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Abstract

This article studies the parabolic system of equations which is closely

related to multitype branching Brownian motion. Particular attention is

paid to the monotone traveling wave solutions of this system. Provided

some moment conditions, we show the existence, uniqueness and asymptotic

behaviors of such waves with speed greater than or equal to a critical value

c and non-existence of such waves with speed smaller than c.

Keywords: Multitype branching Brownian motion, Spine approach, Ad-

ditive martingale, Traveling wave solution

1 Introduction and Main Results

We consider a branching particle system in which there are d (2 ≤ d < +∞)

different types of particles. Let S = {1, 2, · · · , d} be the set of types. A type i

particle splits into offspring particles of possible all types according to distribution

{pk(i) : k ∈ Zd
+} after a lifetime which is exponentially distributed with param-

eter ai > 0. All particles engender independent lines of descent. In addition,

each particle diffuses in space R independently according to a Brownian motion

starting from its point of creation through its lifetime. This system is called a

multitype branching Brownian motion (MBBM). For more precise configuration

of this MBBM see Section 2.

In this article, we assume that each particle reproduces at least one child, which

guarantees the process survives forever with probability one. Suppose mij :=∑
k∈Zd

+
pk(i)kj < +∞, and that the mean matrix M = (mij)i,j∈S is irreducible, i.

e. that there exists no permutation matrix S such that S−1MS is block triangular.

∗The research of this author is supported in part by NNSF of China (Grant No. 10971003 and

No. 11128101) and Specialized Research Fund for the Doctoral Program of Higher Education.
†Corresponding author.
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We study the following parabolic system of equations which is strongly related to

MBBM:
∂u

∂t
=

1

2

∂2u

∂x2
+ Λ(ψ(u)− u) (1.1)

Here u(t, x) = (u1(t, x), u2(t, x), · · · , ud(t, x))T , Λ is a diagonal matrix with di-

agonal entries {ai : i = 1, · · · , d}, and ψ(u) = (ψ1(u), ψ2(u), · · · , ψd(u))
T with

ψi(z1, · · · , zd) =
∑

k∈Zd
+
pk(i)

∏d
j=1 z

kj
j being the generating function of a type i

particle.

Our primary concern in this paper is the solutions satisfying u(t, x) = w(x−ct)
where w is a monotone function connecting 0 at −∞ to 1 at +∞. Such solu-

tions are called traveling waves. The analogous object to (1.1) for a single-type

branching Brownian motion is called the Fisher-Kolmogorov-Petrovski-Piscounov

(FKPP) equation. FKPP equation has been extensively studied both by analytic

and probabilistic methods (see, for example, [3, 16, 4, 8, 12]). Among these works,

[8] and [12] gave proofs for the existence, uniqueness and asymptotics of traveling

wave solutions to the FKPP equation through purely probabilistic arguments. Re-

cently, Kyprianou et al. [13] extended the probabilistic arguments to the traveling

wave equations associated to super-Brownian motions with a general branching

mechanism.

In this paper we outline a probabilistic study of traveling waves of system (1.1).

Our work is strongly guided by the probabilistic arguments in [12] with respect

to single-type branching Brownian motion. An important tool of our probabilistic

arguments is a representation of the family tree in terms of a suitable size-biased

tree with spine. This representation is the continuous time analogue of the size-

biased tree representation introduced by [11]. This continuous time version is also

used in [6] to investigate the evolution of the ancestral types of typical particles

for multitype Markov branching processes.

We call u a traveling wave solution with speed c if u(t, x) satisfies (1.1) and u

can be written as u(t, x) = w(x− ct) = (w1(x− ct), · · · , wd(x− ct))T where wi(·)
is a twice continuously differentiable, strictly monotone function increasing from

0 at −∞ to 1 at +∞. We also call w a traveling wave with speed c. Obviously, w

provides a traveling wave solution to (1.1) if and only if

1

2

∂2w

∂x2
+ c

∂w

∂x
+ Λ(ψ(w)− w) = 0 (1.2)

Sometimes, we write ui(t, x) and wi(x) as u(t, x, i) and w(x, i), respectively.

Let N(t) := (N1(t), N2(t), · · · , Nd(t)) be the vector denoting the population

sizes of different types at time t. Let mij(t) := Ei(Nj(t)) < +∞. It is known that

the mean matrix M(t) = (mij(t))i,j∈S can be written as

M(t) = expAt =
+∞∑
n=0

An

n!
tn where A = (aij)ij∈S, aij = ai(mij − δij).
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It follows from the irreducibility of M that M(t) has positive entries for some

t > 0 (this property is also called ‘positive regularity’ by [2]). According to Perron-

Frobenius theorem (see Theorem 2.5 in [18]), A admits a real eigenvalue λ∗ > 0

larger than the real part of any other eigenvalue. The so-called Perron’s root λ∗

is simple, with a one-dimensional eigenspace, and there correspond left and right

eigenvectors with positive coordinates. In the following we denote by π (resp. h)

the associated left (resp. right) eigenvector with normalization ⟨π, h⟩ = ⟨π, 1⟩ = 1,

here ⟨·, ·⟩ denotes the Euclidean inner product.

For λ ̸= 0, define

cλ :=
λ

2
+
λ∗

λ
, (1.3)

which will serve as the speeds of the traveling waves. In the following, we deal

only with the case cλ ≥ 0. Traveling waves with negative speeds can be analyzed

by simple considerations of symmetry. Let λ :=
√
2λ∗. It is easy to see that cλ

attains a local minimum c = cλ =
√
2λ∗ at λ. We call (1.2) subcritical, critical or

supercritical according as c <,=, or > c.

Let the configuration of this MBBM at time t be given by the R × S-valued

point process {(Xv(t), Yv) : v ∈ Z(t)} where Z(t) is the set of particles alive at

time t, Xv(t) is v’s spatial location and Yv is its type. Let the probabilities for

this process be {Pxi : x ∈ R, i ∈ S}, where Pxi is the law starting from a single

particle of type y at spatial position x. Let Exi be the expectation corresponding

to Pxi. To state our main results, we introduce two types of additive martingales

which play an important role in this paper. Define, for any λ ̸= 0,

Wλ(t) :=
∑

v∈Z(t)

hYve
−λ(Xv(t)+cλt). (1.4)

From the many-to-one formula (see Proposition 1 below), it is easy to see that

{Wλ(t), t ≥ 0} is a positive martingale under Pxi, and consequently the almost

sure limit of Wλ(t) exists. Set W (λ) := limt→+∞Wλ(t). Now we define another

type of additive martingale:

Mλ(t) :=
∑

v∈Z(t)

hYv · (Xv(t) + λt)e−λ(Xv(t)+cλt). (1.5)

{Mλ(t), t ≥ 0} is a martingale which may take both positive and negative values.

We will prove that M(λ) := limt→+∞Mλ(t) exists for every λ ≥ λ (see Lemma 10

below).

For every i ∈ S, suppose (ξi1, · · · , ξid) is a random vector with the law {pk(i) :
k ∈ Zd

+}. Now we are ready to state the main results of this paper:

Theorem 1. Suppose that E(ξij log
+ ξij) < +∞ for all i, j ∈ S.

(1) When c > c, there is a unique traveling wave at speed c given by

w(x, i) = Exi [exp{−W (λ)}] = E0i

[
exp{−e−λxW (λ)}

]
,
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where 0 < λ < λ is the root of the equation cλ = c. Further, for every i ∈ S,

1− w(x, i) ∼ hie
−λx as x→ +∞.

(2) When c < c, there is no non-trivial traveling wave solution to (1.1) with

speed c.

Theorem 2. When c = c and Eξij(log
+ ξij)

2 < +∞ for all i, j ∈ S, there is an

unique traveling wave at speed c given by

w(x, i) = Exi [exp{−M(λ)}] = E0i

[
exp{−e−λxM(λ)}

]
.

Further, for every i ∈ S, 1− w(x, i) ∼ xhie
−λx as x→ +∞.

Comparing the above Theorems with corresponding results for the FKPP equa-

tion (see, for example, [8] and [12]), we see that λ∗ plays the role of β(m − 1) in

the case of single-type branching Brownian motions, where β is the branching rate

and m is the mean number of particles split by one particle.

The remainder of this paper is structured as follows. In Section 2, we recall the

basic setting of family trees and the size-biased trees with spine. We also introduce

some known results for MBBM, including the so-called many-to-one formula, and

McKean representation of traveling wave solutions, which are necessary in the

arguments afterwards. In the remaining two sections we concentrate on proofs of

Theorem 1 and Theorem 2. To prove that under some moment conditions, the

traveling wave solution can be given in terms of martingale limit W (λ) or M(λ),

we first answer when W (λ) (in supercritical case) and M(λ) (in critical case) are

non-degenerate (see Theorem 3 and Theorem 5, respectively).

2 Multitype branching Brownian motion and ba-

sic facts

Let N = {1, 2, · · · }. We use Γ :=
+∞∪
n=0

Nn∪{∅} to describe the genealogical structure

of our multitype branching processes. For u, v ∈ Γ, we use uv to stand for the

concatenation of u and v (u∅ = ∅u = u). And therefore Γ contains elements like

(i1, i2, i3) or (∅ , i1, i2, i3) which represents the i3th child of the i2th child of the

i1th child of the initial ancestor ∅. For each i ∈ N, we write ui = (i1, · · · , in, i) for
the ith child of u. We use the notation v ≺ u to mean that v is an ancestor of u

and u ∈ Z(t) when u is alive at time t.

