency of
BIC criteria. Let Âk =

{
j : µ̂∗kj 6= 0

}
, then we have the following theorem.

Theorem 4. For every k ≤ K0, we have P (Âk = Ak) → 1.

We put the proof of Theorem 4 in Appendix D. One can also refer to [13]
for similar proof idea. This theorem implies that all nonzero loadings can
be identified consistently. Obviously, it is a direct corollary of Theorem 4
that P (M̂ = MT ) → 1. This achieves the selection consistency for predictor

model. For response model, the selection consistency (i.e., P (N̂ = NT ) → 1)
is also true. The proof details are very similar to those for predictor model,
hence we omit it here.
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2.5. Asymptotic properties with growing p and q

In this subsection, we study the asymptotic properties of our method
under the situation that p and q, the dimensions of Xi and Yi respectively,
grow with the sample size n, but the structure dimension K0 is fixed. Define
M̂λ = {1 ≤ j ≤ p : µ̂∗λ,kj 6= 0 for some 1 ≤ k ≤ K0} and N̂τ = {1 ≤
j ≤ q : ν̂∗τ,kj 6= 0 for some 1 ≤ k ≤ K0}. In our theoretical analysis, we

will show that for every k ≤ K0, P (Âλ,k = Ak) → 1, which implies that

P (M̂λ = MT ) → 1. The following regularity conditions are assumed for
theoretical analysis throughout this subsection.

(A1) p →∞, q →∞, n−1(p + q)2(1+κ) → 0, where κ is a positive constant;

(A2) Assume that Xi and Yi are normal distributed, and Σxx = Ip, Σyy = Iq;

(A3) Denote the minimum and maximum eigenvalues of a positive definite
matrix M by λmin(M) and λmax(M), respectively. Then assume that
there exist positive constants b and B, satisfying that b ≤ λmin(Σ̂xx) ≤
λmax(Σ̂xx) ≤ B, and b ≤ λmin(Σ̂yy) ≤ λmax(Σ̂yy) ≤ B;

(A4) For population canonical correlation coefficients λ1, · · · , λK0 , assume
that for every 1 ≤ k < K0, λk−λk+1 ≥ l, where l is a positive constant;

(A5)

lim
n→∞

λ
√

p + q

n
= 0, lim

n→∞
λ

n

√ √
n

(p + q)1+κ
= ∞;

(A6) For every k ≤ K0,

lim
n→∞

min
{√ √

n

(p + q)1+κ
,

n

λ
√

(p + q)

}(
min
j∈Ak

|µkj|
)
→∞.

Condition (A1) restricts the growing rates of p and q. Condition (A3) as-
sumes that the sample covariance matrix has a reasonably good behavior,
and similar condition is considered in [24]. In fact, under conditions (A1)
and (A2), it is true with probability 1 that λmin(Σ̂xx) → 1,λmax(Σ̂xx) → 1,
λmin(Σ̂yy) → 1,λmax(Σ̂yy) → 1[3]. Hence, with probability 1 it is true that

b ≤ λmin(Σ̂xx) ≤ λmax(Σ̂xx) ≤ B, and b ≤ λmin(Σ̂yy) ≤ λmax(Σ̂yy) ≤ B for
some positive constants b, B. But we still make assumption (A3) here for the

8



purpose of simplified proof. Condition (A4) guarantees that the canonical
loadings µ1, · · · , µK0 , ν1, · · · , νK0 are uniquely determined except for multi-
plication by −1. Condition (A6) is similar to condition (A6) in [24], which
allows the nonzero elements in µk to vanish but the rate is restricted.

Theorem 5. Under conditions (A1)–(A6),we have that for every 1 ≤ k ≤
K0, P (Âλ,k = Ak) → 1.

The proof of Theorem 5 can be found in Appendix E. By Theorem 5,
one can see that as long as the assumed conditions (A1)–(A6) are true, the

nonzero loadings of µ∗k can be identified consistently (i.e. P (Âλ,k = Ak) →
1). Because the structure dimension K0 is fixed, one can easily obtain that

it is a direct corollary of Theorem 5 that P (M̂λ = MT ) → 1. For the
response model, if similar conditions are also assumed, it is also true that
P (N̂τ = NT ) → 1, and we omit its proof details here because of similar
proof process with predictor model. This demonstrates that the selection
consistency of our ASCCA method is still valid when variable dimensions p
and q grow with the sample size n.

2.6. Structure Dimension Determination

For a practical implementation, it is important to get an accurate es-
timator for the structure dimension K0. Otherwise, computing shrinkage
estimators for every (µk, νk) with 1 ≤ k ≤ K is computationally expensive
and also statistically inefficient. In fact, as we mentioned earlier, usually only
a very few number of the canonical pairs are truly relevant, which is deter-
mined by the structure dimension K0. To practically decide its value, we
follow the idea of [14] and propose the following maximum eigenvalue ratio
criterion (MERC). More specifically, let ÛD̂V̂ > = Σ̂xy be the singular value

decomposition of the sample covariance matrix Σ̂xy = n−1
∑n

i=1 XiY
>
i . Here

D̂ = diag(λ̂1, · · · , λ̂K) is a diagonal matrix with λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂K ≥ 0.
Intuitively, for every j ≤ K0, the value of λ̂j is expected to converge to its

population value λj > 0. As a consequence, their ratio r̂j = λ̂j/λ̂j+1 = Op(1)
for every j < K0. On the other hand, for every j > K0, we should have
λ̂j →p 0 but under a comparable speed [5]. Consequently, we should have
r̂j = Op(1) also for every j > K0. Nevertheless, if j = K0, we should have

λ̂j →p λK0 > 0 but λ̂j+1 →p 0. Consequently, we should have r̂j →p ∞ for
j = K0. Such an interesting observation suggests that we can estimate K0

by K̂0 = argmaxj r̂j. See also [14] for a more detailed discussion.
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3. NUMERICAL STUDIES

3.1. Simulation Study

Example 1. This is an example revised from [18]. In particular, the
predictor Xi is generated from a multivariate normal distribution with mean
0 and covariance cov(Xij1 , Xij2) = 0.5|j1−j2| for any 1 ≤ j1, j2 ≤ p. We
next generate the first response as Yi1 = X>

i β01 + εi1, where β01 is a p-
dimensional vector with its 1st, 4th, and 7th components given by 3, 1.5,
and 2, respectively. Other components of β01 are all fixed to be 0. Given Xi

and Yi1, other responses are generated as Yij = Yi1 + εij for every 1 < j ≤ q,
where εij (1 ≤ j ≤ q) are independent noises from the standard normal
distribution. As one can see, for this case there is a total of 3 relevant
predictors as MT = {1, 4, 7} and only one relevant response as NT = {1}.
Furthermore, because we have only one relevant response here, we know
that the structure dimension K0 = 1. Hence only the first pair of canonical
variables is considered in this example.

