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Abstract
Orthogonal Latin hypercube (OLH) is a good choice for computer experiments be-

cause it ensures independent estimation of linear effects when a first-order model is fitted.
However, when second-order effects are present, a second-order model must be adopted.
In such cases, apart from the above two-dimensional orthogonality an OLH also needs
to satisfy the property that each column is orthogonal to the elementwise square of all
columns and orthogonal to the elementwise product of every pair of columns. Such class of
OLHs is called OLHs of order two while the former class just possessing two-dimensional
orthogonality is called OLHs of order one. In this paper we present a general method
for constructing OLHs of orders one and two for n = sm runs, where s and m may be
any positive integers greater than one, by rotating a grouped orthogonal array with a
column-orthogonal rotation matrix. The Kronecker product and the stacking methods are
revisited and combined to construct some new classes of OLHs of orders one and two with
other flexible numbers of runs. Some useful OLHs of order one or two with moderate runs
are tabulated and discussed.

MSC: Primary 62K15; Secondary 62K10
Keywords: Column-orthogonal rotation matrix, full factorial design, Galois field, orthog-
onal array, orthogonal Latin hypercube

1 Introduction

Latin hypercube was first proposed by Makay et al. (1979) in their pioneering paper
on computer experiments. Ever since then, Latin hypercubes have become increasingly
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popular in the design of computer experiments because of their uniform coverage of each
individual factor (Fang, Li and Sudjianto (2005), Santner, Williams and Notz (2003)). A
Latin hypercube is typically an n× q matrix in which each column is a permutation of n

uniformly spaced levels, say {−1,−(n−3)/(n−1), . . . , (n−3)/(n−1), 1}. However, there
is no guarantee that Latin hypercubes will have good multivariate properties. If the levels
of columns are simply random permutations, there will usually be some pairs of columns
with high correlations. This will make it more complicated to identify the active factors.
An orthogonal Latin hypercube, denoted by OLH(n, q), is an n × q Latin hypercube
in which any pair of columns have zero correlation. Thus, an OLH not only retains
one-dimensional uniformity but also possesses two-dimensional orthogonality, and ensures
independent estimation of linear effects when a first-order model is fitted. However, when
second-order effects exist, a second-order model must be adopted. In such cases, apart
from the above two-dimensional orthogonality an OLH also needs to satisfy the property
that each column is orthogonal to the elementwise square of all columns and orthogonal
to the elementwise product of every pair of columns. For the usefulness of such class of
OLHs, refer to Ye’s (1998) detailed discussion. For ease of later distinguishing, the former
class of OLHs is called of order one and the latter class of OLHs with this property is
called of order two.

Systematic construction of OLHs has attracted great attentions of many researchers.
By using permutation group theory, Ye (1998) constructed two classes of OLHs of order
two with the forms of OLH(2m, 2m − 2) and OLH(2m + 1, 2m − 2). Subsequently, for
any integer s ≥ 2, Beattie and Lin (2005) successfully obtained a class of OLHs of order
two of the form OLH(sm,m) by rotating an sm-run full factorial design with a rotation
matrix of order m, where m must be a power of two. Subject to the same restriction of
m, Steinberg and Lin (2006) rotated grouped two-level regular fractional factorial designs
and constructed OLHs of order one with 2m runs, but the number of columns can reach as
many as b(2m − 1)/mcm, where bxc is the integer part of x. Pang et al. (2009) extended
this method to obtain OLH(pm, (pm−1)/(p−1)) of order one, where p is any prime and m

must be a power of two. For n = s2 runs, Lin et al. (2009) generated a bigger OLH of order
one which has a high factor-to-run ratio by assembling an orthogonal array (OA) with a
smaller OLH. Through an inductive construction method, Sun et al. (2009) obtained two
classes of OLHs of order two with the forms of OLH(2c+1, 2c) and OLH(2c+1 + 1, 2c) for
any positive integer c. Meanwhile, Georgiou (2009) obtained some OLHs of small runs by
transferring orthogonal designs. A detailed discussion of OLHs with at most nine runs can
be found in Prescott (2009). Recently, Bingham et al. (2009) introduced a new method for
constructing a series of larger designs based on a small design with the tool of Kronecker
product. Lin et al. (2010) further extended their method to construct OLHs and also
proved that an OLH of order one does not exist for n = 4c + 2 runs.

In this paper we are ready to give a general method for constructing OLHs of orders
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one and two. The rest of the paper is arranged as follows. Section 2 introduces a unified
construction method for OLHs of order one and those of order two for n = sm runs, where
s and m may be any positive integers greater than one, by rotating a grouped OA with a
column-orthogonal rotation (COR) matrix. Section 3 presents a general partition scheme
to divide any prime power s-level regular saturated factorial design of strength two into
some groups of full factorial designs by using the subfield theory. To obtain OLHs of orders
one and two with other flexible numbers of runs, the Kronecker product and the stacking
methods proposed by Lin et al. (2010) are revisited in Sections 4 and 5, respectively, and
some new classes of OLHs are constructed. For illustration, some new OLHs of order one
or order two with small prime power numbers of runs are tabulated in Section 6. Section
7 concludes with some remarks.

