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Abstract: Markov processes are used in a wide range of disciplines including finance.

The transition densities of these processes are often unknown. However, the conditional

characteristic functions are more likely to be available especially for Lévy driven processes.

We propose an empirical likelihood approach for both parameter estimation and model

specification testing based on the conditional characteristic function for processes with

either continuous or dis-continuous sample paths. Theoretical properties of the empirical

likelihood estimator for parameters and a smoothed empirical likelihood ratio test for a

parametric specification of the process are provided. Simulations and empirical case study

are carried out to confirm the effectiveness of the proposed estimator and test.
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1 Introduction

Let {Xt(θ)}t∈T be a parametric d-dimensional Markov process defined by

dXt = μ(Xt; θ)dt+ σ(Xt; θ)dLt;θ, (1.1)
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where μ(·) is a d-dimensional drift function, σ(·) is a d × d matrix-valued function of

Xt, Lt;θ is a Lévy process in Rd, and θ ∈ Θ ⊂ Rp. When Lt is a standard Brownian

motion, (1.1) is a diffusion process having a continuous sample path. When Lt contains

the Brownian motion and a compound Poisson process, (1.1) becomes the jump diffusion

process. A stochastic process of form (1.1) has long been used to model stochastic systems

arising in physics, biology and other natural sciences. It has also been the fundamental

tool in financial modeling. We refer to Sundaresan (2000) and Fan (2005) for overviews,

Barndorff-Nielsen, Mikosch and Resnick (2001) for recent developments on Lévy driven

processes, and Sørensen (1991) for statistical inference. Important subclasses of (1.1)

include i) the multivariate diffusion process defined by

dXt = μ(Xt; θ)dt+ σ(Xt; θ)dBt, (1.2)

where Bt is the standard Brownian motion in Rd (Stroock and Varadhan, 1979 and

Øksendal, 2000); ii) the Vasicek with Merton Jump model (VSK-MJ) defined by

dXt = κ(α−Xt)dt+ σdBt + JtdNt, (1.3)

where κ, α and σ are unknown parameters and represent the mean reverting rate, long-

run mean and volatility of the process respectively, Nt is a Poisson process with intensity

λ, and Jt is the random jump size independent of the filtration Ft up to time t and has

a normal density N(0, η2) (Merton, 1976); iii) Lévy driven Ornstein-Uhlenbeck process

defined by

dXt = −λXtdt+ dLλt, X0 > 0, (1.4)

where Lt is a Lévy process with no Brownian part, a non-negative drift and a Lévy

measure which is zero on the negative half line, and the parameter λ is positive (see

Barndorff-Nielsen and Shephard, 2001).

Often a closed form expression for the transition density of process (1.1) is not available

except for some special processes, even the transition density exists and is unique. This
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fact prevents the use of the maximum likelihood estimation (MLE) and the specification

tests based on the exact transition density. Recently Äıt-Sahalia(2002, 2008) established

expansions for the transition densities so that parameter estimation can be based on the

approximate likelihood functions. Testing may be also formulated via the approximate

density; see Chen, Gao and Tang (2008) and Äıt-Sahalia, Fan and Peng (2009) for such

tests. The conditional characteristic functions (CCF) are more likely available than the

transition densities for the continuous-time models, especially for the Lévy driven pro-

cesses through the celebrated Lévy-Khintchine representation. For instance, Duffie, Pan

and Singleton (2000) derived the explicit form of the CCF for multivariate affine jump

processes, which include the Vasicek with Merton jump process given in (1.3). The CCF

for the Lévy driven Ornstein-Uhlenbeck process (1.4) is established in Barndorff-Nielsen

and Shephard (2001).

Statistical inference based on the characteristic functions was proposed by Feuerverger

and Mureika (1977), Feuerverger and McDunnough (1981) for independent observations

and Feuerverger (1990) for discrete time series. Singleton (2001) introduced the approach

to inference for parametric continuous-time Markov processes and show that estimation

can be carried out based on the CCF without having to carry out the the Fourier inversion.

Chacko and Viceira (2003) proposed a generalized method of moment estimator (GMM)

for parameters at a finite number of frequencies of the CCF. Carrasco, Chernov, Florens

and Ghysels (2007) carried out GMM estimation on a slowly diverging number of frequen-

cies of the CCF to achieve the optimal estimation efficiency offered by the MLE. Jiang

and Knight (2002) proposed GMM estimators based on the joint characteristic function

of the observed state variables. Chen and Hong (2010) proposed a test for multivariate

processes based on the CCF via a generalized spectral density approach.

In this paper, we first propose an empirical likelihood (Owen, 1988) approach for

parameter estimation and model specification testing of a parametric Markov process
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via the CCF. An empirical likelihood ratio is formulated for the unknown parameters

assuming the specification (1.1), which leads to a non-parametric maximum likelihood

estimator. The proposed estimator may be viewed as a compromise between Chacko

and Viceira (2003)’s GMM based on a finite number of frequencies and that of Carrasco,

Chernov, Florens and Ghysels (2007) of a high dimensional GMM. The high dimensional

GMM approach requires ridging a high dimensional weighting matrix in order to avoid

its singularity, and the selecting the ridging parameter can be computationally expensive.

The proposed estimation utilizes a wide range of frequency information in the parametric

CCF, while having the computation easily managed.

We then formulate an empirical likelihood CCF based model specification test for the

parametric process (1.1) via kernel smoothing. The proposed test extends the transition

density based tests of Hong and Li (2005), Chen, Gao and Tang (2008) and Äıt-Sahalia,

Fan and Peng (2009) to the CCF based. This largely increases the range of the continuous-

time Markov processes which can be tested directly without replying on the transition

density approximation. The proposed test provides an alternative formulation of the

CCF based test of Chen and Hong (2010), which is based on an explicit L2 measure

between an kernel estimator of the CCF and its parametric counter-part. It is largely

distinct from the above mentioned tests, except Chen and Hong (2010), by targeting

directly on CCF, which is more readily available for continuous-time models than the

transition density functions. Another advantage of the proposed test is the empirical

likelihood (EL) formulation, which can produce an integrated likelihood ratio test in a

nonparametric setting. The proposed test utilizes some of the attractive properties of

the EL, like internal studentizing without an explicit variance estimation and good power

performance. How to extend the proposed methods to the case of latent variables is quite

challenging and will be a part of our future research.

The paper is organized as follows. In Section 2, we introduce and evaluate the CCF
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based empirical likelihood estimator. The model specification test is given in Section 3.

Section 4 reports results from simulation studies. An empirical study for a set of 3-month

treasury bill rate data is analyzed in Section 5. All technical details are reported in the

Appendix.

2 Parameter Estimation

Let {Xtδ}nt=1 be n discretely sampled observations of (1.1). For notation simplification,

we denote Xtδ as Xt, where the sampling interval δ is any fixed quantity. Let ψt(u; θ) =

Eθ(e
iuTXt+1|Xt), for u ∈ Rd, be the conditional characteristic function. We use ā and

A� to denote the conjugate of a complex number a and the conjugate transpose of the

complex matrix A, respectively.