Example 2. For this example, Xi is generated in the same way as the
previous example. The first two responses are generated as Yij = X>

i β0j +
εij, j = 1, 2, where β01 takes the same value with β01 in previous example.
β02 is another p-dimensional vector with its first three positions fixed to be
5 and others to be 0. Given Xi, Yi1, and Yi2, other responses are generated
according to Yij = Yi1 + Yi2 + εij for every 2 < j ≤ q. Once again, εij

(1 ≤ j ≤ q) are independent noises from the standard normal distribution.
For this case there is a total of 5 relevant predictors as MT = {1, 2, 3, 4, 7},
and 2 relevant responses as NT = {1, 2}. Moreover, from the detailed proof
of Theorem 1, we know that the structure dimension K0 = rank

(
(β01, β02)

)
=

2. Hence we only consider the first two pairs of canonical variables in this
example.

Example 3. This example is designed to see the performance of ASCCA
method when it works on nonnormal distributed data. In particular, we
firstly draw πj(1 ≤ j ≤ p) independently from uniform distribution U(0, 1),
then predictors Xij(1 ≤ j ≤ p) are drawn independently from bernoulli distri-
butions B(1, πj). The first two responses are generated from the following dis-

tribution Yij ∼ B
(
1, eX>

i β0j/(1+eX>
i β0j)

)
, j = 1, 2, where β01 and β02 are fixed

the same as example 2. Given Xi, Yi1, and Yi2, the rest responses are gener-
ated independently from bernoulli distribution B

(
1, e(Yi1+Yi2)/(1+e(Yi1+Yi2))

)
.

As one can see, there are 5 relevant predictors as M = {1, 2, 3, 4, 7}, and 2
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relevant responses as N = {1, 2}. In this example, we do not know the ex-
act value of the structure dimension K0, but we think it is enough to only
consider the first two pairs of canonical variables, because there are only two
relevant responses.

Every example is randomly replicated for a total of 500 times with vari-
ous parameter specifications for n, p and q. For each simulated dataset, the
method of ASCCA is used to identify a set of relevant predictors and re-
sponses, which are denoted as M̂ and N̂ , respectively. Then the percentages
of the experiments with correctly fitted PTM (i.e., M̂ = MT ), and RTM

(i.e., N̂ = NT ) are computed and summarized in Table 1. As one can see,
for an arbitrary p and q specification, large sample size n always leads to
better performances. In fact, as long as the sample size is large enough, we
should find the correct fit percentages would be very close to 100%. This
numerically confirms that our ASCCA methods is selection consistent. For
comparison, the lasso type sparse method which is called SCCA here is also
considered. From the simulation results, one can see that SCCA method per-
forms worse than ASCCA method, and does not have selection consistency.
One can also see that it seems more difficulty to identify the true response
model NT . From the results of example 3, we find that the ASCCA method
can also be used in some nonnormal data analysis, and performs better than
SCCA method. Essentially, the response true model NT is defined through
conditional independence, and independence is equivalent with irrelevance in
the normal case. Consequently, the proposed ASCCA method can correctly
identify the true model through studying the relevance between variables.
In the nonnormal case, if independence and irrelevance are also equivalent
with each other, then the ASCCA method can also perform well. This is
corroborated by example 3.

Example 4. We use this example to test the performance of our method
when variable dimensions p and q grow with the sample size n. In particular,
Xi and Yi are generated in the same way as example 2, but p = [10n1/3]
and q = [p/2], which both increase with sample size. Hence we know here
there are 5 relevant predict variables as M = {1, 2, 3, 4, 7}, and 2 relevant
response variables as N = {1, 2}. We only need to consider the first two
pairs of canonical variables. In this example, we still use BIC criterion to
select the tuning parameters. The example is also randomly replicated for
a total of 500 times with various sample size n = 100, 200, 400, 800. We use
(IMT

, IINT
, INT

, IINT
) to measure the model selection performance, where
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Table 1: Detailed simulation results of Examples 1-3 based on 500 simulation iterations

Percentage of the Correct Fit
ASCCA SCCA

(p, q) n MT NT MT NT

(8,3) 100 0.866 0.922 0.254 0.262
200 0.916 0.960 0.262 0.286
500 0.952 0.984 0.368 0.266

(20,10) 100 0.658 0.568 0.108 0.002
Ex.1 200 0.836 0.816 0.238 0.006

500 0.924 0.942 0.318 0.008
(50,20) 100 0.310 0.014 0.070 0.000

200 0.692 0.450 0.208 0.000
500 0.858 0.838 0.284 0.000

(8,3) 100 0.698 0.732 0.084 0.456
200 0.812 0.844 0.102 0.480
500 0.920 0.962 0.128 0.508

(20,10) 100 0.312 0.142 0.010 0.016
Ex.2 200 0.548 0.324 0.018 0.000

500 0.764 0.646 0.050 0.000
(50,20) 100 0.052 0.000 0.000 0.000

200 0.342 0.082 0.006 0.000
500 0.658 0.362 0.030 0.000

(8,3) 400 0.346 0.866 0.306 0.606
600 0.560 0.914 0.396 0.654
800 0.680 0.928 0.410 0.670
1000 0.746 0.952 0.372 0.704

(20,10) 400 0.408 0.554 0.160 0.296
Ex.3 600 0.454 0.724 0.182 0.350

800 0.590 0.768 0.196 0.434
1000 0.632 0.852 0.212 0.482

(50,20) 400 0.030 0.146 0.028 0.084
600 0.132 0.352 0.082 0.212
800 0.280 0.530 0.196 0.324
1000 0.404 0.622 0.252 0.374
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Table 2: Detailed simulation results of Example 4 based on 500 simulation iterations

ASCCA SCCA
n p q IMT

IIMT
INT

IINT
IMT

IIMT
INT

IINT

100 46 23 5 15.64 1.89 15.22 5 19.94 1.93 17.03
200 58 29 5 2.90 1.97 5.53 5 8.37 1.99 7.53
400 73 36 5 1.12 1.99 2.87 5 5.66 2.00 8.76
800 92 46 5 0.45 2.00 1.87 5 4.19 2.00 11.68

IMT
denotes the average number of relevant predictors correctly identified,

and IIMT
is the average number of irrelevant predictors but incorrectly iden-

tified as relevant variables. INT
and IINT

are also similarly defined for re-
sponse variables. The simulation results are summarized in Table 2. From
Table 2, one can see that the ASCCA method performs significantly better
than SCCA method. Both ASCCA and SCCA can identify nearly all relevant
variables, but SCCA method incorrectly identifies more irrelevant variables
as relevant variables than ASCCA method.

3.2. A Real Example

To further demonstrate its practical usefulness, we apply our method to
a teaching evaluation dataset. This dataset contains a total of 341 records.
Each of them corresponds to one particular course instructed at Peking Uni-
versity. The responses of interest are various evaluation scores given by
students. Specifically, it measures the students average agreements towards
the following nine statements: (Q1) I think this is a good course, (Q2) the
course improves my knowledge, (Q3) the schedule is reasonable, (Q4) the
course is difficult, (Q5) the course pace is too fast, (Q6) the course load is
very heavy, (Q7) the text book is good, (Q8) the reference book is helpful,
and (Q9) open this course is necessary.

To explain those responses, the following explanatory variables are also
collected. They include (P1) whether the students are undergraduate (1=yes,
0=no) and (P2) whether the students are graduate (1=yes, 0=no). If the
students are neither undergraduate nor graduate, then they must be MBA
students. We also considered (P3) whether the instructor is an associate
professor (1=yes, 0=no) and (P4) whether the instructor is a full professor
(1=yes, 0=no). If an instructor is neither an associate nor a full professor,
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he/she must be an assistant professor. Lastly, the instructor’s gender is also
recorded (1=male and 0=female).