2 A general method for constructing OLHs

Some notations and definitions are introduced here. An orthogonal array of size n, q

constraints, s levels, and strength t ≥ 2, denoted by OA(n, sq, t), is an n× q matrix with
entries from a set of s levels such that for every n× t submatrix, the st level combinations
occur equally often (Hedayat et al. (1999)). In the article we adopt the s levels as
{−1,−(s−3)/(s−1), . . . , (s−3)/(s−1), 1}. For an n×m matrix D = (dij) = (d1, . . . , dm),
the J-characteristic of its any k columns dj1 , . . . , djk

is defined to be J(dj1 , . . . , djk
) =∑n

i=1 dij1 · · · dijk
, which measures the non-orthogonality among these k columns. For any

n1 × m1 matrix A = (aij) and n2 × m2 matrix B, their Kronecker product A ⊗ B is
the n1n2 ×m1m2 blocked matrix (aijB)1≤i≤n1,1≤j≤m1 , where the block aijB itself is the
n2 × m2 matrix with entries aijbrv, r = 1, . . . , n2, v = 1, . . . , m2. A vector is said to be
equally-spaced if all of its entries are equally-spaced.

Beattie and Lin (2005) established a fundamental lemma about the equally-spaced
property, which plays a pivotal role in our construction and is rewritten as follows.

Lemma 2.1 Let A1 be a full factorial design for m factors each at s levels and u be an m-
dimensional vector. Then the vector A1u is equally-spaced if and only if u is a permutation
of {±λ,±λs,±λs2, . . . ,±λsm−1} up to sign specification, where λ is any constant.

Let A2, . . . , Af be f − 1 different matrices obtained by permutating some rows of A1.
Clearly, A1, . . . , Af are all sm full factorial designs for m factors each at s levels. Let U be
a column-orthogonal rotation (COR) matrix of order m× d in which the d columns are d

permutations of {±1,±s,±s2, . . . ,±sm−1} and any pair of columns have zero correlation.
Let A = (A1, . . . , Af ) and R = If ⊗ U . Construct an sm × fd matrix

M = (s− 1)/(sm − 1)AR. (1)

Then we can obtain the following result, whose proof is given in the Appendix.
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Theorem 2.1 (i) If A is an OA of strength two, then the M constructed in (1) is an
OLH(sm, fd) of order one;

(ii) If A is an OA of strength three, then the M constructed in (1) is an OLH(sm, fd)
of order two.

Let B be an OLH(s, l). For t = 1, . . . , l, obtain a matrix A(t) by replacing the s levels
of A with b1t, . . . , bst, respectively. Construct an sm × fdl matrix

M = (s− 1)/(sm − 1)(A(1)R, A(2)R, . . . , A(l)R). (2)

Then we can further obtain the following result, whose proof is also postponed to the
Appendix.

Theorem 2.2 (i) If A is an OA of strength two and B is an OLH of order one, then the
M constructed in (2) is an OLH(sm, fdl) of order one;

(ii) If A is an OA of strength three and B is an OLH of order two, then the M

constructed in (2) is an OLH(sm, fdl) of order two.

For applying the general method to construct new OLHs, we need two components, a
grouped OA and a COR matrix. It can be shown that for any numbers s,m ≥ 2, the m-row
COR matrix U has at least one column (1, s, . . . , sm−2, sm−1)′, and for any even number
m ≥ 2, the m-row COR matrix U has at least one more column (s,−1, . . . , sm−1,−sm−2)′.
Furthermore, for m = 2c with any positive integer c, the m-row COR matrix U has the
following recursive square form

Vc =

(
1 s2c−1

s2c−1 −1

)
⊗ Vc−1, where V0 = 1. (3)

Example 2.1 Consider the construction of an OLH of 81 runs. Let A be a 3-level regular
saturated factorial design of strength two and 81 runs, whose generator matrix can be
partitioned into 10 groups as follows




1000 1002 1011 1200 2201 0221 1010 1212 2120 1222
0100 2101 1120 0220 1022 1101 0121 2212 0122 2200
0010 0210 1112 0022 0102 2110 1012 1221 2012 2220
0001 0021 0111 2002 2010 2211 0101 2122 1201 2222




,

where the four columns in each group are linearly independent and form the generator
matrix of a 34 full factorial design. Replace the three symbols 0, 1, 2 in A with −1, 0, 1,
respectively. Let U = V2 in (3) with s = 3 and R = I10⊗U . Then by item (i) of Theorem
2.1, the matrix M in (1) gives an OLH(81, 40) of order one.

On the other hand, let A be a 9-level regular saturated factorial design of strength two
and 81 runs. Note that among the 10 columns of A, any two columns form a 92 full
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factorial design. Then A can be partitioned into 5 groups each containing two columns.
Replace the nine symbols of A with −1,−3/4, . . . , 3/4, 1, respectively. Let U = V1 in (3)
with s = 9 and R = I5 ⊗ U . Then by item (i) of Theorem 2.1, the matrix M in (1) gives
an OLH(81, 10) of order one. Furthermore, let B be the OLH(9, 5) of order one given in
Table 3. By item (i) of Theorem 2.2, the matrix M in (2) gives an OLH(81, 50) of order
one.

