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Abstract

Bivariate extreme-value distributions have been employed in modeling extremes
in environmental sciences and risk management. An important issue is to estimate
the dependence function such as Pickands dependence function. Some estimators for
the Pickands dependence function have been studied by assuming the marginals are
known. Recently, Genest and Segers (2009) [Ann. Statist. 37, 2990-3022] derived
the asymptotic distributions of those proposed estimators with marginal distribu-
tions replaced by the empirical distributions. In this paper, we propose a class of
weighted estimators including those in Genest and Segers (2009) as special cases.
Furthermore, a jackknife empirical likelihood method is proposed for constructing
confidence intervals for the Pickands dependence function, which avoids estimating
the complicated asymptotic variance. A simulation study demonstrates the effective-
ness of the proposed jackknife empirical likelihood method.
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1 Introduction

Let (X11,X12), -+, (Xn1, Xn2) be independent random pairs with common distribution
function F' and continuous marginal distributions Fj(x) = F(x,00) and Fa(y) = F(co,y).

Then the copula of F' is defined as
C(z,y) = P(F1(X11) < 2, Fa(X12) < ).

When C*(u!'/t, v*/*) = C(u,v) holds for all u,v € [0,1] and t > 0, C is called an extreme
value copula and is determined by the so-called Pickands dependence function A through

the equation

C(u,v) = exp{log(uv)A(li(;g(iz}g) )} (1.1)

for all (u,v) € (0,1]2\ {(1,1)}, where A is a convex function and satisfies max(t, 1 —t) <
A(t) <1 for all 0 <t <1; see Pickands (1981) and Falk and Reiss (2005).
Put Y;; = —log{F;(X;;)} fori=1,---,n, j=1,2 and

Z Y1+Y12_ 2)

We denote v A v = min(u,v) and v V v = max(u,v) throughout. When the marginal
distributions Fj,j = 1,2 are known, estimators for the Pickands dependence function
A(t) have been proposed by Pickands (1981), Deheuvels (1991), Hall and Tajvidi (2000)
and Capéraa, Fougeres and Genest (1997), which are defined as

b n
AT (t) = S Y/t AMYie /(1 =)}
AP(t) = 3
ST Y /) A Y/ (1= D)) 65y Y — (1~ ) S Yo 1
AT (1) = :

nY; nY; ’
S 1{@_;ﬂ} ()

Hy( Hy(
AC’FG / /
(t) = exp{A(t 1 3 d 1 2 dz}

respectively, where A(t) € [0,1] is a weight function, and A”(¢) and AP(t) are defined

as corresponding limits when ¢ = 0 or 1. When the marginal distributions are unknown,



similar non-parametric estimators can be obtained by replacing the marginal distribu-

tion Fj by the corresponding empirical distribution F,;(z) = %Z?:l I(X;; < x) or
Ei(z) = n%rl S I(Xi; < x). Let us denote these estimators as AP (t), AP (t), AHT(t)
and ACFG(t). Recently, Genest and Segers (2009) showed that AP (t), AP (t) and AHT (t)

have the same asymptotic distribution as

~ n

AT (t) = S AZia /(1 =)} A Zin/t}

and ASFE(t) with A\(t) = t has the same asymptotic distribution as

n

ACFC (1) = exp{—v — % Z(zﬂ/(l — 1)) A (Zin/1)},

i=1

where v = — fooo log(z)e™* dx is the Euler constant and
Zij = —log{ﬁ'm(Xw)} fOI‘ 1= 1, e ,n,j = 1,2.

Moreover, Genest and Segers (2009) derived the asymptotic distributions of A”(t) and

ACF G(t) by noticing the following important relationship
1
AP(t) = {/ u O (ut T ul) du} !
0

and

1
ACFE(1) = exp <7 [ {Caut Tt ut) — I(u > e D)} ulog(u)) ! du) :

where

In this paper, we propose a class of weighted estimators including A¥ (t) and ACF G(t)
as special cases, see Section 2 for details. Further, in Section 3 we propose a jackknife
empirical likelihood method to construct confidence intervals for the Pickands dependence
function. Unlike the normal approximation method, this new method has no need to
estimate any additional quantities such as asymptotic variance. A simulation study is
conducted in Section 4 to examine the finite sample behavior of the proposed jackknife

empirical likelihood method. All proofs are put in Section 5.



