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Abstract

Linear and quadratic discriminant analysis are two very useful classification

methods, for which the problem of variable selection is of fundamental impor-

tance. To this end, a BIC-type selection criterion (Schwarz, 1978) was recently

studied by Raftery and Dean (2006). Despite its usefulness, the BIC’s selection

consistency (Shao, 1997) was not investigated. To fulfill this important gap,

we show theoretically that the BIC in conjunction with a backward elimination

procedure is indeed selection consistent. To confirm our asymptotic theory, a

number of numerical studies are presented.
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1. INTRODUCTION

In supervised classification, the discriminant analysis (both linear and quadratic)

is extremely popular for real problems (Friedman, 1989; Tibshirani et al., 2003; Guo

et al., 2007). Their popularity is mainly due to their simplicity, interpretability, and

also effectiveness. In fact, empirical comparisons do show that a large portion of

the prediction accuracy can be easily achieved by those classical methods (Hand, 2006;

Clemmensen et al., 2008). Thus, a thorough understanding of the discriminant analysis

is fundamentally important.

In contrast to its popularity, very limited has been known about variable selection

for discriminant analysis. The basic problem like the definition of relevant (or irrele-

vant) variables is not immediately straightforward. To appreciate the difficulty, one can

consider a standard linear regression model, where irrelevant predictors can be defined

easily as those with zero regression coefficients. However, for discriminant analysis,

no “regression coefficient” can be defined naturally. Then, how to define a variable

to be irrelevant is not immediately straightforward. One way to solve the problem is

to define irrelevant variables as those, who cannot provide any additional prediction

power, conditional on the existence of the others; see for example Kohavi and John

(1997), Raftery and Dean (2006), among others. Based on such a definition and the

idea of the Bayes factors (Smith and Spiegelhalter, 1980; Kass and Raftery, 1995; Kass

and Wasserman, 1995; Efron and Gous, 2001), a BIC-type criterion (Schwarz, 1978)

was recently studied by Raftery and Dean (2006). Despite its usefulness, the BIC’s

selection consistency (Shao, 1997) was not theoretically investigated. Then, the pri-

mary objective of this article is to fulfill this important gap by supplying a rigorous

theoretical proof. Specifically, we show that the BIC in conjunction with a backward

elimination procedure is indeed selection consistent. Numerical studies are presented
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to confirm our asymptotic theory.

The rest of the article is organized as the follows. The next section introduces the

new methodology with both computational details and theoretical properties. Numer-

ical studies are presented in Section 3.

2. THE METHODOLOGY

2.1. Model and Notations

Let (Yi, Xi) with 1 ≤ i ≤ n be the observation collected from the ith subject, where

Yi is the class label taking values in {1, 2, . . . , K} and Xi = (Xi1, · · · , Xip)
> ∈ Rp is the

associated p-dimensional predictor. Furthermore, we assume that P (Yi = k) = πk > 0

for every 1 ≤ k ≤ K, and Xi|Yi = k follows a multivariate normal distribution with

mean µk = (µk1, · · · , µkp)
> ∈ Rp and covariance Σk ∈ Rp×p, where Σk is assumed to be

positive definite for every 1 ≤ k ≤ K. Next, we use a generic notation S = {j1, · · · , jd}
to denote a candidate model, which contains Xij1 , · · · , Xijd

as relevant predictors. We

denote its size by |S| = d and its complement by Sc = SF\S, where SF = {1, · · · , p}
is the full model. For an arbitrary p-dimensional vector (e.g.) µk, we use µk(S) =

(µkj : j ∈ S) ∈ R|S| to denote its subvector corresponding to the candidate model S.

Similarly, Σk(S) denote Σk’s submatrix corresponding to S.

The objective of variable selection is to differentiate those truly relevant variables

from those redundant ones. Under a linear regression setup, this is typically related to

identifying those predictors with nonzero regression coefficients. However, in supervised

learning problems, what kind of predictors should be considered as relevant/irrelevant

should be carefully defined. To this end, we follow the idea of Kohavi and John (1997),

and define an arbitrary set of predictors SI to be irrelevant, if it satisfies that the
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distribution of Xi(SI)|Yi, Xi(SR) is the same as that of Xi(SI)|Xi(SR), where SR = Sc
I .

Under this assumption, one can easily verify that

P
(
Yi = k

∣∣∣Xi

)
= P

(
Yi = k

∣∣∣Xi(SR)

)
, (2.1)

which implies that the model SR by itself is sufficient for predicting the class label Yi.