Example 2.1 shows that for a same prime power n, if it can be expressed in two different
forms, n = sm1

1 = sm2
2 with m1 > m2, and if an OLH of s2 runs exists with most columns,

then the OLH constructed by applying the s2-level OA tends to have more columns than
the one by applying the s1-level OA. Since regular fractional factorial designs as discussed
in Wu and Hamada (2000) are the most familiar examples of OAs, their grouping schemes
will be discussed in detail in the next section.

3 Construction of OLHs via the general method

Pang et al. (2009) presented a partition scheme to divide a regular fractional factorial
design of prime levels into some groups of full factorial designs. Here we generalize this
method to suit for any regular saturated factorial design with any prime power levels and
then construct OLHs with more columns for the same number of runs. The generalization
is not straightforward and is based on the following subfield theory.

For a prime p and an integer ν ≥ 1, let GF (pν) denote a Galois field of order pν .
For ν = 1, the set of residues {0, 1, . . . , p − 1} modulo p forms a GF (p) of order p under
addition and multiplication modulo p. For ν > 1, the set of all polynomials of degree ν−1
or lower {a0 + a1x + · · ·+ aν−1x

ν−1|aj ∈ GF (p)} is a GF (pν) of order pν under addition
and multiplication of polynomials modulo g(x), where g(x) = b0 + b1x + · · · + bνx

ν with
bj ∈ GF (p) and bν = 1 is an irreducible polynomial of degree ν. Both the additive group
GF (pν) and the multiplicative group GF (pν) \ {0} are cyclic.

Let F denote GF (pcm) with a primitive irreducible polynomial g(x) of degree cm.
Then x is a primitive element of F and every non-zero element of F can also be expressed
as a power of x. Note that xpcm−1 = 1. Define α = x(pcm−1)/(pc−1). Let G be the
set {0, α, α2, . . . , αpc−1} with αpc−1 = 1. Obviously, G is a subfield of F with the same
addition and multiplication as those in F . Furthermore, we have the following result about
the expression of the elements of F , whose proof is given in the Appendix.

Proposition 3.1 Let F be a GF (pcm) with a primitive irreducible polynomial g(x) and
G is a subfield GF (pc) of F with α = x(pcm−1)/(pc−1) as a primitive element. Then every
element of F can be uniquely represented by

λ0 + λ1x + · · ·+ λm−1x
m−1, λi ∈ G, i = 0, 1, . . . , m− 1. (4)
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Let s = pc. For an s-level regular fractional factorial design A of sm runs, let
1, x, . . . , xm−1 label its m independent columns. By Proposition 3.1, for i = 1, 2, . . . , pcm−
1, the element xi of F can be uniquely represented by λi0 +λi1x+ · · ·+λi,m−1x

m−1, λij ∈
G, j = 0, 1, . . . , m− 1. Then the column of A labeled by xi can be uniquely generated by
the linear combination of the m columns labeled by 1, x, . . . , xm−1 with the m coefficients
λij ’s in the expression of xi. Note that for a regular saturated design A of m factors
each at s levels, apart from the m independent columns, columns xm, . . . , x(sm−1)/(s−1)−1

exactly form the remaining additional columns of A. Furthermore, for any positive inte-
ger k, columns xk, xk+1, . . . , xk+m−1 are linear independent over G if and only if columns
1, x, . . . , xm−1 are linearly independent over G. Thus we can partition a regular saturated
design A of sm runs into at most b(sm−1)/(m(s−1))c groups each consisting of m columns
labeled by m consecutive powers of x from zero power on and forming an sm full factorial
design. So the grouped A can be used as a grouped OA of strength two in Theorems 2.1
and 2.2.

An example is presented to illustrate the details of the construction of OLHs of order
one.

Example 3.1 Consider the construction of an OLH of order one in 94 runs. Let F be the
GF (38) with a primitive polynomial g(x) = x8+x+2. x is a primitive element of GF (38).
Let G = GF (32) be a subfield of F , then α = x820 is a primitive element of G, whose 9
elements can be expressed as {0, 1, α, α2, α3, α4, α5, α6, α7}. Let A be a 9-level saturated
factorial design of 94 runs in which the 820 factors are labeled by xi,i = 0, . . . , 819. Let
columns 1, x, x2 and x3 be the four independent columns and the entries of column xi are
generated by the linear combination of columns 1, x, x2, x3 with the four coefficients λij’s in
the expression of xi. Then for k = 1, . . . , 205, the four columns of the k-th group labeled by
x4(k−1)+j, j = 0, 1, 2, 3 form a 9-level full factorial design for 4 factors. Replacing the nine
symbols of A with −1, −3/4, . . . , 3/4, 1, respectively, we obtain a scaled OA(94, 9820, 2) A.
Let U = V2 in (3) with s = 9 and B = OLH(9, 5) given in Table 3, then the matrix M

constructed in (2) gives an OLH(94, 4100) of order one according to item (i) of Theorem
2.2.

For m = 3, any s-level OA of strength three can be directly partitioned into exclusive
groups of three columns since any three columns form a full factorial design. For m ≥ 4, it
is a hard work to partition an OA of strength three into groups of sm full factorial designs
for m factors. Here we carry out this grouping process by computer to construct some
useful OLHs of order two.

Example 3.2 Consider the construction of an OLH of order two with 94 runs. Along
with the notations used in Example 3.1, we search out an OA(94, 936, 3), denoted by A,
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and present its grouped generator matrix as follows.

