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On A Principal Varying Coefficient Model

Qian Jiang, Hansheng Wang, Yingcun Xia and Guohua Jiang

Abstract We propose a novel varying coefficient model, called princi-

pal varying coefficient model (PVCM), by characterizing the varying coeffi-

cients through linear combinations of a few principal functions. Compared

with the conventional varying coefficient model (VCM; Chen and Tsay,

1993; Hastie and Tibshirani, 1993), PVCM reduces the actual number of

nonparametric functions, and thus has better estimation efficiency. Com-

pared with the semi-varying coefficient model (SVCM; Zhang et al, 2002;

Fan and Huang, 2005), PVCM is more flexible but with the same estimation

efficiency when the number of principal functions in PVCM and the number

of varying coefficients in SVCM are the same. Model estimation and iden-

tification are investigated, and the better estimation efficiency is justified

theoretically. Incorporating the estimation with the L1-penalty, variables

in the linear combinations can be selected automatically and hence the esti-

mation efficiency can be further improved. Numerical experiments suggest

that the model together with the estimation method are useful even when

the number of covariates is large.
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1. INTRODUCTION

Let (Y,X, U) be a random triplet, where Y ∈ R1 is the response of interest, X =

(X1, · · · , Xp)
⊤ ∈ Rp is the associated p-dimensional predictor, and U ∈ R1 is the so-

called index variable. The conventional varying coefficient model (??, VCM) assumes

that Y = X⊤β(U)+ε, where ε is the random noise and β(u) = (β1(u), ..., βp(u))
⊤ ∈ Rp

is a vector of unknown smooth functions in u, called the varying coefficients. Ever

since ? and ?, VCM has gained a lot of popularity in the literature attributing to

the following three facts. Firstly, VCM is easy to interpret because conditioned on

the index variable U = u, VCM reduces to a standard linear regression model which

has been well understood in practice. Secondly, VCM allows the varying coefficient

β(u) to be fully nonparametric. Thus, it has much stronger modeling capability than

a standard linear regression model. Lastly, because the index variable U is typically

univariate, VCM is free of the curse of dimensionality. VCM and its variants have been

extensively studied in the literature during the past two decades (?????????).

It is remarkable that, although the estimation of VCM requires only univariate

nonparametric smoothing, it is still very unstable when p is large or even moderately

large, because there are p nonparametric functions to estimate. To improve the estima-

tion efficiency, some estimation methods have been developed based on either kernel

smoothing or splines smoothing, including Fan and Zhang (1999), Cheng and Hall

(2003), Wu and Liang (2004), Huang et al (2002, 2004), Eubank et al (2004) and Kai

et al (2011); their main idea is applying different smoothing parameter to different

coefficients. However, the improvement based on their idea is limited especially when

different coefficients need similar smoothing parameters. Another way to improve the

efficiency is through further model specification without losing much information. The

semi-varying coefficient model (SVCM) proposed by ? and ? is a good example for
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this purpose. SVCM confines some coefficients to be constant but allows the others to

vary with the index variable U .

In this paper, we consider an extension of SVCM by allowing different varying

coefficients to be linearly dependent and thus reduce the actual number of unknown

functions in the model. To further illustrate the idea, let us revisit the Boston housing

data. The response of interest is the median value of owner-occupied homes (MEDV,

in $1000) with 13 predictors, denoted by X1, ..., X13 respectively. More details will

be stated in Section 4. As noticed by Fan and Huang (2006), the following varying

coefficient model with the lower status of the population (U =LSTAT) being the index

variable is appropriate for the data,

MEDV = β1(U)X1 + ...+ β13(U)X13 + ε. (1.1)
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Figure 1: The estimated varying coefficients for the Boston housing dataset. The first panel
shows all the coefficients, where coefficients with large variations (i.e., β1, β3, β7, and β12)
are labeled and highlighted. For better visualization, those coefficients with large variations
are redrawn in the second panel. To see similarity among those coefficients, their linearly
transformed versions are shown in the third panel.

In (??), the varying coefficients can be estimated by the method based on the

local linear smoothing; see for example ? and Wu and Liang (2004). The estimated

coefficients are shown in the first panel of Figure ?? where the coefficients with large
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variations are highlighted and labeled; those coefficients are redrawn in the second

panel for better visualization. Remarkably similar shapes are discovered after linear

transformations as shown in the third panel. The similarity implies that different

varying coefficients are likely to be linearly dependent and that the index variable

affects those coefficients in a similar manner.

Next, we quantify the above linear dependency amongst β1(U), ..., βp(U) using the

principal component analysis. Let θ = (θ1, · · · , θp)⊤ = Eβ(U) with p = 13 in the above

example and Σβ = cov{β(U)}. Suppose the eigenvalue-eigenvector decomposition is

Σβ = (b1, ..., bp)diag(λ1, ..., λp)(b1, ..., bp)
⊤

with λ1 ≥ λ2 ≥ ... ≥ λp ≥ 0 and bk = (bk1, ..., bkp)
⊤. Define the principal components

for the varying coefficients as



g1(U)

g2(U)

...

gp(U)


= (b1, ..., bp)

⊤



β1(U)− θ1

β2(U)− θ2

...

βp(U)− θp


.

Then it is easy to see that E{gk(U)} = 0 and V ar(gk(U)) = λk, k = 1, 2, ..., p, and that

βk(U) = θk + b1kg1(U) + b2kg2(U) + ...+ bpkgp(U), k = 1, 2, ..., p. (1.2)

Because V ar(gk(U)) decreases with k, the contribution of gk(U) to the coefficient func-

tions also decreases with k. In this example, the five largest eigenvalues are respectively

25.8584, 0.5668, 0.1445, 0.0370, and 0.0126. The rest 13 − 5 = 8 eigenvalues are very

close to 0. It is remarkable that the largest eigenvalue (i.e., 25.8584) by itself can ex-
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plain about 97% of the total variation of β1(U), ..., βp(U), which suggests that the first

principal component contributes dominantly to the variation of βk(U)’s; the others’

contribution are very small. This fact motivates us to simplify model (??) into

MEDV =
(
θ1X1 + · · ·+ θ13X13

)
+ γ1(U)

(
ϕ1X1 + · · ·+ ϕ13X13

)
+ ε. (1.3)

Theoretically, the estimators produced by (??) are more efficient than those by (??)

if the simplification does not lose much information, because only one nonparametric

function γ1(.) needs to be estimated in (??) but a total of p = 13 functions need to be

estimated in (??). Furthermore, model (??) identifies two important components given

by θ1X1 + · · ·+ θ13X13 and ϕ1X1 + · · ·+ ϕ13X13 respectively. The first component is

linearly related to the response, and the second nonlinearly in the sense that it has a

nontrivial interaction with index variable U . Thus, model (??) is also more informative

than model (??). See Section 4 for more discussions about this real example.

In this paper, we shall discuss a more general model of (??), called the principal

varying coefficient model (PVCM). The rest of the article is organized as the follows.

Next section introduces formally the model and discusses its identification. Model

estimation and selection based on a profile approach is investigated in Section 3 the-

oretically. Incorporating the estimation with the adaptive L1 penalty is studied in

Section 4. Simulation studies are presented in Section 5 and the Boston housing data

is further analyzed in Section 6. Lastly, the article is concluded with a brief discussion

in Section 7. All technical details are left to the Appendix.

2. MODEL REPRESENTATION AND IDENTIFICATION

Let (Yi, Xi, Ui) be the observation collected from the ith subject, i = 1, 2, ..., n,

where Yi ∈ R1 is the response, Xi = (Xi1, · · · , Xip)
⊤ ∈ Rp is the p-dimensional pre-
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dictor, and Ui ∈ R1 is the univariate index variable. The conventional VCM model

assumes

Yi = β1(Ui)Xi1 + β2(Ui)Xi2 + ...+ βp(Ui)Xip + εi,

where βk(.), k = 1, ..., p, are unknown coefficient functions and E(εi|Xi, Ui) = 0 al-

most surely. We can set Xi1 ≡ 1 to allow the model to include an intercept function.