2 Weighted Estimation
It follows from (1.1) that
Cw'tul)y =u® forall wel0,1] andall ¢e0,1], (2.1)

which motivates to estimate A(t) by minimizing the following weighted distance with

respect to a > 0:
1
/ {Cp(u' ™t ut) — u*Y2 A(u, t) du,
0
where A(u,t) > 0 is a weight function. Under some regularity conditions, the above

estimator is the solution of « to the equation

1
/0 {Cr(u*t ut) — u* u{ = log(u) Y\ (u, t) du = 0

for @ > 0. This is a special case of the proposed M-estimators and Z-estimators in Biicher,
Dette and Volgushev (2011). By noting that u®(—log u)A(u,t) = C(u'~t, u?)(—log u)A(u, t)
and A(u,t) is any weight function, we propose to treat C(u'~t u’)(—logu)A(u,t) as a
new weight function. This leads us to estimate A(t) by solving the following equation

with respect to o > 0:
1 A
/ {Cp(u' ™t ut) — u*IN(u, t) du = 0, (2.2)
0

where A(u,t) > 0 is a new weight function. Denote this new estimator by A% (¢; \). When
A u, ) is taken as u™! or {—ulog(u)}~t, A¥(t; \) becomes AP (t) or A°FC(¢). Thus the
above class of estimators includes the known estimators in the literature as special cases.

Put g(a) = fol{(f’n(ulft, ul) —u*}A(u, t) du. Since u® is a decreasing function of « for
each fixed u € [0,1], g(«) is an increasing function of « for each fixed ¢. Also ¢g(0) < 0
and g(co) > 0 when n is large enough. Hence (2.2) has a unique solution AY(t;\)
for each large n and ¢ € [0,1]. Note that this unique solution may not satisfy that
max(t,1 —t) < A¥(t;A) <1 and A¥(0;\) = A¥(1;)) = 1.

Let W (u,v) denote a tight Gaussian process with mean zero, covariance

E{W (uy,v1)W (u2,v2)} = C(uj A ug,v1 Ave) — C(ur,v1)C(ug,vs)



and W(u,0) = W(0,v) = W(1,1) = 0 for all u,v € [0,1]. The asymptotic distribution

for the proposed estimator A¥(¢; A) is given in the following theorem.

Theorem 2.1. Suppose %C’(u,v), %C(u,’u) and 82—;}0(%@) are defined and contin-
uous on the sets F1 = {(u,v) : 0 <u <1 and 0<v <1}, Fo={(u,v):0<u<
1,0 < v <1} and Fs = {(u,v) : 0 < u < 1,0 < v < 1}, respectively, and for each fixed
t € 10,1] the function A(u,t) > 0 is continuous and is not identical to zero as a function

of u€ (0,1). Further we assume that

]%C(u,v)] < % for (u,v) € Fi,
]%C(u,v)] < 1}(171‘{1)) for (u,v) € Fa,

|%C(uﬂ))‘ < % A % for (u,v) € Fs,

for some constant M > 0, A'(t) is continuous on [0,1], and there exist 61 > 0 and

d2 € [0,1/2) such that

SUPp<¢<1 \/ﬁfo(
1
SUPo<i<1 VI J( o yia-ove (L= wA(u, ) du — 0

_n_)
_1/4:; (%)1/((14)%)
Sup0§t§1 n ! f(n+1)—1/((1—t)vt) )‘(ua t) du — 0

SUPp<i<1 fol{u(lft)\/t(l — (=Y Y92 X (4, t) du < oo (2.3)

SUPp<t<1 fol U(lft)\/tf(lft)u(lftm(l — ul’t)‘s?)\(u, t) du < oo

) TH(EmOV0 u?X(u,t) du — 0

Supogtgl fol u(lft)\/tftutb‘g(l _ ut)62)\(u,t) du < 00

1
SUPp<i<] f1/2(_ log u)A\(u, t) dt < oc.
Then as n — 00, SUPg<i< |AW(t;\) — A(t)] = op(1). Moreover, suppose that \(u,t) is

continuous in (0,1) x [0, 1], and
IMu, t1) — Mu, t2)| < [t1 — ta]®No(u), t1,t2 € [0,1],u € (0,1)
for some constant 5o > 0 and function Ao(u),u € (0,1), where \o(u) satisfies that
1/2 1
/ u*Ao(u)du < oo,/ (1 —u*)Ao(u)du < 0o
0 1/2
foralla > 0. Then as n — oo, /n{A¥(t; \) — A(t)} converges to B(t) in C([0,1]), where

B(t) = {fol C(ur=t ut)A(u, t) log(u) du}—* fol{W(ul_t,ut)
—Cr(u =)W (7t 1) — Co(ul=t u)W (1, ul) } A (u, t) du,