1 x x2 x3 x5 x13 x255 x86 x107 x694 x756 x60

1 0 0 0 α3 α2 α6 α5 α2 α6 α6 0
0 1 0 0 α α 1 α3 α6 α3 α7 α

0 0 1 0 0 0 0 1 0 0 0 α

0 0 0 1 α3 α5 α3 0 α4 α2 α4 1

x784 x222 x58 x385 x136 x103 x247 x626 x90 x787 x512 x501

α3 1 α2 1 α3 α3 α6 α4 1 0 α7 0
α3 α5 α2 α4 1 1 α3 α6 α7 α7 α2 α7

0 α3 α6 α4 α α4 α2 1 α4 α5 1 1
α4 α6 α4 α4 α5 α6 α6 0 α7 α3 α5 α5

x322 x470 x19 x610 x35 x620 x358 x517 x200 x376 x39 x47

0 1 α7 α6 α3 α2 1 α7 α7 α7 α α6

α4 α2 0 α5 α5 α5 1 α3 0 α α4 α

α α2 α2 α3 α6 α4 α α4 α α4 1 α4

α5 α4 α4 0 α6 α4 1 α6 α7 α α4 α3

By replacing the nine symbols of A with −1, −3/4, . . . , 3/4, 1, respectively, and letting
U = V2 in (3) with s = 9 and B = OLH(9, 4) of order two given in Table 3, we can
construct the matrix M in (2), which gives an OLH(94, 144) of order two.

4 Construction of OLHs via a Kronecker product

Lin et al. (2010) proposed a Kronecker product approach to the construction of OLHs of
order one. In this section this approach is revisited to construct a new class of OLHs of
order one and also is extended to suit for the construction of OLHs of order two.

Let G and V be n1 × q1 and n2 × q2, respectively, orthogonal designs with entries ±1,
and W and H be n1 × q1 and n2 × q2, respectively, OLHs of order one. Define

M = π1G⊗H + π2W ⊗ V, (5)

where π1 = (n2 − 1)/(n1n2 − 1) and π2 = n2(n1 − 1)/(n1n2 − 1). Note that the scale
numbers π1 and π2 are different from those used in Lin et al. (2010) because the two
different regularization systems of the levels of an OLH have been adopted. Then Theorem
1 of Lin et al. (2010) can be rewritten in the following Lemma 4.1.

Lemma 4.1 The matrix M in (5) is an OLH(n1n2, q1q2) of order one if:
(i) G′W = 0 or H ′V = 0.
(ii) At least one of the following two conditions is true: (a) for any 1 ≤ i ≤ q1, if

wpi = −wp′i, then gpi = gp′i; (b) for any 1 ≤ j ≤ q2, if hpj = −hp′j then vpj = vp′j.
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Now similar to Sun et al. (2009), we present an actual construction of G and W used
in (5). Let

S1 =

(
1 1
1 −1

)
and T1 =

(
1 3
3 −1

)
.

For any positive integer c ≥ 2, let

Sc =

(
Sc−1 −S∗c−1

Sc−1 S∗c−1

)
, Tc =

(
Tc−1 −(T ∗c−1 + 2cS∗c−1)

Tc−1 + 2cSc−1 T ∗c−1

)
, (6)

where the * operator works on any matrix of an even number of rows by multiplying the
entries in the top half of the matrix by −1 and leaving those in the bottom unchanged.

Let G = (S′c−1, S
′
c−1)

′ and W = 1/(2c−1)(T ′c−1,−T ′c−1)
′. Similar to Theorem 2 of Sun

et al. (2009), it can be shown that W forms an OLH(2c, 2c−1). Furthermore, it can be
verified that G′W = 0 and the matrices G and W satisfy the condition (a) in Lemma 4.1.
Suppose that an OLH(r, k) is available where r ≥ k and r is a multiple of 4 such that
a Hadamard matrix of order r exists. Let H be the OLH(r, k) and V be the submatrix
consisting of k columns of the associated Hadamard matrix of order r. Then the matrix
M in (5) gives an OLH(r2c, k2c−1) of order one by Lemma 4.1.

Proposition 4.1 Suppose that an OLH(r, k) is available where r ≥ k and r is a multiple
of 4 such that a Hadamard matrix of order r exists. Then for any positive integer c, an
OLH(r2c, k2c−1) of order one can be constructed.

A conclusion for constructing OLHs of order two by applying the Kronecker product
method is presented as follows and its proof is delegated to the Appendix.

Lemma 4.2 The matrix M constructed in (5) is an OLH(n1n2, q1q2) of order two if the
conditions (i) and (ii) in Lemma 4.1 hold, and at least one of the following two conditions
is true:

(a) the J-characteristic of any three columns of the matrix (G,W ) is zero, or
(b) the J-characteristic of any three columns of the matrix (H, V ) is zero.

Note that if an OLH can be expressed as the full foldover form of (H ′,−H ′)′, then its
J-characteristic of any odd number of columns must be zero. Based on this property, a
new construction of OLHs of order two is presented in the following.