We firstly apply the MERC method to estimate the structure dimension,
which gives K̂0 = 1. Subsequently, the method of ASCCA is used. We find
that P2 (i.e., whether the student is graduate) is the only relevant predic-
tor with positive coefficient estimates. Such a result implies that teaching a
graduate course is more likely to generate higher teaching evaluation scores,
as compared with undergraduate and MBA courses. In contrast, no signifi-
cant difference is observed between undergraduate and MBA courses. Such
a result matches our teaching experiences very well. In addition to P2, AS-
CCA also identifies 4 relevant responses, which are given by Q3, Q4, Q5, and
Q8. Such a result implies that a student’s satisfaction towards on a course
is mainly determined by this course’s schedule (Q3), difficulty (Q4), pace
(Q5), and also reference book (Q8). Once those 4 responses are determined,
all other responses, particularly a student’s overall satisfaction (i.e., Q1), is
also determined on average. Such an insightful finding suggests that various
evaluation scores of a course can be simultaneously improved if the students’
satisfaction towards Q3, Q4, Q5, and Q8 can be enhanced.

4. CONCLUSIONS

In this paper, we introduce a variable selection method for multivariate
regression. This method can identify relevant variables consistently not only
for predictors but also for multivariate responses. Both theory results and
numerical studies show that our method behaves well. However, much future
work is still need to be done. Especially when the variable dimension is much
higher than sample size, how to identify important variables consistently is
a more interesting issue. To the best of our knowledge, there are less studies
about the theoretical property of SCCA when variable dimension is much
higher than sample size, which can be our future work to study.
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APPENDIX

Before presenting the detailed proof, we first introduce some notations.
Let A = (aij) ∈ Rd1×d2 be an arbitrary matrix, then I1 ⊂ {1, · · · , d1} and
I2 ⊂ {1, · · · , d2} are two arbitrary index sets. We then define A(I1,I2) = (aij :
i ∈ I1, j ∈ I2) ∈ R|I1|×|I2| to be the submatrix according to I1 and I2. Next
define A[I1] = (aij : i ∈ I1, 1 ≤ j ≤ d2) to be a matrix collecting A’s row
vectors according to I1, and A<I2> = (aij : 1 ≤ i ≤ d1, j ∈ I2) to be a matrix
collecting A’s column vectors according to I2.

Appendix A. Proof of Theorem 1

By the definition of K0, one can see that K0 = rank(Σxy). By model (1),
we have Σxy = ΣxxB0, thus K0 = rank(B0). Because B0[Mc

T ] = 0, we must
have K0 = rank(B0[MT ]) ≤ |MT |. We next prove K0 ≤ |NT |. By normality
assumption and the definition of RTM NT , we know that 0 = cov(Xi, Yi(N c

T ) |
Yi(NT )) = Σxx(B0<N c

T > − B0<NT >Σ−1
yy(NT ,NT )Σyy(NT ,N c

T )). This implies that

B0<N c
T > = B0<NT >Σ−1

yy(NT ,NT )Σyy(NT ,N c
T ). Consequently, every column vector

of B0<N c
T > is a linear combination of column vectors of B0<NT >. As a result,

we should also have K0 = rank(B0<NT >) ≤ |NT |. This completes the proof.

Appendix B. Proof of Theorem 2

Let T = Σ
−1/2
xx ΣxyΣ

−1/2
yy = Σ

1/2
xx B0Σ

−1/2
yy , and its singular value decompo-

sition is denoted by T = UDV >. Here U ∈ Rp×K0 and V ∈ Rq×K0 are two
matrices with orthogonal column vectors. D = diag{λ1, · · · , λK0} ∈ RK0×K0

is a diagonal matrix, where λ1 ≥ λ2 ≥ · · · ≥ λK0 > 0 are the non-zero sin-
gular values of T . By [11], we know that the solutions of canonical loadings

are given by U = (µ1, · · · , µK0) = Σ
−1/2
xx U and V = (ν1, · · · , νK0) = Σ

−1/2
yy V .

Moreover, λ1, · · · , λK0 are the corresponding non-zero canonical correlations.
Subsequently, the claim of Theorem 2(1) can be proved in two steps.
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The 1st step: In this step, we will prove that for every j /∈MT , ‖µ̃j‖ =

0. This is equivalent to U[Mc
T ] = 0. Because Σ

−1/2
xx T = B0Σ

−1/2
yy , we have

Σ
−1/2
xx[Mc

T ]T = B0[Mc
T ]Σ

−1/2
yy . Furthermore, note that B0[Mc

T ] = 0, which implies

Σ
−1/2
xx[Mc

T ]T = 0. Consequently, the row vectors of Σ
−1/2
xx[Mc

T ] are orthogonal to

the column vectors of T . As a result, they should also be orthogonal to
span(T ), which is the linear subspace spanned by the column vectors of T .
Furthermore, note that span(T ) = span(U). As a result, the row vectors

of Σ
−1/2
xx[Mc

T ] are orthogonal to the column vectors of U , and thus U[Mc
T ] =

Σ
−1/2
xx[Mc

T ]U = 0.

The 2nd step: In this step, we will prove that for every j /∈ NT , ‖ν̃j‖ =
0. To this end, it suffices to show that V[N c

T ] = 0. By normality assumption
and the definition of RTM NT , we know that 0 = cov(Xi, Yi(N c

T ) | Yi(NT )) =

Σxx(B0<N c
T > − B0<NT >Σ−1

yy(NT ,NT )Σyy(NT ,N c
T )). Denote Σ−1

yy by Ω. One can

verify that Ω(N c
T ,NT ) = −Ω(N c

T ,N c
T )Σyy(N c

T ,NT )Σ
−1
yy(NT ,NT ). In the meanwhile,

Σ
−1/2
yy T> = Σ−1

yy B>
0 Σ

1/2
xx . Consequently, we have Σ

−1/2
yy[N c

T ]T
> = Ω[N c

T ]B
>
0 Σ

1/2
xx .

Because

Ω[N c
T ]B

>
0 Σ1/2

xx = Ω(N c
T ,N c

T )(I,−Σyy(N c
T ,NT )Σ

−1
yy(NT ,NT ))(B0<N c

T >, B0<NT >)>Σ1/2
xx

= Ω(N c
T ,N c

T )cov(Xi, Yi(N c
T ) | Yi(NT ))

>Σ−1/2
xx = 0,

we have Σ
−1/2
yy[N c

T ]T
> = 0. As a consequence, the row vectors of Σ

−1/2
yy[N c

T ] are

orthogonal to span(T>). Furthermore, we know that span(T>) = span(V ).

This implies that the row vectors of Σ
−1/2
yy[N c

T ] are orthogonal to the column

vectors of V . This proves that V[N c
T ] = Σ

−1/2
yy[N c

T ]V = 0.

To establish the claim of Theorem 2(2), we consider what would happen
if it is not correct. Specifically, we consider the following two steps.