Let β0(u) = (β1(u), β2(u), ..., βp(u))
⊤ be the true varying coefficients. Motivated by

the example and (??) above, we consider a more general case where the variation in

β1(U), ..., βp(U) is dominantly explained by the first d0 principal components while con-

tribution of the other components is negligible, and thus assume the following principal

component structure for the coefficient functions for modelling purpose,

β0(u) = θ0 +B0γ0(u),

where θ0 ∈ Rp and B0 = (b1, ..., bd0) ∈ Rp×d0 , with rank(B0) = d0≤p, are parameters

and γ0(u) = (g1(u), ..., gd0(u))
⊤ are unknown principal functions. As a consequence,

we come up with the following principal varying coefficient model (PVCM)

Yi = θ⊤0 Xi + g1(Ui)b
⊤
1 Xi + ...+ gd0(Ui)b

⊤
d0
Xi + εi. (2.1)

For convenience, we refer to d0 as the number of principal functions, θ⊤0 Xi as the

linear part, and X⊤
i B0γ0(Ui) as the nonlinear part. We further assume that the

principal functions γ0(u) ∈ Rd0 satisfy rank{cov(γ0(Ui))} = d0. Otherwise, functional

elements in γ0(u) are still linearly dependent, and the rank ofB0 can be further reduced.

Obviously, model (??) becomes a standard linear regression model if d0 = 0, and a full

VCM if d0 = p. PVCM also includes SVCM of ? as a special case if the last p − q

elements in θ0 are zeros and the first q elements in all bk, k = 1, ..., d0, are zeros.
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Compared with the conventional VCM (????), PVCM reduces the actual num-

ber of unknown nonparametric functions, and thus has better estimation efficiency.

Compared with SVCM (???), PVCM is more flexible and informative by allowing a

predictor to appear in both linear and nonlinear parts simultaneously. On the other

hand, PVCM shares the same estimation efficiency with SVCM when the number of

principal functions in PVCM and the number of varying coefficients in SVCM are the

same.

Model (??) is not uniquely identifiable. For example, let C be an arbitrary d0 × d0

orthonormal matrix. Then, by re-defining B0 := B0C and γ0(u) := C⊤γ0(u), model

(??) still holds. Parameter vector θ0 is also not unique even if B0 is fixed. For example,

let c ∈ Rd0 be an arbitrary constant vector and re-define θ0 := θ0 − B0c and γ0(·) :=

γ0(·) + c, then model (??) is still correct. To fix the identification problem, we can

always appropriately select the vector c such that Eγ0(U) = 0. If further cov{γ0(U)}

is of full rank, we then have the following identification equations

θ0 = E{β0(U)}, S(B0) = S(cov{β0(U)}), (2.2)

where S(A) stands for the linear subspace spanned by the column vectors of an arbi-

trary matrix A. Because S(B0) = S(Σβ) with Σβ = cov{β0(U)}, we can define B0 =

(b1, · · · , bd0) ∈ Rp×d0 , where bj (1 ≤ j ≤ d0) are the eigenvectors associated with Σβ’s

d0 largest eigenvalues in descending order. In that case, γ0(U) = B⊤
0 {β0(U)−Eβ0(U)}

with

E(γ0(U)) = 0, Cov(γ0(U)) = diag(λ1, ..., λd0), B⊤
0 B0 = Id0 , (2.3)

where λ1 ≥ ... ≥ λd0 > 0. As long as the d0 largest eigenvalues are mutually different,
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B0 is uniquely identifiable up to a sign difference. For convenience, we assume through-

out the rest of this article that the non-zero eigenvalues of Σβ are different from one

another.

Based on (??) and (??), we can also give another way to identify the linear part.

Write θ̃0 = (I − B0B
⊤
0 )θ0B

⊤
0 θ0 and γ̃0(U) = γ0(U) + B⊤

0 θ0
def
= (g̃1(U), ..., g̃d0(U))⊤,

then we have β0(U) = θ0 +B0γ0(U) = θ̃0 +B0γ̃0(U), such that

B⊤
0 θ̃0 = 0, B⊤

0 B0 = Id0 , Cov(γ̃0(U)) = diag(λ1, ..., λd0). (2.4)

By (??), it is easy to see that θ̃0 and S(B0) satisfying (??) are identifiable. This way

of identifying the model is preferable because it has less parameters when E{β0(U)} ∈

S(cov{β0(Ui)}), in which case θ0 = 0. This fact will be used in our test for whether

there exists a linear combination of X whose coefficient does not change with U . This

fact can also be used to test whether there are constant coefficients in SVCM (?). It

should be noted that the identification conditions E(γ0(U)) = 0 in (??) and B⊤
0 θ̃0 = 0

in (??) should not be used simultaneously. Otherwise, the PVCM model might be

overspecified.

We end this section by mentioning some work in the literature that is related to

principal functions. Factor models or principal component analysis that extract the

main informative variables from a large number of variables are powerful approaches

towards multivariate analysis. However, most of the existing models are under linear

settings or under nonlinear framework; see for example Stock and Watson (2002) and

Hastie and Stuetzle (1989). Our approach is under a functional framework. On the

other hand, the principal components in our model are constructed for unobserved

functions which is different from the fact that the usual factor models are proposed
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for observed data; see for example Forni et al (2000), Froni and Lippi (2001) and Bai

(2003).

3. PROFILE LEAST-SQUARE ESTIMATION OF PVCM

In this section, we investigate the model estimation using the kernel smoothing ap-

proach. Estimation based on other nonparametric smoothing methods such as splines

and penalized polynomial splines can be investigated similarly.

We firstly consider the estimation of θ0 and B0 under the assumption d0 is known

in advance. The estimation of d0 will be addressed later. Equation (??) motivates a

very convenient way to estimate θ0 and B0. Specifically, by the local linear estimation

(?) we can estimate β0(u) by β̂(u), where β̂(u) is the minimizer of a in

min
a∈Rp,b∈Rp

n−1

n∑
i=1

{
Yi − a⊤Xi − b⊤Xi(Ui − u)

}2

Kh(Ui − u), (3.1)

where Kh(u) = K(u/h)/h and K(·) is a kernel function. Consequently, we estimate Σβ

by Σ̂β = n−1
∑

{β̂(Ui)−β̄}{β̂(Ui)−β̄}⊤, where β̄ = n−1
∑

β̂(Ui). We then estimate θ0

by θ(0)
def
= β̄ and B0 by B(0) def

= (b̂
(0)
1 , · · · , b̂(0)d0

), where b̂
(0)
j is the eigenvector associated

with the jth largest eigenvalue of Σ̂β for 1 ≤ j ≤ d0. Let A be an arbitrary matrix

and vec(A) stand for a vector constructed by stacking A’s columns. Denote by ∥A∥

the operation norm, i.e., the maximal absolute singular value of A. The estimation

error for B(0) can be then defined as ∥B̂(0)(B̂(0))⊤ − B0B
⊤
0 ∥. We have the following

consistency for the estimators.

Theorem 1. Under the conditions (C.1)–(C.4) in the Appendix, we have ∥θ(0)−θ0∥ =

Op{h2 + (nh/ log(n))−1/2} and ∥B̂(0)(B̂(0))⊤ −B0B
⊤
0 ∥ = Op{h2 + (nh/ log(n))−1/2}.
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Fix B and θ in model (??), and consider the local linear smoother of model (??)

min
a(u)∈Rp,b(u)∈Rp

n∑
i=1

{Yi −X⊤
i θ − a(u)⊤B⊤Xi − b(u)⊤B⊤Xi(Ui − u)/h}2Kh(Ui − u).

If B and θ are close to the true values, then the minimizer of a(u) is a local linear

estimator of the coefficient functions γ0(u), denoted by γ̂(u|B, θ). By Fan and Zhang

(1999), we have

γ̂(u|B, θ) = {Sn(u,B)}−1B⊤[Ln,0(u)− Sn,0(u)θ (3.2)

−Sn,1(u)B(B⊤Sn,2(u)B)−1B⊤(Ln,1(u)− Sn,1(u)θ)],

where Sn,k(u) =
∑n

i=1Kh(Ui−u){(Ui−u)/h}kXiX
⊤
i , Ln,k(u) =

∑n
i=1Kh(Ui−u){(Ui−

u)/h}kXiyi for k = 0, 1, 2 and Sn(u,B) = B⊤{Sn,0(u) − Sn,1(u)B(B⊤Sn,2(u)B)−1B⊤

×Sn,1(u)}B. Let γ̄(B, θ) = n−1
∑n

i=1 γ̂(Ui|B, θ) and γ̃(u|B, θ) = γ̂(u|B, θ) − γ̄(B, θ).