Let

M1 = λ1

(
G

−G

)
⊗

(
−H0

H0

)
+ λ2

(
W0

−W0

)
⊗

(
V

V

)
, (7)

M2 = λ1

(
G

−G

)
⊗

(
H0

H0

)
+ λ2

(
W0

−W0

)
⊗

(
V

−V

)
, (8)
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and

M = [M1,M2], (9)

where λ1 = (2n2−1)/(4n1n2−1) and λ2 = 2n2(2n1−1)/(4n1n2−1), G and V are n1 × q1

and n2 × q2, respectively, orthogonal designs with entries ±1, and W0 and H0 are n1 × q1

and n2 × q2, respectively, orthogonal matrices such that both (H ′
0,−H ′

0)
′ and (W ′

0,−W ′
0)
′

are OLHs of order two.
By Lemma 4.2 we can easily verify that M1 is an OLH of order two. Note that M2

can be represented as a row juxtaposition of four blocks each with the form ±λ1G⊗H0±
λ2W0 ⊗ V . By exchanging the second and the third blocks, it can be changed to

λ1

(
G

G

)
⊗

(
H0

−H0

)
+ λ2

(
W0

−W0

)
⊗

(
V

−V

)
.

Thus M2 is also an OLH of order two by Lemma 4.2. Noticing that M ′
1M2 = 4λ1λ2[(W ′

0G)⊗
(V ′H0)− (G′W0)⊗ (H ′

0V )], we can obtain the following conclusion.

Proposition 4.2 When (W ′
0,−W ′

0)
′ and (H ′

0,−H ′
0)
′ are OLHs of order two, the matrix

M constructed in (9) is an OLH(4n1n2, 2q1q2) of order two if and only if (G′W0)⊗(H ′
0V )

is symmetric.

5 Construction of OLHs via a stacking method

Suppose that Da and Db are two orthogonal designs with sizes of na × q and nb × q,
respectively. Let n = na + nb. Construct an n× q matrix M by stacking Da and Db as

M = (D′
a, D

′
b)
′. (10)

Then Lin et al. (2010) gave the following fact.

Lemma 5.1 The constructed M in (10) is an OLH(n, q) of order one if
(i) each column of Da is a permutation of {−(na−1)/(n−1),−(na−3)/(n−1), . . . , (na−

3)/(n− 1), (na − 1)/(n− 1)}, and
(ii) each column of Db is a permutation of {−1, . . . ,−(na + 1)/(n− 1), (na + 1)/(n−

1), . . . , 1}.

Let na = 1. Then Da reduces to a zero row vector. Suppose that an OLH(r, k) is
available where r ≥ k and r is a multiple of 4 such that a Hadamard matrix of order
r exists. Let H be the OLH(r, k) and V be the submatrix consisting of k columns of
the associated Hadamard matrix of order r. Put G = (S′c−1, S

′
c−1)

′ and W = (rT ′c−1 +
naS

′
c−1,−rT ′c−1 − naS

′
c−1), where Sc and Tc are defined in (6). Construct

Db = 1/(n− 1)((r − 1)G⊗H + W ⊗ V ). (11)
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Similar to Proposition 2 of Lin et al. (2010), it can be shown that the r2c × k2c−1 matrix
Db constructed in (11) is an orthogonal design with each column being a permutation of
{−1, . . . ,−1/(r2c−1), 1/(r2c−1), . . . , 1}. Then by stacking Da and Db, we can construct an
OLH(r2c + 1, k2c−1) of order one.

Proposition 5.1 Suppose that an OLH(r, k) is available where r ≥ k and r is a multiple
of 4 such that a Hadamard matrix of order r exists. Then for any positive integer c, an
OLH(r2c + 1, k2c−1) of order one can be constructed.

It can be seen that if Da is an orthogonal design and each column of Da is a permutation
of {−(na − 1)/(n − 1),−(na − 3)/(n − 1), . . . , (na − 3)/(n − 1), (na − 1)/(n − 1)}, then
H = (n− 1)/(na − 1)Da is an OLH(na, q) of order one. Conversely, if an OLH(na, q) H

of order one is available, then Da = (na − 1)/(n − 1)H is a desired orthogonal design in
Lemma 5.1. Next, construct a 2c × 2c−1 matrix

Db = 1/(n− 1)(T ′c−1 + naS
′
c−1,−T ′c−1 − naS

′
c−1)

′. (12)

It can be shown that the matrix Db constructed in (12) is an orthogonal design with
each column being a permutation of {−1, . . . ,−(na + 1)/(n− 1), (na + 1)/(n− 1), . . . , 1}.
Furthermore, it can be verified that the J-characteristic of any three columns of the Db

in (12) is zero. So if an OLH(na, q) L of order two is available, Then by stacking Da and
Db, we can construct an OLH(na + 2c,min(q, 2c−1)) of order two.

Proposition 5.2 Suppose that an OLH(na, q) of order one (or two) is available. Then
for any positive integer c, an OLH(na + 2c,min(q, 2c−1)) of order one (or two) can be
constructed.

In particular, for na = 1, Proposition 5.2 shows that a class of OLH(k2c + 1, 2c−1)
of order two can be constructed for any positive integers k and c. This is an extension
of Theorem 1 of Sun et al. (2009). Using Proposition 5.2, we can also construct an
OLH(27, 7) of order one and an OLH(25, 4) of order two by letting Da be the orthogonal
designs in Lemma 5.1 associated with the OLH(11, 7) and OLH(9, 4), respectively, given
in Table 3.