A subset τ ⊂ Γ is called a Galton-Watson tree if:

1. ∅ ∈ τ ;

2. if u, v ∈ Γ, then uv ∈ τ implies u ∈ τ ;
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3. for all u ∈ τ , there exists an ru ∈ N, such that when j ∈ N, uj ∈
τ if and only if 1 ≤ j ≤ ru.

We denote the collection of Galton-Watson trees by T. Each u ∈ τ is called a

node of τ or an individual in τ or just a particle.

To fully describe the multitype branching process, we need to introduce the

concept of marked Galton-Watson trees. We suppose that each particle u ∈ τ has

a mark (Yu, Xu, σu, Au) where

1. σu is the life time of u, which determines the fission time or the death

time of particle u as ζu =
∑
v≺u

σv + σu (ζ∅ = σ∅) and the birth time of u as

bu =
∑
v≺u

σv (b∅ = 0);

2. Yu gives the type of u, while Xu : [bu, ζu) → R gives the spatial location of

u at time t ∈ [bu, ζu). We also interpret the notation Xu(t) as the spatial

location of the unique ancestor of u that was alive at time t ≤ ζu;

3. Au = (Au(1), Au(2), · · · , Au(d)) gives the vector of offspring born by u when

it dies.

We use (τ, Y, σ, A) or simply (τ,M) to denote a marked Galton-Watson tree.

Let T := {(τ,M) : τ ∈ T}. Define

F t := σ {[u, Yu, σu, Au, (Xu(s), s ∈ [bu, ζu)) : u ∈ τ ∈ T with ζu ≤ t] and

[u, Yu, (Xu(s), s ∈ [bu, t)) : u ∈ τ ∈ T with t ∈ [bu, ζu)]}

Set F =
∪

t≥0F t. There is a unique probability measure P on (T ,F) such that the

system is initiated by a single ancestor, a type i ∈ S particle splits into offspring

particles of all types according to distribution {pk(i) : k ∈ Zd
+} after a lifetime

which is exponentially distributed with parameter ai > 0, and each particle moves

according to an independent copy of standard Brownian motion from its location

of creation in its lifetime. We use Pxi (with associated expectation operator Exi)

to specify that the ancestor is of type i ∈ S and spatially located at x ∈ R.
Now we extend the probability space (T ,F , P ) to (T̃ , F̃ , P̃ ) defined below. For

any τ ∈ T, we can select a infinite line of descent ε = {ε0 = ∅, ε1, ε2, · · · }, where
εn+1 ∈ τ is a child of εn ∈ τ, n = 0, 1, 2, · · · . Such a genealogical line is called a

spine. We write u ∈ ε to mean that u = εk for some k ∈ Z+. We use

T̃ = {(τ,M, ε) : ε ⊂ τ ∈ T}

to denote the set of marked trees with distinguished spines.

We use Ỹ = (Ỹt, t ≥ 0) to denote the type process of the spine, X̃ = (X̃t, t ≥ 0)

the spatial movement of the spine, and n = (nt, t ≥ 0) the counting process of
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fission times along the spine. Let nodet(ε) := u if u ∈ ε is the node in the spine

that is alive at time t. Note that if u ∈ ε, Yu = Ỹbu = Ỹζu−.

If u ∈ ε, then at the fission time ζu, it gives birth to ⟨Au, 1⟩ offspring, one of

which continuing the spine (we write this node simply as u + 1) while the others

going on to create independent subtrees. Let Ou be the set of u’s children except

the one belonging to the spine, then for any j ∈ {1, 2, · · · , ⟨Au, 1⟩} such that

uj ∈ Ou, we use (τ,M)uj to denote the marked tree rooted at uj.

Now we introduce some filtrations on T̃ that we shall use later. First note that

{F t, t ≥ 0} is also a filtration on T̃ . Define

F̃ t := σ{F t, (nodes(ε), s ≤ t)};
Gt := σ

{
Ỹs, X̃s : 0 ≤ s ≤ t

}
; GỸ

t := σ
{
Ỹs, : 0 ≤ s ≤ t

}
; GX̃

t := σ
{
X̃s : 0 ≤ s ≤ t

}
;

Ĝt := σ {Gt, (nodes(ε), s ≤ t), (ζu, u ≺ nodet(ε))} ;
G̃t := σ

{
Ĝt, (Au, u ≺ nodet(ε))

}
.

Set F̃ =
∪

t≥0 F̃ t, G =
∪

t≥0 Gt, Ĝ =
∪

t≥0 Ĝt and G̃ =
∪

t≥0 G̃t.

We need to extend the probability measure P on (T ,F) to a probability mea-

sure P̃ on (T̃ , F̃) such that the spine is a single genealogical line of descent chosen

from the underlying tree. Enlightened by [14], when a node u of type i on the spine

has offspring vector Au = (Au(1), Au(2), · · · , Au(d)), we pick one of these children

at random to be the successor on the spine. Specifically, children are picked with

probabilities proportional to hj when their type is j. This means, when u ∈ τ , we

have

Prob(u ∈ ε|F t) =
∏
v≺u

hYv+1

⟨Av, h⟩
.

It is easy to see that ∑
u∈Z(t)

∏
v≺u

hYv+1

⟨Av, h⟩
= 1.

To define P̃ we recall the following representation from [14].

Lemma 1. Every F̃t-measurable function f can be written as

f =
∑

u∈Z(t)

fu1{u∈ε} (2.1)

where fu is Ft-measurable.

Definition 1. We define the probability measure P̃ on (T̃ , F̃) by∫
T̃
f dP̃ =

∫
T̃

∑
u∈Z(t)

fu
∏
v≺u

hYv+1

⟨Av, h⟩
dP

for each f ∈ F̃t with representation (2.1).
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It follows that for any bounded F̃t-measurable function f with representation

(2.1),

P̃ (f | Ft) = P̃ (
∑

u∈Z(t)

fu1{u∈ε} | Ft)

=
∑

u∈Z(t)

fuP̃ (1{u∈ε} | Ft)

=
∑

u∈Z(t)

fu
∏
v≺u

hYv+1

⟨Av, h⟩
.

Then we have P̃ (f) = P
(∑

u∈Z(t) fu
∏

v≺u

hYv+1

⟨Av ,h⟩

)
and P̃ (T̃ ) = 1, which means

that P̃ is an extension of P onto (T̃ , F̃).

Intuitively, following the above method of choosing spine nodes, the type pro-

cess of the spine Ỹ is a continuous time Markov process valued in S, which stays

at any state i ∈ S for an exponential time with parameter ai, and then transits

to state j with probability P (i, j) :=
∑

k∈Zd
+
pk(i)

kjhj

⟨k,h⟩ . Given Ĝt, the trajectory of

Ỹ , the node of the spine and the birth time of each spine node before time t are

determined. Then we have

P̃ (Av = kv, ∀v ≺ εnt | Ĝt) =
∏

v≺εnt

pkv(Yv)

P (Yv, Yv+1)

kv(Yv+1)hYv+1

⟨kv, h⟩

where kv = (kv(1), kv(2), · · · , kv(d)) ∈ Zd
+.

Now, we can construct a probability measure P̃ on F̃t by

dP̃ (τ,M, ε)|F̃t
= dP(Ỹ )dB(X̃)

∏
v≺εnt

pAv(Yv)

P (Yv, Ỹv+1)

Av(Yv+1)hYv+1

⟨Av, h⟩∏
v≺εnt

[
1

Av(Yv+1)

∏
j : vj∈Ov

dP t−ζv

Ỹζv

((τ,M)vj )

]
. (2.2)

Here B(X) is the law of a standard Brownian motion and P(Ỹ ) is the law of

the type process Ỹ which is a continuous time Markov process valued on S, and

Yv = Ỹbv for v ∈ ε.

The decomposition of P̃ suggests the following intuitive description of the

system under the measure P̃ :

• The spine’s type process Ỹ moves as a continuous time Markov process

taking values in S according to the measure P. The generator G = (gij)i,j∈S

of Ỹ is given by gij = ai (P (i, j) − δij). The spine’s spatial movement is a

standard Brownian motion.

• The fission time ζv of node v in the spine is exactly the jumping time of

the spine’s type process Ỹ , i.e. that the life time σv of v is exponentially

distributed with parameter aỸv
. (Ỹ may jump from i to itself at jumping

time according to generator G.)
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• At the fission time of node v in the spine, the single spine particle is replaced

by a random vector Av of offspring with Av distributed according to the law

(pk(Ỹζv))k∈Zd
+
.

• At the fission time of node v in the spine, a type j child is picked to be the

next spine node with probability
hj

⟨Av ,h⟩ .

• Each of the remaining ⟨Av, 1⟩ − 1 non-spine children of v gives rise to inde-

pendent subtrees (τ,M)vj for vj ∈ Ov, which evolve as independent subtrees

determined by the probability PỸζv X̃ζv
shifted to the time of creation.

Let N(t) := (N1(t), N2(t), · · · , Nd(t)) be the vector denoting the population

sizes of different types at time t. Note that {N(t), t ≥ 0} is a multitype branching

process. Then we have the following result.

Lemma 2 ([1] Chapter V, Theorem 1).
{
w(t) = ⟨N(t),h⟩

eλ∗t⟨N(0),h⟩ : t ≥ 0
}

is a non-

negative martingale with respect to {Ft : t ≥ 0}.

Noting that w(t) is a non-negative mean one martingale, we can define a prob-

ability measureQ on (T ,F) by

dQ

dP

∣∣∣∣
Ft

= w(t). (2.3)

In order to make the principles of measure change method clear, we introduce

the following technical lemma.