The 3rd step: In this step, we will prove that for every j ∈MT , ‖µ̃j‖ >
0. If this is not true, then there must exist a j1 ∈ MT , such that µkj1 = 0

for every 1 ≤ k ≤ K0. This means that U[{j1}] = Σ
−1/2
xx[{j1}]U = 0. As a

consequence, we have Σ
−1/2
xx[{j1}]T = 0. Because Σ

−1/2
xx T = B0Σ

−1/2
yy , we have

Σ
−1/2
xx[{j1}]T = α>0j1

Σ
−1/2
yy = 0. Furthermore, Σ

−1/2
yy is of full rank, α0j1 must be

equal to 0. This is contradictory to the assumption j1 ∈ MT . Hence for
every j ∈MT , there must exist at least one 1 ≤ k1 ≤ K, such that µk1j 6= 0,
that is ‖µ̃j‖ > 0.
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The 4th step: In this step, we will prove that for every j ∈ NT ,
‖ν̃j‖ > 0. If this is not true, then there must exist a j2 ∈ NT , such that

νkj2 = 0 for every 1 ≤ k ≤ K0. This means that V[{j2}] = Σ
−1/2
yy[{j2}]V = 0.

As a consequence, we have that Σ
−1/2
yy[{j2}]T

> = 0. Denote NT \ {j2} by

NT\j2 . We then have Σ
−1/2
yy[N c

T\j2
]T
> = 0. Recall that Ω = Σ−1

yy . Simi-

lar to the proof of Theorem 2(1), one can show that 0 = Σ
−1/2
yy[N c

T\j2
]T
> =

Ω(N c
T\j2

,N c
T\j2

)cov(Xi, Yi(N c
T\j2

)|Yi(NT\j2
))
>Σ

−1/2
xx . Combining the fact that both

Ω(N c
T\j2

,N c
T\j2

) and Σ
−1/2
xx are of full rank, we have cov(Xi, Yi(N c

T\j2
)|Yi(NT\j2

)) =

0. Under the normality assumption, this implies that given Yi(NT\j2
), Xi and

Yi(N c
T\j2

) are conditional independent. This is contradictory to the defini-

tion of RTM NT . Hence for every j ∈ NT , there must exist at least one
1 ≤ k2 ≤ K0, such that νk2j 6= 0, that is ‖ν̃j‖ > 0.

This completes the proof of the whole theorem.
Appendix C. Proof of Theorem 3

The 1st step: In this step, we will prove the claim of Theorem 3(1).
Let u = n1/2(µ−µ∗k), and Vn(u) = Qa

λ(µ
∗
k +n−1/2u)−Qa

λ(µ
∗
k) = u>Σ̂xxu+

2u>
(
n1/2Σ̂xxµ

∗
k−n1/2Σ̂xyν̂k

)
+λ

∑p
j=1 |µ̂kj|−1(|µ∗kj +n−1/2uj|− |µ∗kj|). Denote

û = arg minu Vn(u), then û = n1/2(µ̂∗λ,k − µ∗k). By laws of large numbers,

we have that Σ̂xx →P Σxx. Let Wn = n1/2Σ̂xxµ
∗
k − n1/2Σ̂xyν̂k = n1/2(Σ̂xx −

Σxx)µ
∗
k−n1/2(Σ̂xy−Σxy)νk− Σ̂xyn

1/2(ν̂k−νk). By assumptions in subsection
2.4, we can have that Wn →d W for some random variable W . If j ∈ Ak,
it is easy to show that λ|µ̂kj|−1(|µ∗kj + n−1/2uj| − |µ∗kj|) → 0, if j ∈ AC

k ,

λ|µ̂kj|−1(|µ∗kj +n−1/2uj|−|µ∗kj|) = λn−1/2|µ̂kj|−1|uj| → ∞, when uj 6= 0. Thus

we can gain that Vn(u) →d V (u), where V (u) = u>Σxxu+2u>W , if u(AC
k ) = 0,

and V (u) = ∞, otherwise. Because Vn(u) is convex, and V (u) has the unique
minimizer (−W>

(Ak)Σxx(Ak,Ak), 0)>, following [22], we have û →p arg min V (u).

Consequently, û = Op(1), which implies that µ̂∗λ,k − µ∗k = Op(n
−1/2).

The 2nd step: In this step, we will prove the claim of Theorem 3(2).

Due to that µ̂∗λ,k →P µ∗k, for every j ∈ Ak, P (j ∈ Âλ,k) ≥ P (|µ̂∗λ,kj−µ∗kj| <
|µ∗kj|/2) → 1. Consequently, it suffices to show that for every j /∈ Ak, P (j ∈
Âλ,k) → 0. If j ∈ Âλ,k, by the Karush-Kuhn-Tucker (KKT) conditions[4],
we have that

n−1/2∂Qa
λ(µ)

∂µj

|µ̂∗λ,k
= 2n1/2

(
Σ̂xx[j]µ̂

∗
λ,k− Σ̂xy[j]ν̂

)
+λn−1/2|µ̂kj|−1sgn(µ̂∗λ,kj) = 0,
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which implies that 2n1/2|(Σ̂xx[j]µ̂
∗
λ,k−Σ̂xy[j]ν̂

)| = λn−1/2|µ̂kj|−1. However, it is

easy to show that 2n1/2|(Σ̂xx[j]µ̂
∗
λ,k−Σ̂xy[j]ν̂

)| = Op(1), and λn−1/2|µ̂kj|−1 →P

∞, hence P (j ∈ Âλ,k) ≤ P (2n1/2|(Σ̂xx[j]µ̂
∗
λ,k−Σ̂xy[j]ν̂

)| = λn−1/2|µ̂kj|−1) → 0.
This completes the proof.

Appendix D. Proof of Theorem 4

Let λn = logn, which satisfies the conditions in Theorem 3, hence it
follows that Âλn,k = Ak with probability tending to one. we next partition

R+ into the following three mutually exclusive regions:R− = {λ ∈ R+, Âλ,k 6⊃
Ak},R0 = {λ ∈ R+, Âλ,k = Ak}, and R+ = {λ ∈ R+, Âλ,k ⊃ Ak, Âλ,k 6=
Ak}. To prove theorem 4, it suffices to show that P (infλ∈R−

⋃R+BICa
λ,k >

BICa
λn,k) → 1.
For every λ ∈ R−,

eBICa

λ,k − eBICa

λn,k

= ed̂f
a
λ,k log n/n

{
n−1

n∑
i=1

(
X>

i µ̂∗λ,k − Y >
i ν̂k

)2
}

−ed̂f
a
λn,k log n/n

{
n−1

n∑
i=1

(
X>

i µ̂∗λn,k − Y >
i ν̂k

)2
}

≥ ed̂f
a
λ,k log n/n min

A6⊃Ak

min
{µ:µj=0,∀j 6∈A}

{
n−1

n∑
i=1

(
X>

i µ− Y >
i ν̂k

)2
}

−ed̂f
a
λn,k log n/n

{
n−1

n∑
i=1

(
X>

i µ̂∗λn,k − Y >
i ν̂k

)2
}

→P min
A6⊃Ak

min
{µ:µj=0,∀j 6∈A}

E
(
Xµ− Y νk

)2 −min E
(
Xµ− Y νk

)2
> 0,

where the last inequality is due to that A 6⊃ Ak. This implies that

P ( inf
λ∈R−

BICa
λ,k > BICa

λn,k) → 1.