6 Some new OLHs obtained

Some small OLHs of order one and order two with prime power runs are constructed and
presented in Tables 1 and 2, respectively. In both tables, the first column displays the
new obtained OLHs. The + symbol on the superscript of a design means that the design
constructed here is new or has more columns than those constructed by using the previous
methods. The three components, a grouped OA (A), a column-orthogonal rotation (COR)
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matrix (U) and a small OLH (B), used in Theorems 2.1 and 2.2 to generate a bigger OLH
are listed in the second, the third and the fourth columns, respectively. The used theorem
(or proposition), abbreviated as Th (or Prop), is listed in the last column. Note that if
the stacking method is applied, the small OLH column lists the OLHs associated with the
orthogonal designs Da.

The OA’s in the “Grouped OA” column of Table 1 are all regular saturated factorial
designs of strength two. The subfield grouping scheme displayed in Section 3 is used to
partition them into groups of full factorial designs. In Table 2, the grouped OAs of the form
OA(s3, ss+1, 3) can be constructed through the Bush’s method (Hedayat et al. (1999))
and be easily partitioned into exclusive groups of three columns. For m = 4, the five
OA’s OA(34, 38, 3), OA(54, 524, 3), OA(74, 744, 3), OA(94, 936, 3) and OA(114, 11116, 3) are
regular factorial designs of strength three searched out by computer. The generator matrix
of OA(94, 936, 3) has been displayed in Example 3.2. The grouped generator matrices of
OA(34, 38, 3), OA(54, 524, 3), OA(74, 744, 3) are given by




1000 1011
0100 2112
0010 0111
0001 2101




,




1000 0001 1111 1111 1111 1111
0100 1110 0011 1122 2244 3344
0010 1231 2301 2401 3434 3412
0001 2131 3420 4312 3402 2141




,




1000 1111 1111 1101 1101 1110 1011 1111 1011 1111 1111
0100 2655 1455 5512 0211 3041 1164 1042 3123 3666 3604
0010 3454 6110 2652 3410 0146 2452 3665 2261 6302 3153
0001 0006 0024 3534 6153 6531 1222 2315 5661 2416 3315




,

respectively. The generator matrix of OA(114, 11116, 3) is broken into three parts as follows



1000 1101 1111 1110 0111 1111 1011 1111 1111 1111
0100 6111 1287 7061 1948 21t0 t138 5379 6t73 6292
0010 0317 2647 0898 t43t 1536 8978 4t22 3230 5368
0001 t034 3817 4634 7363 4914 t819 8915 7233 4992

1111 1111 1111 0111 1111 1011 1111 1101 1111 1111
989t 7422 4350 1176 3452 617t 428t t110 4109 5362
9537 1452 t691 2457 1510 8665 9931 0057 019t 34t4
4tt9 9270 1701 9505 2555 16t3 9150 76t3 8750 408t

1110 1111 1111 1111 1111 1111 0111 1111 1111
t791 9630 5858 3715 4350 9617 1906 41t8 3052
6473 1625 t026 5998 2863 018t 78t2 1tt2 9457
5625 82t2 2270 8823 4418 1685 1779 tt66 6966




,
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where t represents the level 10. For m = 5, the OA(35, 320, 3) is obtained from the dual
code of Kschischang-Pasupathy cyclic code (Chapter 5.12, Hedayat et al. (1999)) and its
grouped generator matrix is displayed as follows




20211 02121 01001 10000
02021 10212 10100 11000
00202 11021 21010 01100
00020 21102 12101 00110
00002 02110 21210 10011




.

The OA(55, 555, 3) and OA(75, 770, 3) are regular factorial designs of strength three searched
out by computer. The generator matrix of OA(55, 555, 3) is given by




10000 11010 11111 11110 11111 11001 10110 11111 11011 01111 11111
01000 33101 20241 40141 43110 44113 21441 13123 32113 12301 13122
00100 42310 11344 02403 10243 34414 22313 01322 34331 14421 00201
00010 20241 00112 10403 04000 04000 22320 03101 02100 20112 12304
00001 10004 01334 43332 23124 11123 42244 42423 22134 34441 20413




,

and the generator matrix of OA(75, 770, 3) is broken into two parts given by



10000 11001 11111 11111 01111 11100 11111
01000 24102 54116 34446 12636 46411 61053
00100 04410 63364 56112 06165 02540 61505
00010 00443 15443 33524 63313 50452 46510
00001 60045 62232 66631 53534 36042 61251

11011 11101 11101 10011 01101 10111 11111
05103 35616 03610 51102 03610 01045 23551
10531 32631 40161 53403 14420 23401 62420
46054 12115 14162 15132 65064 52015 06155
00665 43141 22016 32161 10304 46603 50400




The six small OLHs used as the B matrices in Theorems 2.1 and 2.2 are presented in
Table 3.