Substituting γ̃(Ui|θ,B) into model (??), we have

Yi ≈ X⊤
i θ +X⊤

i Bγ̃(Ui|θ,B) + εi, i = 1, 2, ..., n.

Thus, we consider

Q(θ, B) = n−1

n∑
i=1

{
Yi −X⊤

i θ −X⊤
i Bγ̃(Ui|θ,B)

}2

,

and estimate θ0 and B0 by

(θ̂, B̂) = argmin
θ,B

Q(θ,B). (3.3)

Although the minimization is searched over the whole space, as in many model
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estimations, an initial estimator is sometimes essential. Estimator θ(0) and B(0) can

be used for this purpose. Other robust estimation method such as the back-fitting

method of Wu and Liang (2004) is also helpful to find initial estimators. To facilitate

the theoretical investigation, Theorem ?? allows us to restrict the parameter space in a

small range of the true parameters, Θn = {(θ, B) : ||θ− θ0||+ ||B−B0|| ≤ M(h2+ δn)}

for some constant M > 0. In what follows, A ⊗ B denotes the Kronecker product of

two matrix A and B, and the notation A⊗2 denotes AA⊤ for any matrix A.

Theorem 2. Suppose conditions (C.1)–(C.4) in the Appendix hold. Let (θ̂, B̂) =

argmin(θ,B)∈Θn Qn(θ,B). Then

√
n

 θ̂ − θ0

vec(B̂ −B0)

 D→ N{0,Σ−1
0 (Σ1 + Σ2)Σ

−1
0 }

in distribution, where

Σ0 = E
{ X

γ0(U)⊗X


 X

γ0(U)⊗X


⊤ }

,

Σ1 = E


[{ Ip

γ0(U)⊗ I

−
( W (U)

γ0(U)⊗W (U)

− E

 W (U)

γ0(U)⊗W (U)

)
V (U)

}
Xε

]⊗2

 ,

Σ2 = E

 W (U)

γ0(U)⊗W (U)

B0E{γ0(U)γ⊤
0 (U)}B⊤

0 E

 W (U)

γ0(U)⊗W (U)


⊤

,

with W (U) = E(XX⊤|U) and V (U) = B0(B
⊤
0 W (U)B0)

−1B⊤
0 .

After θ0 and B0 are estimated, we can estimate γ0(u) immediately by γ̂(u|θ̂, B̂)

defined in (??) and have the following limiting distribution.
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Theorem 3. Under regularity conditions (C.1)-(C.4) in the Appendix, we have in

distribution

√
nhf̂(u)

{
γ̂(u|B̂, θ̂)− γ0(u)−

1

2
µ2γ

′′
0(u)h

2
}

D→

N
(
0, {B⊤

0 W (u)B0}−1B⊤
0 W2(u)B0{B⊤

0 W (u)B0}−1
)
,

where W2(u) =
∫
K2(v)dvE{XX⊤ε2|U = u}, µ2 =

∫
v2K(v)dv and f̂(u) = n−1

∑n
i=1

Kh(Ui − u).

Writing the model as a VCM, the estimated coefficient functions are β̂PV CM(u) =

θ̂ + B̂γ̂(u|B̂, θ̂). It follows from Theorems ?? and ?? that

√
nhf̂(u){β̂PV CM(u)− β0(u)−

1

2
µ2β

′′
0(u)h

2} D→ N{0,ΣPV CM(u)},

where ΣPV CM(u) = B0{B⊤
0 W (u)B0}−1B⊤

0 W2(u)B0{B⊤
0 W (u)B0}−1B0. However, if we

treat the model as a VCM in the estimation process and estimate it by the method in

Fan and Zhang (1999), then the estimator β̂V CM(u) has

√
nhf̂(u){β̂V CM(u)− β0(u)−

1

2
µ2β

′′
0(u)h

2} D→ N{0,ΣV CM(u)},

where ΣV CM(u) = {W (u)}−1W2(u){W (u)}−1; see ?. If d0 < p, it is easy to see that

ΣPV CM(u) < ΣV CM(u),

indicating that the estimator based on a PVCM is indeed more efficient than that

based on a VCM. The smaller d0 is, the more efficient is PVCM compared with VCM.

To make statistical inference, we also need to estimate the variance-covariance ma-
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trices in the limiting distributions. These matrices can be estimated simply by their

sample versions with the unknown functions and parameters being replaced by their

estimators respectively. By the local linear kernel smoothing, W (u) can be estimated

consistently by

Ŵ (u) =
n∑

i=1

wn,h(Ui − u)XiX
⊤
i /

n∑
i=1

wn,h(Ui − u),

where wn,h(Ui − u) = Kh(Ui − u)
∑n

i=1Kh(Ui − u){(Ui − u)/h}2 −Kh(Ui − u){(Ui −

u)/h}
∑n

i=1Kh(Ui − u){(Ui − u)/h}, and E{XX⊤ε2|U = u} by

n∑
i=1

wn,h(Ui − u)XiX
⊤
i {Yi −X⊤

i θ̂ − γ̂(Ui)B̂
⊤Xi}2/

n∑
i=1

wn,h(Ui − u).

As an example of hypothesis testing, we consider whether there is a separate linear part

in the model under identification (??), i.e. whether there exists a linear combination

θ⊤0 X such that θ⊤0 B0 = 0 and θ0 ̸= 0. The corresponding hypothesis is

H0 : (I −B0B
⊤
0 )θ0 ̸= 0.

With the identification of (??), we can construct a test statistic

ST = n(θ̂ − θ0)
⊤P̂ (P̂S00P̂ )+P̂ (θ̂ − θ0),

where P̂ = (I − B̂B̂⊤) and S00 is the submatrix of estimated Σ−1
0 (Σ1 + Σ2)Σ

−1
0 in its

first p rows and first p columns, and A+ denotes the Moore-Penrose inverse of matrix

A.

Corollary 1. Under the model assumptions (C.1) and (C.4) and H0, with identifica-

tion (??) we have ST
D→ χ2(p− d0) as n → ∞.
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By Corollary 1, we reject H0 if ST > χ2
1−α(p− d0) with significance level α.

Next, we consider the estimation of d0. To this end, we propose here a BIC-type

criterion,

BIC(d) = log σ̂2
d + d× log(nh)

nh
, (3.4)

where d is the working number of principal functions, nh is the effective sample size in

nonparametric regression, and σ̂2
d is given by

σ̂2
d = n−1

n∑
k=1

{
Yk −X⊤

k θ̂ − γ̂⊤(Uk)B̂
⊤Xk

}2

,

where estimators θ̂, B̂ and γ̂(Ui) are all obtained under the working number, d, of

principal functions. For the purpose of completeness, define BIC(0) = n−1
∑n

i=1(Yi −

Ȳ )2 with Ȳ = n−1
∑n

i=1 Yi. Then d0 is estimated by d̂ = argmin0≤d≤pBIC(d).

Theorem 4. Assuming the technical conditions (C.1)–(C.4) in the Appendix hold, we

have P (d̂ = d0) → 1.

By Theorem ??, it is also easy to see that Theorems 1-3 still hold if we replace d0 by

d̂.

4. REFINEMENT OF ESTIMATION BASED ON L1

PENALTY

In this section, we estimate the model by incorporating the kernel smoothing with

the L1 penalty. As well demonstrated in the literature, the L1 penalty approach has

several advantages. Specifically for PVCM, the L1 penalty can achieve the following

goals simultaneously. (1) To identify variables that have cross effect with the index

variable on the response, and those that only have simple linear effect. (2) To identify
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unimportant variables and automatically remove them from the model. (3) To improve

the estimation efficiency when there is sparsity and the number of covariates is large.