Ci(u,v) = gC(u,v) and Co(u,v) = 8%C’(u,v).
Remark 2.1. Theorem 2.1 still holds when condition (2.3) is replaced by

SUpPp<t<i \/ﬁfo(nﬂ)_2 ul/z)\(u, t)du — 0
SUPp<¢<1 \/ﬁf(%)z(l —w)A(u,t)du — 0

2

_ (747)
SuPp<i<1 M 1/4+61 f(n_:ll)72 )\(U, t) du — 0

SUPp<i<1 fol u62/2(1 - u)‘s%\(u, t) du < oo

for some 61 > 0 and 02 € [0,1/2). This follows from the proof of Theorem 2.1 by replacing

+1)~-1/(A=t)ve) (25 )1/ (1-t)vt) 1)~ (2 )2
Sy s Sy -1a-ove ond f Hy-ovy @ (5.5) by K f(n++11) 2 and
f(IL)Q, respectively.

n+1

Remark 2.2. To choose A(u,t), a common way is to minimize the asymptotic vari-
ance of flﬁ(t;/\). This is hard to obtain analytically. Instead, one can consider lin-
ear combinations of some known estimators. For example, suppose the weight functions
A(u),- -, Ag(u) give the corresponding estimators fl}f;l(t), - ,A%q(t). Define the class

of new weight functions as

q

Fo={Au,t) : Mu,t) = ai(t)Ai(u), ar(t) > 0, - ) >0, Zal =1}.

i=1
Then one can choose a,s to minimize the asymptotic variance of Aﬁ(t;)\) in this class

Fo, which results in explicit formulas for ajs.

An example. Consider A(u,t) = u~'(—logu)~® for some ¢(t) € [0,1]. Then AF(t)
and ACFC(t) correspond to ¢(t) = 0 and ¢(t) = 1, respectively. When ¢(t) < 1, we can

write
fol{én(ul_t, ut) — I\ (u,t) du
= _%m fol{é 1—t’ut)_ue}d(_logu)l—q(t)
= i Jo (= log )10 d(Co(ul~ ut) — u)
= 7f0 (—logu)'~4® dC, (u“ ut) — G o ut e du
= ot i A Z2H 0 — 907102 — (1)),

where ZZ{js are defined in Section 1. Hence

n

A (152) = exp{ ~(os(- >

=1

Z; Z;
L, 22

o A )T —logT(2 - q(1))/(1 - q(#)}




for 0 < ¢q(t) < 1. Note that, when ¢(¢t) = 1, the above expression is defined as the
limit, which becomes the same as ACF G(t). In particular, we propose to choose ¢(t) =
min{ ACFC(t),1} and denote the resulting estimator by A¥(t). To compare this new
estimator with ACFG(t), we draw 1,000 random samples with size n = 100, 1000, 5000
from Gumbel copula with A(t) = {t! + (1 — ¢)?}/?, Hiisler-Reiss copula with A(t) =
(1 —t)®(0 + 55 log 1) + t®(0 + 55 log 1) and Tawn copula with A(t) =1 — 0t + 0¢2,
where ®(x) denotes the distribution function of N(0,1). In Figure 5.1, we plot the ratios
of the mean squared error of A¥(t) to that of ACFG(¢) for t = 0.1,0.2,---,0.9, which
shows that the new estimator has a smaller mean squared error than ASF G(t) in all

considered cases.

3 Jackknife Empirical Likelihood Method

In this section, we consider interval estimation for the Pickands dependence function
A(t), which plays an important role in risk management since one may concern with
an interval estimation for C'(u,v) at some particular values of u and v. Note that an
interval for A(t) can be easily transformed to an interval for a monotone function of
A(t). Moreover, these two intervals have the same coverage probability, but different
interval length. Since upper tail dependence coefficient can be written as a monotone
function of A(1/2), an interval can be constructed via an interval for A(1/2).