7 Concluding remarks

A general construction method for OLHs of order one and order two with sm runs is
proposed in this paper, where s and m may be any positive integers greater than one,
and is used to construct OLHs of order one and order two with more columns than those
provided by the previous methods. The key point is how to partition a saturated OA

12



Table 1: Some new OLH(sm, q) of order one
OLH(sm, q) Grouped OA (A) COR (U) Small OLH (B) Method

OLH(33, 7) OLH(11, 7) Prop 5.2

OLH(92, 50) OA(92, 910, 2) U2×2 OLH(9, 5) (i) of Th 2.2

OLH(35, 24)+ OA(35, 3121, 2) U5×1 (i) of Th 2.1

OLH(272, 196)+ OA(272, 2728, 2) U2×2 OLH(27, 7) (i) of Th 2.2

OLH(37, 156)+ OA(37, 31093, 2) U7×1 (i) of Th 2.1

OLH(94, 4100)+ OA(94, 9820, 2) U4×4 OLH(9, 5) (i) of Th 2.2

OLH(273, 1764)+ OA(273, 277381, 2) U3×1 OLH(27, 7) (i) of Th 2.2

OLH(52, 12) OA(52, 56, 2) U2×2 OLH(5, 2) (i) of Th 2.2

OLH(53, 20)+ OA(53, 531, 2) U3×1 OLH(5, 2) (i) of Th 2.2

OLH(54, 312) OA(54, 5156, 2) U4×4 OLH(5, 2) (i) of Th 2.2

OLH(55, 312)+ OA(55, 5781, 2) U5×1 OLH(5, 2) (i) of Th 2.2

OLH(56, 2604) OA(56, 53906, 2) U6×2 OLH(5, 2) (i) of Th 2.2

OLH(72, 24) OA(72, 78, 2) U2×2 OLH(7, 3) (i) of Th 2.2

OLH(73, 57)+ OA(73, 757, 2) U3×1 OLH(7, 3) (i) of Th 2.2

OLH(74, 1200) OA(74, 7400, 2) U4×4 OLH(7, 3) (i) of Th 2.2

OLH(112, 84) OA(112, 1112, 2) U2×2 OLH(11, 7) (i) of Th 2.2

OLH(113, 308)+ OA(113, 11133, 2) U3×1 OLH(11, 7) (i) of Th 2.2

OLH(114, 10248) OA(114, 111464, 2) U4×4 OLH(11, 7) (i) of Th 2.2

Table 2: Some new OLH(sm, q) of order two
OLH(sm, q) Grouped OA (A) COR (U) Small OLH (B) Method

OLH(34, 8)+ OA(34, 38, 3) U4×4 (ii) of Th 2.1

OLH(35, 4)+ OA(35, 320, 3) U5×1 (ii) of Th 2.1

OLH(93, 12)+ OA(93, 910, 3) U3×1 OLH(9, 4) (ii) of Th 2.2

OLH(94, 144)+ OA(94, 936, 3) U4×4 OLH(9, 4) (ii) of Th 2.2

OLH(52, 4) OLH(9, 4) Prop 5.2

OLH(53, 4)+ OA(53, 56, 3) U3×1 OLH(5, 2) (ii) of Th 2.2

OLH(54, 48)+ OA(54, 524, 3) U4×4 OLH(5, 2) (ii) of Th 2.2

OLH(55, 22)+ OA(55, 555, 3) U5×1 OLH(5, 2) (ii) of Th 2.2

OLH(253, 32)+ OA(253, 2526, 3) U3×1 OLH(25, 4) (ii) of Th 2.2

OLH(72, 8) OLH(17, 8) Prop 5.2

OLH(73, 6)+ OA(73, 78, 3) U3×1 OLH(7, 3) (ii) of Th 2.2

OLH(74, 132)+ OA(74, 744, 3) U4×4 OLH(7, 3) (ii) of Th 2.2

OLH(75, 42)+ OA(75, 770, 3) U5×1 OLH(7, 3) (ii) of Th 2.2

OLH(113, 8)+ OA(113, 1112, 2) U3×1 OLH(11, 2) (i) of Th 2.2

OLH(114, 232)+ OA(114, 11116, 2) U4×4 OLH(11, 2) (i) of Th 2.2
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Table 3: Six small OLHs
Order Two Order One

OLH(5,2) OLH(7,3) OLH(9,4) OLH(11,2) OLH(9,5) OLH(11,7)

-2 -1 -3 1 2 -4 -3 -2 -1 -5 5 -4 2 2 -3 -1 -5 -4 -5 -5 -3 0 0

-1 2 -2 -3 -1 -3 4 1 -2 -4 -2 -3 -1 -1 4 -2 -4 2 -1 3 4 5 4

0 0 -1 2 -3 -2 -1 4 3 -3 -4 -2 3 -4 1 2 -3 -2 4 5 -4 -2 -1

1 -2 0 0 0 -1 2 -3 4 -2 -1 -1 -2 4 -2 3 -2 3 -3 4 1 -4 -2

2 1 1 -2 3 0 0 0 0 -1 -3 0 0 0 0 0 -1 4 2 -4 3 2 -4

2 3 1 1 -2 3 -4 0 0 1 -4 1 2 -3 0 -5 5 -2 5 -3 2

3 -1 -2 2 1 -4 -3 1 3 2 -3 -3 -1 4 1 5 3 -3 -5 -1 5

3 -4 -1 2 2 1 3 1 -2 -4 -4 2 -1 1 1 -2 3 -5

4 3 2 1 3 4 4 4 3 3 1 3 0 0 -1 0 1 -3

4 2 4 1 -4 0 2 -5 1

5 -5 5 -3 -2 2 -1 4 3

Note that the first three OLHs and the fifth OLH come from Prescott (2009) and the last one is from Lin et al.