Let εt(τ ; θ) = w(u, r;Xt){eiuTXt+1−ψt(u; θ)} for τ = (uT , rT )T ∈ R2d, where w(u, r;Xt)

is a weight factor. Here εt(τ ; θ) can be regarded as ’residuals’ between eiu
TXt+1 and the

parametric CCF ψt(u; θ). The complex weight factor w(u, r;Xt) satisfies w̄(u, r;Xt) =

w(−u,−r;Xt) and |w(u, r;Xt)| = 1 for any u, r ∈ Rd, whose use is aimed to utilize more

model information. Let θ0 be the true parameter and the unique solution of

E{eiuTXt+1 − ψt(u; θ)|Xt} = 0 for all u ∈ Rd. (2.1)

From the Markov property and (2.1), for any τ = (uT , rT )T ∈ R2d

E{εt(τ ; θ0)} = 0 and Cov{εt1(τ ; θ0), εt2(τ ; θ0)} = 0 if t1 �= t2. (2.2)

Let εRt (τ ; θ) and εIt (τ ; θ) be the real and imaginary parts of εt(τ ; θ) respectively, and

�εt(τ ; θ) =
(
εRt (τ ; θ), ε

I
t (τ ; θ)

)T
be the real bivariate vector corresponding to εt(τ ; θ).

We now formulate an empirical likelihood for θ based on the CCF ψt(u; θ). The em-

pirical likelihood (EL) introduced in Owen (1988) is a technique that allows construction
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of a non-parametric likelihood for parameters of interest. Despite that the EL method is

intrinsically non-parametric, it possesses two important properties of a parametric likeli-

hood, the Wilks’ theorem and the Bartlett correction; see Chen and Van Keilegom (2009)

for a latest overview and Kitamura, Tripathi and Ahn (2004) for a formulation with

conditional moments.

Let p1(τ), · · · , pn(τ) be probability weights allocated to the ’residuals’ {�εt(τ ; θ)}nt=1. A

local EL for θ at τ is

Ln(τ, θ) = max
n∏

t=1

pt(τ) (2.3)

subject to
∑n

t=1 pt(τ) = 1 and
∑n

t=1 pt(τ)�εt(τ ; θ) = 0. Here the second constraint reflects

(2.1). The maximum empirical likelihood is attained at pt(τ) ≡ n−1 for all t such that the

maximum likelihood Ln(τ ; θ) = n−n. Let 
n(τ ; θ) = −2 log{Ln(τ ; θ)/n
−n} be the local

log-EL ratio of θ at τ .

Employing the EL algorithm (Owen, 1988), the optimal pt(τ) of the above optimization

problem (2.3) is

pt(τ) =
1

n

1

1 + λ(τ ; θ)T�εt(τ ; θ)
,

where λ(τ ; θ) is a Lagrange multiplier in R2 that satisfies

Q1n(τ ; θ, λ) =:
1

n

n∑
t=1

�εt(τ ; θ)

1 + λ(τ ; θ)T�εt(τ ; θ)
= 0. (2.4)

Hence, the local EL ratio becomes


n(τ ; θ) = 2
n∑

t=1

log{1 + λ(τ ; θ)T�εt(τ ; θ)}. (2.5)

Integrating 
n(τ ; θ) against a probability weight π(τ) which is supported on a compact

set S in R2d, an integrated empirical likelihood ratio for θ is


n(θ) =
∫
τ∈R2d


n(τ ; θ)π(τ)dτ. (2.6)

The maximum EL estimator (MELE) for θ is defined as

θ̂n = argmin
θ

n(θ),
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by noting that −2 has been multiplied in the EL ratio 
n(τ ; θ).

Like Qin and Lawless (1994), we first show that there exists a consistent estimator θ̂n

with a certain rate of convergence as follows.

Lemma 1. Under conditions C1-C4 given in the appendix, with probability one, 
n(θ)

attains its minimum at θ̂n in the interior of the ball ||θ − θ0|| ≤ O(n−1/3), and θ̂n and

λ(τ ; θ̂n) satisfy

{
Q1n(τ ; θ̂n, λ(τ ; θ̂n)) = 0 for all τ ∈ S and∫
Q2n(τ ; θ̂n, λ(τ ; θ̂n))π(τ) dτ = 0,

(2.7)

where Q1n is defined in (2.4) and

Q2n(τ ; θ, λ) =
1

n

n∑
t=1

1

1 + λ(τ ; θ)T�εt(τ ; θ)

∂�εTt (τ ; θ)

∂θ
λ. (2.8)

Before deriving the asymptotic normality of the θ̂n, we define

M0 =
1
2

(
1 1
i−1 −i−1

)
, ε̃t(τ ; θ) = (εt(τ ; θ), εt(−τ ; θ))T ,

A(τ1, τ2; θ0, θ) = Cov{ε̃1(τ1; θ), ε̃1(τ2; θ)},

Γ(θ0) =:
∫
E

(
∂ε̃�1(τ ; θ0)

∂θ

)
A−1(τ, τ ; θ0, θ0)E

(
∂ε̃1(τ ; θ0)

∂θ

)
π(τ)dτ, (2.9)

and
V (θ0) =

∫ ∫
E
(
∂ε̃�1(τ1;θ0)

∂θ

)
A−1(τ1, τ1; θ0, θ0)A(τ1, τ2; θ0, θ0)

×A�−1(τ2, τ2; θ0, θ0)E
(
∂ε̃1(τ2;θ0)

∂θ

)
π(τ1)π(τ2)dτ1dτ2.

(2.10)

Theorem 1: Under Conditions C1-C4 given in the appendix, for the estimator θ̂n in

Lemma 1, we have
√
n(θ̂n − θ0)

d→ N(0,Σ) where Σ = Γ−1(θ0)V (θ0)Γ
−1(θ0).

The proposed estimator attains the
√
n-rate of convergence. It is computationally sta-

ble because computing 
n(τ ; θ) for one τ at a time is essentially one dimensional problem.

Note that Carrasco, Chernov, Florens and Ghysels (2007) considered CCF based gener-

alized method of moment estimation by considering a continuum of τ ’s in a functional
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space via covariance operator, but the covariance operator may not be invertible due to

zero eigenvalues. Hence, Carrasco, Cherno, Florens and Ghysels (2007) needed ridging

to avoid the invertible issue, which makes the computation quite involved. When the

dimension of θ is not small, it would be useful to replace the equation
∑n

t=1 pt�εt(τ ; θ) = 0

in formulating the local EL in (2.3) by several equations such as

n∑
t=1

pt�εt(s1τ ; θ) = 0, · · · ,
n∑

t=1

pt�εt(smτ ; θ) = 0

for some given s1, · · · , sm.

3 Test for Model Specification

In this section we consider testing for the validity of (1.1) via testing for the parametric

specification of the CCF ψt(u; θ). Tests for model specification of a continuous-time

Markov process have been proposed by Chen, Gao and Tang (2008) and Äıt-Sahalia,

Fan and Peng (2009). Despite parameter estimation based on the transition density is

asymptotically efficient, it is unclear if a test based on the transition density is more

powerful than one based on the CCF. The choice is clearer when the transition density

does not admit a closed form while the CCF does, since the latter is a test valid at any

level of the sampling interval δ.