An obvious approach to construct an interval for A(t) is to employ the normal ap-
proximation method based on any one of the estimators for A(t). Since the asymptotic
distribution of any one of the estimators for A(t) depends on its derivative A’(¢), the
normal approximation method requires to estimate A’(¢) first. As an alternative way of
constructing confidence intervals, empirical likelihood method has been extended and ap-
plied in various fields since Owen (1988, 1990) introduced it for constructing a confidence
interval /region for a mean. We refer to Owen (2001) for an overview. An important
feature of the empirical likelihood method is the property of self-studentization, which
avoids estimating the asymptotic variance explicitly. A general method to formulate the

empirical likelihood function is based on estimating equations as in Qin and Lawless



(1994).
Since the proposed weighted estimator is defined as the solution to equation (2.2),
one may apply the method in Qin and Lawless (1994) directly by defining the empirical

likelihood function as

sup {II% (np;) : p1 > 0, ,pp > 0,57 ps = 1,
S i T (Fun (Xan) < '™t Fra(Xi) < ub) — uf}A(u, t) du = 0}.
However, this method can not catch the variation introduced by the marginal empirical
distributions. In other words, the limit is no longer a chi-square distribution. In general,
one has to linearize the nonlinear functional by introducing some link variables before
using the profile empirical likelihood method. See Chen, Peng and Zhao (2009) for apply-
ing the profile empirical likelihood method to copulas. Unfortunately, this linearization
idea is not applicable to the estimation of A(t). Recently, Jing, Yuan and Zhou (2009)
proposed a so-called jackknife empirical likelihood method to construct confidence inter-
vals for U-statistics. More specifically, Jing, Yuan and Zhou (2009) proposed to employ
the empirical likelihood method to jackknife samples, which may result in a chi-square
limit. Motivated by the study of using smoothed jackknife empirical likelihood method to
construct a confidence interval for a receiver operating characteristic curve in Gong, Peng
and Qi (2010), one needs to work with a smoothed version of the left hand side of (2.2).
The reason to smooth is to separate marginals from the copula estimator in expanding
the jackknife empirical likelihood ratio. Here, we employ the smoothed empirical copula

in Fermanian, Radulovi¢ and Wegkamp (2004), which is defined as

s _ 1 " U—Fl/(l_t) Xz U—Fl/t Xz
Cn(ul t’ut) _ - ZK( nlh ( 1))K( n; ( ))’

where K(z) = f_moo k(s)ds, k is a symmetric density function with support [—1,1], and
h = h(n) > 0 is a bandwidth. Based on this smoothed estimation, a jackknife empirical
likelihood function can be constructed as follows.

Put Fnjy_i(x) = %Z?:l,l# I(X);<z)forj=1,2andi=1,--- ,n,

n £1/(1—t) 51/t

As _ 1 u—Fa o (Xj) u—Fu_(Xj2)

Cp ittt = L S Rt I U Tt
J=Lj#



fori=1,---,n, and define the jackknife sample as

Vi(u,t) = nCy (u' " u') = (n = 1)C5 _;(u! ", ut)
for i = 1,---,n. Next we apply the empirical likelihood method based on estimating

equations in Qin and Lawless (1994) to the above jackknife sample, which gives the
jackknife empirical likelihood function for = A(t) as

L(Q) = Sup{H?:l(npi) D1 Z 07 oty Dn Z 07 Z:‘Lzl Pi = ]-a
> i1 Di f;n_b"{%(u, t) — ufI\(u, t) du = 0},

where a,, > 0 and b, > 0. Note that we use faln_b" instead of fol in defining the above
jackknife empirical likelihood function. The reason is to control the bias term and to
allow the possibility of A(0,¢) = oo and A(1,%) = oo

By the standard Lagrange multiplier technique, we obtain the log jackknife empirical

likelihood ratio as

1(0) = —2log L(0) = 2 log{1+ 8Qu(6)},

i=1

where
1-b,
Qi(6) = / (V3w ) — w3\ (u, £) du
and 3 = (3(0) satisfies
Zl+ﬂQ =0. (3.1)

Theorem 3.1. Suppose %C(u,v), ;—;C(u,v) and %C(u,v) are defined and contin-

uous on the set F3 = {(u,v) :0<u <1 and 0<wv <1}, and

0?2 M 0?2 M 0?2 M M

‘Wc(u’v)‘ = u(l —u)’ ]w(](u,v)\ = v(l—wv)’ ‘8u8vc(u’v)’ = u(l —u)/\v(l —v)

for (u,v) € F3 and some constant M > 0. Let t denote a fized point in (0,1). Assume

that the function A(u,t) > 0 is continuous and is not identical to zero as a function of



€ (0,1), A'(s) is continuous at s =t, and

h=h(n)—0, nh— oo
anp — 0, b,—0, h/a,—0, h/b,—0

n /40 flfb" Au,t)du — 0 for some 61 >0
fl %2(1 —u)\(u,t)du < 0o for some 69 € [0,1/2)
V/nh? faln b w32\ (u, t) du — 0
\/ﬁhQ fl_b"{log uy w32\ (u, t) du — 0

e Ja TN (1) du — 0
—3/2 S w2 A (u, t) du — 0

(3.2)

as n — oo. Then I(Ap(t)) < x2(1) as n — oo, where Ag(t) denotes the true value of

A(t).