(2009).

into as more groups of full factorial designs as possible. The general partition scheme of
a regular prime power-level saturated factorial design of strength two is given. But for a
general regular factorial design of strength three, the partition process is currently carried
out by computer and is under investigation. In addition, the Kronecker product and the
stacking methods proposed by Lin et al. (2010) are revisited and combined to construct
some new classes of OLHs of orders one and two with other flexible numbers of runs.

Acknowledgements. The work is supported by NNSF of China Grant 10971004, 973
Program of China Grant 2007CB512605, and SRF for ROCS, SEM.

Appendix

Proof of Theorem 2.1
Since all s levels of A sum to zero and the strength of A is two, any pair of columns of

A have zero correlation. Lemma 2.1 ensures the equally-spaced property of any column of
M , therefore part (i) is easy to obtain.

Let A = (aij), R = (rij) and βk be the kth column of AR. For any three columns k1,
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k2 and k3 of AR, where k1, k2 and k3 may be equal, we have:

J(βk1 , βk2 , βk3) =
sm∑

i=1




fm∑

j=1

aijrjk1







fm∑

j=1

aijrjk2







fm∑

j=1

aijrjk3




=
fm∑

j1=1

fm∑

j2=1

fm∑

j3=1

rj1k1rj2k2rj3k3

pm∑

i=1

aij1aij2aij3

=
fm∑

j1=1

fm∑

j2=1

fm∑

j3=1

rj1k1rj2k2rj3k3J(aj1 , aj2 , aj3)

= 0,

where the last equality is obtained by noting that all s levels of A sum to zero and its
strength is three. Thus Part (ii) follows.

Proof of Theorem 2.2
Following the proof process of Theorem 1 of Lin et al. (2009), part (i) of Theorem 2.2

can be similarly obtained. We now focus on the proof of part (ii). For t = 1, . . . , l, let
A(t) = (a(t)

ij ), R = (rij) and β
(t)
k be the kth column of A(t)R. Similar to the proof of part

(ii) of Theorem 2.1, we need to prove that J(β(t1)
k1

, β
(t2)
k2

, β
(t3)
k3

) = 0 for any 1 ≤ tj ≤ l and
1 ≤ kj ≤ fm, j = 1, 2, 3, where t1, t2 and t3 may be equal, and k1, k2 and k3 may be equal.

Now we consider the following two cases: (1) at least two of k1, k2 and k3 are different,
(2) k1 = k2 = k3. For case (1), the equation holds by noting that substituting the level
symbols in any two different columns doesn’t affect their combinatorial orthogonality and
the sum of all the s levels in any a(t) is zero. For case (2), the equation can also be ensured
because B is an OLH of order two. Thus the proof is complete.

Proof of Proposition 3.1
We just need to prove that 1, x, . . . , xm−1 are linearly independent over G. If not,

there exist m elements αi ∈ G for i = 0, 1, . . . , m − 1, which are not all zero, such that∑m−1
i=0 αix

i = 0. Suppose that among the m elements αi ∈ G, i = 0, 1, . . . , m− 1, the last
nonzero element is αr (1 ≤ r ≤ m − 1). Then xr = α−1

r

∑r−1
i=0 αix

i. Thus, xr, xr+1 and
so on can be expressed as linear combinations of 1, x, . . . , xr−1 with coefficients from G.
Note that the total number of such linear combinations of 1, x, . . . , xr−1 is at most (pc)r,
a contradiction to the number of elements of F . The proof is complete.

Proof of Lemma 4.2
According to Theorem 1 of Lin et al. (2010), conditions (i) and (ii) in Lemma 4.1

ensure that M is an OLH(n1n2, q1q2) of order one, so we need only to prove that M is
of order two. Let gk, hk, wk and vk be the kth column of G,H, W and V , respectively.
Also let βk be the kth column of M . For any three columns k1, k2 and k3 of M , where
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ki = (ji − 1)q2 + ri with 0 ≤ ri < q2, 1 ≤ ji ≤ q1, i = 1, 2, 3. then the expression
M = π1G⊗H+π2W⊗V gives that βki

= π1gji⊗hri+π2wji⊗vri . Therefore, J(βk1 , βk2 , βk3)
can be expressed as

ρ1J(gj1 , gj2 , gj3)J(hr1 , hr2 , hr3) + ρ2J(wj1 , gj2 , gj3)J(vr1 , hr2 , hr3)

+ρ2J(gj1 , wj2 , gj3)J(hr1 , vr2 , hr3) + ρ2J(gj1 , gj2 , wj3)J(vr1 , hr2 , vr3)

+ρ3J(wj1 , wj2 , gj3)J(vr1 , vr2 , hr3) + ρ3J(wj1 , gj2 , wj3)J(vr1 , hr2 , vr3)

+ρ3J(gj1 , wj2 , wj3)J(hr1 , vr2 , vr3) + ρ4J(wj1 , wj2 , wj3)J(vr1 , vr2 , vr3),

where ρ1 = π3
1, ρ2 = π2

1π2, ρ3 = π1π
2
2 and ρ4 = π3

2. Because the J-characteristic of any
three columns of the matrix (G,W ) or of the matrix (H, V ) is zero, the eight components
in the above expression are all zero. So the proof is complete.
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