Lemma 3. Suppose µ̃1 and µ̃2 are two probability measures defined on the same

space (Ω, F̃) with Radon-Nikodym derivative

dµ̃2

dµ̃1

= g.

If F is a sub-σ-field of F̃ , then the two measures µ1 := µ̃1|F µ2 := µ̃2|F on

(Ω,F) are related by the conditional expectation operation:

dµ2

dµ1

= µ̃1(g | F).

Proof. For any set A ∈ F , we have

µ2(A) = µ̃2(A) =

∫
A

g dµ̃1 =

∫
A

µ̃1(g | F) dµ1.

The last equality follows from the property of conditional expectation. By the

definition of Radon-Nikodym derivative we reach the conclusion.
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Lemma 3 implies that if we want to extend Q to (T̃ , F̃), we need to construct

a non-negative martingale w̃(t) with respect to {F̃t : t ≥ 0} satisfying

dQ̃

dP̃

∣∣∣∣∣
F̃t

= w̃(t), (2.4)

and

P̃ (w̃(t) | Ft) = w(t). (2.5)

According to Lemma 1, we can write w̃(t) =
∑

v∈Z(t)

wv1{v∈ε} where wv is Ft-

measurable. Thus

P̃ (w̃(t) | Ft) = P̃

 ∑
v∈Z(t)

wv1{v∈ε} | Ft


=

∑
v∈Z(t)

wvP̃ (1{v∈ε} | Ft)

=
∑

v∈Z(t)

wv

∏
u≺v

hYu+1

⟨Au, h⟩
.

Since w(t) =
∑

v∈Z(t)

hYv

eλ∗t⟨N(0),h⟩ , in order to have (2.5), we need

wv =
hYv

eλ∗t⟨N(0), h⟩

(∏
u≺v

hYu+1

⟨Au, h⟩

)−1

= e−λ∗t
∏
u≺v

⟨Au, h⟩
hYu

,

thus we get

w̃(t) = e−λ∗t
∏

v≺εnt

⟨Av, h⟩
hỸζv

. (2.6)

Here we remind the reader that till now we only deduce the expression of

w̃(t), but we have not proved it is a martingale yet. Next we will prove that

{w̃(t) : t ≥ 0} is indeed a martingale with respect to {F̃t : t ≥ 0}.
First of all, for each type i ∈ S, we introduce the size-biased distribution

p̂k(i) :=
pk(i)⟨k, h⟩(
1 + λ∗

ai

)
hi
. (2.7)

It is indeed a probability, since∑
k∈Zd

+

pk(i)⟨k, b⟩ =
d∑

j=1

mijhj =

(
1 +

λ∗

ai

)
hi, i ∈ S.

The last equality follows from the fact that h is the right eigenvector of A with

respect to λ∗. For any i, j ∈ S, Define

P̂ (i, j) :=
∑
k∈Zd

+

p̂k(i)
kjhj
⟨k, h⟩

=
mijhj(

1 + λ∗

ai

)
hi
. (2.8)
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It is easy to see that {P̂ (i, j) : i, j ∈ S} is a family of transition probabilities.

Lemma 4. Suppose (Ỹ ,P) is defined as before. Define

mt := e−λ∗t
∏

v≺εnt

(
1 +

λ∗

aYv

)
P̂ (Yv, Yv+1)

P (Yv, Yv+1)
, t ≥ 0.

Then {mt, t ≥ 0} is a non-negative mean one martingale with respect to {GỸ
t , t ≥

0}. We define another probability measure P̂ by

dP̂
dP

∣∣∣∣∣
Gt

= mt. (2.9)

Then under P̂, Ỹ moves as a continuous time Markov process with generator

ĝij := (ai + λ∗)(P̂ (i, j)− δij).

Proof. Suppose f : S → R is a bounded measurable function.

u(t, x) := Ex[f(Ỹt)mt]

where Px(·) := P(·| Ỹ0 = x) with associated expectation operator Ex.

We define τ to be the first jumping time of Ỹ . Then by the strong Markov

property, u(t, x) can be written as

u(t, x) = Ex[f(Ỹt)mt1{t<τ}] + Ex[f(Ỹt)mt1{t≥τ}]

= f(x)e−(ax+λ∗)t +

∫ t

0

e−(ax+λ∗)s(ax + λ∗)
∑
j∈S

P̂ (x, j)u(t− s, j) ds

= f(x)e−(ax+λ∗)t +

∫ t

0

e−(ax+λ∗)(t−s)(ax + λ∗)
∑
j∈S

P̂ (x, j)u(s, j) ds

Therefore, u(t, x) satisfies

∂u

∂t
= (ax + λ∗)

∑
j∈S

(P̂ (x, j)− δxj)u(t, j) (2.10)

with u(0, x) = f(x). In particular, if we pick f ≡ 1, from the uniqueness of solution

to the array of ordinary partial differential equations, we obtain that Exmt ≡ 1

which together with the Markov property of Ỹ under P makes sure that mt is a

martingale. Thus the measure P̂ is well defined.

From (2.10) we see that under P̂, Ỹ is a Markov Process with generator ĝij.

In other words, under probability measure P̂, Ỹ can be interpreted as a Markov

process which stays at any state i ∈ S for an exponential time with parameter

ai + λ∗, and then transits to state j with probability P̂ (i, j).

10



Just as we did before, we can construct a probability measure Q̃ on (T̃ , F̃) by

dQ̃(τ,M, ε)|F̃t
= dP̂(Ỹ )dB(X̃)

∏
v≺εnt

p̂Av(Yv)

P̂ (Yv, Yv+1)

Av(Yv+1)hYv+1

⟨Av, h⟩∏
v≺εnt

[
1

Av(Yv+1)

∏
j : vj∈Ov

dP t−ζv

X̃ζv Ỹζv

((τ,M)vj )

]
, (2.11)

which can be described as follows: under Q̃

• The spine’s type process Ỹ moves as a continuous time Markov process

valued on S according to the measure P̂. The generator of Ỹ is given by

ĝij = (ai + λ∗) (P̂ (i, j)− δij). The spine’s spatial movement X̃ is a standard

Brownian motion.

• The fission time ζv of node v in the spine is exactly the jumping time of

the spine’s type process Ỹ , i.e. that σv has an exponential distribution with

parameter aỸv
+ λ∗.

• At the fission time of node v in the spine, the single spine particle is replaced

by a random vector Av of offspring with Av distributed according to the law

(p̂k(Ỹζv))k∈Zd
+
.

• At the fission time of node v in the spine, a type j particle from the offspring

of v will be picked to be the next spine node with probability
hj

⟨Av ,h⟩ .

• Each of the remaining ⟨Av, 1⟩ − 1 non-spine children of v gives rise to inde-

pendent subtrees (τ,M)vj for vj ∈ Ov, which evolves as independent subtrees

determined by the probability PỸζv X̃ζv
shifted to the time of creation.

Applying (2.7), (2.9) and (2.2) into (2.11), we can easily get (2.4). Therefore

{w̃(t) : t ≥ 0} is a non-negative martingale with respect to {F̃t : t ≥ 0}.
The following formula is a byproduct of the above spine construction.

Proposition 1 (Many-to-one formula for MBBM). For any measurable function

f : R× S → R, we have

Exy

 ∑
u∈Z(t)

f(Xu(t), Yu)

 = Êxy

(
f(X̃t, Ỹt)

hỸ0

hỸt

eλ
∗t

)
. (2.12)

Here Êxy denotes the law of one particle motion where the type process Ỹ moves

as a Markov process starting from y with generator ĝij := (ai + λ∗)(P̂ (i, j)− δij),

while the spatial location process X̃ moves as a Brownian motion starting from x

and is independent of Ỹ .

11



Proof. The proof is much the same as [6] Theorem 4.1 in the case of multitype

Markov branching processes. We omit the details here.

Lemma 5 (McKean representation). If u(t, x, y) ∈ [0, 1] is twice continuously

differentiable in x and satisfies the parabolic system of equations (1.1) with initial

condition u(0, x, y) = f(x, y), then u has a McKean representation

u(t, x, y) = Exy

 ∏
u∈Z(t)

f(Xu(t), Yu)

 .

Proof. This can be proved by a similar argument as that of [3] Theorem 1.36. We

omit the details here.

Lemma 6. Suppose c ∈ R. w(x, y) is a bounded function with 0 ≤ w(x, y) ≤ 1

for any (x, y) ∈ R× S. Let u(t, x, y) := w(x− ct, y). Then u satisfies (1.1) if and

only if

w(x, y) = Exy

 ∏
u∈Z(t)

w(Xu(t) + ct, Yu)

 .
Proof. By Lemma 5, we only need to show the sufficiency. Let Pt denote the

semi-group of one-dimensional Brownian motion. Let τ denote the split time of

the root. We have

u(t, x, y) = E(x−ct) y

 ∏
u∈Z(t)

w(Xu(t) + ct, Yu)


= Exy

 ∏
u∈Z(t)

w(Xu(t), Yu)


= Exy

 ∏
u∈Z(t)

w(Xu(t), Yu)1{τ≤t}

+ Ex y

 ∏
u∈Z(t)

w(Xu(t), Yu)1{τ>t}


=

∫ t

0

aye
−aysPsψy(u(t− s))(x) ds+ e−aytPtwy(x),

where for each s ≥ 0, u(s) is a function from R to Rd defined by u(s)(x) :=

u(s, x) = (u(s, x, 1), · · · , u(s, x, d)). Therefore, u(t, x, y) solves (1.1).