Obviously, there exist more than one model SR satisfying (2.1), e.g., SR = SF . However,

we are only interested in the “smallest” model satisfying (2.1), which can be defined

as the intersection of all SR satisfying (2.1) and is denoted by ST . Following similar

argument as in Cook (1998), we can show that ST also satisfies (2.1). Consequently,

we can refer to ST as our uniquely defined true model.

Because the distribution of Xi|Yi is Gaussian, then for any S ⊃ ST , we must have

S satisfies (2.1). Consequently, for each k, we have Xi(S)|Yi = k ∼ N(µk(S), Σk(S)),

Σk(S) ∈ R|S|×|S| is a positive definite matrix, and

Xi(Sc)|Xi(S), Yi = Xi(Sc)|Xi(S) ∼ N
(
µ(S) + B(S)Xi(S), Σε(S)

)
(2.2)

for some µ(S) ∈ Rp−|S|, B(S) ∈ R(p−|S|)×|S| and Σε(S) ∈ R(p−|S|)×(p−|S|), where Σε(S) is a

positive definite matrix. Moreover, because ST is the “smallest” model satisfying (2.1),

thus the relationship (2.2) is not valid for any S satisfying S 6⊃ ST .

2.2. The BIC Criterion

To identify the true model ST , we assume that we are given a set of candidate

models, which are collected by M. Practically, how to generate M is a very important

question, which will be carefully addressed in the next subsection. Following traditional
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definition (Raftery and Dean, 2006), we consider a BIC criterion defined as

BIC = −2× log likelihood + degrees of freedom× log n.

We can then implement the above BIC criterion as the follows. Firstly, we need to

evaluate the log likelihood function under a given candidate model S. Secondly, we

then evaluate the degrees of freedom under that particular model. We firstly consider

the likelihood function, denoted by `(θ(S)), where the unknown parameter is

θ(S) =
{

(µ(S), B(S), Σε(S)) and (πk, µk(S), Σk(S)) with 1 ≤ k ≤ K
}

. (2.3)

Then, consider an arbitrary candidate model S. By (2.2), we have

−2 log `(θ(S)) =
n∑

i=1

K∑

k=1

I(Yi = k)

{(
Xi(S)−µk(S)

)>
Σ−1

k(S)

(
Xi(S)−µk(S)

)
+ log

∣∣∣Σk(S)

∣∣∣
}

+
n∑

i=1

{(
Xi(Sc) − µ(S) −B(S)Xi(S)

)>
Σ−1

ε(S)

(
Xi(Sc) − µ(S) −B(S)Xi(S)

)
+ log

∣∣∣Σε(S)

∣∣∣
}

+
n∑

i=1

K∑

k=1

I(Yi = k) log πk. (2.4)

Then, by optimizing (2.4) with respect to θ(S), we obtain a set of maximum likelihood

estimators, which are given by

π̂k =
1

n

n∑
i=1

I(Yi = k), µ̂k(S) =
1

nk

n∑
i=1

Xi(S)I(Yi = k)

Σ̂k(S) =
1

nk

n∑
i=1

Xi(S)X
>
i(S)I(Yi = k)− µ̂k(S)µ̂

>
k(S)
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(
µ̂(S), B̂(S)

)
=

{
1

n

n∑
i=1

Xi(Sc)X̃
>
i(S)

}{
1

n

n∑
i=1

X̃i(S)X̃
>
i(S)

}−1

,

and Σ̂ε(S) = n−1

n∑
i=1

ε̂i(S)ε̂
>
i(S),

where nk =
∑n

i=1 I(Yi = k), X̃i(S) =
(
1, X>

i(S)

)>
and ε̂i(S) = Xi(Sc) − µ̂(S) − B̂(S)Xi(S).

We then collect those MLEs by θ̂(S), and evaluate the −2×loglikelihood as

−2`(θ̂(S)) = n

{
K∑

k=1

π̂k log
∣∣Σ̂k(S)

∣∣ + log
∣∣Σ̂ε(S)

∣∣
}

, (2.5)

where some irrelevant constants are omitted. Next, due to each term in (2.3), one can

count the number of parameters needed by such a model specification as

df(S) = K − 1 + K

{
|S|+ 1

2
|S|

(
|S|+ 1

)}

+
(
p− |S|

)
|S|+ 1

2

(
p− |S|

)(
p− |S|+ 1

)
+

(
p− |S|

)
, (2.6)

where the first term is due to {πk}, the second one is due to {µk(S), Σk(S)}, the third

term is due to B(S), and the last two are due to Σε(S) and µ(S). One can verify that

df(S) is a monotonically increasing function in |S|. Thus, larger candidate models

always lead to larger degrees of freedom. Combing the results from (2.5) and (2.6), we

obtain a BIC criterion as

BIC(S) = −2 log `(θ̂(S)) + df(S)× log n. (2.7)

Thereafter, the best model can be selected as Ŝ = argminS∈MBIC(S).