Next, we will consider the case that λ ∈ R+. For arbitrary A ⊃ Ak,

we define µ̂∗A,k = argmin{µ∈Rp:µj=0,∀j 6∈A}
∑n

i=1

(
X>

i µ − Y >
i ν̂k

)2

, and µ∗A,k =

argmin{µ∈Rp:µj=0,∀j 6∈A}E
(
µ>X − ν>k Y

)2
. It is easy to show that µ̂∗A,k−µ∗A,k =

Op(n
−1/2). And because that A ⊃ Ak, it is obvious that µ∗A,k = µ∗k. Hence
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µ̂∗A,k − µ∗k = Op(n
−1/2). As a result,

n∑
i=1

(
X>

i µ̂∗A,k − Y >
i ν̂k

)2 −
n∑

i=1

(
X>

i µ̂∗λn,k − Y >
i ν̂k

)2

= n
{

µ̂∗>A,kΣ̂xxµ̂
∗
A,k − µ̂∗>λn,kΣ̂xxµ̂

∗
λn,k − 2

(
µ̂∗A,k − µ̂∗λn,k

)>
Σ̂xyν̂k

}

= n
(
µ̂∗A,k − µ∗k

)>
Σ̂xx

(
µ̂∗A,k − µ∗k

)− n
(
µ̂∗λn,k − µ∗k

)>
Σ̂xx

(
µ̂∗λn,k − µ∗k

)

+2n
(
µ̂∗A,k − µ̂∗λn,k

)>{
Σ̂xxµ

∗
k − Σ̂xyν̂k

}
.

We know that µ̂∗A,k, µ̂
∗
λn,k are both

√
n−consistent estimators for µ∗k, hence

we have that n
(
µ̂∗A,k − µ∗k

)>
Σ̂xx

(
µ̂∗A,k − µ∗k

)
, and n

(
µ̂∗λn,k − µ∗k

)>
Σ̂xx

(
µ̂∗λn,k −

µ∗k
)

are both Op(1). And also that
√

n
(
µ̂∗A,k − µ̂∗λn,k

)
= Op(1). Because√

n
(
Σ̂xxµ

∗
k − Σ̂xyν̂k

)
=
√

n(Σ̂xx − Σxx)µ
∗
k −

√
n(Σ̂xy − Σxy)νk − Σ̂xy

√
n(ν̂k −

νk), and Σ̂xx, Σ̂xy, ν̂k are
√

n−consistent estimators for Σxx, Σxy, νk, respec-

tively, hence we have
√

n
(
Σ̂xxµ

∗
k − Σ̂xyν̂k

)
= Op(1). This implies that

n
(
µ̂∗A,k − µ̂∗λn,k

)>{
Σ̂xxµ

∗
k − Σ̂xyν̂k

}
= Op(1). Consequently, we gain that

∑n
i=1

(
X>

i µ̂∗A,k − Y >
i ν̂k

)2

−∑n
i=1

(
X>

i µ̂∗λn,k − Y >
i ν̂k

)2

= Op(1).

For every λ ∈ R+, we have

n
(
BICa

λ,k − BICa
λn,k

)

= n
{

log{n−1

n∑
i=1

(
X>

i µ̂∗λ,k − Y >
i ν̂k

)2} − log{n−1

n∑
i=1

(
X>

i µ̂∗λn,k − Y >
i ν̂k

)2}
}

+(d̂f
a

λ,k − d̂f
a

λn,k) log n

≥
(
n−1

n∑
i=1

(
X>

i µ̂∗λn,k − Y >
i ν̂k

)2
)−1{ n∑

i=1

(
X>

i µ̂∗λ,k − Y >
i ν̂k

)2

−
n∑

i=1

(
X>

i µ̂∗λn,k − Y >
i ν̂k

)2
}

+ op(1) + log n

≥
(
n−1

n∑
i=1

(
X>

i µ̂∗λn,k − Y >
i ν̂k

)2
)−1{ n∑

i=1

(
X>

i µ̂∗Âλ,k,k
− Y >

i ν̂k

)2
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−
n∑

i=1

(
X>

i µ̂∗λn,k − Y >
i ν̂k

)2
}

+ op(1) + log n

≥
(
n−1

n∑
i=1

(
X>

i µ̂∗λn,k − Y >
i ν̂k

)2
)−1

min
A⊃Ak

{ n∑
i=1

(
X>

i µ̂∗A,k − Y >
i ν̂k

)2

−
n∑

i=1

(
X>

i µ̂∗λn,k − Y >
i ν̂k

)2
}

+ op(1) + log n

= Op(1) + log n.

Hence, infλ∈R+ n
(
BICa

λ,k −BICa
λn,k

)
≥ Op(1) + log n. The right-hand side of

above formula diverges to +∞ as n →∞, which implies P (infλ∈R+ BICa
λ,k >

BICa
λn,k) → 1. Consequently, P (infλ∈R−

⋃R+ BICa
λ,k > BICa

λn,k) → 1. this
completes the proof.

Appendix E. Proof of Theorem 5

Denote (X>
i , Y >

i )> by Zi ∈ R(p+q), define cov(Zi) = Σ, and the corre-
sponding sample covariance is Σ̂ = n−1

∑n
i=1 ZiZ

>
i . For an arbitrary matrix

S = (sij), ‖S‖F =
√

Σi,js2
ij denotes its Frobenius norm. The following 6

lemmas compose the whole proof detail.

Lemma 1. Under conditions (A1) and (A2), we have that

n/(p + q)2+2κE‖Σ̂− Σ‖2
F → 0.

Proof.

n

(p + q)2+2κ
E‖Σ̂− Σ‖2

F =
n

(p + q)2+2κ

∑

1≤j,k≤(p+q)

E(Σ̂(j,k) − Σ(j,k))
2

=
n

(p + q)2+2κ

∑

1≤j,k≤(p+q)

E
( 1

n

n∑
i=1

ZijZik − Σ(j,k)

)2

=
n

(p + q)2+2κ

∑

1≤j,k≤(p+q)

E
( 1

n2

( n∑
i=1

ZijZik

)2 − Σ2
(j,k)

)

=
n

(p + q)2+2κ

∑

1≤j,k≤(p+q)

E
( 1

n2

n∑
i=1

Z2
ijZ

2
ik +

1

n2

∑

i6=i′
ZijZikZi′jZi′k − Σ2

(j,k)

)
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=
n

(p + q)2+2κ

∑

1≤j,k≤(p+q)

( 1

n
E

(
Z2

ijZ
2
ik

)
+

n− 1

n
Σ2

(j,k) − Σ2
(j,k)

)

=
1

(p + q)2+2κ

∑

1≤j,k≤(p+q)

(
E

(
Z2

ijZ
2
ik

)− Σ2
(j,k)

)

=
1

(p + q)2+2κ

∑

1≤j,k≤(p+q)

(
Σ(k,k)Σ(j,j) + Σ2

(j,k)

)

≤ 1

(p + q)2+2κ

∑

1≤j,k≤(p+q)

2 =
2

(p + q)2κ
→ 0.

The proof of Lemma 1 is completed.
Recall that T̂ = Σ̂

−1/2
xx Σ̂xyΣ̂

−1/2
yy , and T = Σ

−1/2
xx ΣxyΣ

−1/2
yy = Σxy.