For any fixed t € (0, 1), based on the above theorem, a jackknife empirical likelihood

confidence interval for Ay(t) with level 4o can be constructed as

Ly (t) = {6 : 1(8) < x5, ),
where X’2Yo is the vp quantile of x?(1).

Remark 3.1. i) When A(u,t) = {—ulogu}~!, we have supyc,<; A(u,t) = co. One can
choose

an =din~% by,=dymnt, h=dsn /3
for some dy,da,d3s >0,0<a<1/9 and 0 <b < 1/6;
ii) When supg<,<i AM(u,t) < oo, we can choose

an =din~% by,=dynt, h=dsn /3

for some dy,ds,ds > 0,b > 0 and 0 < a < 1/3. Here, we fix the rate for h since the
optimal rate for the bandwidth in smoothing distribution estimation is n~'/3.

i11) Theorem 3.1 still holds when a, — a € (0,1/2) and b, — b € (0,1/2] as n — oo.

10



4 Simulation Study

In this section we examine the finite sample behavior of the proposed jackknife empirical
likelihood method based on A(u,t) = u~!(—log u)*min{ACFG(t)’l} in terms of coverage
probability and compare it with the method based on the asymptotic distribution of
ACFG (),

For computing the coverage probability of the proposed jackknife empirical likeli-
hood method, we choose k(z) = 12(1 — z?)2I(|z| < 1), h = 0.5n~13 a, = b, = 0.1,
Au,t) = u=(—log u)_min{"icm(t)’l} and employ the package ’emplik’ in R (see Zhou).
For computing the confidence interval based on the asymptotic distribution of ACF G(t),
we employ the multiplier method proposed by Kojadinovic and Yan (2010). More
specifically, we use equation (7) in Kojadinovic and Yan (2010) with N = 500 and
{Zi(k) ci=1,---,nk =1,---, N} being independent random variables from N (0, 1)
to calculate the critical points of the asymptotic distribution of /n{A“FE(t) — A(t)}.
We do not use a larger N since this multiplier method is computationally intensive. A
comparison study on bootstrap approximations can be found in Biicher and Dette (2010).

We draw 1, 000 random samples with size n = 100, 1000 from Gumbel copula, Hiisler-
Reiss copula and Tawn copula with Pickands dependence functions given in the end of
Section 2. In Table 5.1, we report the coverage probabilities at levels 0.9 and 0.95 for
t = 0.1,0.5,0.8, which show that i) the proposed jackknife empirical likelihood method
gives much more accurate coverage probabilities than the multiplier method based on
the asymptotic distribution of ACFC(¢); ii) the proposed jackknife empirical likelihood
method performs badly for the boundary case t = 0.1 when n = 100, but its performance

improves as n becomes large.

5 Proofs

Proof of Theorem 2.1. Define

(1, 0) = \/ﬁ{% SO I(F(Xa) < u, Ba(Xia) < v) — Clu, )},
=1

11



Then it follows Proposition 4.2 of Segers (2011) and Theorem G.1 of Genest and Segers
(2009) that

SupOSu,vSl |\/ﬁ{én(u7 U) - C(uv U)} - an(u, U) + Cl (u7 v)an(u, 1)
+Cy(u, v)a (1,v)] = O(n~Y*(logn)?(loglogn)) a.s.
and

o, (u,v) D W (u,v)
(uAv)Y(1—uAv)®  (uAV)(1—uAv)

in the space 1°°(]0, 1]?) of bounded, real-valued functions on [0, 1]? for any 6 € [0,1/2),
where W is defined before Theorem 2.1. By the Skorohod construction, there exists a

probability space carrying C’;ﬁ, oy, W* such that

(Crran) £ (Coson). WL, (5.1)
suPg<u,v<1 VLG (1, v) = Clu, 0)} = @y (u, v) + Cr(u, v)ag (u, 1) (5.2)
+Cy(u, v)al (1,v)] = O(n~Y*(logn)/?(loglogn)) a.s.
and
ag, (u, v) W*(u, v)
— =0,(1 5.3
OSSHILI,)Q (uAv)(1—uAv)  (uAv)d(1—uAv)d o(1) (5:3)
Let A%*(t; \) denote the solution to
1 A~
/ {Cr(u' ™t ut) — u*IN(u, t) du = 0.
0
Then (5.1) implies that
(AN 0<t <1 L (AN 0<t< 1), (5.4)
Write
T AGH ) = w3, ) du
_ fo(nﬂ)—l/((l—t)w){_UA(t)})\(u t) du
() a-nve C (=t ut A\ (u. 1) d (5.5)
+ f(n+1)71/((1—t)\/t){ (T ut) — u A (u, t) du .