Let the underlying process that generates the observed sample path {Xt}nt=1 be

dXt = μ(Xt)dt+ σ(Xt)dLt, (3.1)

whose CCF is ψ(u;Xt). The process (1.1) is a parametric specification of (3.1). To

emphasize the dependence of the CCF on Xt, we write in this section ψt(u) as ψ(u,Xt),

ψt(u; θ) as ψ(u,Xt; θ) and other quantities in a similar fashion. We consider testing

H0 : P{ψt(u) = ψt(u; θ0)} = 1 for all u ∈ Rd and some θ0 ∈ Θ,
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against a sequence of local alternative hypotheses

H1 : P{ψt(u) = ψt(u; θ0) + cnΔn(u;Xt)} = 1 for all u ∈ Rd,

where {cn} is a sequence of non-random real constants converging to zero at a certain

rate, and {Δn(u;Xt)} is a sequence of bounded complex functions which are continuous

at u = 0 and Δn(0;Xt) ≡ 0; see Condition C6 in the appendix for extra restrictions.

Since the target of inference is a conditional quantity, we need to work with a kernel

smoothed version of 
n(θ). Let K be a kernel function which is a symmetric probability

density in Rd, and h be a smoothing bandwidth that tends to 0 as n → ∞. A smoothed

version of Ln(τ, θ) is

Lnh(τ, x; θ) = max
n∏

t=1

pt(τ, x) (3.2)

subject to
∑n

t=1 pt(τ, x) = 1 and
∑n

t=1 pt(τ, x)Kh(x−Xt)�ε(τ,Xt; θ) = 0.

Let 
nh(τ, x, θ) = −2 log{Lnh(τ, x, θ)n
n} be the log-EL ratio. Then, the integrated

log-EL ratio for θ is


nh(θ) =
∫ ∫


nh(τ, x, θ)π1(τ)π2(x)dτdx

where π1 and π2 are probability weight functions on the frequency space and the state

space respectively. We can choose π1 to be the same as the π in Section 3.

The test statistic is 
nh(θ̂n), where θ̂n is the empirical likelihood estimator proposed in

Section 3. As a matter of fact, we can employ any estimator with n1/2-rate of convergence.

To appreciate the meaning of the test statistic, letWh(x−Xt) = Kh(x−Xt)/
∑n

j=1Kh(x−
Xj) be the Nadaraya-Watson kernel weight, εn,h(τ, x; θ) =

∑n
t=1Kh(x −Xt)ε(τ,Xt; θ) be

the kernel smooth of the residuals,

ε̃n,h(τ, x; θ) = (εnh(τ, x; θ), εnh(−τ, x; θ))T , and R(K) =
∫
K2(t)dt. It can be shown by a

similar derivation in Chen, Härdle and Li (2003) that


nh(θ) = nhdR−1(K)
∫ ∫

ε̃�n,h(τ, x; θ)V
−1(τ, x; θ0, θ)ε̃n,h(τ, x; θ)

×π1(τ)f(x)π2(x)dτdx+Op{(nhd)−1/2 log3(n) + h2 log2(n)}, (3.3)
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where V (τ, x; θ0, θ) = V ar{ε̃(τ,Xt; θ)|Xt = x} and f(x) is the density of Xt. So, the test

statistic is asymptotic equivalent to a L2-measure of the averaged ’residuals’ ε̃�n,h(τ, x; θ)

inversely weighted by the covariance matrix function V . Hence, the proposed test is

similar in tune to Fan and Zhang (2003) for testing diffusion processes, and of Härdle and

Mammen (1993) and Wang and Van Keilegom (2007) for testing regression functions.

We need the following notations to describe the power property. Let V (τ1, τ2, x) =

E{ε̃(τ1, Xt; θ0)ε̃
�(τ2, Xt; θ0)|Xt = x}, then V (τ, τ, x; θ0, θ0) = V (τ, x) defined earlier. Ex-

press the matrices

V (τ1, τ2, x) = (Vlk(τ1, τ2, x))1≤l,k≤2 and V −1(τ, x) =
(
νlk(τ, x)

)
1≤l,k≤2

.

Furthermore, we choose cn = n−1/2hd/4 and define

ηn(τ,Xt) = w(τ ;Xt)Δn(u,Xt), η̃n(τ,Xt) = (ηn(τ,Xt), ηn(−τ,Xt))
T ,

μn =
∫ ∫

η̃�n(τ, x)V
−1(τ, x; θ0, θ0)η̃n(τ, x)π1(τ)π2(x)f(x)dτdx,

σ2
n = 2R−2(K)h−dγ2(K, V, π1, π2) where

γ2(K, V, π1, π2) = K(4)(0)
∫ ∫ ∫ 2∑

l1,k1,l2,k2

Vl1l2(−τ1, τ2, x)Vk1k2(τ1,−τ2, x)νl1,k1(τ1, x)

× νl2,k2(τ2, x)π1(τ1)π1(τ2)π
2
2(x)dτ1dτ2dx. (3.4)

where K(4) is the 4-th convolution of the kernel function K.

The asymptotic normality of 
nh(θ̂n) is given in the following theorem.

Theorem 2 Under Conditions C1-C6 given in the appendix,

h−d/2(
nh(θ̂n)− 2− hd/2μn)
d→ N(0, 2R−2(K)γ2(K, V, π1, π2)). (3.5)

We note that μn = 2 under H0. Under H1, since Δn(u, x) is non-vanishing with respect

to u, η̃n(τ, x) is non-vanishing with respect to u for all x in the support of f , which leads

to a positive quantity μn due to V −1(τ, x; θ0, θ0) being a Hermitian matrix. Since no
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restriction has been imposed on the functional form of Δn(u,Xt), it means that the test

is powerful for a wide range of local alternatives. Indeed, if γ̂2(K, V, π1, π2) is a consistent

estimator of γ2(K, V, π1, π2), the asymptotic normality based test for H0 with α-level of

significance rejects H0 if


nh(θ̂n) ≥ 2 + z1−α

√
2hd/2R−1(K)γ̂(K, V, π1, π2),

where z1−α is the 1− α quantile of the standard normal distribution. Theorem 2 implies

that the power of the test under H1 is

Φ

(
−z1−α +

R(K)μn√
2γ(K, V, π1, π2)

)
,

where Φ is the standard normal distribution function.

It is known that the choice of bandwidth is important in any test based on the kernel

smoothing technique. To make the test less sensitive to the choice of smoothing band-

width, we propose carrying out the test based on a set of bandwidths, say {h1, · · · , hk},
for a fixed integer k such that hi = cih for some constants c1 < c2 < ... < ck. Here h is a

reference bandwidth which may be obtained via the cross-validation method.

This means that we have a set of the EL ratios {
nh1(θ̂n), · · · , 
nhk
(θ̂n)} corresponding

to the bandwidth set, and the overall test statistic is

Tn = max
1≤i≤k

{h−d/2
i (
nhi

(θ̂n)− 2)}. (3.6)

To describe the asymptotic distribution of Tn, let K
(2)(z, c) =

∫
K(u)K(z + cu)du be

a generalization to the convolution of K, ν(t) =
∫ {K(2) (tu, t)}2du and

ΣJ =
2

R2(K)

∫ ∫
π1(τ1)π1(τ2)π

2
2(x)dxdτ1dτ2

(
(cj/ci)

dν(ci/cj)
)
J×J

.