2.3. A Backward Algorithm

As we mentioned before, practically how to generate the candidate model set M is
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a very important problem. To this end, we considered here a very standard backward

algorithm, and it could be conducted as the follows.

Step 1 : (The Initialization Step). Set S(0) = SF , and the relevant Xi(S(0)) = Xi,

Xi(Sc
(0)

) = ∅ with 1 ≤ i ≤ n. Then we calculate BIC(S(0)).

Step 2 : (The Evaluation Step). In the t-th step(t > 0), we are given S(t−1), Xi(S(t−1)),

and Xi(Sc
(t−1)

). Then, we compute d(t) = argminj∈S(t−1)
BIC(S(t−1)\{j}) , and

update S(t) = S(t−1)\{d(t)}.

Step 3 : (The Selection Step). We iterate Step 2 for p times, which generates a

sequence of candidate model M = {S(t) : 0 ≤ t ≤ p}. Based on M, the best

model is then selected as Ŝ = argminS∈MBIC(S).

As we are going to show in the following theorem (its proof is given in Appendix B),

with probability tending to one, we have Ŝ = ST . Thus, the BIC criterion together

with this backward algorithm is indeed selection consistent.

Theorem 1. Under the model assumption (2.2), we have P (Ŝ = ST ) → 1.

As a cautionary note, we would like to kindly remark that the above theorem only

guarantees that the proposed backward elimination procedure will converge to the true

model asymptotically. Nevertheless, with a finite dataset, whether it will converge to

the model with smallest BIC score is not always guaranteed.

3. NUMERICAL EXPERIMENTS

3.1. Simulation Studies
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To evaluate the finite sample performances of the proposed method, two simulation

experiments borrowed from Raftery and Dean (2006) are conducted.

Example 1. This example includes a total of seven variables and two classes. The

first two variables are relevant ones and are generated from bivariate normal distribu-

tions. For the first class, the mean vector and covariance matrix are given by, respec-

tively µ1(ST ) = (2.5,−1.0)> and Σ2(ST ) = [1, 0; 0, 1] ∈ R2×2. For the second class, they

are respectively µ2(ST ) = (−0.5, 0)> and Σ2(ST ) = [1.1, 0.5; 0.5, 0.85] ∈ R2×2. Then, the

remaining five Xij variables are independently generated from N(mj, 1) , where mj is

generated from U [0, 1].

Example 2. Here we consider another model with a total of fifteen variables and two

classes. The first two variables are relevant ones and are generated exactly the same as

in Example 1. The next eight variables are irrelevant ones and are all generated from

standard normal distribution. The subsequent two variables are also irrelevant ones

and are generated from a bivariate normal distribution with mean 0, variance 1, and

correlation 0.5. The thirteenth predictor is given by

Xi13 = α13 + β13Xi1 + εi13, (3.1)

where α13 is generated from U [0, 1], β13 from U [0, 10], and εi13 from N(0, 16). The

fourteenth variable Xi14 is generated in a similar manner as Xi13, however, with Xi1

in (3.1) replaced by Xi2. Lastly, Xi15 = α15 + βaXi1 + βbXi2 + εi15, where α15 and

εi15 are also generated in a similar manner as α13 and εi13, while both βa and βb are

independently generated from U [0, 1].

For a given simulation model and parameter setup (e.g., the sample size n), two

independent but identically distributed datasets are generated. The first dataset serves
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Table 1: Detailed results for the two simulation examples. n: the sample size; FULL: the
quadratic discriminant analysis without variable selection; CV: the model selected by cross-
validation in terms of minimal mis-classification error; AIC: the model selected by the AIC;
BIC: the model selected by the BIC. PCF: the percentage of the correct fits; AFN: the average
false negatives; AFP: the average false positives; AME: the average mis-classification error;
AMS: the average model size;