Lemma 2. Under conditions (A1), (A2) and (A3), we have that

n/(p + q)2+2κE‖T̂ − T‖2
F → 0.

Proof.

‖T̂−T‖2
F ≤ 2‖Σ̂−1/2

xx (Σ̂xyΣ̂
−1/2
yy −ΣxyΣ

−1/2
yy )‖2

F +2‖(Σ̂−1/2
xx −Σ−1/2

xx )ΣxyΣ
−1/2
yy ‖2

F

≤ 2λmax(Σ̂
−1
xx )‖Σ̂xyΣ̂

−1/2
yy − ΣxyΣ

−1/2
yy ‖2

F + 2‖(Σ̂−1/2
xx − Σ−1/2

xx )Σxy‖2
F

≤ 4λmax(Σ̂
−1
xx )

{‖(Σ̂xy − Σxy)Σ̂
−1/2
yy ‖2

F + ‖Σxy(Σ̂
−1/2
yy − Σ−1/2

yy )‖2
F

}

+2λmax(ΣxyΣyx)‖Σ̂−1/2
xx − Σ−1/2

xx ‖2
F

≤ 4λmax(Σ̂
−1
xx )

{
λmax(Σ̂

−1
yy )‖Σ̂xy − Σxy‖2

F + λmax(ΣxyΣyx)‖Σ̂−1/2
yy − Σ−1/2

yy ‖2
F

}

+2λmax(ΣxyΣyx)‖Σ̂−1/2
xx − Σ−1/2

xx ‖2
F .

It is easy to show that λmax(ΣxyΣyx) ≤ 1, hence we have

‖T̂ − T‖2
F ≤ 4b−2‖Σ̂xy − Σxy‖2

F + 4b−1‖Σ̂−1/2
yy − Σ−1/2

yy ‖2
F

+2‖Σ̂−1/2
xx − Σ−1/2

xx ‖2
F . (8)

From Lemma 1, we know that E‖Σ̂xy − Σxy‖2
F = (p + q)2+2κn−1o(1). Next

we consider the third term in the right part of (8), ‖Σ̂−1/2
xx − Σ

−1/2
xx ‖2

F . By
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Condition (A2), we know Σxx = Ip, hence it is easy to show that

(Σ̂−1/2
xx − Σ−1/2

xx )(Σ̂−1/2
xx + Σ−1/2

xx ) = (Σ̂−1/2
xx − Ip)(Σ̂

−1/2
xx + Ip)

= Σ̂−1
xx − Ip = −Σ̂−1

xx (Σ̂xx − Ip).

Consequently, Σ̂
−1/2
xx − Σ

−1/2
xx = −Σ̂−1

xx (Σ̂xx − Ip)(Σ̂
−1/2
xx + Ip)

−1. Further, we
can have that

‖Σ̂−1/2
xx − Σ−1/2

xx ‖2
F = ‖Σ̂−1

xx (Σ̂xx − Ip)(Σ̂
−1/2
xx + Ip)

−1‖2
F

≤ λ2
max(Σ̂

−1
xx )λ2

max

(
(Σ̂−1/2

xx + Ip)
−1

)‖Σ̂xx − Ip‖2
F

≤ b−2 B

(1 +
√

B)2
‖Σ̂xx − Ip‖2

F .

Hence, we obtain E‖Σ̂−1/2
xx − Σ

−1/2
xx ‖2

F ≤ b−2B(1 +
√

B)−2E‖Σ̂xx − Ip‖2
F =

(p + q)2+2κn−1o(1). Similarly, we can also have that E‖Σ̂−1/2
yy − Σ

−1/2
yy ‖2

F =
(p+q)2+2κn−1o(1). Consequently, we obtain that E‖T̂ −T‖2

F ≤ 4b−2E‖Σ̂xy−
Σxy‖2

F +4b−1E‖Σ̂−1/2
yy −Σ

−1/2
yy ‖2

F +2E‖Σ̂−1/2
xx −Σ

−1/2
xx ‖2

F = (p+q)2+2κn−1o(1),

which implies that n(p + q)−(2+2κ)E‖T̂ −T‖2
F → 0. This completes the proof

of Lemma 2.
The singular value decomposition of T is denoted by T = UDV >, where

U = (u1, · · · , up) ∈ Rp×p and V = (v1, · · · , vq) ∈ Rq×q are orthogonal ma-
trices, and D ∈ Rp×q is a matrix with D(i,i) = λi, and D(i,j) = 0 for i 6= j.
λ1 ≥ λ2 ≥ · · · ≥ λK are not only singular values, but also the popula-
tion canonical correlation coefficients. By Condition (A4), we know that
λ1 > λ2 > · · · > λK0 > 0, and λk = 0 for k > K0. For T̂ , we also make the
singular value decomposition T̂ = ÛD̂V̂ >, where Û = (û1, · · · , ûp) ∈ Rp×p

and V̂ = (v̂1, · · · , v̂q) ∈ Rq×q are orthogonal matrices, and D̂ ∈ Rp×q is a

matrix with D̂(i,i) = λ̂i, and D̂(i,j) = 0 for i 6= j. λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂K ≥ 0

are not only singular values of T̂ , but also the sample canonical correlation
coefficients. Here we require that for every k ≤ K0 û>k uk ≥ 0. If ûk does not
satisfy this requirement, we can replace ûk, v̂k by −ûk and −v̂k, respectively.
By von Neumann’s trace inequality [19], one can easily obtain that for every
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1 ≤ k ≤ K = min(p, q),

n

(p + q)2+2κ
E(λ̂k − λk)

2 ≤ n

(p + q)2+2κ

K∑

k=1

E(λ̂k − λk)
2

≤ n

(p + q)2+2κ
E‖T̂ − T‖2

F → 0.

Recall that µk = Σ
−1/2
xx uk, νk = Σ

−1/2
yy vk are population canonical loadings

of the k-th pair canonical variables, and sample canonical loadings µ̂k =
Σ̂
−1/2
xx ûk, ν̂k = Σ̂

−1/2
yy v̂k are the corresponding estimators.

Lemma 3. Under Conditions (A1)–(A4), we have that for every k ≤ K0,

√
n

(p + q)1+κ
E‖µ̂k − µk‖2 → 0,

√
n

(p + q)1+κ
E‖ν̂k − νk‖2 → 0.

Proof. Let T̃ = ÛDV̂ >, one can easily obtain that n(p+ q)−(2+2κ)E‖T̃ −
T‖2

F → 0, from which we have that n(p + q)−(2+2κ)E‖T̃ T̃> − TT>‖2
F → 0,

which is equivalent to n(p + q)−(2+2κ)E‖U>ÛD2Û>U − D2‖2
F → 0. Denote

Û>U by Γ = (γ1, · · · , γp), which is an orthogonal matrix, then we have that
n(p+q)−(2+2κ)E(γ>1 D2γ1−λ2

1)
2 → 0. we expand the left part of above formula

and obtain that

n

(p + q)2+2κ
E(γ>1 D2γ1 − λ2

1)
2 =

n

(p + q)2+2κ
E

(
(1− γ2

11)λ
2
1 −

∑

i6=1

λ2
i γ

2
1i

)2

≥ n

(p + q)2+2κ
E

(
(1−γ2

11)λ
2
1−λ2

2

∑

i6=1

γ2
1i

)2

=
n

(p + q)2+2κ
E

(
(1−γ2

11)
2(λ2

1−λ2
2)

2
)
.