Theorem 3. Under Conditions C1-C6, Tn
d→ max1≤k≤J Zk as n→ ∞ where

(Z1, . . . , ZJ)
T ∼ N(0,ΣJ ).
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Let tα be the 1−α quantile of Tn where α ∈ (0, 1) is the nominal size of the test. The

following parametric bootstrap procedure is employed to approximate tα:

Step 1: Simulate a sample path {X∗
t }nt=1 at the same frequency δ according to the

model under H0 with the CCF based estimate θ̂n.

Step 2: Let θ̃∗n be the estimate of θ under H0 using the resample path {X∗
t }nt=1 obtained

in Step 1, and T ∗
n be the version of Tn for the resampled path.

Step 3: For a large positive integer B, repeat Steps 1 and 2 B times and obtain, after

ranking, T (1)∗
n ≤ T (2)∗

n ≤ · · · ≤ T (B)∗
n .

Then, the Monte Carlo approximation of tα is T ([B(1−α)]+1)∗
n . The proposed test rejects

H0 if Tn(θ̂n) ≥ T ([B(1−α)]+1)∗
n . The justification of the above bootstrap procedure can be

made based on Theorem 3 via the standard techniques for instance those given in Chen,

Gao and Tang (2008).

4 Simulation Study

We report in this section the results from our simulation studies which are designed to

verify the proposed parameter estimator and model testing procedure. To evaluate the

quality of the proposed EL estimator, we first chose two univariate diffusion processes

with known transition densities, so that the MLEs can be compared with the proposed

EL estimates. The two processes are the Vasicek model (Vasicek, 1977) (VSK),

dXt = κ(α−Xt)dt+ σdBt, (4.1)

and the Cox-Ingersoll-Ross Model (Cox, Ingersoll and Ross, 1985) (CIR),

dXt = κ(α−Xt)dt+ σ
√
XtdBt, (4.2)

where κ, α and σ are unknown parameters which represent the mean reverting rate, long-

run mean and volatility of the process respectively. Both processes are widely used in
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interest rate modeling and various option price formulation. For the Vasicek model, the

transition distribution of Xt+1|Xt is a normal distribution N(α+(Xt−α)exp(−κδ), σ2(1−
exp(−2κδ))/(2κ)). For the CIR model, when 2κα/σ2 > 1, Xt+1|Xt is a multiple of a non-

central Chi-square random variable with degrees of freedom 4κα/σ2 and non-centrality

parameter cXtexp(−κδ), where the multiplier is 1/c with c = 4κ/(σ2(1−exp(−κδ))). The
CCFs of these two models can easily be derived from their known transitional densities.

We then considered estimation for the jump diffusion model VSK-MJ as given in (1.3)

based on its CCF function

ψt(u; θ) = exp{σ
2u2

4κ
(e−2κδ − 1)− λδ + γ + i(αu(1− e−κδ) + ue−κδXt)}, (4.3)

where γ = λ/(2κ)
∫ 1
e−2κδ exp(−η2u2y/2)/ydy. For comparison, we approximated its tran-

sition density by a mixture of normal distributions, (1−λδ)N(μδ, σ
2
δ )+λδN(μδ, σ

2
δ + η2),

which is a first order approximation proposed in Äıt-Sahalia, Fan and Peng (2009). Here,

μδ = α + (Xt − α)exp(−κδ), and σ2
δ = σ2(1− exp(−2κδ))/(2κ). The approximate MLEs

were obtained based on the mixture approximation given above.

We also consider the Inverse Gaussian OU process (IG-OU) in (1.4), i.e. the process Xt

follows the Inverse Gaussian law IG(a, b), for every t when X0 is generated from IG(a, b).

The CCF of this process is

ψt(u; θ) = exp{−a(√−2iu+ b2 −
√
−2iue−λδ + b2) + iue−λδXt}. (4.4)

Since neither the exact transition density nor its approximation is available, we were

content with carrying out estimation with the proposed methods.

The last simulation model considered for the estimation is a bivariate extension of the

univariate Ornstein-Uhlenbeck process (BI-OU),

dXt = κ(α−Xt)dt+ σdBt, (4.5)

where Xt = (X1t, X2t), κ =

(
κ11 0
κ21 κ22

)
, α =

(
α1

α2

)
and σ =

(
σ11 0
0 σ22

)
. Under

the condition that the eigenvalues of the matrix κ have positive real parts, the process is
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stationary with transition distribution being a bivariate normal N(m(δ,Xt),Ω(δ)) where

m(δ,Xt) = α + exp(−κδ)(Xt − α), Ω(δ) = Σ− exp(−κδ)Σexp(−κT δ) and

Σ =
1

2tr(κ)Det(κ)
{Det(κ)σσT + {κ− tr(κ)}σσT{κ− tr(κ)}T}.

The CCF of the process is known to be ψt(u1, u2; θ) = exp{iuTm(δ,Xt)−uTΩ(δ)u/2} for

u = (u1, u2)
T .

We then carried out simulations to evaluate the ability of the proposed tests in detect-

ing model deviations. When we chose the simulation models, we had in mind two issues

in finance that have drawn considerable research attention recently. The first issue is

whether the process is subject to jumps, and the second is whether we could differentiate

two processes with different jump rates. Our simulation study formulated two settings of

hypotheses to address these two issues. In the first setting, we tested

H0 : The process is the VSK model.

In the second setting, we tested

H0 : The process is the jump diffusion model VSK-MJ.

For computing the powers, in the first setting we used the data simulated from H1 :

the jump diffusion model VSK-MJ to test the null model which does not have jumps; in

the second setting, we used the data simulated from H1 : the Inverse Gaussian OU model

which has infinite-activity jumps to test the null hypothesis that prescribes a finite-activity

jump process.

For each model, we simulated 500 sample paths which were observed at monthly

observations (δ = 1/12) for n = 125, 250, 500 respectively. The choices of parameter

values were motivated by Chen, Gao and Tang (2008) and Ait-Sahalia, Fan and Peng

(2009).
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In parameter estimation, we discovered that for both real and imaginary parts of

the CCF, their non-parametric smoothing estimators are wave-like functions and roughly

diminish to zero at the same points, which creates a region denoted as St (here the

subscript t indicates that the region depends on Xt). In practice, we searched on a couple

of grid points in the data range of Xt and picked the union of St as the support region S

for the frequency domain of ψt(u; θ) in the estimation. We then chose the uniform density

as the weight function π over the support region.

In model testing, similar effort was initially made to obtain the support region of the

non-parametric CCF estimate, denoted as SNP , and the support region of the theoretical

CCF under H0, denoted as SH0. Here the theoretical CCF under H0 used θ̂n from our

EL method. Then the support region of the frequency domain in testing was taken as

the union of SNP and SH0 . We chose the uniform density as the weight function over

this support region for testing. There is little contribution to the integrated empirical

likelihood ratio 
nh(θ̂n) from outside the support region. The biweight Kernel K(u) =

15/16(1− u2)2I(|u| ≤ 1) was used for smoothing in testing. The bandwidth selection is

described in Section 3. The bandwidth sets were specified in Tables 3 and 4 for the two

test settings. It is observed that the values of the bandwidths were quite small, which

was due to the rapid oscillation of the CCF curves which favored smaller bandwidth in

the curve fitting.