Example n Selection Method PCF (%) AFN AFP AME(%) AMS
1 75 FULL − − − 6.73 7.00

CV 17 0.06 1.72 5.23 3.66
AIC 67 0.02 0.37 4.36 2.35
BIC 85 0.14 0.01 4.40 1.87

100 FULL − − − 5.82 7.00
CV 24 0.05 1.80 5.15 3.75
AIC 74 0.00 0.30 4.39 2.30
BIC 93 0.06 0.01 4.24 1.95

150 FULL − − − 5.25 7.00
CV 14 0.00 2.17 4.64 4.17
AIC 78 0.00 0.27 4.35 2.27
BIC 99 0.01 0.00 4.25 1.99

2 75 FULL − − − 16.37 15.00
CV 11 0.26 2.61 6.95 4.35
AIC 37 0.23 1.38 5.76 3.15
BIC 67 0.33 0.14 5.17 1.81

100 FULL − − − 12.42 15.00
CV 9 0.18 3.11 6.61 4.93
AIC 49 0.16 0.86 5.21 2.70
BIC 79 0.21 0.15 4.73 1.94

150 FULL − − − 8.59 15.00
CV 18 0.03 2.96 5.51 4.93
AIC 57 0.03 0.71 4.71 2.68
BIC 95 0.03 0.05 4.59 2.02

as our training data while the second one will be used for testing. We then apply our

method (i.e., the BIC criterion with the backward algorithm) to the training data. By

doing so, a “best” model can be selected. Subsequently, the “best” model’s prediction

accuracy (in terms of Mis-classification Error, ME) is evaluated based on the testing
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data, via the method of quadratic discriminant analysis (Johnson and Wichern, 2003).

For a reliable evaluation, such an experiment is randomly replicated for a total of 100

times. Then, the average value of ME (i.e., Average Mis-classification Error, AME) is

computed and reported in Table 1. We next evaluate the BIC method’s model selection

consistency. To this end, we define a selected model as a correct fit if the selected model

(i.e., Ŝ) is exactly the same as the true model, i.e., Ŝ = ST . Then, the Percentage of the

Correct Fit (PCF) across the 100 simulation replications is computed. To better gauge

our method’s underfitting effect, we define an Average False Negative (AFN) frequency

as the average number of relevant variables missed by Ŝ. To further characterize the

overfitting effect, we define an Average False Positive (AFP) frequency as the average

number of irrelevant variables been included by Ŝ. Lastly, the Average Model Size

(AMS) of Ŝ is also summarized. For comparison propose, the following models are also

included. They are, respectively, the FULL model (the model without going through

variable selection), the CV model (the model selected by cross-validation in terms of

ME), the AIC model (the model selected by the AIC criterion, where the factor log n

in (2.7) is replaced by 2). Lastly, our method is denoted by BIC in Table 1.

According to Table 1, we find that as the sample size n increases, the BIC’s PCF

value approaches 100% very quickly, which numerically confirms that the BIC criterion

(2.7) together with the backward elimination procedure is indeed selection consistent.

On the other hand, no similar pattern was observed for other methods, which suggests

that those methods are unlikely to be selection consistent. As a consequence, we find

that the prediction accuracy of the BIC models are very competitive, particularly in

the large sample size situations. It is noteworthy that such a competitive prediction

accuracy is achieved with a much smaller average model size, as compared with other

competing methods.
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Table 2: The detailed analysis results for the Landsat Satellite data based on 100 simulation
replications. FULL: the quadratic discriminant analysis without variable selection; CV: the
model selected by cross-validation in terms of minimal mis-classification error; AIC: the model
selected by the AIC; BIC: the model selected by the BIC. AME: the average mis-classification
error; AMS: the average model size.

Selection Methods AME(%) AMS
FULL 17.90 36.00
CV 16.48 13.41
AIC 16.66 24.92
BIC 16.36 12.01

3.2. The Landsat Satellite Data

To further illustrate the usefulness of the new method, we consider here the Landsat

Satellite Data, which is publicly available at the UCI Machine Learning Repository; see

http://www.ics.uci.edu/∼mlearn/. The database consists of the multi-spectral values

of pixels in a satellite image. The sample contains a total of 6 different classes and has

36 predictive variables. The original dataset has already been divided into a training

set with 4435 samples and a testing set with 2000 samples. For experiment purpose,

we only use 1000 samples (randomly selected from the training data) to estimate and

select the model. Based on the selected model, we also evaluate the BIC model’s ME

on the testing data. For a reliable evaluation, we randomly replicated this experiment

for a total of 100 times and then summarized the detailed results in Table 2. As one

can see, the models selected by the BIC have both the smallest average model size and

mis-classification error.

APPENDIX

Appendix A. A Useful Lemma
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The following lemma is useful for proving the new method’s selection consistency.

Thus, it is formally stated and proved first.

Lemma 1. Assuming that S2 ⊂ S1 and |S1\S2| = 1, we have

−2n−1`(θ̂(S1)) + 2n−1`(θ̂(S2)) = Op(n
−1), if ST ⊆ S2, (A.2)

−2n−1`(θ̂(S1)) + 2n−1`(θ̂(S2)) < −CS1,S2 , if ST * S2, and ST ⊆ S1, (A.3)

where CS1,S2 > 0 is a constant given S1 and S2. In addition, (A.3) still holds under the

condition that S1 ⊂ ST .