3 Proof of Theorem 1

Recall that, for any λ ̸= 0,

Wλ(t) :=
∑

u∈Z(t)

hYue
−λ(Xu(t)+cλt).

12



It follows from Proposition 1 that {Wλ(t), t ≥ 0} is a positive martingale and

thus it has an almost sure limit denoted by W (λ). The following theorem answers

when W (λ) is non-degenerate, which will be used to give explicit expressions of

traveling wave solutions in supercritical case.

Theorem 3. (1) If |λ| ≥ λ, then W (λ) = 0Pxy-a.s..

(2) Suppose 0 < |λ| < λ. If E(ξij log
+ ξij) < +∞ for all i, j ∈ S, then Wλ(t)

converges to W (λ) in L1(Pxy), and Pxy(W (λ) = 0) = 0. Else if E(ξij log
+ ξij) =

+∞ for some i, j ∈ S, then W (λ) = 0 Pxy-a.s..

Remark 1. It suffices to prove the claims under P0y. In the following paper,

we only deal with the case λ > 0. The case λ < 0 can be analyzed by simple

considerations of symmetry.

For any λ ≥ 0, through the same techniques used in Section 2 , we can construct

a probability measure Q̃λ
0y on (T̃ , F̃) such that

dQλ
0y

dP0y

∣∣∣∣∣
Ft

=
Wλ(t)

Wλ(0)
,

where Qλ
0y := Q̃λ

0y|F . In fact, Q̃λ
0y has the following decomposition:

dQ̃λ
0y(τ,M, ε)|F̃t

= dP̂y(Ỹ )dP−λ(X̃)
∏

v≺εnt

p̂Av(Yv)

P̂ (Yv, Yv+1)

Av(Yv+1)hYv+1

⟨Av, h⟩∏
v≺εnt

[
1

Av(Yv+1)

∏
j : vj∈Ov

dP t−ζv

X̃ζv Ỹζv

((τ,M)vj )

]
. (3.1)

Here (X̃,P−λ) is a standard Brownian motion with drift −λ , and (Ỹ , P̂y) is a con-

tinuous time Markov chain starting from y with generator ĝij = (ai+λ
∗)(P̂ (i, j)−

δij). For vj ∈ Ov, (τ,M)vj evolves as independent subtrees determined by the

probability PX̃ζv Ỹζv
shifted to the time of creation.

Lemma 7. We have the following spine decomposition for the martingale Wλ(t):

Q̃λ
0y(Wλ(t) | G̃) = hỸt

e−λ(X̃(t)+cλt)+
∑
j∈S

∑
v≺εnt

(Av(j)−δYv+1j)hje
−λ(X̃(ζv)+cλζv). (3.2)

Proof. Wλ(t) can be written as

Wλ(t) = hỸt
e−λ(X̃(t)+cλt) +

∑
u∈Z(t)
u̸∈ε

hYue
−λ(Xu(t)+cλt)

= hỸt
e−λ(X̃(t)+cλt) +

∑
v≺εnt

∑
j : vj∈Ov

∑
u∈Z(t)

u∈(τ,M)vj

hYue
−λ(Xu(t)+cλt).
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The first equality is clearly true since one of the particles u ∈ Z(t) must stay in

the spine. The second one is followed by partitioning the particles into distinct

subtrees that were born from the spine nodes before time t.

Recall that G̃ contains all information about the spine nodes, by taking the

Q̃λ
0y conditional expectation of Wλ(t), we have

Q̃λ
0y(Wλ(t) | G̃) = hỸt

e−λ(X̃(t)+cλt) + Q̃λ
0y

 ∑
v≺εnt

∑
j : vj∈Ov

∑
u∈Z(t)

u∈(τ,M)vj

hYue
−λ(Xu(t)+cλt)

∣∣∣∣∣∣∣∣∣ G̃


= hỸt
e−λ(X̃(t)+cλt) +

∑
v≺εnt

∑
j : vj∈Ov

hYvj
e−λ(X̃(ζv)+cλζv)

Q̃λ
0y

 ∑
u∈Z(t)

u∈(τ,M)vj

hYu

hYvj

e−λ(Xu(t)−X̃(ζv)+cλ(t−ζv))

∣∣∣∣∣∣∣∣∣ G̃
 .

From the decomposition of dQ̃λ
0y, we observe that under Q̃λ

0y, the subtrees

coming off the spine evolves as if under the measure P0y. Therefore

Q̃λ
0y

 ∑
u∈Z(t)

u∈(τ,M)vj

hYu

hYvj

e−λ(Xu(t)−X̃(ζv)+cλ(t−ζv))

∣∣∣∣∣∣∣∣∣ G̃
 = 1.

This equality is true because the additive expression being evaluated on the sub-

trees is just a shifted form of the martingale Wλ(t). We complete the proof.

Lemma 8 (Durret, [5], P241). Suppose µ and ν are two probability measures on

a measurable space (Ω,F) with filtration (Ft)t≥0, such that

dµ

dν

∣∣∣∣
Ft

=M(t)

for all t ≥ 0. Let M∞ := lim supt→+∞M(t). Then for any A ∈ F

µ(A) =

∫
A

M∞ dν + µ(A ∩ {M∞ = +∞}),

and consequently

M∞ = 0 ν-a.s. ⇐⇒M∞ = +∞ µ-a.s.;∫
Ω

M∞ dν = 1 ⇐⇒M∞ < +∞ µ-a.s..
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Proof of Theorem 3: (1) If λ ≥ λ > 0, then λ ≥ cλ. Obviously we have

Wλ(t) ≥ hỸt
e
−λX̃(t)−

(
λ2

2
+λ∗

)
t ≥ C0e

−λt
(

X̃(t)
t

+cλ

)

for some constant C0 > 0. Recalling that X̃ moves as a Brownian motion with

drift −λ under Q̃λ
0y, we have limt→+∞

X̃(t)
t

= −λ and lim inft→+∞ X̃(t)+λt = −∞,

and

lim sup
t→+∞

Wλ(t) = +∞ Q̃λ
0y-a.s..

In view of Lemma 8, we have P0y(W (λ) = 0) = 1.

(2) When 0 < λ < λ, λ < cλ. Suppose E(ξij log
+ ξij) = +∞ for some i, j ∈ S.

First note that at each fission time of the spine, we have the lower bound

Wλ(ζεn) ≥ ⟨Aεn , h⟩e−λ(X̃(ζεn)+cλζεn ),

thus by Lemma 8, it suffices to show

Q̃λ
0y

(
lim sup
n→+∞

⟨Aεn , h⟩e−λ(X̃(ζεn )+cλζεn ) = +∞
)

= 1. (3.3)

Obviously we have

⟨Aεn , h⟩e−λ(X̃(ζεn )+cλζεn) = exp

{
n

[
log⟨Aεn , h⟩

n
− λ

ζεn
n

(
X̃(ζεn)

ζεn
+ cλ

)]}
.

Since X̃ moves as a Brownian motion with drift −λ under Q̃λ
oy, we have

Q̃λ
0y

(
lim

t→+∞

X̃(t)

t
+ cλ = cλ − λ > 0

)
= 1.

Besides, by strong law of large numbers we have

Q̃λ
0y

(
lim sup
n→+∞

ζεn
n

≤
∑
k∈S

(ak + λ∗) < +∞

)
= 1.

Therefore to prove (3.3), we only need to prove

Q̃λ
0y

(
lim sup
n→+∞

log⟨Aεn , h⟩
n

= +∞
)

= 1. (3.4)

Let Ni(n) denote the total number of jumps of Ỹ before it hits state i for the

nth time. Since Ỹ moves as an irreducible Markov chain under Q̃λ
0y, n/Ni(n)

converges to a positive constant with probability one. Notice that {AεNi(n)
: n ≥

0} is a sequence of independent random vectors with the same distribution law

{p̂k(i) : k ∈ Zd
+}. Immediately by the moment condition on ξij, we have

Q̃λ
0y log⟨AεNi(n)

, h⟩ = +∞.
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By the Borel-Cantelli lemma,

lim sup
n→+∞

log⟨AεNi(n)
, h⟩

n
= +∞ Q̃λ

0y-a.s.,

and consequently

lim sup
n→+∞

log⟨AεNi(n)
, h⟩

Ni(n)
= +∞ Q̃λ

0y-a.s.

which implies (3.4).

Now we suppose E(ξij log
+ ξij) < +∞ for all i, j ∈ S. Then we have for any

i ∈ S,

lim sup
n→+∞

log⟨AεNi(n)
, h⟩

Ni(n)
= 0 Q̃λ

0y-a.s.,

and consequently

Q̃λ
0y

(
+∞∑
n=1

⟨Aεn , h⟩e−λ(X̃(ζεn)+cλζεn ) < +∞

)

= Q̃λ
0y

(∑
i∈S

+∞∑
n=1

⟨AεNi(n)
, h⟩e−λ(X̃(ζεNi(n)

)+cλζεNi(n)
)
< +∞

)

= Q̃λ
0y

(∑
i∈S

+∞∑
n=1

exp

{
Ni(n)

(
log⟨AεNi(n)

, h⟩
Ni(n)

− λ
ζεNi(n)

Ni(n)

(
X̃(ζεNi(n)

)

ζεNi(n)

+ cλ

))}
< +∞

)
= 1.