We chose w(u, r;Xt) = eir
TXt throughout our simulation study as it is the optimal

instrument suggested in Carrasco, Chernov, Florens and Ghysels (2007). Some numerical

exploration (not reported) indicated the choice of the function w(·) is not crucial in the

context of the paper. For testing, we picked the unit instrument to reduce computing

burden.

Table 1 reports the empirical averages of the parameter estimates and their standard

errors as well as the true parameter values used for simulation. When the sample size
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increases, standard errors of the proposed all estimates decrease, indicating the consistency

of the estimators. We observe from Table 1 (a)-(b) for the VSK and CIR models where

the MLEs are available, the proposed EL estimates are quite close to the MLEs. Although

the EL estimates tend to have larger standard errors than the MLEs, we do note that

under the VSK model in Table 1 (a), the bias of EL estimates for the mean reverting

parameter κ are smaller than the corresponding MLEs for all n = 125, n = 250 and

n = 500. For the jump diffusion model VSK-MJ (Table 1 (c)), we see the EL estimates

are consistently more efficient than the approximate MLEs in the estimation of κ and the

Poisson intensity λ. For the Inverse Gaussian OU model which does not have the MLE

to compare with, the proposed estimates as reported in Table 1 (d) are close to the true

values and the standard errors converge as the sample size increases.

Table 2 reports the estimates for the bivariate OU process and shows that the EL

estimates are close to the corresponding MLEs, providing the further evidence of the

effectiveness of our EL estimator for multivariate process estimation. We also found that

the EL estimates for the long run mean α1 and the volatility σ11 of the first process have

smaller biases and standard errors than the MLEs for all n = 125, n = 250 and n = 500.

Tables 3 and 4 report the empirical size and power of the proposed test based on

B = 250 bootstrap resampled paths for each simulation. They contain the sizes and

powers for the overall test that is based on the five bandwidth set, and for the tests that

only use one bandwidth. We observe that the tests gave satisfactory sizes under both

testing settings. In the first test where we used the data from the jump diffusion model

VSK-MJ to test the continuous diffusion model VSK, the powers range from 65% to 95%

across the different sample sizes and bandwidths. In the second test where we used data

simulated from the infinity-activity jump process (the Inverse Gaussian OU) to test the

finite-activity jump process (the jump diffusion VSK-MJ), the powers range from 71% to

90% across the different sample sizes and bandwidth choices.

16



5 A Case Study

In this section, we examine empirically the capability of our testing procedure in detecting

jumps using the secondary market quotes of the 3-month Treasury Bill (T-bill) between

January 1, 1965 and February 2, 1999. This bill was sampled at monthly frequency, and

in total we had 410 observations. The mean of these bills is 0.065, the volatility is 0.026,

the mean of the differences is very close to zero (1.5× 10−5) and the standard deviation

of the differences is 0.005. The sample period contains some large movements that turn

out to coincide with arrivals of macroeconomic news (Johannes (2004)). The goal of this

empirical study was to test whether the underlying process is subject to jumps or not.

The proposed parameter estimates under each of the four univariate models consid-

ered in the simulation study are reported in Table 5. For comparison, the MLEs or the

approximate MLEs are also reported except for the Inverse Gaussian OU model. For the

univariate diffusion models VSK and CIR, and the jump diffusion model VSK-MJ, the

proposed parameter estimates based on CCF are very similar to the MLEs or the approx-

imate MLEs. The EL estimates of the long-run mean α are 0.059 for VSK and 0.064 for

CIR, both of which are close to the summary statistic of mean rates (0.065). In VSK,

the average volatility of 3-month T-bill monthly return (difference) is estimated to be

σ
√
δ = 0.018

√
1/12 = 0.005, which is also close to the summary statistic of volatility for

the change (0.005). However the conditional volatility of monthly change in CIR model is

σ
√
δXt, and Xt has a long-run average 0.064 which is less than 1. Therefore, the process

needs to have higher σ (0.057) to bring up the average volatility of monthly change to the

same level reflected by the real data. In the jump diffusion model VSK-MJ, our estimate

of λ suggests on average about 2 jumps per year. Relative to VSK and CIR models, the

estimate for parameter σ in the jump diffusion VSK-MJ model is much smaller (0.008),

indicating that allowing jumps in the process helps capturing large movements in the

interest rate, and as a result the continuous part of the process does not have to be as
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volatile as the one in VSK or CIR models.

We then applied the proposed test for the validity of each of the four models. The

bandwidth prescribed by the CV was 0.01. By exploring the kernel estimators of the CCF,

a reasonable range for h was from 0.01 to 0.018, that offered smoothness from slightly

under-smoothing to slightly over-smoothing. The bandwidth range used in our empirical

study consisted of five equally spaced bandwidths ranging from 0.01 to 0.018. Table 6

reports p-values of single bandwidth and the overall tests for the four models. There is no

empirical support for VSK model. CIR model performs a little bit better as the distances

between the test statistics and the critical values decrease, but the model is still rejected

at significance level of 0.05 in the overall test and almost all the single bandwidth tests.

We can not reject the jump diffusion model VSK-MJ in the overall test and the single

bandwidth tests except the one with the smallest bandwidth (p-value = 0.046) . This

constitutes a strong evidence for the presence of jumps and implies that adding (finite-

activity) jumps does help capturing the underlying dynamics of the interest rates. By

allowing the infinite-activity jumps in the models, the p-values of the tests for the Inverse

Gaussian OU model are very supportive even for the small bandwidths, suggesting that

the infinite-activity jump model might potentially model the dynamics of the 3-month

T-bill rates better. A possible reason for it is that the jump diffusion model VSK-MJ can

only generate small continuous movements from Brownian motion and big spikes from the

compound Poisson component, but it could miss the movements that are between (i.e.

the movements with median sizes). However, the Inverse Gaussian OU process is more

flexible since it can generate small, median, and big movements with infinite arrival rates,

therefore it could fill in a gap in the VSK-MJ model by capturing movements that are

too large for Brownian motion to model but too small for the compound Poisson process

to capture.

18



Appendix

The following conditions are required in our analysis.

C1: The stochastic processes given in (1.1) and (3.1) admit unique weak solution

respectively, which are α−mixing with mixing coefficient α(t) = Ce−λt where α(t) =

sup{|P (A ∩ B) − P (A)P (B)| : A ∈ Ωs
1, B ∈ Ω∞

s+t} for all s, t ≥ 1, where C is a finite

positive constant and Ωj
i denotes the σ-field generated by {Xt : i ≤ t ≤ j}.

C2: (Smoothness) ψt(τ ; θ) =: ψ(τ ; θ,Xt) and E{εt(τ ; θ)} are third continuous differ-

entiable with respect to θ within a neighborhood of θ0 which is defined in C3. π(·) is

a bounded probability density supported on a compact set S ⊂ Rd; and the diffusion

function σ(x) is positive definite.

C3: The parameter space Θ is an open subset of Rp, and the true parameter θ0 is the

unique root ofE{εt(τ ; θ)} = 0 for all τ ∈ S; and for any θ1 �= θ2, P {ψt(·; θ1) �= ψt(·; θ2, Xt)} >
0.

C4: (Invertibility) The Hermitian matrix V ar{ε̃t(τ ; θ0)} is positive definite almost

everywhere for τ ∈ R2d with respect to the Lebesgue measure in R2d; Γ(θ0) defined in

(2.9) is invertible.