Let α = (α1, ..., αp(d0+1))
⊤ = (θ⊤, vec(B)⊤)⊤, S = {1, 2, . . . , p(d0 + 1)} and A =

{s ∈ S : αs ̸= 0}. Then, A is the index set that contains only nonzero elements in

α. Following Zou (2006) and Zhang and Lu (2007), consider the following adaptive

LASSO estimation,

α̃(n) = {θ̃⊤n , vec(B̃n)
⊤}⊤ = argmin

(θ,B)

{
Q(θ, B) + λn

p∑
i=1

(ŵi|θi|+
d0∑
j=1

ŵij|Bij|)
}

= arg min
α∈Rp(d0+1)

{
Q(α) + λn

p(d0+1)∑
s=1

ŵs|αs|
}
, (4.1)

where ŵs = 1/|α̂s|τ with τ > 0 and α̂s is the estimator of αs defined in (??). Let

An = {s ∈ S : α̃
(n)
s ̸= 0}. Then An is the index set of variables that are selected

in either the linear part or nonlinear part of PVCM or both. If a variable is selected

neither in the linear nor in the nonlinear part, the variable is unimportant and will be

removed automatically from the model.

Theorem 5. Under the conditions of Theorem ?? and λn/
√
n → 0, λnn

τ−1
2 → ∞, we

have the following asymptotic properties for estimators θ̃n and B̃n.

(1) The coefficients with nonzero values in both θ0 and B0 can be consistently iden-

tified, i.e. limn→∞ P (An = A) = 1.

(2) The estimated parameters achieve the oracle efficiency where the zero coefficients

are known and removed in advance, i.e.

√
n

 θ̃ − θ0

vec(B̃ −B0)


A

D→ N
{
0,
(
(Σ0)A

)−1(
Σ1 + Σ2

)
A

(
(Σ0)A

)−1}
, (4.2)
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where notation MA denotes the submatrix of M with jth row (and jth column if

M is a matrix) being removed for all j ∈ Ac, complement of set A.

The selection of the tuning parameter λn is essential in the estimation. We found

the commonly used BIC criterion works well, which is stated below. To indicate the

dependence of the estimators on λn, write the estimators in (??) as θ̃λn and B̃λn

respectively. Define

BIC(λn) = log{Q(θ̃λn , B̃λn)}+ log(n)
pn
n
,

where pn is the total number of nonzero values in θ̃λn or B̃λn . The asymptotic per-

formance of BIC(λn) in selecting λn can be similarly discussed as in Wang and Xia

(2009). The details are omitted here.

5. SIMULATION STUDIES

Consider two varying coefficient models where the covariates Xi1 ≡ 1, and Xijs (1 <

j ≤ p) are simulated from a multivariate normal distribution with cov(Xij1 , Xij2) =

0.5|j1−j2| for any j1, j2 ≥ 2, and Ui is simulated from U [0, 1], and εi from N(0, 1). The

parameters and principal functions are respectively

Model 1. θ0 = b0, B0 = b1, γ0(u) = 10u(1− u)− 5/3,

Model 2. θ0 = b0, B0 = (b2, b3), γ0(u) = {cos(2πu), sin(2πu)}⊤,

where b0 = (1, 1, ..., 1︸ ︷︷ ︸
7

, 0, ..., 0)⊤, b1 = (1,−1, ..., 1,−1︸ ︷︷ ︸
[(p−1)/3]

, 0, ..., 0)⊤, b2 = (1, ..., 1︸ ︷︷ ︸
[(p−1)/3]

, 0, ..., 0)⊤

and b3 = (0, ..., 0︸ ︷︷ ︸
[(p−1)/3]

, 1, ..., 1︸ ︷︷ ︸
[(p−1)/3]

, 0..., 0)⊤. It is easy to see that Model 1 has 1 principal

function (d0 = 1) and Model 2 has 2 (d0 = 2).
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In the following calculation, we use the Newton-Rahpson algorithm to solve the

minimization problem in (??). For the minimization in (??), we use the quadratic

norm to approximate the L1 norm and then the Newton-Rahpson algorithm to solve

the minimization numerically.

For each model setting, 500 simulation replications are conducted. For each sim-

ulation replication, we first estimate the varying coefficients β̂(u) according to (??)

by treating the model as a VCM. See Fan and Zhang (1999) for more details. In the

estimation, bandwidth h is selected by the leave-one-out cross-validation. The same

bandwidth is then used throughout the rest of the computational process, except for

the estimation of B0 and θ0 where the bandwidth is multiplied by n−0.1 for the purpose

of undersmoothing; see ?. We then apply the BIC criterion in (??) to estimate the

number of principal functions, d̂. The percentage of replications in which the number

of principal functions is correctly estimated is summarized in the third column of Table

1. As we can see, the percentage converges to 100% quickly when sample size increases.

This convergency supports the theory that d̂ is a consistent estimator of d0.

As shown in Theorem 5, the estimation method in (??) can also be used for variable

selection. To check the performance, we count in each estimation the number of zero

rows (i.e. the rows in which all elements are zeros) in the estimated θ andB respectively.

The numbers are listed in the fourth and fifth columns of Table 1. Note that if a row

of estimated θ is zero, it means the corresponding variable is not selected in the linear

part; if all the elements in a row of B are zero, it means the corresponding variable

is removed from the nonlinear part. By comparing the numbers with true numbers of

zeros in θ0 and B0 respectively as given in the square brackets of the table, we see that

as sample size increases, the estimation method in (??) is consistent in selecting the

variables in the linear part and nonlinear part.
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We evaluate the overall performance of model estimation by checking the estimation

error of the coefficients β(u) after rewriting the estimated model as a VCM. With the

estimated d0, we compute θ̂ and B̂ and thus β̂(ui) = θ̂+ B̂γ̂(ui). The estimation error

of the whole model is evaluated by

n−1

n∑
i=1

∣∣∣β̂(ui)− θ0 −B0γ0(ui)
∣∣∣,

where |ℓ| = (|ℓ1| + |ℓ2| + ... + |ℓp|)/p for any vector ℓ = (ℓ1, ..., ℓp)
⊤. The average

estimation errors across 500 simulation replications are summarized in columns 6, 7

and 8 of Table 1. In these columns, as the sample size increases, the estimation

error steadily shrinks towards 0. These shrinkages support that all the estimators are

consistent. However, treating a PVCM as a VCM, the estimation efficiency is very

much adversely affected by noticing that column 6 is obviously bigger than column 7.

By comparing the eighth column with the seventh column, we can see that imposing the

adaptive L1 penalty, the estimation efficiency can be substantially improved, especially

when the number of covariates is large.

Next, we check the performance of the proposed statistic in Corollary 1 for testing

hypothesis on the linear part. We allow the linear part θ0 to change with c, i.e. θ0 =

c× b0. The larger c is, the more influential the linear part is. We also vary the signal-

to-noise ratios (SNR) by changing the variance of ε. With significance level α = 0.05,

we calculate the rejection frequencies for H0 : |θ0| = 0 under model specification (??).

In both models, when c = 0 there are no linear parts, and thus the rejection frequency

should be around 0.05. As c increases, the rejection frequencies should also increase.

For the two models with p = 7, our simulation results for c = 0, 0.05, 0.1, 0.15 and 0.2

reported in Figure ?? support our theory quite well, indicating that the hypothesis

testing statistic has reasonable power with roughly correct significant level. It is also
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Table 1: Estimation results based on 500 replications
correct (and incorrect) estimation errors

Model sample correct zeros in the rows of (and their standard error)
and (p) Size d0 θ B VCM PVCM PVCM+L1

100 98% 0.0(0.0) 4.5(0.0) 0.2287 0.1741 0.1409
(0.0411) (0.0457) (0.0340)

I(p = 7) 200 100% 0.0(0.0) 4.9(0) 0.1578 0.1121 0.0910
(0.0270) (0.0249) (0.0243)

500 100% 0.0(0.0) 5.0(0.0) 0.0972 0.0742 0.0576
(0.0149) (0.0140) (0.0139)

[0(0)] [5(0)]

100 90% 0(0) 2.9(0.1) 0.2584 0.2129 0.1887
(0.0494) (0.0399) (0.0363)

II(p = 7) 200 100% 0.0(0.0) 3.0(0.0) 0.1721 0.1407 0.1243
(0.0275) (0.0271) (0.0273)

500 100% 0(0) 3.0(0.0) 0.1117 0.0873 0.0861
(0.0137) (0.0132) (0.0135)