In Condition (A4), we assume that λ1−λ2 ≥ l, hence we can have (λ2
1−λ2

2)
2 ≥

l4, Consequently, we can obtain that

n

(p + q)2+2κ
E

(
(1− γ2

11)
2
)
≤ n

l4(p + q)2+2κ
E

(
(1− γ2

11)
2(λ2

1 − λ2
2)

2
)

≤ n

l4(p + q)2+2κ
E(γ>1 D2γ1 − λ2

1)
2 → 0.
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This implies that
√

n(p + q)−(1+κ)E
(
1 − γ2

11

) → 0, and further recall that

we require that γ11 = û>1 u1 ≥ 0, hence
√

n(p + q)−(1+κ)E
(
1 − γ11

)
≤

√
n(p+q)−(1+κ)E

(
1−γ2

11

)
→ 0. Consequently,

√
n(p+q)−(1+κ)E‖û1−u1‖2 =

2
√

n(p+ q)−(1+κ)E(1−γ11) → 0. Sequentially, one can use similar skill easily
to obtain that for every 1 ≤ k ≤ K0,

√
n(p + q)−(1+κ)E‖ûk − uk‖2 → 0.

Moreover, for every 1 ≤ k ≤ K0 we have

E‖µ̂k − µk‖2 = E‖Σ̂−1/2
xx ûk − Σ−1/2

xx uk‖2

≤ 2E‖(Σ̂−1/2
xx − Σ−1/2

xx )ûk‖2 + 2E‖Σ−1/2
xx (ûk − uk)‖2

≤ 2E‖(Σ̂−1/2
xx − Σ−1/2

xx )‖2
F + 2E‖(ûk − uk)‖2

=
(p + q)2+2κ

n
o(1) +

(p + q)1+κ

√
n

o(1)

=
(p + q)1+κ

√
n

o(1).

This implies that
√

n(p+q)−(1+κ)E‖µ̂k−µk‖2 → 0. By similar procedure, one
can also obtain that for every 1 ≤ k ≤ K0,

√
n(p + q)−(1+κ)E‖ν̂k− νk‖2 → 0.

This completes the proof of Lemma 3.
Denote X = (X1, · · · , Xn)>, and Y = (Y1, · · · , Yn)>, then the function

Qa
λ(µ) can be rewritten as Qa

λ(µ) =
{
‖Yν̂k − Xµ‖2 + λ

∑p
j=1 |µj|/|µ̂kj|

}
,

where µj is the jth component of µ.

Lemma 4. Under Conditions (A2) and (A3), we have

‖µ̂∗λ,k − µ∗k‖2 ≤ 2λ2n−2b−2

p∑
j=1

µ̂−2
kj + 4‖µ̂k − µk‖2 + 4(λ̂k − λk)

2.

Proof. It is easy to see that

‖Yν̂k − Xµ̂∗λ,k‖2 + λ

p∑
j=1

|µ̂∗λ,kj|
|µ̂kj| ≤ ‖Yν̂k − Xµ̂∗0,k‖2 + λ

p∑
j=1

|µ̂∗0,kj|
|µ̂kj| .

Hence, we have λ
∑p

j=1 |µ̂kj|−1(|µ̂∗0,kj| − |µ̂∗λ,kj|) ≥ ‖Yν̂k − Xµ̂∗λ,k‖2 − ‖Yν̂k −
Xµ̂∗0,k‖2 = ‖X(µ̂∗λ,k − µ̂∗0,k)‖2 ≥ nλmin(Σ̂xx)‖µ̂∗λ,k − µ̂∗0,k‖2 ≥ nb‖µ̂∗λ,k − µ̂∗0,k‖2.
Moreover, we have that λ

∑p
j=1 |µ̂kj|−1(|µ̂∗0,kj|−|µ̂∗λ,kj|) ≤ λ

∑p
j=1 |µ̂kj|−1|µ̂∗0,kj−
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µ̂∗λ,kj| ≤ λ
√∑p

j=1 µ̂−2
kj ‖µ̂∗λ,k − µ̂∗0,k‖. Hence, we can obtain that nb‖µ̂∗λ,k −

µ̂∗0,k‖2 ≤ λ
√∑p

j=1 µ̂−2
kj ‖µ̂∗λ,k − µ̂∗0,k‖, which implies that ‖µ̂∗λ,k − µ̂∗0,k‖ ≤

(nb)−1λ
√∑p

j=1 µ̂−2
kj . For µ̂∗0,k, it is easy to gain that µ̂∗0,k = λ̂kµ̂k. Hence

‖µ̂∗0,k − µ∗k‖2 = ‖λ̂kµ̂k − λkµk‖2

≤ 2λ̂2
k‖µ̂k − µk‖2 + 2‖µk‖2(λ̂k − λk)

2

≤ 2‖µ̂k − µk‖2 + 2λ−1
min(Σxx)(λ̂k − λk)

2

≤ 2‖µ̂k − µk‖2 + 2(λ̂k − λk)
2.

Consequently, we have that ‖µ̂∗λ,k − µ∗k‖2 ≤ 2λ2n−2b−2
∑p

j=1 µ̂−2
kj + 4‖µ̂k −

µk‖2 + 4(λ̂k − λk)
2. This completes the proof of Lemma 4.

Lemma 5. Under Conditions (A1)–(A6), we have P (Âλ,k ⊂ Ak) → 1.

Proof. For an arbitrary index set I ⊆ {1, · · · , p}, define XI to be the
matrix collecting X’s column vectors according to I. Let µ̃∗λ,k = (µ̃∗>λ,Ak

, 0>)>,
where

µ̃∗λ,Ak
= arg min

µ

{
‖Yν̂k − XAk

µ‖2 + λ
∑
j∈Ak

|µj|/|µ̂kj|
}

. (9)

To prove the claim of the Lemma, it only need to prove that with proba-
bility tending to 1, µ̃∗λ,k is also the minimal value point of Qa

λ(µ), which is
equivalent to that µ̃∗λ,k satisfies the Karush-Kuhn-Tucker (KKT) conditions
[4] of the optimization problem minµ Qa

λ(µ). By the definition of µ̃∗λ,k, It

suffices to show that P (∀j ∈ Ac
k, | − 2X>j (Yν̂k −XAk

µ̃∗λ,Ak
)| ≤ λ|µ̂kj|−1) → 1,

or equivalently, P (∃j ∈ Ac
k, | − 2X>j (Yν̂k − XAk

µ̃∗λ,Ak
)| > λ|µ̂kj|−1) → 0. Let

M =
√

n−1/2(p + q)1+κ, we have

P (∃j ∈ Ac
k, | − 2X>j (Yν̂k − XAk

µ̃∗λ,Ak
)| > λ|µ̂kj|−1)

≤
∑
j∈Ac

k

P (| − 2X>j (Yν̂k − XAk
µ̃∗λ,Ak

)| > λ|µ̂kj|−1)

≤
∑
j∈Ac

k

P (|−2X>j (Yν̂k−XAk
µ̃∗λ,Ak

)| > λ|µ̂kj|−1, |µ̂kj| ≤ M)+
∑
j∈Ac

k

P (|µ̂kj| > M).