The last equality is because X̃(ζεn )
ζεn

→ −λ > −cλ as n → +∞. Therefore the

second term in (3.2) is bounded from above for all t > 0. In addition, under Q̃λ
0y,

−λ(X̃(t) + cλt) = −λt
(

X̃(t)
t

+ cλ

)
→ −∞ as t → +∞. Thus the first term in

(3.2) is also bounded from above. So we have

lim sup
t→+∞

Q̃λ
0y

(
Wλ(t) | G̃

)
< +∞ Q̃λ

0y-a.s.

By Fatou’s lemma

lim sup
t→+∞

Wλ(t) < +∞ Q̃λ
0y-a.s.

Therefore, by Lemma 8, Wλ(t) converges to W (λ) in L1(P0y) which implies that

W (λ) is non-degenerate.

Let qy := P0y(W (λ) = 0) < 1. We have for any t > s ≥ 0

Wλ(t) =
∑

v∈Z(s)

e−λ(Xv(s)+cλs)Wλ(t− s, v)

where Wλ(t − s, v) are independent copies of Wλ(t − s) initiated by v ∈ Z(s). It

follows that

qy = E0y

 ∏
v∈Z(s)

qYv

 ≤ E0y

(
(max
j∈S

qj)
♯Z(s)

)
.
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The Kesten-Stigum theorem for MMBP (see, for example, [1]) confirms that the

total population size ♯Z(s) converges to infinity almost surely on non-extinction

set, thus we have qy = 0 by dominated convergence theorem.

Define L(t) := inf{Xu(t) : u ∈ Z(t)}, i.e., L(t) denotes the position of the

leftmost particle at time t. Then we have

Theorem 4. For any (x, y) ∈ R × S, Pxy(limt→+∞ L(t) + ct = +∞) = 1. In

particular, if E(ξij log
+ ξij) < +∞ for all i, j ∈ S, then Pxy(limt→+∞ L(t)/t =

−c) = 1.

Proof. It is sufficient to prove the conclusion under measure P0y. Note that

Wλ(t) ≥ C1e
−λ(L(t)+cλt) = C1e

−λt(L(t)
t

+cλ) (3.5)

for some constant C1 > 0. Since limt→+∞Wλ(t) = 0, in view of (3.5) we have

P0y(limt→+∞ L(t) + ct = +∞) = 1 and P0y(lim inft→+∞ L(t)/t ≥ −c) = 1. Recall

that the spine moves as a Brownian motion with drift −λ under the measure Q̃λ
0y,

so we have

Q̃λ
0y

(
lim

t→+∞

X̃(t)

t
= −λ

)
= 1.

The proof of Theorem 3 shows that if E(ξij log
+ ξij) < +∞ for all i, j ∈ S, then

for any λ ∈ (0, λ)
dQλ

0y

dP0y

=
W (λ)

hy

and P0y(W (λ) > 0) = 1. This implies that Qλ
0y(W (λ) > 0) = 1 and P0y is

absolutely continuous with respect to Qλ
0y. Hence for any 0 < λ < λ

P0y

(
lim sup
t→+∞

L(t)

t
≤ −λ

)
≥ P0y

(
lim

t→+∞

X̃(t)

t
= −λ

)
= 1

Thus P0y

(
lim supt→+∞ L(t)/t ≤ −λ = −c

)
= 1. We complete the proof.

Proof of Theorem 1(1) By Theorem 3, w(x, y) is non-trivial and increas-

ing in x. It is clear that limx→+∞w(x, y) = 1. P0y(W (λ) = 0) = 0 implies that

limx→−∞w(x, y) = 0. Besides,

w(x, y) = Exy

exp{− ∑
v∈Z(s)

lim
t→+∞

∑
u∈Z(t)
v≺u

hYue
−λ(Xu(t)+ct)}


= Exy

 ∏
v∈Z(s)

EXv(s)Yv

exp{−e−λcs lim
t→+∞

∑
u∈Z(t−s)

hYue
−λ(Xu(t−s)+c(t−s))}


= Exy

 ∏
v∈Z(s)

w(Xv(s) + cs, Yv)

 .
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Thus it follows from Lemma 6 that u(t, x, y) := w(x − ct, y) is a traveling wave

solution to equation (1.1) with wave speed c.

Since limx→+∞w(x, y) = 1 and E0yW (λ) = E0yWλ(0) = hy, then

1− w(x, y)

bye−λx
=

1− E0y

[
exp{−e−λxW (λ)}

]
E0y [e−λxW (λ)]

→ 1 as x→ +∞,

i.e. 1− w(x, y) ∼ hye
−λx as x→ +∞.

The rest of proof is dedicated to the uniqueness. We consider the space-time

barrier Γ(x,cλ) := {(y, t) ∈ R × R+ : y + cλt = x} for x ≥ 0. By arresting lines of

descendants the first time they hit this barrier, we produce a random collection

of particles c(x, cλ) =
∪

i∈S ci(x, cλ) where ci(x, cλ) denotes the subset of type i

particles. {c(x, cλ) : x ≥ 0} is a family of stopping lines. We say {c(x, cλ) : x ≥ 0}
is dissecting in the sense that all lines of descendants will hit Γ(x,cλ) with probability

one for all x > 0. Obviously this is because limt→+∞ L(t) + ct = +∞ for c ≥ c.

We also observe that {c(x, cλ) : x ≥ 0} is tending to infinity in the sense that

for each n ∈ N, one can choose x sufficiently large such that particles in c(x, cλ)

are descendants of the nth generation. (For more information on general stopping

lines and properties of them, we refer to [4] and [9].) Let Fc(x,cλ) be the natural

filtration generated by ancestral, type and spatial paths receding from particles at

the moment they hit Γ(x,cλ).

We use ♯A to denote the cardinal of a finite set A. Let Φcλ be an abitrary

traveling wave at speed cλ.

Mx(z, cλ) :=
∏

u∈c(x,cλ)

Φcλ(z +Xu(t) + cλt, Yu)

= exp

{∑
i∈S

♯ci(x, cλ) log Φcλ(z + x, i)

}

is a P0y-martingale with respect to {Fc(x,cλ) : x ≥ 0}. It converges to Φcλ(z, λ)

almost surely and in L1(P0y) (by boundedness). It follows that

lim
x→+∞

−
∑
i∈S

♯ci(x, cλ) log Φcλ(z + x, i) (3.6)

exists and is positive with positive probability.

Obviously, for any x2 > x1 ≥ 0 and any v ∈ c(x2, cλ), there exists an unique

u ∈ c(x1, cλ) such that u ≺ v. In fact, {(♯c1(x, cλ), · · · , ♯cd(x, cλ)) : x ≥ 0}
forms a continuous time multitype Markov branching process (x plays the role

of time). This follows from the strong Markov branching property (see, for

example, [9]). The strong Markov branching property says that if {σu : u ∈
c(x, cλ)} are the times when particles in c(x, cλ) hit the barrier Γ(x,cλ), then

given Fc(x,cλ) each of the trees relative to and rooted at the space time points
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{(Xu(σu), σu) : u ∈ c(x, cλ)} are independent copies of multitype branching Brow-

nian motions started by a type Yu particle at position Xu(σu). Moreover, it fol-

lows from the fact P0y(limt→+∞ X̃(t) + cλt = +∞) and the irreducibility of Ỹ

that {(♯c1(x, cλ), · · · , ♯cd(x, cλ)) : x ≥ 0} is non-extinct and positive regular. Let

Mcλ(x) = (mcλ
ij (x))i,j∈S where mc

ij(x) = E0i♯cj(x, cλ). Let Acλ be the matrix such

that Mcλ(x) = eAcλ
x. By Perron-Frobenius theorem, we can find a simple posi-

tive eigenvalue λ∗cλ of Acλ , and corresponding positive left and right eigenvectors

πcλ = (π1
cλ
, · · · , πd

cλ
) and hcλ = (h1cλ , · · · , h

d
cλ
) such that ⟨πcλ , hcλ⟩ = ⟨πcλ , 1⟩ = 1.

Immediately ∑
j∈S

mcλ
ij (x)h

j
cλ
e−λ∗

cλ
x = hicλ ∀i ∈ S, (3.7)

Define for x ≥ 0

Wc(x,cλ)(λ) =
∑

u∈c(x,cλ)

hYue
−λ(Xu(t)+cλt)

=
∑
i∈S

♯ci(x, cλ)hie
−λx.

Then {Wc(x,cλ)(λ) : x ≥ 0} is a P0y-martingale with respect to {Fc(x,cλ) : x ≥ 0},
and consequently ∑

j∈S

mcλ
ij (x)hj e

−λx = hi ∀i ∈ S, (3.8)

in other words, eλx is an eigenvalue ofMcλ(x) with corresponding right eigenvector

h. Using similar arguments as in [12] Theorem 8, we can show that

lim
x→+∞

∑
i∈S

♯ci(x, cλ)hie
−λx = W (λ), P0y-a.s. and L

1(P0y). (3.9)

On the other hand, by Kensten-Stigum theorem (see, for example, [6] Theorem

2.1) we have for any i ∈ S,

lim
x→+∞

♯ci(x, cλ) e
−λ∗

cλ
x = πi

cλ
Wcλ P0y-a.s., (3.10)

where Wcλ = limx→+∞
∑

i∈S ♯ci(x, cλ)π
i
cλ
e−λ∗

cλ
x < +∞. Combining (3.9) and

(3.10), we conclude that λ∗cλ = λ and P0y(Wcλ = αW (λ)) = 1 for some constant

α > 0. Using (3.7) and (3.8), we get hcλ = αh. Thus by (3.10) we have for any

i ∈ S,

lim
x→+∞

♯ci(x, cλ)e
−λx = απi

cλ
W (λ) P0y-a.s.. (3.11)

It follows from (3.6) and (3.11) that limx→+∞(−α)
∑

i∈S π
i
cλ
eλx log Φcλ(x, i) exists

and is positive. We denote this limit by β. Uniqueness (up to a multiplicative
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constant) is now immediate since

Φcλ(z, y) = E0y

(
lim

x→+∞
Mx(z, cλ)

)
= E0y

(
exp

{
lim

x→+∞

∑
i∈S

♯ci(x, cλ) log Φcλ(z + x, i)

})

= E0y

(
exp

{
lim

x→+∞
α
∑
i∈S

πi
cλ
eλxW (λ) log Φcλ(z + x, i)

})

= E0y

(
exp

{
−W (λ)e−λz lim

x→+∞
(−α)

∑
i∈S

πi
cλ
eλ(x+z) log Φcλ(z + x, i)

})
= E0y

(
exp

{
−β W (λ)e−λz

})
.