[0(0)] [3(0)]

100 93% 5.9(0.0) 8.8(0.1) 0.2796 0.2114 0.0998
(0.0530) (0.0449) (0.0378)

I(p = 13) 200 100% 6.0(0.0) 9.0(0.0) 0.1749 0.1327 0.0617
(0.0216) (0.0226) (0.0151)

500 100% 6.0(0.0) 9.0(0.0) 0.1030 0.0694 0.0365
(0.0130) (0.0110) (0.0081)

[6(0)] [9(0)]

100 86% 5.3(0.4) 4.9(1.8) 0.3701 0.2651 0.2273
(0.0782) (0.0476) (0.0393)

II(p = 13) 200 97% 5.6(0.0) 5(0.3) 0.2094 0.1478 0.1161
(0.0298) (0.0201) (0.0211)

500 100% 6.0(0.0) 5.0(0.0) 0.1241 0.0884 0.0759
(0.0122) (0.0101) (0.0105)

[6(0)] [5(0)]

100 72% 13.8(0.1) 14.4(2) 0.3409 0.2919 0.1180
(0.0867) (0.0931) (0.0551)

I(p = 21) 200 99% 14.0(0.0) 15.0(0.0) 0.1878 0.1400 0.0485
(0.0231) (0.0217) (0.0191)

500 100% 14.0(0.0) 15.0(0.0) 0.1124 0.0719 0.0298
(0.0099) (0.0102) (0.0064)

[14(0)] [15(0)]

100 84% 12.0(0.4) 9.0(5.7) 0.5395 0.4305 0.3197
(0.1045) (0.1025) (0.0510)

II(p = 21) 200 92% 13.5(0.0) 9.0(1.0) 0.2559 0.1704 0.1242
(0.0300) (0.0214) (0.0173)

500 100% 13.9(0.1) 9.0(0.2) 0.1334 0.0876 0.0584
(0.0104) (0.0082) (0.0082)

[14(0)] [9(0)]
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Figure 2: The simulation results for testing hypothesis H0 with significance level 0.05 based
on 5000 replications for each model setting. In each panel, from the bottom to the top the
dotted, dash-dotted, dashed and solid lines correspond to sample sizes 100, 200, 500 and 1000
respectively.

reasonable to see that as the number of principal functions increases, the power of

testing increases.

6. A REAL EXAMPLE

The Boston housing data of Harrison and Rubinfeld (1978) has attracted lots of at-

tention in statistics. Various models have been applied to the data, including the linear

regression model (Belsley et al, 1980), the additive model (Fan and Jiang, 2005) and

the varying coefficient model (Fan and Huang, 2006). The response of interest is the

median value of owner-occupied homes (MEDV, in $1000) with 13 predictors: lower

status of the population (LSTAT), per capita crime rate (CRIM) by town, average
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number of rooms per dwelling (RM), full-value property-tax rate per $10,000 (TAX),

nitrogen dioxides concentration (NOX, parts per 10 million), pupil-teacher ratio by

town (PTRATIO), proportion of owner-occupied units built prior to 1940 (AGE), pro-

portion of residential land zoned for lots over 25,000 square feet (ZN), proportion of

non-retail business acres per town (INDUS), Charles River dummy variable (1 if tract

bounds river; 0 otherwise; CHAS), weighted distances to five Boston employment cen-

tres (DIS), index of accessibility to radial highways (RAD), 1000(Bk − 0.63)2 where

Bk is the proportion of blacks by town (B).

Fan and Huang (2005) fitted the data with a semi-varying coefficient model using

U =
√
LSTAT as the index variable. However, as the number of covariates p = 13

is too big for a VCM to be estimated well, Fan and Huang (2005) only included 6

variables in their model. With the superior estimation efficiency of PVCM over CVM,

however, we are able to include all the variables into a PVCM which will be further

identified as (??). We standardize all the variables before fitting the model.

As we mentioned in the first section, after linear transformation, remarkably sim-

ilar shapes are shared among different coefficient functions. The eigenvalues of the

estimated Σβ suggest that the number of principal functions is d0 = 1. The BIC

defined in (??) for d0 = 0(linear model), d0 = 1, ..., and d0 = 10 are respectively

−1.1593,−1.7199,−1.6950,−1.5482,−1.4933,−1.2018,−0.8020,−0.5044,−0.2011 and

−0.1034. Therefore, the number of principal functions is also selected as 1 by the BIC.

The corresponding parameters in the model are estimated and listed in Table 2, where

the standard errors of estimators are calculated based on Theorem 5 and are put in

the parentheses. If a parameter is estimated as 0 and removed from the model, its

standard error is not available. It is interesting to see that some of the covariates

are eliminated from the model such as AGE, INDUS and CHAS because they do not

appear in either the linear part or the nonlinear part. In a different model that only
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included the variables in the top panel of Table 2, AGE was also removed by Fan and

Huang (2006) based on a statistical testing approach. Some other covariates have no

cross effect with LSTAT on the response, such as TAX, PTRATIO, ZN, DIS and B,

and are removed from the nonlinear part.

Table 2: Estimated parameters (and their standard errors in the parenthesis)

in the model for the Boston housing data

coefficient LSTAT CRIM RM TAX NOX PTRATIO AGE

θ0 -0.5478 0 0.1968 -0.2335 -0.1325 -0.1756 0

(0.0586) (—) (0.0701) (0.0482) (0.0526) (0.0235) (—)

B0 -0.2683 0.3026 0.6068 0 0.2743 0 0

(0.1924) (0.1999) (0.1762) (—) (0.1292) (—) (—)

ZN INDUS CHAS DIS RAD B

θ0 0.1003 0 0 -0.2373 0.3749 0.1381

(0.0390) (—) (—) (0.0413) (0.0602) (0.0526)

B0 0 0 0 0 0.6245 0

(—) (—) (—) (—) (0.2303) (—)

The principal function γ(u) is estimated and shown in Figure ??, where the cen-

tralized pointwise 95% confidence band based on Theorem ?? is also plotted.

Table 3: Average prediction errors based on 1000 partitions

size of Linear PVCM

training set prediction set model VCM PVCM + penality

200 306 0.3028 0.9312 0.2514 0.2434

300 206 0.2918 0.8210 0.2349 0.2262

400 106 0.2866 0.8661 0.2274 0.2215
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Figure 3: The estimated principal function (in the middle) for Boston housing dataset, and
its 95% centralized pointwise confidence band denoted by the dash lines.

To further verify the appropriateness of different models for the data, we consider

the prediction error of PVCM and compare it with linear regression model and the

conventional VCM. We randomly partition all the 506 observations into a training

set and a prediction set. We estimate the PVCM based on the training set, and

use the estimated model to make prediction for observations in the prediction set.

With different sizes of training set and prediction set, the average prediction errors

based on 1000 random partitions are listed in Table 3. It is ease to see from Table

3 that VCM has very poor prediction capability, and is much worse than the simple

linear regression model. However, PVCM with one principal function as identified by

the proposed method (??) has much better prediction ability than VCM and even

substantially better than the linear regression model. The prediction ability can be

further improved when the L1 penalty is imposed in the estimation, though the primary

purpose of imposing the L1 penalty is for variable selection.

7. CONCLUSION

Motivated by the compelling need to improve estimation efficiency of a VCM, espe-
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cially when p is large, and by practical examples in which different coefficient functions

are linearly dependent, this paper proposed a new varying coefficient model, PVCM,

that incorporates the intrinsic patterns in the coefficients. The model possesses supe-

rior estimation efficiency over VCM.

The proposed model is a semiparametric model and thus can be estimated based

on kernel smoothing and splines smoothing as well. The gain in estimation efficiency

is due to further model identification that only a small number of principal functions

need to be estimated nonparametrically, regardless of the smoothing method. Though

only the estimation method based on kernel smoothing is discussed in this paper, the

splines smoothing and the penalized splines enjoy many good properties (Wood, 2006;

Ruppert et al, 2009). Thus estimation based on the splines smoothing needs further

investigation.

The advantage of PVCM over VCM increases as p increases where the coefficient

functions are more likely to be linearly dependent. Incorporating with the L1 penalty,

the estimation can automatically select variables in the linear part and the nonlinear

part. The estimation efficiency only depends on the number of principal functions

and the variables in the linear part and nonlinear part. Theoretical analysis and data

study further confirm the advantages of PVCM. In conclusion, PVCM together with the

estimation methods provide a powerful approach towards the analysis of complicated

data.