1
+ iz o {1 = w O (1) du

= Il(t) + Ig(t) + Id(t)

12



Since 1 > A(t) > (1 —t) Vit > 1/2, (2.3) implies that I;(t) and I3(¢) are finite and

et 1)—1/((—t)ve)
supg<i<1 V1 (t)] < supg<i<y \/ﬁfo( = w2\ (u, t) du = o(1) (5.6)
supg<t<1 V12| 3(t)] < supp<i<g \/ﬁf&%)l/((l—t)vn (1 —uw)A(u,t) du = o(1).
It follows from the condition
1
sup / {1 — o I=DVE 02 )\ (4, t) du < o0
0<t<1Jo
in (2.3) and (5.3) that
1
sup |/ (i (u' ™ ut) — W (u uh)) Mu,t) dul 0. (5.7)
o<t<1 Jo
By (1.1), we have
0 < Cr(uttut) = uAO-0=D1A®#) —tA' (1)}
< u(lft)vtf(lft){A(t) _ tA’(t)}
and
0 < Coful~,ut) = wAO{A() + (1 — 1) A (1))
< ul=OVEELA () + (1 — 1) A (¢)).
Since A(t) and A’(t) are bounded on [0,1], it follows from the conditions
1
sup / u(l_t)Vt_(l_t)u(l_t)‘;?(l - ul_t)‘SZ)\(u,t) du < oo
o<t<1Jo
and
1
sup / wI=OVEt 102 (1 — )92 \(u, t) du < oo
o<t<1.Jo
in (2.3) that
( SUPg<t<1 \ fol a;(ul_t, 1)Cy (ul_t, ut))\(u, t) du
— o W )G (A (u, ) dul B 0, 658)

supg<iey | fy o (1, ul)Ca(u =, uh)A(u, £) du
— [ WA, ut) Co(ut ut )M\ (u, t) dul 2 0.

By the condition

(%)1/((1—0%)

sup n~ /4t / AMu,t) du — 0
0<t<1 (n4+1)~1/(@=t)vt)

13



in (2.3), (5.2), (5.7) and (5.8), we have

supg<y<y [Vila(t) — [ {W* ('t ut) — W*(u =, 1)Cr(ul~, ut)
—W* (1, u!)Co (™t ul) } A (u, t) du

B (nL)l/((l*t)Vt)
= 0, (n 1/4(log n)'/2(log log n) /4 supg< < f(n:11)71/<(17t)vt> A(u, t) du> + 0,(1)

= o0p(1).
(5.9)

By (5.6) and (5.9), we have
supo<r<t | Jo vi{Cr(u' ™" ut) — utOpA(u, 1) du

_ fol{W*(ulftjut) — W 1) O (u )
—W*(1, u)Co(ur =t ul) YN (u, t) du| = o0,(1),

which is equivalent to that
SUPo<s<1 | fol Vifudn BN — g AOYN (u, t) du

_ fol{W*(ul_t, ut) _ W*(ul_t, 1)C'1(u1_t, ut) (5‘10)
—W*(1,ut)Co(ur =t ul) }A(u, t) du| = op(1).

The above equation shows that as n — oo,

1
sup | [ {uM N — gAY\ (u, t) du| = op(1), (5.11)
o<t<1 Jo

which implies that

<P ( sup | [ {utEN AN, 1) dul
0<t<1 0
1
> inf /(uA(t)—u4/3))\(u,t)du>
0<t<1 Jg
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since 1/2 < A(t) <1 for all 0 < ¢t < 1. Similarly,

P (flq,f*(t;)\) <1/3 forsome te€ ][0, 1])

1
<P < sup | [ {ud BN — AN\ (u, t) dul
o<t<1 Jo

1
> inf ('3 — uA D)\ (u, t) du>
0<t<1 J,

—0 as n — oo.