Proof of Theorem 1(2): We assume w(x, y) provides a monotone traveling

wave solution to (1.1) with speed c < c. Then by Lemma 6,
∏

u∈Z(t)w(Xu(t) +

x + ct, Yu) is a bounded martingale under P0y. It converges almost surely and in

mean to some random variable. On the other hand, since 0 ≤ w(x, y) ≤ 1 and

L(t) + ct→ −∞ as t→ +∞,∏
u∈Z(t)

w(Xu(t) + x+ ct, Yu) ≤ w(L(t) + ct, YL(t)) → 0

where YL(t) denotes the type of leftmost particle at time t. Thus w(x, y) ≡ 0

which contradicts the assumption.

4 Proof of Theorem 2

Note that Mt(λ) defined as in (1.5) is a signed martingale and therefore it does

not necessarily converge almost surely. A technique used by Kyprianou [12] to

get round this problem in the case of a single-type branching Brownian motion

is to consider a truncated form of the devivative martingale which is a positive

martingale. In order to describe the aforementioned martingale for multitype

branching Brownian motion we need more notations and lemmas.

Lemma 9 ([12] Section 5). Suppose B = {Bt : t ≥ 0} is a standard Brownian

motion according to the law P, {Lt} is its natural filtration. ∀z > 0, define

τλ := inf{t > 0: z +Bt + λt ≤ 0}, then

mλ(t) :=
z +Bt + λt

z
e−λ(Bt+

λt
2
)1{t<τλ}

is a martingale. Define another probability measure P̂λ
z by

dP̂λ
z

dP

∣∣∣∣∣
Lt

= mλ(t).
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Then under measure P̂λ
z , {z+Bt+λt : t ≥ 0} is a standard Bessel-3 process starting

from z.

Define the space-time barrier Γ(−z,λ) := {(y, t) ∈ R × R+ : y + λt = −z} for

z ≥ 0. Z̃(t) denotes the subset of Z(t) consisting of all particles alive at t having

ancestry (including themselves) whose spatial paths have not met Γ(−z,λ) by time

t.

From the many-to-one formula, we see that

Vλ(t) :=
∑

u∈Z̃(t)

hYu · (z +Xu(t) + λt)e−λ(Xu(t)+cλt)

is a non-negative martingale. We want to define a new probability measure R̃λ
0y

such that if Rλ
0y := R̃λ

0y|F then

dRλ
0y

dP0y

∣∣∣∣∣
Ft

=
Vλ(t)

Vλ(0)
, ∀t > 0.

To this end, R̃λ
0y should have the following decomposition:

dR̃λ
0y(τ,M, ε)|F̃t

= dP̂y(Ỹ )dP̂λ
z (X̃)

∏
v≺εnt

p̂Av(Yv)

P̂ (Yv, Yv+1)

Av(Yv+1)hYv+1

⟨Av, h⟩∏
v≺εnt

[
1

Av(Yv+1)

∏
j : vj∈Ov

dP t−ζv

Xζv Ỹζv

((τ,M)vj )

]
. (4.1)

Remark 2. Under R̃λ
0y, the spine’s spatial process X̃ satisfies that {z + X̃(t) +

λt : t ≥ 0} is a Bessel-3 process which is identically distributed to the modulus

process of a three dimensional Brownian motion. Therefore it never meets the

barrier Γ(−z,λ).

Put

Mλ(t) :=
∑

u∈Z(t)

hYu · (z +Xu(t) + λt)e−λ(Xu(t)+cλt).

If we can prove thatMλ(t) converges to a non-degenerate limit, similar analysis as

in the supercritical case can be carried out to obtain the traveling wave solution

to (1.1). For this purpose, we need the following lemma.

Lemma 10. Let V (λ) = limt→+∞ Vλ(t). For any λ ≥ λ, limt→+∞Mλ(t) exists

and is equal to V (λ) almost surely under P0y. In addition, M(λ) does not depend

on z.

Proof. Recall that Vλ(t) is a non-negative martingale, its limit exists almost surely.

Let γ(−z,λ) denote the event that the multitype branching Brownian motion re-

mains entirely to the right of Γ(−z,λ), then

lim
t→+∞

Mλ(t) = lim
t→+∞

Vλ(t) on γ(−z,λ) P0y-a.s.
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Since P0y(limt→+∞ L(t)+ct = +∞) = 1, we have P0y(inft≥0{L(t)+λt} > −∞) = 1

for all λ ≥ λ. Thus

P0y(γ
(−z,λ)) = P0y

(
inf
t≥0

{L(t) + λt} > −z
)

↑ 1 as z ↑ +∞.

Therefore, we have

lim
t→+∞

Mλ(t) = lim
t→+∞

Vλ(t) P0y-a.s.,

that is to say

M(λ) := lim
t→+∞

Mλ(t) = V (λ) := lim
t→+∞

Vλ(t), P0y-a.s.,

for any λ ≥ λ. Note that

Mλ(t) =
∑

u∈Z(t)

hYu · (Xu(t) + λt)e−λ(Xu(t)+cλt) + zWλ(t).

By Theorem 3, the second term of the right hand side converges to 0 for λ ≥ λ,

hence the limit M(λ) does not depend on z.

Next,we focus on the limit theorem for the martingale Vλ(t). Hereafter, we

simply write R̃λ
0y as R̃0y.

Theorem 5. Suppose λ = λ.

1. If Eξij(log
+ ξij)

2 = +∞ for some i, j ∈ S, then V (λ) = 0 Pxy-a.s.

2. If Eξij(log
+ ξij)

2 < +∞ for all i, j ∈ S, then Vλ(t) converges to V (λ) in

L1(Pxy) and Pxy(V (λ) = 0) = 0.

Lemma 11. we have the following spine decomposition for Vλ(t)

R̃0y

(
Vλ(t) | G̃

)
= hỸt

(z + X̃(t) + λ)e−λ(X̃(t)+ct)

+
∑
j∈S

∑
v≺εnt

(Av(j)− δYv+1j)hj(z + X̃(ζv) + λt)e−λ(X̃(ζv)+cζv).

Lemma 12. (1). If Eξij(log
+ ξij)

2 = +∞ for some i, j ∈ S, then

lim sup
n→+∞

⟨Aεn , h⟩(z + X̃(ζεn) + λζεn)e
−λ(X̃(ζεn)+cζεn ) = +∞ R̃0y-a.s.

(2). If Eξij(log
+ ξij)

2 < +∞ for all i, j ∈ S, then

+∞∑
n=0

⟨Aεn , h⟩(z + X̃(ζεn) + λζεn)e
−λ(X̃(ζεn )+cζεn) < +∞ R̃0y-a.s.
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Proof. (1) We want to show that for any M ∈ (0,+∞),

+∞∑
n=0

I{⟨Aεn ,h⟩(z+X̃(ζεn)+λζεn )e
−λ(X̃(ζεn )+cζεn )≥M} = +∞ R̃0y-a.s. (4.2)

For any set B ∈ B[0,∞)× B(Zd
+), define

ϕ(B) = #{n ≥ 0 : (ζεn , Aεn) ∈ B}.

Then conditional on GỸ , ϕ is a Poisson random measure on [0,∞) × Zd
+ with

intensity

(aỸt
+ λ∗)dt

∑
k∈Zd

+

p̂k(Ỹt)δk(dy)

(here δ denotes the delta function.) Thus for any T ∈ (0,∞), given G,

#{n ≥ 0 : ζεn ≤ T, ⟨Aεn , h⟩(z + X̃(ζεn) + λζεn)e
−λ(X̃(ζεn )+cζεn ) ≥M}

is Poisson random variable with parameter∫ T

0

(aỸt
+ λ∗)

∑
k∈Zd

+

p̂k(Ỹt)I{⟨k,h⟩(z+X̃(t)+λt)e−λ(X̃(t)+ct)≥M}dt.

Hence to prove (4.2), we only need to show that∫ +∞

0

(aỸt
+ λ∗)

∑
k∈Zd

+

p̂k(Ỹt)I{⟨k,h⟩(z+X̃(t)+λt)e−λ(X̃(t)+ct)≥M}dt = +∞ R̃0y-a.s.

Since min{al : l ∈ S} > 0, it is sufficient to prove that

R̃0y

∫ +∞

0

∑
k∈Zd

+

p̂k(Ỹt)I{⟨k,h⟩(z+X̃(t)+λt)e−λ(X̃(t)+ct)≥M}dt < +∞

 = 0.