APPENDIX: TECHNICAL DETAILS

To establish the asymptotic theory for the proposed estimation methods, we need

the following technical assumptions.
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(C.1) (The Index Variable). The index variable U has a bounded compact support

D and a probability density function f(u), which is Lipschitz continuous and

bounded away from 0 on D.

(C.2) (Smoothness Assumptions). Every component of W (u) = E(XX⊤|U = u) and

L(u) = E(XY ⊤|U = u) is Lipschitz continuous. In addition to that, we assume

β0(u) has continuous second order derivatives in u ∈ D. The matrix W (u) is

positive definite for all u ∈ D.

(C.3) (Moment Conditions). There exist s > 2 and δ < 2−s−1, such that E∥X∥s < ∞

with n2δ−1h → ∞, where ∥ · ∥ stands for a typical L2 norm.

(C.4) (The Kernel and Bandwidth). We assume that the kernel function K(·) is a

symmetric density function with a compact support. Moreover, we assume h ∝

n−c with c > 0 such that
√
nh2 → 0 and nh/ log n → ∞.

We remark that the above regularity conditions are rather standard. Similar assump-

tions have been used in, for example, ? and ?. Let µk =
∫
tkK(t). Then by (C.4) we

have µ0 = 1 and µ1 = 0. For ease of exposition, we further standardize K(.) such that

µ2 = 1 in the following proofs. In addition, we denote Ui − u by Uiu and Ui − Uj by

Uij in the following proofs.

Lemma 1. Under the regularity conditions (C.1)-(C.4), for the estimator defined in

(??) we have the following expansion

γ̂(u|B, θ) = γ0(u) +
1

2
µ2γ

′′
0(u)h

2 + {B⊤W (u)B}−1{nf(u)}−1B⊤
n∑

i=1

Kh(Uiu)Xiεi

+{B⊤W (u)B}−1B⊤W (u)(B0 −B)γ0(u) + {B⊤W (u)B}−1B⊤W (u)(θ0 − θ)

+Op(h
3 + hδn + δ2n)
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uniformly for any u ∈ D and (θ, B) ∈ Θn.

Proof. Write Yi−X⊤
i θ = εi+X⊤

i Bγ0(Ui)+X⊤
i (B0−B)γ0(Ui)+X⊤

i (θ0−θ). Thus

n∑
i=1

Kh(Uiu)Xi{Yi −X⊤
i θ} =

n∑
i=1

Kh(Uiu)Xiεi +
n∑

i=1

Kh(Uiu)XiX
⊤
i Bγ0(Ui) (A.1)

+
n∑

i=1

Kh(Uiu)XiX
⊤
i (B0 −B)γ0(Ui) + Sn(u)(θ0 − θ).

Let sn(u) =
∑n

i=1 Kh(Uiu). By Mack and Silverman (1982), we have uniformly for

u ∈ D , s−1
n (u) = (nf(u))−1(1 +Op(h

2 + δn)), and

1

n

n∑
i=1

Kh(Uiu)XiX
⊤
i = f(u)W (u)(1 +Op(h

2 + δn)),
1

n

n∑
i=1

Kh(Uiu)Xiεi = Op(δn).

Thus,

s−1
n (u)

n∑
i=1

Kh(Uiu)XiX
⊤
i = W (u) +Op(h

2 + δn),

s−1
n (u)

n∑
i=1

Kh(Uiu)XiX
⊤
i γ0(Ui) = W (u)γ0(u) +Op(h

2 + δn),

s−1
n (u)

n∑
i=1

Kh(Uiu)Xiεi = {nf(u)}−1

n∑
i=1

Kh(Uiu)Xiεi +Op(h
2δn + δ2n),

and

s−1
n (u)

n∑
i=1

Kh(Uiu)XiX
⊤
i (B0−B)γ0(Ui) = W (u)(B0−B)γ0(u)+∥B0−B∥Op(h

2+ δn)
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uniformly for u ∈ D. Combining the above results yields that uniformly in u ∈ D,

s−1
n (u)

n∑
i=1

Kh(Uiu)XiX
⊤
i Bγ0(Ui)

= s−1
n (u)

n∑
i=1

Kh(Uiu)XiX
⊤
i Bγ0(u) + s−1

n (u)
n∑

i=1

Kh(Uiu)XiX
⊤
i B{γ0(Ui)− γ0(u)}

= s−1
n (u)

n∑
i=1

Kh(Uiu)XiX
⊤
i Bγ0(u)

+s−1
n (u)

n∑
i=1

Kh(Uiu)XiX
⊤
i B{γ ′

0(u)(Uiu) +
1

2
µ2γ

′′
0(u)(Uiu)

2 +Op(U
3
iu)}

= s−1
n (u)

n∑
i=1

Kh(Uiu)XiX
⊤
i Bγ0(u) + {f−1(u)f ′(u)W ′(u)Bγ ′

0(u) +
1

2
µ2W (u)Bγ ′′

0(u)}h2

+Op(h
3).

For (θ, B) ∈ Θn, we have

γ̂(u|B, θ) = (B⊤Sn(u)B)−1B⊤
n∑

i=1

Kh(Uiu)Xi{Yi −X⊤
i θ}

= (B⊤s−1
n (u)Sn(u)B)−1B⊤

(
s−1
n (u)

n∑
i=1

Kh(Uiu)Xi{Yi −X⊤
i θ}

)
= γ0(u) +

1

2
µ2γ

′′
0(u)h

2 + {B⊤W (u)B}−1{nf(u)}−1B⊤
n∑

i=1

Kh(Uiu)Xiεi

+{B⊤W (u)B}−1B⊤W (u)(B0 −B)γ0(u) + {B⊤W (u)B}−1B⊤W (u)(θ0 − θ)

+Op(h
3 + hδn + δ2n).

As a special case,

γ̂(u|B0, θ0) = γ0(u) +
1

2
µ2γ

′′
0(u)h

2 + {B⊤
0 W (u)B0}−1{nf(u)}−1B⊤

0

n∑
i=1

Kh(Uiu)Xiεi

+Op(h
3 + hδn + δ2n).

We have completed the proof. �
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Proof of Theorems 1. By Theorem 1 of ? or Lemma ??, we have

sup
u∈D

|β̂(u)− β0(u)| = Op(h
2 + δn), (A.2)

where δn = {nh/ log(n)}−1/2. Theorems 1 follows immediately from (??). �

Proof of Theorem 2. Let α = (θ⊤, vec(B)⊤)⊤, α0 = (α0,1, ..., α0,p(d0+1))
⊤ =

(θ⊤0 , vec(B0)
⊤)⊤, α̂ = (θ̂⊤, vec(B̂)⊤)⊤ and Q(α) = Q(θ, B). By Taylor expansion about

α0, we have

0 =
∂Q(α̂)

∂α
=

∂Q(α0)

∂α
+

∂2Q(α∗)

∂α∂α⊤ (α̂− α0),

where α∗ lies on the line segment between α0 and α̂. Let ∆i(α) = Yi − X⊤
i θ −

X⊤
i Bγ̃(Ui), ηi(α) = Yi − X⊤

i θ − X⊤
i Bγ0(Ui), then ∆i(α) = ηi(α) − X⊤

i B(γ̃(Ui) −

γ0(Ui)), ηi(α0) = εi, and

Q(α) =
n∑

i=1

∆2
i (α).

Let Q0(α) =
∑n

i=1 η
2
i (α). From Lemma ??, when ||α− α0|| = Op(h

2 + δn) we have

sup
u∈D

∥γ̃(u)− γ0(u)∥ = Op(h
2 + δn) = op(1).