C5: The kernel K(·) is a r-th order symmetric kernel supported on [−1, 1]d and

has bounded second derivative. We assume d < 4 and the smoothing bandwidth h =

O{n−1/(d+2r)}. The bandwidth set {h1, · · · , hk} satisfies hi = cih for constants ci such

that c1 < c2 < ... < ck where k is an integer not depending on n.

C6: {Δn(u;Xt)} is a sequence of complex functions continuous at u = 0 and Δn(0;Xt) ≡
0, supn |Δn(u;Xt)| ≤M1 almost surely and the Lebesgue measure of {u|Δn(u, x) �= 0} is

positive for all x in the support of the marginal density f , and cn = n−1/2h−d/4 which is

the order of the difference between H0 and H1.
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We need C1 as the basic condition for the stochastic processes involved. Ait-Sahalia

(1996) and Genon-Catalot, Jeantheau and Laredo (2000) provides conditions on the un-

derlying processes such that the Assumption C1 held. In particular, Ait-Sahalia (1996)

provides conditions so that the observed sequences are β-mixing, which is automatically

α-mixing. We require the rate of decay is exponentially fast to simplify the technical

arguments. C2 consists of smoothness conditions regarding the CCFs and C3 is for iden-

tification of parameters. C4 ensures the covariance matrix is invertible which is easier

to be justified for our low dimensional formulation of estimation and testing approaches.

C5 on the kernel and bandwidth are standard in non-parametric curve estimation. The

assumption of d < 4 is to make the bias in the kernel estimation a smaller order of hd/2

so that the bias is stochastically negligible relative to 
nh(θ0). The kernel method will

encounter the curse of dimensionality when d ≥ 4. Also, the commonly used processes in

finance and other stochastic modeling tend to have dimension less than 4. The bandwidth

selected by either cross validation or the plug-in method satisfies the order specified in

C5. The first part of C6 regarding Δn(u;Xt) is to qualify ψt(u; θ) under H1 as a bona

fide characteristic function, whereas the part that requires positive measure on the set

{u|Δn(u, x) �= 0} is to make H1 a genuine sequence of alternative hypotheses.

Proof of Lemma 1. By combining results in Kitamura (1997) and Chen, Härdle and Li

(2003) for the empirical likelihood of α−mixing processes, we can show that

λ(τ ; θ) = A−1
n (τ ; θ){ 1

n

n∑
t=1

�εt(τ ; θ)}+ o(n−1/3) = O(n−1/3) (A.1)

almost surely and uniformly in ||θ− θ0|| ≤ n−1/3 and τT ∈ S. Denote θ = θ0 + un−1/3. It
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follows from (A.1) and Taylor expansion that, uniformly in ||u|| = 1,


n(θ)
=

∫ {2∑n
t=1 λ

T (τ ; θ)�εt(τ ; θ)−∑n
t=1{λT (τ ; θ)�εt(τ ; θ)}2}π(τ) dτ + o(n1/3)

=
∫
n{ 1

n

∑n
t=1�ε

T
t (τ ; θ0) +

1
n

∑n
t=1

∂�εTt (τ ;θ0)

∂θ
un−1/3}A−1

n (τ ; θ)

×{ 1
n

∑n
t=1�ε

T
t (τ ; θ0) +

1
n

∑n
t=1

∂�εTt (τ ;θ0)

∂θ
un−1/3}π(τ) dτ + o(n1/3)

=
∫
n{E(∂�εT1 (τ ;θ0)

∂θ
)un−1/3(1 + o(1))}A−1(τ, τ ; θ0, θ0)

×{E(∂�ε1(τ ;θ0)
∂θ

)un−1/3(1 + o(1))}π(τ) dτ + o(n1/3)
≥ 1

2
cn1/3

(A.2)

almost surely, where c > 0 is the smallest eigenvalue of

sup
τ∈S

E(
∂�εT1 (τ ; θ0)

∂θ
)A−1(τ, τ ; θ0, θ0)E(

∂�ε1(τ ; θ0)

∂θ
).

Similarly,


n(θ0) =
∫ {∑n

t=1 �ε
T
t (τ ; θ0)}A−1(τ, τ ; θ0, θ0){ 1

n

∑n
t=1�εt(τ ; θ0)}π(τ) dτ + o(1)

= o(n1/3)
(A.3)

almost surely. This together with (A.2) implies that 
n(θ) has a minimum value in the

interior of the ball ||θ − θ0|| ≤ n−1/3 and this value satisfies ∂
∂θ

n(θ) = 0, i.e., the second

equation in (2.7) by noting (2.4). The first equation follows directly from (2.4).

Proof of Theorem 1. It follows from limit theorems for martingale difference that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂
∂θ
Q1n(τ ; θ0, 0) =

1
n

∑n
t=1

∂
∂θ
�εt(τ ; θ0)

p→M0E{ ∂
∂θ
ε̃1(τ ; θ0)}

∂
∂λT Q1n(τ ; θ0, 0) = − 1

n

∑n
t=1 �εt(τ ; θ0)�ε

T
t (τ ; θ0)

p→ −M0A(τ, τ ; θ0, θ0)M
�
0

∂
∂θ
Q2n(τ ; θ0, 0) = 0

∂
∂λT Q2n(τ ; θ0, 0) =

1
n

∑n
t=1

∂
∂θ
�εTt (τ ; θ0)

p→ E{ ∂
∂θ
ε̃�1(τ ; θ0)}M�

0

(A.4)

uniformly in τT ∈ S. Put δn = ||θ̂n − θ0|| + supτT∈S ||λ(τ ; θ̂n)||. Then it follows from

Taylor expansion that

0 = Q1n(τ ; θ̂n, λ(τ ; θ̂n))

= Q1n(τ ; θ0, 0) +
∂Q1n(τ ;θ0,0)

∂θ
(θ̂n − θ0) +

∂Q1n(τ ;θ0,0)
∂λT λ(τ ; θ̂n) + op(δn)

(A.5)

uniformly in τT ∈ S, and

0 =
∫
Q2n(τ ; θ̂n, λ(τ ; θ̂n))π(τ) dτ

=
∫ {Q2n(τ ; θ0, 0) +

∂Q2n(τ ;θ0,0)
∂θ

(θ̂n − θ0) +
∂Q2n(τ ;θ0,0)

∂λT λ(τ ; θ̂n)}π(τ) dτ
+op(δn).

(A.6)

21



By (A.4) - (A.6), we have

θ̂n − θ0
= −Γ−1(θ0)

∫
E{ ∂

∂θ
ε̃�1(τ ; θ0)}A−1(τ ; θ0, θ0)M

−1
0

1
n

∑n
t=1�εt(τ ; θ0)π(τ) dτ + op(δn).

(A.7)

Hence the theorem follows from (A.7) and the central limit theorem for Martingale dif-

ference.