For any constant c ∈ (0,+∞), put

Ec :=


∫ +∞

0

∑
k∈Zd

+

p̂k(Ỹt)I{⟨k,h⟩(z+X̃(t)+λt)e−λ(X̃(t)+ct)≥M}dt < c

 .

It is sufficient to show that R̃0y(Ec) = 0. In fact we have

c ≥ R̃0y

IEc

∫ +∞

0

∑
k∈Zd

+

p̂k(Ỹt)I{⟨k,h⟩(z+X̃(t)+λt)e−λ(X̃(t)+ct)≥M}dt


=

∫ +∞

0

∑
l∈S

P̂y(Ỹt = l)
∑
k∈Zd

+

p̂k(l)R̃0y

(
IEcI{Bes(t)e−λBes(t)≥M⟨k,h⟩−1e−λz}

)
dt

≥
∫ +∞

0

P̂y(Ỹt = i)
∑
k∈Zd

+

p̂k(i)R̃0y

(
IEcI{Bes(t)e−λBes(t)≥M⟨k,h⟩−1e−λz}

)
dt,

(4.3)
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where Bes(t) := z+ X̃(t)+λt. It is known that under P̂y, Ỹ moves as a Q-process

with the invariant distribution π̃l = hlπl, l ∈ S. Consequently there exists some

T > 0, such that for any t ≥ T , P̂y(Ỹt = i) ≥ 1
2
π̃i > 0. We continue the above

domination:

≥ 1

2
π̃i
∑
k∈Zd

+

p̂k(i)

∫ +∞

T

R̃0y

(
IEcI{Bes(t)e−λBes(t)≥M⟨k,h⟩−1e−λz}

)
dt

≥ 1

2
π̃i

∑
k∈Zd

+

p̂k(i)

∫ +∞

0

R̃0y

(
IEcI{Bes(t)e−λBes(t)≥M⟨k,h⟩−1e−λz}

)
dt− T

 .

(4.4)

We consider a process ((Qt,Wt),P) such that {Qt, t ≥ 0} and {Wt, t ≥ 0}
are independent, (Qt,P) is identically distributed as (Ỹt, R̃0y), and (Wt,P) is a

standard Brownian motion on R3. Suppose ẑ is a point in R3 with norm z. It is

known that (Bes(t), R̃0y) is a Bessel-3 process starting from z, which is identically

distributed to (|Wt + ẑ|,P), here | · | denotes the Euclidean norm.. ((Qt,Wt),P)
might be defined on another probability space. In the remaining proof we still use

Ec to denote the counterpart set of Ec with respect to ((Qt,Wt),P). Immediately

we have

R̃0y

(
IEcI{Bes(t)e−λBes(t)≥M⟨k,h⟩−1e−λz}

)
= P

(
IEcI{|Wt+ẑ|e−λ|Wt+ẑ|≥M⟨k,h⟩−1e−λz}

)
and

R̃0y(Ec) = P(Ec). (4.5)

We claim that there exists K∗ > 0 such that when |k| ≥ K∗{
y ∈ R3 : 1 + z ≤ |y| ≤ log+⟨k, h⟩

2λ

}
⊂
{
y ∈ R3 : |y + ẑ|e−λ|y+ẑ| ≥M⟨k, h⟩−1e−λz

}
.

(4.6)

In fact, 1+ z ≤ |y| ≤ log+⟨k,h⟩
2λ

implies that 1 ≤ |y+ ẑ| ≤ log+⟨k,h⟩
2λ

+ z. Consider the

function f(x) = xe−λx. On the positive half line, it increases to a supremum and

then decreases to 0 as x goes to infinity. Thus we can find K∗ > 0 large enough

such that when |k| ≥ K∗,

1 + z ≤ |y| ≤ log+⟨k, h⟩
2λ

⇒ f(|y + ẑ|) ≥ f

(
log+⟨k, h⟩

2λ
+ z

)
⇒ |y + ẑ|e−λ|y+ẑ| ≥

(
log+⟨k, h⟩

2λ
+ z

)
⟨k, h⟩−1/2e−λz.
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Then we get (4.6). Now we continue the estimation of (4.4):

=
1

2
π̃i

∑
k∈Zd

+

p̂k(i)

∫ +∞

0

P
(
IEcI{|Wt+ẑ|e−λ|Wt+ẑ|≥M⟨k,h⟩−1e−λz}

)
dt− T


≥ 1

2
π̃i

 ∑
k : |k|≥K∗

p̂k(i)

∫ +∞

0

P
(
IEcI{1+z≤|Wt|≤ log+⟨k,h⟩

2λ
}

)
dt− T


=

1

2
π̃i

 ∑
k : |k|≥K∗

p̂k(i)P
(
IEc

∫ +∞

0

I{
1+z≤|Wt|≤ log+⟨k,h⟩

2λ

}dt
)
− T

 .

(4.7)

Note that (|Wt|,P) is a Bessel-3 process starting from 0. Let la, a ≥ 0, be the

family of its local times, then the process {la∞, a ≥ 0} is a BESQ2(0) process

which implies that la∞
d
= al1∞ and P(l1∞ = 0) = 0 (see [17], P425, Exercise 2.5).

Then we have the following calculations:

P
(
IEc

∫ +∞

0

I{1+z≤|Wt|≤ log+⟨k,h⟩
2λ

}dt

)

= P

IEc

∫ log+⟨k,h⟩
2λ

1+z

la∞da


= P

IEc

∫ log+⟨k,h⟩
2λ

1+z

a da

∫ a−1la∞

0

du


=

∫ log+⟨k,h⟩
2λ

1+z

ada

∫ +∞

0

P(IEcI{u≤a−1la∞})du

≥
∫ log+⟨k,h⟩

2λ

1+z

ada

∫ +∞

0

(
P(Ec)− P(a−1la∞ < u)

)+
du

=

∫ log+⟨k,h⟩
2λ

1+z

ada

∫ +∞

0

(
P(Ec)− P(l1∞ < u)

)+
du

=
1

2

(
log+⟨k, h⟩

2λ
− 1− z

)2 ∫ +∞

0

(
P(Ec)− P(l1∞ < u)

)+
du. (4.8)

In view of (4.3), (4.4), (4.7) and (4.8), we get∑
k : |k|≥K∗

p̂k(i)

(
log+⟨k, h⟩

2λ
− 1− z

)2 ∫ +∞

0

(
P(Ec)− P(l1∞ < u)

)+
du < +∞.

(4.9)

Given that E(ξij(log
+ ξij)

2) = +∞, we have
∑

k∈Zd
+
p̂k(i)(log

+⟨k, h⟩)2

= +∞, and then
∑

k : |k|>K∗ p̂k(i)
(

log+⟨k,h⟩
2λ

− 1− z
)2

= +∞. It follows from (4.9)

that ∫ +∞

0

(
P(Ec)− P(l1∞ < u)

)+
du = 0.
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Thus by the fact that P(l1∞ = 0) = 0 we have P(Ec) = 0 for arbitrary c > 0, and

then, by (4.5), R̃0y(Ec) = 0 for arbitrary c > 0. We complete the proof of part

(1).

(2) Choose λ ∈ (0, λ). We have

+∞∑
n=0

(z + X̃(ζεn) + λζεn)⟨Aεn , h⟩e−λ(X̃(ζεn )+cζεn )

=
+∞∑
n=0

(· · · )1{⟨Aεn ,h⟩≤eλ(X̃(ζεn )+cζεn )} +
+∞∑
n=0

(· · · )1{⟨Aεn ,h⟩>eλ(X̃(ζεn )+cζεn )}

∆
= Θ+ Λ.

We only need to prove that both Θ and Λ are finite almost surely under R̃0y.

Hereafter, we write “A
<∼B” to mean that there exists some constant c > 0 such

that A ≤ cB.

Recall that conditioned on GỸ , the split times of the spine is a Poisson point

process with characteristic measure (aỸt
+ λ∗)dt. Therefore

R̃0y(Θ)

= R̃0y

(∫ +∞

0

(aỸs
+ λ∗)(z + X̃(s) + λs)⟨Aεns

, h⟩e−λ(X̃(s)+cs)1{⟨Aεns
,h⟩≤eλ(X̃(s)+cs)}ds

)
≤

∫ +∞

0

∑
i∈S

(ai + λ∗)P̂y(Ỹs = i)
∑
k

p̂k(i) ·

P̂λ
z

(
Bes(s)e−(λ−λ)(Bes(s)−z)1{Bes(s)≥λ−1 log+⟨k,h⟩+z}

)
ds

<∼
∑
i∈S

∑
k

p̂k(i)

∫ +∞

0

P
(
|Ws + ẑ|e−(λ−λ)|Ws+ẑ|1{|Ws+ẑ|≥λ−1 log+⟨k,h⟩+z}

)
ds

<∼
∑
i∈S

∑
k

p̂k(i)

∫
{|y+ẑ|≥λ−1 log+⟨k,h⟩+z}

|y + ẑ|e−(λ−λ)|y+ẑ|dy

∫ +∞

0

s−
3
2 e−

|y|2
2π

s−1

ds

<∼
∑
i∈S

∑
k

p̂k(i)

∫
{|y+ẑ|≥λ−1 log+⟨k,h⟩+z}

|y + ẑ|
|y|

e−(λ−λ)|y+ẑ|dy

<∼
∑
i∈S

∑
k

p̂k(i)

∫
{|y|≥λ−1 log+⟨k,h⟩}

|y|+ z

|y|
e−(λ−λ)|y|dy

<∼
∑
i∈S

∑
k

p̂k(i)

∫ +∞

λ−1 log+⟨k,h⟩
(r2 + zr)e−(λ−λ)rdr

< +∞.