Thus
P (1/3 < A% (#;)) < 4/3 for all t € [0, 1]) 1. (5.12)

By the mean-value theorem,

fol {u“i%*(t?)‘) — uA DI\ (u, t) du
= fol wa(ut) A +(1—a(u,t)) Aw* (t:)) (log u)A(u, t) du (5.13)
X (A(t) = AR (t; )
for some a(u,t) € [0,1]. Since 1/2 < A(t) < 1, we have 0 < a(u,t)A(t) + (1 —
alu, t))A%*(t; \) < 7/3 when 0 < A%*(t; ) < 4/3. Hence, it follows from (5.12) that

P (infosist fy uel0AOHI-auN AT N (< 1ogu)A(u, ¢) du

> SUPg<t<1 fol u7/3(—10g u)A(u, t) du) — 1

as n — oo, which, combining with (5.11), (5.13) and (5.1) , implies that

sup JAL* (1 1) — A(t)] = 0,(L). (5.14)
0<t<1

Then supy<;<; |AY(t; \) — A(t)| = 0,(1) follows from (5.14) and (5.4).
Next we prove that A¥(t;\) is continuous for ¢ € [0,1]. For t,,,t € [0,1] and t,,, —

t € [0,1] as m — oo, we have

1/2 . I I
/ wAn EmiN) X\ (u, b, ) du + / (un EmiD) 1)\ (u, b ) du
0 1/2
1

1/2 .
= / Cr(u ™t u'™)N(u, t ) du +/ (Cr(ur =t ubm) — D)\ (u, th)du.
0 1/2

15



Note that the function

1/2 1
Cr(u! t))\(u,t)du~|—/ (G, ut) — )\ (u, £)
0 1/2

is continuous in t € [0, 1], thus we have

/2 I,
lim (/ uAg(tm;’\))\(u,tm)du—l—/ (uAn (Bmid) _ DA(u, tm)du)
0 1/2

1/2 I
= Cr(u' =t u) N (u, t)du + / (Cr(u' =t ut) — 1)A(u, t)du.
0 1/2
Since
1/2 1
/ AMu, t)du +/ (u® — D)A(u, t)du
0 1/2

is continuous in ¢ € [0, 1], and is monotone in « for each t € [0, 1], then we conclude that
AY (L N) — AY(t; A) as m — oo. Thus A¥(£; ) is continuous in [0, 1].
Note that

1
sup / {u=DVEQ — I=DVELO2 \ (4, ) du < o0
0<t<1.Jo

for some dy € [0,1/2) in (2.3) implies that f01/2 u®? \(u,t) du < co. Thus using
uauDAD+(A=a(wt) AL (W) (— 1og u) \(u, t)
= w20 (—logu)\(u, t)u(l—a(u,t))(fi%*(U;A)—A(t))
< w0 (= logu)A(u, t)u~(1-alwt) suposic A BN =A@

A(t) > 1/2 for all ¢t € [0,1], (5.14) and

0<u ™ -1< Ly forall w €[0,1] and any fixed 0< s; <s9 <1,
82

we get that

SUPg<t<1 | fol a(u,t) A(t)+(1—a(ut)) AR* (1) (log u)A(u, t) du
—fo logu Au, t) du|

< supgyet | fo ) (= log u)\(u, t)(u~(1-a(wt) supoce<y |Aw* (s;A)—A(s)| _ 1) du|

(1-a(u,t)) supg<, <1 |AR* (52) - A(5)
< SUPosi<1 <<1a) SUbg<,<1 | AL (5:X)—A(s) [ (A(D)—6) 2

Sl (=a0ud) swpozaz A ()~ AG)HAWD+52)/2(_ log u) A(u, t) du)

= Op(l)O (Supo<t<1 fO —(1—a(u,t)) supg< o<1 |Aﬁ*(S§>\)*A(S)|+(A(t)+52)/2(_ log u)A(u, t) du)

= 0,(1)0, (Sup0<t<1 fo 2(1 — u%)\(u, t) du) = o0p(1).

(5.15)
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Note that the two processes A¥(t; \), B(t) are continuous for ¢ € [0,1]. Thus from (5.1),
(5.10), (5.13), (5.15) and (5.4), we conclude that /n{A¥(t; \) — A(t)} converges to B(t)
in C([0,1]). O

Before proving Theorem 3.1, we show some lemmas. Throughout, we assume that ¢
is a given point in (0,1) and we use 6y to denote Ag(t) .