Thus ∆i(α) = ηi(α)−X⊤
i B(γ̃(Ui)−γ0(Ui)) = ηi(α)+op(1), ∂∆i(α)/∂α = ∂ηi(α)/∂α+
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op(1). It follows that

1

2n

∂2Q(α)

∂α∂α⊤ =
1

n

n∑
i=1

∂∆i(α)

∂α

∂∆i(α)

∂α⊤ +
1

n

n∑
i=1

∆i(α)
∂2∆i(α)

∂α∂α⊤

=
1

n

n∑
i=1

∂ηi(α)

∂α

∂ηi(α)

∂α⊤ +
1

n

n∑
i=1

ηi(α)
∂2ηi(α)

∂α∂α⊤ + op(1)

=
1

n

n∑
i=1

∂ηi(α0)

∂α

∂ηi(α0)

∂α⊤ +
1

n

n∑
i=1

ηi(α0)
∂2ηi(α0)

∂α∂α⊤ + op(1)

→ E
{∂η1(α0)

∂α

∂η1(α0)

∂α⊤

}

= E
{ X

γ0(U)⊗X


 X

γ0(U)⊗X


⊤ }

= Σ0, in probability.

In the last step, ∂2ηi(α0)/(∂α∂α
⊤) = 0 is used. Write

1

2
√
n

∂Q(α0)

∂α
=

1√
n

n∑
i=1

{ηi(α0)−X⊤
i B0(γ̃(Ui)−γ0(Ui))}{

∂ηi(α0)

∂α
+
∂∆i(α0)

∂α
−∂ηi(α0)

∂α
}.

(A.3)

Let Zn0 = Zn1 + Zn2 with Zn1 = n−1/2
∑n

i=1 ηi(α0)∂ηi(α0)/∂α and

Zn2 =
1√
n

n∑
i=1

ηi(α0)
(∂∆i(α0)

∂α
− ∂ηi(α0)

∂α

)
− 1√

n

n∑
i=1

X⊤
i B0(γ̃(Ui)− γ0(Ui))

∂ηi(α0)

∂α
.

By Lemma ??, we have

∣∣∣ 1

2
√
n

∂Q(α0)

∂α
− Zn0

∣∣∣ =
∣∣∣ 1√

n

n∑
i=1

X⊤
i B0(γ̃(Ui)− γ0(Ui))

(∂∆i(α0)

∂α
− ∂ηi(α0)

∂α

)∣∣∣
≤

√
n max

1≤i≤n
|X⊤

i B0(γ̃(Ui)− γ0(Ui))| max
1≤i≤n

∥∥∥∂∆i(α0)

∂α
− ∂ηi(α0)

∂α

∥∥∥
=

√
nOp(h

2 + δn)Op(h
2 + δn) = op(1).
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It is easy to check that

Zn1 = −n−1/2

n∑
i=1

 Xi

γ0(Ui)⊗Xi

 εi.

Let ℓ(U) = (1,γ0(U)⊤)⊤ ⊗W (U) and ℓ̄ = Eℓ(U). Write Zn2 = En1 − En2, where

En1 = n−1/2

n∑
i=1

ηi(α0)
(∂∆i(α0)

∂α
− ∂ηi(α0)

∂α

)
,

En2 = n−1/2

n∑
i=1

X⊤
i B0(γ̃(Ui)− γ0(Ui))

∂ηi(α0)

∂α
.

Under assumptions (C.1)-(C.4), we can show that

En1 = op(1) (A.4)

and

En2 =
1

2
E{(ℓ(U)− ℓ̄)B0γ

′′
0(U)}n1/2h2 +

1√
n

n∑
j=1

(ℓ(Uj)− ℓ̄)V (Uj)Xjεj

+ℓ̄B0
1√
n

n∑
i=1

γ0(Ui) + op(1). (A.5)

Thus, we have

Zn2 =
1

2
E{(ℓ(U)− ℓ̄)B0γ

′′
0(U)}n1/2h2 +

1√
n

n∑
j=1

(ℓ(Uj)− ℓ̄)V (Uj)Xjεj

+

 EW (U)

E{γ0(U)⊗W (U)}

B0
1√
n

n∑
i=1

γ0(Ui) + op(1),

where W (u) and V (u) are defined in Theorem ??. By the central limit theorem (CLT),
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we have

Zn1 +
1√
n

n∑
j=1

(ℓ(Uj)− ℓ̄)V (Uj)Xjεj → N(0,Σ1),

where Σ1 is given in Theorem ??. On the other hand, since Eγ0(U) = 0, we have

n−1/2

n∑
i=1

γ0(Ui) → N
(
0, E{γ0(U)γ⊤

0 (U)}
)
.

Theorem ?? follows from last three equations and (??).

Now, we turn to prove (??) and (??). We only give the details for the latter.

Decompose En2 into two terms.

En2 =
1√
n

n∑
i=1

X⊤
i B0(γ̂(Ui)− γ0(Ui))

∂ηi(α0)

∂α
− 1√

n

n∑
i=1

X⊤
i B0γ̄

∂ηi(α0)

∂α
, E1

n2 − E2
n2,

(A.6)

where γ̂(Ui) = γ̂(Ui|θ0, B0) and γ̄ = n−1
∑n

i=1 γ̂(Ui). From Lemma ??, we have

E1
n2 =

1√
n

n∑
i=1

 Xi

γ0(Ui)⊗Xi

X⊤
i B0{

1

2
γ ′′
0(Ui)h

2 +Rn(Ui) +Op(h
3 + hδn + δ2n)},

where Rn(Ui) = {nf(Ui)B
⊤
0 W (Ui)B0}−1B⊤

0

∑n
j=1Kh(Uij)Xjεj. It follows from the laws

of large numbers

1√
n

n∑
i=1

 Xi

γ0(Ui)⊗Xi

X⊤
i B0γ

′′
0(Ui)h

2 = E{ℓ(U)B0γ
′′
0(U)}n1/2h2 + op(1). (A.7)
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As f(u) is bounded away from 0, we then have

1√
n

n∑
i=1

 Xi

γ0(Ui)⊗Xi

X⊤
i B0Rn(Ui) =

1√
n

n∑
j=1

{ n∑
i=1

 Xi

γ0(Ui)⊗Xi

X⊤
i V (Ui)

× 1

nf(Ui)
Kh(Uij)

}
Xjεj

=
1√
n

n∑
j=1

ℓ(Uj)V (Uj)Xjεj +∆n, (A.8)

where

∆n =
1√
n

n∑
j=1

{ n∑
i=1

 Xi

γ0(Ui)⊗Xi

X⊤
i V (Ui)

1

nf(Ui)
Kh(Uij)− ℓ(Uj)V (Uj)

}
Xjεj.

By simple calculation, we have V ar(∆n) = O{(h2 + δn)
2} and thus

∆n = Op(h
2 + δn). (A.9)

For E2
n2, by Lemma ?? we have γ̄ = Op(h

2 + δn),

γ̄ =
1

n

n∑
i=1

γ0(Ui) +
1

2
Eγ ′′

0(U)h2 +
1

n

n∑
i=1

(B⊤
0 W (Ui)B0)

−1B⊤
0 Xiεi + op(n

−1/2)

and

1

n

n∑
i=1

∂ηi(α0)

∂α
X⊤

i =
1

n

n∑
i=1

 XiX
⊤
i

γ0(Ui)⊗XiX
⊤
i

 = ℓ̄+Op(n
−1/2).

It follows from Lemma ?? that

E2
n2 = ℓ̄

{
B0

1√
n

n∑
i=1

γ0(Ui) +
1

2
B0Eγ ′′

0(U)
√
nh2 +

1√
n

n∑
i=1

V (Ui)Xiεi

}
+ op(1). (A.10)
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Equation (??) follows from (??)-(??) and the following fact

ℓ̄B0
1

2
Eγ ′′

0(U)h2 − E{ℓ(U)B0
1

2
γ ′′
0(U)}n−1/2h2 = −1

2
E{(ℓ(U)− ℓ̄)B0γ

′′
0(U)}h2.

This completes the proof. �

Proof of Theorem 4. For any fixed d, denote the estimators of θ0, B0 and γ0(u)

by θ̂d, B̂d and γ̂d(u) respectively.

Case 1. (d < d0, underfitted model) By the proof of Theorem 1, θ̂d − θd = Op(h
2 + δn)

and that there exist nonrandom matrix Bd and function γd(u) such that

B̂d −Bd = Op(h
2 + δn), γ̂d(u)− γd(u) = Op(h

2 + δn)

uniformly for u ∈ D. By the definition of d0, if d < d0 then E||B0γ0(U)−Bdγd(U)|| > 0.