Thus R̃0y(Θ < +∞) = 1.
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On the other side,

R̃0y

(
+∞∑
n=0

1{⟨Aεn ,h⟩>eλ(X̃(ζn)+cζεn )}

)

=

∫ +∞

0

∑
i∈S

(ai + λ∗)P̂y(Ỹs = i)
∑
k

p̂k(i) P̂λ
z

(
Bes(s) < λ−1 log+⟨k, h⟩+ z

)
ds

<∼
∑
i∈S

∑
k

p̂k(i)

∫ +∞

0

P
(
|Ws + ẑ| < λ−1 log+⟨k, h⟩+ z

)
ds

<∼
∑
i∈S

∑
k

p̂k(i)

∫
{|y+ẑ|<λ−1 log+⟨k,h⟩+z}

dy

∫ +∞

0

s−
3
2
e−

|y|2
2πs ds

<∼
∑
i∈S

∑
k

p̂k(i)

∫
{|y+ẑ|<λ−1 log+⟨k,h⟩+z}

|y|−1dy

≤
∑
i∈S

∑
k

p̂k(i)

∫
{|y|<λ−1 log+⟨k,h⟩+2z}

|y|−1dy

=
∑
i∈S

∑
k

p̂k(i)

∫ λ−1 log+⟨k,h⟩+2z

0

rdr

<∼
∑
i∈S

∑
k

p̂k(i)(λ
−1 log+⟨k, h⟩+ 2z)2 (4.10)

The condition that E(ξij(log
+ ξij)

2) < +∞ for all i, j ∈ S is equivalent to that∑
k∈Zd

+
p̂k(i)(log

+⟨k, b⟩)2 < +∞ for all i ∈ S. Therefore, by (4.10)

R̃0y

(
+∞∑
n=0

1{⟨Aεn ,h⟩>eλ(X̃(ζn)+cζεn )} < +∞

)
= 1,

which means Λ is a finite sum. Hence Λ < +∞ R̃0y-a.s. We complete the proof of

part (2).

Proof of Theorem 5: Suppose E(ξij(log
+ ξij)

2) = +∞ for some i, j ∈ S.

Since

Vλ(εn) ≥ ⟨Aεn , b⟩(z + X̃(ζεn) + λζεn)e
−λ(X̃(ζεn )+cζεn ),

using Lemma 12(1), we have

lim sup
t→+∞

Vλ(t) = +∞ R̃0y-a.s.

Thus P0y(V (λ) = 0) = 1 by Lemma 8.

On the other side, suppose E(ξij(log
+ ξij)

2) < +∞ for all i, j ∈ S. Recall that

under R̃0y, {z + X̃(t) + λt : t ≥ 0} is a Bessel-3 process which is transient, i.e.

R̃0y(limt→+∞(z + X̃(t) + λt) = +∞) = 1, then from the spine decomposition for

Vλ(t) and Lemma 12(2), we have

lim sup
t→+∞

R̃0y(Vλ(t) | G̃) < +∞ R̃0y-a.s.
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By Fatou’s lemma, we get

lim sup
t→+∞

Vλ(t) < +∞ R̃0y-a.s.,

which implies that Vλ(t) converges to V (λ) in L1(P0y). Thus P0y(V (λ) = 0) < 1.

Similar analysis as in the proof of Theorem 3 can be applied here to show that

P0y(V (λ) = 0) = 0. Hence we complete the proof.

Proof of Theorem 2: Using the same techniques as in the supercritical

case, we can prove that w(x, y)

w(x, y) = E0y

 ∏
u∈Z(s)

w(x+Xu(s) + cs, Yu)

 .
Obviously, limx→+∞w(x, y) = 1, limx→−∞w(x, y) = 0. Thus w(x, y) provides a

non-trivial traveling wave solution to (1.1). Note thatE0yM(λ) = limt→+∞E0yVλ(t) =

E0yVλ(0) = xhy, and that limx→+∞w(x, y) = 1, thus

1− w(x, y)

xhye−λx
=

1− E0y

[
exp{−e−λxM(λ)}

]
E0y [e−λxM(λ)]

→ 1 as x ↑ +∞,

i.e. 1− w(x, y) ∼ xhye
−λx as x ↑ +∞.

Next we prove the uniqueness. Consider the space-time barrier Γ(z,λ) for z ≥ 0.

By arresting lines of descendants the first time they hit this barrier we again

produce a sequence of stopping lines {C(z, λ) : z ≥ 0} which are dissecting and

tending to infinity. Suppose Φc is any traveling wave with speed c, then

Mz(x, λ) :=
∏

u∈C(z,λ)

Φc(x+Xu(t) + ct, Yu)

= exp

{∑
i∈S

♯Ci(z, λ) log Φc(x+ z, i)

}

is a P0y-martingale which converges to Φc(x, y) almost surely and in L1(P0y).

We turn our attention to the branching Brownian motion with a killing barrier

at Γ(−x,λ) where x > 0. Define C̃(z, λ) to be the set of particles in the killed process

that are stopped at the barrier Γ(z,λ). Obviously, C̃(z, λ) consists of particles whose

lines of descendants (including themselves) have spatial paths that have met the

barrier Γ(z,λ) before meeting Γ(−x,λ). Recall that γ(−x,λ) denotes the event that the

MBBM remains entirely to the right of Γ(−x,λ) and P0y(γ
(−x,λ)) ↑ 1 as x ↑ +∞.

On the event γ(−x,λ) the MBBM and the MBBM with killing barrier Γ(−x,λ) are

the same, i.e. ♯Ci(z, λ) = ♯C̃i(z, λ) on γ
(−x,λ). Therefore,

lim
z→+∞

−
∑
i∈S

♯C̃i(z, λ) log Φc(z, i) (4.11)
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exists almost surely and is non-negative on γ(−x,λ). Furthermore, since the function

x 7→ Φc(x, y) is non-trivial, an elementary argument shows that for x > 0 suffi-

ciently large, limz→+∞−
∑

i∈S ♯C̃i(z, λ) log Φc(z, i) is positive with positive prob-

ability on γ(−x,λ).

Consider the sequence

V x
C̃(z,λ)

:= (hyx)
−1

∑
u∈C̃(z,λ)

hYu(x+Xu(t) + λt)e−λ(Xu(t)+ct)

= (hyx)
−1(x+ z)

∑
i∈S

hi ♯C̃i(z, λ)e
−λz.

By the property of dissecting stopping lines, {V x
C̃(z,λ)

: z ≥ 0} is a mean one

P0y-martingale with respect to {FC̃(z,λ) : z ≥ 0}, and

lim
z→+∞

(x+ z)e−λz
∑
i∈S

♯C̃i(z, λ)hi =M(λ) P0y-a.s. (4.12)

The arguments on Wc(x,λ)(λ) in proof of Theorem 1 are still work when λ = λ,

thus we have

lim
z→+∞

∑
i∈S

♯C̃i(z, λ)hie
−λz = 0 P0y-a.s. (4.13)

Combining (4.12) and (4.13), we obtain

lim
z→+∞

ze−λz
∑
i∈S

♯C̃i(z, λ)hi =M(λ) P0y-a.s. (4.14)

Applying similar arguments as in the supercritical case, we know that {(♯C1(z, λ),

· · · , ♯Cd(z, λ)) : z ≥ 0} forms a non-extinct, positive regular continuous time

multitype Markov branching process (z plays the role of time). By Kesten-

Stigum theorem (see, for example, Theorem 2.1 of [6]), there a non-negative vector

πλ = (π1
λ, · · · , πd

λ) such that ⟨πλ, 1⟩ = 1 and for all i ∈ S

lim
z→+∞

♯Ci(z, λ)

♯C(z, λ)
= πi

λ P0y-a.s.,

and consequently,

lim
z→+∞

♯C̃i(z, λ)

♯C̃(z, λ)
= πi

λ

almost surely on γ(−x,λ). Let x ↑ +∞, we have

lim
z→+∞

♯C̃i(z, λ)

♯C̃(z, λ)
= πi

λ P0y-a.s. (4.15)

Let π̃ = πλ/⟨h, π⟩. Using (4.14), (4.15) and the fact that hi > 0 for every i ∈ S,

we get that for all i ∈ S

lim
z→+∞

ze−λz♯C̃i(z, λ) = π̃iM(λ) P0y-a.s. (4.16)
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From (4.16) and (4.11), we conclude that

β := lim
z→+∞

−z−1eλz
∑
i∈S

π̃i log Φc(z, i)

exists and is positive. Uniqueness (up to a multiplicative constant) is now imme-

diate since

Φc(x, y) = E0y

(
lim

z→+∞
Mz(x, λ)

)
= E0y exp

{
lim

z→+∞

∑
i∈S

♯Ci(z, λ) log Φc(x+ z, i)

}

= lim
η↑+∞

E0y

[
exp

{
lim

z→+∞

∑
i∈S

♯C̃i(z, λ) log Φc(x+ z, i)

}
; γ(−η,λ)

]

= lim
η↑+∞

E0y

[
exp

{
lim

z→+∞

∑
i∈S

π̃iM(λ)eλzz−1 log Φc(x+ z, i)

}
; γ(−η,λ)

]

= E0y exp

{
−M(λ)e−λx lim

z→+∞
−x+ z

z

∑
i∈S

π̃i(x+ z)−1eλ(x+z) log Φc(x+ z, i)

}
= E0y exp

{
−βM(λ)e−λx

}
,

here in the fourth equality, we used (4.16).
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