Proof. Firstly, (A.2) is clear by following Theorem 6.5 in Shao (2003). We then

directly going to (A.3). For simplicity, we denote S1 = {1, 2, · · · , b} and S2 = S1\{b}.
Correspondingly, we denote Xi(a) = (Xi1, · · · , Xi,b−1)

> and Xi(c) = (Xi,b+1, · · · , Xip)
>.

According to Raftery and Dean (2006) and Jensen inequality, we can easily write the

difference of loglikelihood functions between S1 and S2,

−2n−1`(θ̂(S1)) + 2n−1`(θ̂(S2))

=
K∑

k=1

π̂k log σ̂2
k,b|a − log σ̂2

b|a ≤ log
( K∑

k=1

π̂kσ̂
2
k,b|a

)
− log σ̂2

b|a, (A.4)

where σ̂2
k,b|a is the MLE of var(Xib|Yi = k, Xi(a)), σ̂2

b|a is the MLE of var(Xib|Xi(a)), and

the second equation is true if and only if σ̂2
k,b|a = σ̂2

b|a for each of the k ∈ {1, · · · , K}.

Denote X̃i(S) =
(
1, X>

ia

)>
, we can obtain that σ̂2

k,b|a = 1/nk

∑n
i=1 I(Yi = k)(Xib −

µ̂k − B̂kXi(a))
2 and σ̂2

b|a = 1/n
∑n

i=1(Xib − µ̂− B̂Xi(a))
2, where

(µ̂k, B̂k) = (
n∑

i=1

I(Yi = k)XibX̃
>
i(a))(

n∑
i=1

I(Yi = k)X̃i(a)X̃
>
i(a))

−1,
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and (µ̂, B̂) = (
∑n

i=1 XibX̃
>
i(a))(

∑n
i=1 X̃i(a)X̃

>
i(a))

−1. Then we have,

σ̂2
b|a =

K∑

k=1

π̂k

{
σ̂2

k,b|a + 1/nk

n∑
i=1

I(Yi = k)(µ̂k − µ̂ + B̂kXi(a) − B̂Xi(a))
2
}

. (A.5)

By (A.4) and (A.5), we have

log

(
K∑

k=1

π̂kσ̂
2
k,b|a

)
− log σ̂2

b|a

= − log

{
1 +

1/n
∑K

k=1

∑n
i=1 I(Yi = k)(µ̂k − µ̂ + B̂kXi(a) − B̂Xi(a))

2

∑K
k=1 π̂kσ̂2

k,b|a

}
, Cb|a.

If ST * S2 and ST ⊆ S1, we have Cb|a > 0, and Cb|a is constant given S1 and S2.

We then have −2n−1`(θ̂(S1)) + 2n−1`(θ̂(S2)) < −Cb|a. Similar conclusion can be proved

under S1 ⊆ ST . This completes the entire proof of the Lemma 1.

Appendix B. Proof of Theorem 1

Considering the t-th step of the backward algorithm, we assume that ST  S(t−1).

Let jd1 , jd2 ∈ S(t−1), and jd1 ∈ ST , jd2 ∈ Sc
T . We denote Sd1 = S(t−1)\{jd1}, and

Sd2 = S(t−1)\{jd2}. Then, by (2.7) and lemma 1, we obtain

n−1
{

BIC(Sd1)− BIC(S(t−1))
}

> CS(t−1),Sd1
−

{
|S(t−1)|(K − 1) + K

}
× log n

n
, (A.6)

n−1
{

BIC(Sd2)− BIC(S(t−1))
}

= Op(n
−1)−

{
|S(t−1)|(K − 1) + K

}
× log n

n
. (A.7)

By combining (A.6) and (A.7), we can verify that P
{

BIC(Sd1) > BIC(Sd2)
}
→

1 as n →∞. For the element d(t) which will be eliminated in this step, we have

P (d(t) ∈ Sc
T ) = P

{
BIC(Sd1) > BIC(Sd2)

}(|S(t−1)|−|ST |)|ST | → 1 as n →∞.
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Then, we have P (ST ∈M) =
∏p−|ST |

t=1 P (d(t) ∈ Sc
T ) → 1 as n →∞. If S(p−|ST |) = ST ,

(A.6) also holds when p− |ST | + 1 ≤ t ≤ p. Also, in conjunction with (A.7), we have

P
{

BIC(ST ) < BIC(S(t))
}
→ 1 as n →∞, with 0 ≤ t < p− |ST | and p− |ST | < t ≤ p.

This completes the proof.
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