Proof of Theorem 2. Define V (τ1, τ2, x; θ0, θ) = E{ε̃(τ1, Xt; θ)ε̃
�(τ2, Xt; θ)|Xt = x} and

write V (τ, x; θ0, θ) = V (τ, τ, x; θ0, θ). Since θ̂n is
√
n-consistent to θ0, we have


nh(θ̂n) = 
nh,1(θ0) + nhdR−1(K){(θ̂ − θ0)
TSn,h(θ0) + S�

n,h(θ0)(θ̂n − θ0)

+(θ̂n − θ0)
TΓn,h(θ0)(θ̂n − θ0)}+Op{(nhd)−1/2 log3(n)

+h2 log2(n)}
(A.8)

where


nh,1(θ0) = nhdR−1(K)
∫ ∫

ε̃�n,h(τ,Xt; θ0)V
−1(τ, x; θ0, θ0)

×ε̃n,h(τ, x; θ0)π1(τ)f−1(x)π2(x)dτdx,
(A.9)

Sn,h(θ0) =
∫ ∫ ∂ε̃�

n,h
(τ,x;θ0)

∂θ
V −1(τ, x; θ0, θ0)ε̃n,h(τ, x; θ0)

×π1(τ)π2(x)f−1(x)dτdx,
(A.10)

Γnh(θ0) =
∫ ∫ ∂ε̃�

n,h
(τ,x;θ0)

∂θ
V −1(τ, x; θ0, θ0)

∂ε̃n,h(τ,x;θ0)

∂θ

×π1(τ)π2(x)f−1(x)dτdx.
(A.11)

As Sn,h(θ0) = Op(n
−1/2),


nh(θ̂n) = 
nh,1(θ0) +Op{(nhd)−1/2 log3(n) + h2 log2(n) + hd}. (A.12)

Note that


nh,1(θ0)
= nhdR−1(K)

∫ ∫
n−1∑n

t1=1Kh(x−Xt1){ε̃�(τ,Xt1) + cnη̃
�
n(τ,Xt1)}

×V −1(τ, x; θ0, θ0)n
−1∑n

t2=1Kh(x−Xt2){ε̃(τ,Xt2) + cnη̃n(τ,Xt2)}
×π1(τ)π2(x)f−1(x)dτdx+ op(h

d/2)
= R−1(K) (Hn1 +Hn2 +Hn3 +Hn4) + op(h

d/2),

(A.13)

where, with the choice of cn = n−1/2h−d/4,

Hn1 = n−1hd
∑

t1 �=t2

∫ ∫
Kh(x−Xt1)Kh(x−Xt2)ε̃

�(τ,Xt1)V
−1(τ, x)

×ε̃(τ,Xt2)π1(τ)π2(x)f
−1(x)dτdx,

Hn2 = n−1hd
∑n

t=1

∫ ∫
K2

h(x−Xt)ε̃
�(τ,Xt)V

−1(τ, x)ε̃(τ,Xt)
×π1(τ)π2(x)f−1(x)dτdx,

Hn3 = 2n1/2h3d/4
∫ ∫

η̃�n(τ, x)V
−1(τ, x)n−1∑n

t=1Kh(x−Xt)ε̃(τ,Xt)
×π1(τ)π2(x)f−1(x)dτdx,

Hn4 = hd/2
∫ ∫

η̃�n(τ, x)V
−1(τ, x)η̃n(τ, x)π1(τ)π2(x)f

−1(x)dτdx.

(A.14)
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We note that Hn2 = 2R(K) + op(h
d) and and the integral in Hn3 is Op(n

−1/2). Hence,

Hn3 = Op(n
3d/4) = op(h

d/2).

Now consider Hn1. Clearly, E(Hn1) = 0 and the double summation in Hn1 constitutes

a generalized U-statistic of order two with the kernel

ξt1,t2 =
∫ ∫

Kh(x−Xt1)Kh(x−Xt2)ε̃
�(τ,Xt1)V

−1(τ, x; θ0, θ0)ε̃(τ,Xt2)
×π1(τ)π2(x)f−1(x)dτdx.

(A.15)

The U-statistic is degenerate due to {ε̃(τ,Xt2)} being martingale differences.

Let σ2
n =

∑
1≤t1 �=t2≤n σ

2
t1,t2 where σ2

t1,t2 = V ar(ξt1,t2). Then, apply the central limit

theorem for generalized U-statistics for α-mixing sequences (Gao and King, 2005), we

have

σ−1
n

∑
t1 �=t2

ξt1,t2
d→ N(0, 1). (A.16)

Furthermore, it can be shown, for instance by following the route of Chen, Gao and Tang

(2008) that σ2
n = 2n2σ2

n0{1 + o(1)} where σ2
n0 = Et1Et2(ξ

2
t1,t2). Here Eti denote marginal

expectation with respect to (Xti , Xti+1).

It can be shown that

σ2
n0 =

∫ ∫ ∫ ∫
Et1Et2{Kh(x1 −Xt1)Kh(x1 −Xt2)Kh(x2 −Xt1)

×Kh(x2 −Xt2)
∑2

l1,k1,l2,k2
εl1(τ1, Xt1)εk1(τ1, Xt2)εl2(τ2, Xt1)

×εk2(τ2, Xt2)ν
l1,k1(τ1, x1)ν

l2,k2(τ2, x2)}
×π1(τ1)π1(τ2)f−1(x1)f

−1(x2)π2(x1)π2(x2)dτ1dτ2dx1dx2
=

∫ ∫ ∫ ∫
Et1Et2{Kh(x1 −Xt1)Kh(x1 −Xt2)Kh(x2 −Xt1)

×Kh(x2 −Xt2)
∑2

l1,k1,l2,k2
Vl1l2(−τ1, τ2, Xt1)Vk1k2(τ1,−τ2, Xt2)

×νl1,k1(τ1, x1)νl2,k2(τ2, x2)}π1(τ1)π1(τ2)f−1(x1)f
−1(x2)

×π2(x1)π2(x2)dτ1dτ2dx1dx2
= h−dγ2(K, V, π1, π2){1 +O(h2)},

(A.17)

where γ2(K, V, π1, π2) is defined in (3.4). From (A.16) and (A.17), we have

h−d/2Hn1
d→ N(0, 2γ2(K, V, π1, π2)) (A.18)

This together with the results on Hn2 and Hn3 leads to

h−d/2(
nh(θ̂)− 2− μn)
d→ N(0, 2R−2(K)γ2(K, V, π1, π2)) (A.19)
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where μn = Hn4. This completes the proof of Theorem 2.

Proof of Theorem 3. The proof can be made by applying the Cramér-Wold device and

the same technique in the proof of Theorem 2 followed by the mapping theorem.
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Table 1: Empirical averages and their standard errors (in parentheses) of the maximum

(MLE) or approximate maximum (AMLE) likelihood estimates and the proposed empir-

ical likelihood estimates (EL) under the four univariate models.