25



By the claim of Lemma 3, we have

∑
j∈Ac

k

P (|µ̂kj| > M) ≤ 1

M2
E

∑
j∈Ac

k

|µ̂kj|2 ≤ 1

M2
E‖µ̂k − µk‖2 = o(1).

Moreover, let ηk = minj∈Ak
(λ−1

k |µ∗kj|) and η̂k = minj∈Ak
(|µ̂kj|), then we have

∑
j∈Ac

k

P (| − 2X>j (Yν̂k − XAk
µ̃∗λ,Ak

)| > λ|µ̂kj|−1, |µ̂kj| ≤ M)

≤
∑
j∈Ac

k

P (| − 2X>j (Yν̂k − XAk
µ̃∗λ,Ak

)| > λ|µ̂kj|−1, |µ̂kj| ≤ M, η̂k ≥ η/2)

+P (η̂k ≤ ηk/2),

and

P (η̂k ≤ ηk/2) ≤ P (‖µ̂k − µk‖ ≥ ηk/2) ≤ 4E‖µ̂k − µk‖2

η2
k

=
(p + q)1+κ

√
nη2

k

o(1).

By condition (A6), we know that (p + q)1+κn−1/2η−2
k = o(1), hence we have

that P (η̂k ≤ ηk/2) = o(1).

∑
j∈Ac

k

P (| − 2X>j (Yν̂k − XAk
µ̃∗λ,Ak

)| > λ|µ̂kj|−1, |µ̂kj| ≤ M, η̂k ≥ ηk/2)

≤
∑
j∈Ac

k

P (|X>j (Yν̂k − XAk
µ̃∗λ,Ak

)| > λ

2M
, η̂k ≥ ηk/2)

≤ 4M2

λ2
E

( ∑
j∈Ac

k

|X>j (Yν̂k − XAk
µ̃∗λ,Ak

)|2I(η̂k ≥ ηk/2)
)
.

Moreover,

∑
j∈Ac

k

|X>j (Yν̂k − XAk
µ̃∗λ,Ak

)|2 = ‖X>Ac
k
(Yν̂k − XAk

µ̃∗λ,Ak
)‖2

F

≤ ‖X>(Yν̂k − XAk
µ̃∗λ,Ak

)‖2
F ≤ nλmax(Σ̂xx)‖Yν̂k − XAk

µ̃∗λ,Ak
‖2

≤ nB‖Yν̂k − XAk
µ̃∗λ,Ak

‖2
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≤ 2nB
{
‖Y(ν̂k − νk)‖2 + ‖Yνk − Xµ̃∗λ,k‖2

}

≤ 2nB
{

nλmax(Σ̂yy)‖ν̂k − νk‖2 + 2‖Yνk − Xµ∗k‖2 + 2‖X(µ̃∗λ,k − µ∗k)‖2
}

≤ 2nB
{

nB‖ν̂k − νk‖2 + 2nB‖µ̃∗λ,k − µ∗k‖2 + 2‖Yνk − Xµ∗k‖2
}

.

Hence,
4M2

λ2
E

( ∑
j∈Ac

k

|X>j (Yν̂k − XAk
µ̃∗λ,Ak

)|2I(η̂k ≥ ηk/2)
)

≤ 8BnM2

λ2

(
nBE(‖ν̂k − νk‖2) + 2nBE

(‖µ̃∗λ,k − µ∗k‖2I(η̂k ≥ ηk/2)
)

+2E(‖Yνk − Xµ∗k‖2)
)

≤ 16Bn2M2

λ2

((p + q)1+κ

√
n

o(1) + BE
(‖µ̃∗λ,k − µ∗k‖2I(η̂k ≥ ηk/2)

)
+ 1

)
.

From the claims of Lemma 3 and Lemma 4, we can obtain that

E
(‖µ̃∗λ,k − µ∗k‖2I(η̂k ≥ ηk/2)

)

≤
2λ2E

( ∑
j∈Ak

µ̂−2
kj

)

n2b2
+ 4E‖µ̂k − µk‖2 + 4E(λ̂k − λk)

2

≤ 2λ2p

b2n2η2
k

+
(p + q)1+κ

√
n

o(1) = o(1).

Consequently, we have

4M2

λ2
E

( ∑
j∈Ac

k

|X>j (Yν̂k − XAk
µ̃∗λ,Ak

)|2I(η̂k ≥ ηk/2)
)

≤ 16Bn2M2

λ2

(
1 + o(1)

)
.

Combining above results and Condition (A6), one can obtain that

P (∃j ∈ Ac
k, | − 2X>j (Yν̂k − XAk

µ̃∗λ,Ak
)| > λ|µ̂kj|−1)
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≤ 16Bn2M2

λ2

(
1 + o(1)

)
+

(p + q)1+κ

√
nη2

k

o(1) + o(1) → 0.

This completes the proof of this lemma.

Lemma 6. Under Conditions (A1)–(A6), we have P (Ak ⊂ Âλ,k) → 1.

Proof. It suffices to show that P (minj∈Ak
|µ̃∗λ,kj| > 0) → 1. By similar

prove process of Lemma 4, we can have

∣∣∣ min
j∈Ak

|µ̃∗λ,kj| − min
j∈Ak

|µ̃∗0,kj|
∣∣∣ ≤ ‖µ̃∗λ,k − µ̃∗0,k‖ ≤

λ
√∑

j∈Ak
µ̂−2

kj

nb
<

λ
√

p

bnη̂k

,

hence,

min
j∈Ak

|µ̃∗λ,kj| > min
j∈Ak

|µ̃∗0,kj| −
λ
√

p

bnη̂k

.

One can also see that minj∈Ak
|µ̃∗0,kj| > minj∈Ak

|µ∗kj| − ‖µ̃∗0,k − µ∗k‖. Conse-
quently, we have that

min
j∈Ak

|µ̃∗λ,kj| > min
j∈Ak

|µ∗kj| − ‖µ̃∗0,k − µ∗k‖ −
λ
√

p

bnη̂k

.

= λkηk −
λ
√

p

bnη̂k

+ op(1) = λkηk −
λ
√

p

bnηk

ηk

η̂k

+ op(1)

= λkηk − ηk

η̂k

o(1) + op(1).

Moreover,E
(
(η̂k−ηk)

2
)
≤ E‖µ̂k−µk‖2 = (p+q)1+κn−1/2o(1). Hence, we have

that
√

nη2
k(p+q)−(1+κ)E

(
(η̂k/ηk−1)2

)
= o(1). This implies that E

(
(η̂k/ηk−

1)2
)

= o(1). Hence, ηk/η̂k = Op(1), thus we have minj∈Ak
|µ̃∗λ,kj| > λkηk −

Op(1)o(1) + op(1) = λkηk + op(1). Consequently,

P (min
j∈Ak

|µ̃∗λ,kj| > 0) ≥ P (min
j∈Ak

|µ̃∗λ,kj| > λkηk) → 1.

This completes the proof of Lemma 6.
Combining the results of Lemma 5 and Lemma 6, we obtain that P (Âλ,k =

Ak) → 1. This completes the whole proof of Theorem 5.
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