It is easy to see by the above facts and the CLT that

σ̂2
d = n−1

n∑
i=1

{Yi − (θ̂d + B̂dγ̂d(Ui))
⊤Xi}2

= n−1

n∑
i=1

{Yi − (θd +Bdγd(Ui))
⊤Xi}2 +Op(h

2 + δn)

= n−1

n∑
i=1

{εi+(B0γ0(Ui)−Bdγd(Ui))
⊤Xi}2 +Op(h

2 + δn)

= n−1

n∑
i=1

ε2i+2n−1

n∑
i=1

εi(B0γ0(Ui)−Bdγd(Ui))
⊤Xi

+n−1

n∑
i=1

{(B0γ0(Ui)−Bdγd(Ui))
⊤Xi}2 +Op(h

2 + δn)

= σ2 + E{(B0γ0(U)−Bdγd(U))⊤X}2 +Op(h
2 + δn + n−1/2). (A.11)
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Therefore, as a special case we have σ̂2
d0

= σ2 +Op(h
2 + δn + n−1/2). Note that

E{(B0γ0(U)−Bdγd(U))⊤X}2 = E{(B0γ0(U)−Bdγd(U))⊤W (U)(B0γ0(U)−Bdγd(U))}

≥ λ1(W (u))E||B0γ0(U)−Bdγd(U)|| def
= c0 > 0.

Therefore, for d < d0 we have σ̂2
d ≥ σ2

d0
+ c0 +Op(h

2 + δn + n−1/2). Therefore

P

{
BIC(d) > BIC(d0)

}
→ 1 for any d < d0. (A.12)

Case 2. (d ≥ d0, overfitted model) By the definition of d0, if d ≥ d0 then Bdγd(u) =

B0γ0(u). For ease of exposition, we only consider the case that εi is independent of

(Xi, Ui). If d > d0, following the same argument of Theorem ?? and Lemma ?? we

have θ̂d − θ0 = Op(n
−1/2) and

Bdγd(u)−B0γ0(u) =
1

2
µ2Bdγ

′′
d(u)h

2 +Bd{nf(u)B⊤
d W (u)Bd}−1B⊤

d

n∑
i=1

Kh(Uiu)Xiεi

+Op(n
−1/2 + h3 + hδn + δ2n).

where Op(n
−1/2 + h3 + hδn + δ2n) are independent of εi. Thus, by CLT we have

σ̂2
d = n−1

n∑
j=1

(
εj −

(1
2
µ2Bdγ

′′
d(Uj)h

2 +Bd{nf(Uj)B
⊤
d W (Uj)Bd}−1B⊤

d

n∑
i=1

Kh(Uij)Xiεi
)⊤

Xj

)2

+Op{n−1/2(n−1/2 + h3 + hδn + δ2n)}

= n−1

n∑
i=1

ε2i − 2n−1

n∑
j=1

(Bd{nf(Uj)B
⊤
d W (Uj)Bd}−1B⊤

d

n∑
i=1

Kh(Uij)Xiεi)
⊤Xjεj

+
1

4
µ2
2E{(Bdγ

′′
d(U))⊤W (U)(Bdγ

′′
d(U))}h4 +Op((nh)

−1 + n−1/2h2 + n−1).
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It is easy to see that

V ar(n−1

n∑
j=1

(Bd{nf(Uj)B
⊤
d W (Uj)Bd}−1B⊤

d

n∑
i=1

Kh(Uij)Xiεi)
⊤Xjεj) = O(

1

n2h
).

Note that Bdγ
′′
d(U) are the same for different d ≥ d0. Thus, we have

σ̂2
d = σ̂2

d0
+Op{(nh)−1 + n−1/2h2}.

It follows that log σ̂2
d − log σ̂2

d0
= Op{(nh)−1 + n−1/2h2}. As a consequence, we have

BIC(d)− BIC(d0) = (d− d0)
log(nh)

nh
+Op{(nh)−1 + n−1/2h2},

where the first term on the right hand side dominates under the condition (C.4). Hence,

P
{
BIC(d) > BIC(d0)

}
→ 1 for any d > d0. (A.13)

Equations (??) and (??) together imply that P{BIC(d) > BIC(d0)} → 1. This further

implies that P (d̂ = d0) = 1. �

Proof of Theorem 5. The proof is an adaption to our case of Zou (2006). We

first show (??).

Let α̃(n) = α0 + u/
√
n where u = (u1, . . . , uS)

⊤ ∈ RS, the objective function (??)

can be written as a function of u as

Q̃n(u) = Qn(α0 +
u√
n
) + λn

S∑
s=1

ŵs|α0,s +
u√
n
|.

Let ũ = argminu∈RS Q̃n(u) and obviously Q̃n(u) is minimized at ũn =
√
n(α̃(n) − α0).

35



Next, write

Dn(u) = Q̃n(u)− Q̃n(0)

=
(
Qn(α0 +

u√
n
)−Qn(α0)

)
+ λn

S∑
s=1

ŵs

(
|α0,s +

us√
n
| − |α0,s|

)
≡ I1,n(u) + I2,n(u),

where I1,n(u) = Qn(α0 +
u√
n
)−Qn(α0) is due to the loss function and I2,n(u) is due to

the penalty term. From the proof of theorem 2, we know that

1

2n

∂2Q(α0)

∂α∂α⊤ → Σ0 in probability,

1

2
n− 1

2
∂Q(α0)

∂α

D→ Z = N(0,Σ1 + Σ2).

Thus the loss function term

I1,n(u) =
1√
n
u⊤∂Q(α0)

∂α
+

1

2n
u⊤∂

2Q(α0)

∂α∂α⊤ u(1 + op(1))
D→ 2u⊤Z + u⊤Σ0u.

Now, we consider the limiting behavior of the penalty term I2,n(u). If s ∈ A, that

is α0,s ̸= 0, then ŵs → |α0,s|−τ in probability and
√
n(|α0,s + us/

√
n| − |α0,s|) →

ussgn(α0,s). Since λn/
√
n → 0, we have

λn√
n
ŵs

√
n(|α0,s + us/

√
n| − |α0,s|) → 0.

If s ̸∈ A then
√
n(|α0,s+us/

√
n|−|α0,s|) = |us|. Since

√
nα̂n = Op(1) and λnn

τ−1
2 → ∞,

we have λn√
n
ŵs = λnn

τ−1
2 |

√
nα̂

(n)
s |−τ → ∞ in probability. It follows that

Dn(u) ⇒ D(u) =

 2(uA)
⊤ZA + (uA)

⊤(Σ0)A(uA), if us = 0,∀s ̸∈ A

∞, otherwise ,
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where uA and ZA are the j-th (j ∈ Ac) elements deleted from u and Z respectively.

Note that Dn(u) is convex, and the unique minimum of D(u) is

umin =
( −

(
(Σ0)A

)−1

ZA

0

)
,

where 0 denotes a vector of zeros. Following the epi-convergence result of Geyer (1994),

we have

α̃
(n)
A

D→
(
(Σ0)A

)−1

ZA = N

(
0,
(
(Σ0)A

)−1

(Σ1 + Σ2)A

(
(Σ0)A

)−1
)

(A.14)

and α̃
(n)
Ac → 0. Now we prove the consistency part. It suffices to show that ∀s ∈ Ac,

P (s ∈ An) → 0. By the KKT optimality conditions,

1√
n

∂Qn(α̃
(n))

∂αs

+
λn√
n
ŵssgn(α̃

(n)
s ) = 0.

If s ∈ Ac, then

λn√
n
ŵs = λnn

τ−1
2 |

√
nα̂(n)

s |−τ → ∞

in probability, whereas

1√
n

∂Qn(α̃
(n))

∂αs

=
1√
n

∂Qn(α̃
(n))

∂αs

+
1

n

∂2Qn(α̃
(n))

∂α2
s

√
n(α̃(n)

s − α0,s)(1 + op(1))

D→ some normal distribution

by (??) and Slutsky’s theorem. Thus, for s ∈ Ac,

P (s ∈ A(n)) ≤ P
(
| 1√

n

∂Qn(α̃
(n))

∂αs

| = λn√
n
ŵs

)
→ 0.
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We have completed the proof. �
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