(a) Vasicek Model

n κ = 0.858 α = 0.089 σ = 0.047

125 MLE 1.383(0.603) 0.090(0.015) 0.047(0.003)

EL 1.305(0.643) 0.090(0.017) 0.046(0.004)

250 MLE 1.118(0.397) 0.090(0.011) 0.047(0.002)

EL 1.052(0.410) 0.089(0.013) 0.046(0.002)

500 MLE 0.966(0.240) 0.089(0.008) 0.047(0.002)

EL 0.951(0.273) 0.089(0.009) 0.047(0.002)

(b) CIR Model

n κ = 0.892 α = 0.091 σ = 0.181

125 MLE 1.372(0.644) 0.091(0.019) 0.183(0.012)

EL 1.290(0.719) 0.093(0.023) 0.178(0.014)

250 MLE 1.127(0.374) 0.090(0.013) 0.182(0.008)

EL 1.089(0.435) 0.091(0.015) 0.179(0.009)

500 MLE 1.000(0.245) 0.091(0.010) 0.182(0.006)

EL 0.977(0.290) 0.092(0.011) 0.180(0.007)

(c) Jump Diffusion VSK-MJ Model

n κ = 0.858 α = 0.089 σ = 0.047 λ = 2.0 η = 0.067

125 AMLE 1.056(0.381) 0.093(0.020) 0.046(0.005) 1.770(0.723) 0.060(0.016)

EL 1.090(0.261) 0.084(0.031) 0.048(0.009) 1.851(0.323) 0.066(0.020)

250 AMLE 0.977(0.226) 0.093(0.013) 0.047(0.003) 1.659(0.466) 0.059(0.010)

EL 1.043(0.201) 0.090(0.023) 0.048(0.007) 1.825(0.236) 0.068(0.015)

500 AMLE 0.939(0.145) 0.092(0.009) 0.047(0.002) 1.620(0.311) 0.060(0.007)

EL 1.018(0.115) 0.089(0.018) 0.049(0.005) 1.801(0.163) 0.068(0.012)

(d) Inverse Gaussian OU Model

n λ = 10.0 a = 1.0 b = 20.0

125 EL 10.328(3.665) 1.048(0.106) 20.722(2.146)

250 EL 11.154(1.976) 1.059(0.043) 21.380(0.878)

500 EL 11.489(1.652) 1.031(0.024) 20.846(0.461)
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Table 2: Empirical averages and their standard errors (in parentheses) of the maximum

(MLE) likelihood estimates and the proposed empirical likelihood estimates (EL) under

the Bivariate OU model.

n κ11 = 0.22 κ21 = 0.2 κ22 = 0.5

125 MLE 0.441(0.197) 0.395(0.270) 0.607(0.176)

EL 0.381(0.208) 0.525(0.238) 0.594(0.192)

250 MLE 0.353(0.165) 0.307(0.148) 0.563(0.110)

EL 0.354(0.178) 0.449(0.184) 0.564(0.153)

500 MLE 0.280(0.118) 0.241(0.104) 0.526(0.068)

EL 0.261(0.168) 0.383(0.154) 0.487(0.112)

n α1 = 0.08 α2 = 0.09 σ11 = 0.09 σ22 = 0.17

125 MLE 0.145(0.166) 0.099(0.056) 0.167(0.067) 0.080(0.079)

EL 0.141(0.141) 0.117(0.085) 0.129(0.044) 0.071(0.034)

250 MLE 0.141(0.151) 0.096(0.036) 0.140(0.065) 0.116(0.074)

EL 0.142(0.129) 0.094(0.073) 0.095(0.033) 0.094(0.028)

500 MLE 0.102(0.120) 0.092(0.023) 0.115(0.051) 0.146(0.055)

EL 0.099(0.108) 0.104(0.064) 0.077(0.024) 0.105(0.028)
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Table 3: H0: VSK versus H1: the jump diffusion model VSK-MJ

(a) Size Evaluation (in percentage)

n=125 Bandwidth 0.012 0.017 0.021 0.025 0.030 Overall

Size 4.6 5.6 5.4 5.8 5.6 4.8

n=250 Bandwidth 0.012 0.015 0.018 0.021 0.024 Overall

Size 5.6 6.2 6.2 6.0 5.8 5.4

n=500 Bandwidth 0.011 0.013 0.015 0.018 0.020 Overall

Size 5.0 5.6 5.6 5.4 5.6 5.0

(b) Power Evaluation (in percentage)

n=125 Bandwidth 0.016 0.021 0.026 0.032 0.037 Overall

Power 72.0 71.6 70.4 69.2 65.8 72.2

n=250 Bandwidth 0.016 0.019 0.022 0.026 0.029 Overall

Power 82.4 82.4 82.2 82.4 82.2 82.6

n=500 Bandwidth 0.014 0.017 0.019 0.021 0.024 Overall

Power 95.0 94.8 94.6 94.4 94.2 94.8
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Table 4: H0: the jump diffusion model VSK-MJ versus H1:the Inverse Gaussian OU

model

(a) Size Evaluation (in percentage)

n=125 Bandwidth 0.017 0.022 0.028 0.034 0.040 Overall

Size 3.4 3.6 4.0 3.6 4.6 4.6

n=250 Bandwidth 0.017 0.021 0.024 0.028 0.032 Overall

Size 4.6 4.6 4.6 4.6 5.0 4.8

n=500 Bandwidth 0.016 0.019 0.021 0.024 0.026 Overall

Size 5.0 5.2 5.2 5.0 5.0 5.0

(b) Power Evaluation (in percentage)

n=125 Bandwidth 0.008 0.012 0.017 0.021 0.026 Overall

Power 71.6 73.8 73.2 71.4 71.2 74.4

n=250 Bandwidth 0.008 0.011 0.014 0.017 0.020 Overall

Power 84.0 84.2 83.4 81.8 81.4 84.4

n=500 Bandwidth 0.008 0.010 0.012 0.014 0.016 Overall

Power 90.1 88.9 89.5 85.1 85.4 90.2
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Table 5: Empirical Estimation for the 3-month T-bill Data

(a) VSK Model

κ α σ

MLE 0.277 0.065 0.019

(0.1800) (0.0117) (0.0007)

EL 0.274 0.059 0.018

(0.1956) (0.0136) (0.0007)

(b) CIR Model

κ α σ

MLE 0.182 0.066 0.061

(0.1697) (0.0179) (0.0021)

EL 0.182 0.064 0.057

(0.1934) (0.0374) (0.0021)

(c) VSK-MJ Model

κ α σ λ η

AMLE 0.071 0.077 0.009 1.863 0.012

(0.0170) (0.0129) (0.0004) (0.3282) (0.0015)

EL 0.072 0.076 0.008 1.862 0.013

(0.0143) (0.0136) (0.0008) (0.1569) (0.0021)

(d) Inverse Gaussian OU Model

λ a b

EL 0.264 1.139 12.558

(0.0342) (0.1364) (0.8970)
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Table 6: P-values for the 3-month T-bill Data

Bandwidth 0.010 0.012 0.014 0.016 0.018 Overall

Test Stats 21.971 19.225 16.145 13.267 10.786 14.828

VSK l∗0.05 3.228 3.123 2.845 2.724 2.647 1.462

P-values 0.0 0.0 0.0 0.0 0.0 0.0

Test Stats 6.015 4.775 3.755 2.954 2.335 3.546

CIR l∗0.05 2.782 2.739 2.825 2.650 2.448 1.229

P-values 0.0 0.01 0.02 0.026 0.054 0.0

Test Stats 37.204 40.901 45.046 49.878 55.561 25.600

VSK-MJ l∗0.05 35.669 43.548 52.247 62.744 74.298 28.751

P-values 0.046 0.074 0.102 0.126 0.148 0.0880

Test Stats 10.716 9.374 7.962 6.663 5.528 6.870

IG-OU l∗0.05 40.463 47.665 46.444 42.396 41.750 27.940

P-values 0.11 0.148 0.124 0.128 0.122 0.162
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