Lemma 5.1. Under conditions of Theorem 3.1, as n — oo we have

7 Liz1 Qi(0o) & fy (Wt Ut) — W', 1)C' (u!~",uh)

W(l u CQ })\
Proof. Write
. u B/ A=) (5 - Z
‘/z(u,t) = K( Fnl hl (X“))K( n2h1(X 2))
X ufﬁl/t X
+Z_7 I{K( ( Jl)) ( n2h( 12))_ 10
- lexwx D B (0 (5.16)
K () K (—52)}
= zl(u t) + V:LQ(’LL t)
and
=301 Qi(fo)
= S (Vi (1) — uf YA, 1) du
+n! fl_bn S Vis(u, )\ (u, t) du
_ 1-bp {z K u— Fi{(llt)(Xil))K(u—ﬁylbé,t—i(Xa) 90})\ u t) du
- =1 A
/(1 w_ Pt 5
o aln by S (B (B Ty e s Oy
P/t
K (R CE N, 1) 5,17

1 [l=bn _FY -0 x
+n~! D DD Y 1K(uf(ﬂ))><

{K(M) K(M 1A,
T S 1{[{ M)—K(%)}x
an i= j=
1/t
(K (=t X))y K(M VYA (u,

17



Further, the first term I; can be expressed as

I

= L M) o Jy & S I i(Xa) < s1, Fup—i(Xiz) < s2)h™2

/(-1 1/t
xk;(“ ) ;2 )d VO gey/t — ubo) du
bn
- 1 )\ {IO 0n 1 1 (Fnl(X’Ll) < n+1 (81 + 5 )
Fn2(Xi2) < T_H(32 + 5))

1/(1-1) 1/t
x2S k(Y Y dsy/ syt - 9o}du

= fl bnf f Alu, 1) {C n+1(“_51h)1 '+ n+1’ iy (u = s2h)" + n+1)
u — soh)t + n+1 }k s1)k(s2) dsi1dsedu

"‘fl bnf f A(u,t) {C n+1 (u—s1h)'~ t+n+17n+1( — s2h) + n+1)

Cl(u— sth)! =" + n+1’ o (

Cur=t ul }k (s1)k(s2) ds1dsadu
= I+ 1.

Since sup,, <,<1-s, (h/u) < h/a, — 0 and

inf  min{(n+ ', (n+ Du' "} > (n + 1)a, —
an<u<l—by

as n — 0o, we have

log(u—sh
SUPg,, <u<1—bp,~1<s<1 | Ogl(:gus ) _ 1]
2h/u oh
< SuPan<u<1 bn —logu — —ap log(an) + —(1—bn) log(1—bn) — O’
t—1g M 1t
swp T (k) T ) 1] 0
an<u<l—by,—1<s<1 | {n + 1( n4+1
and
1
—t
sup U u—sh)l 4+ ——=1—-1 -0
an<u<l—by,,—1<s<1 ‘ {n +1 ( n+1 ’ ’

18

(5.18)

(5.19)

(5.20)

(5.21)



which, in together with (1.1), imply that

log{n_H(u s1h)t— t+n+1}+log{n+1(u s2h)t +n+1

SUDPgq, <u<1—bp,—1<s1,52<1 | log u
—1] — 0,
log{ 15 (u— soh)t +n+1}

—A(t)] — 0,

SUPq,, <u<1—bn,—1<s1,s0<1 |C (57 (U — sih)!~f + %H’ oty (u — s2h)t +
—C(u'tut)| — 0,

SUDPq, <u<1—by,—1<s1,s0<1 |C1 (57 (U — sih)! =t + n+1’ i (u — s2h)' 4

—C1(ut~tut)| — 0,

SUPq,, <u<1—bp,—1<51,52<1 102(n+1 (u— Slh)l L+ n+1: n+1 (u— sah)' 4

—Co(ul~t ut)| — 0,
—C’ll(ul_t,ut)] — 0,
SUPq,, <u<1—by,,—1<s1,52<1 |Cl2(ni+1(u - Slh)l_t + #17 nil( — s2h)" +

*Clg(ul_t, ut)] — 0,

—ng(ul_t, ut)] — 0.

SUPq,, <u<1—bp,—1<51,52<1 ’A(log{ﬁ_l(u—slh)l t+n+1 141 Og{n+1 (u— Szh)t-i-%_’_l}

SUPq,, cus1—by,—1<s1,s0<1 [C11 (7 (0 = s17)' 70 + g, 20 (u — soh)' +

SUDq,, <u<1—by,—1<s1,s0<1 1C22 (7 (0 — sth)' =" + %‘H’ o (u— sah)t +

)

n+1)

1)
1)
1)
1)

1
1)

(5.22)

Hence, by (3.2), (5.22) and similar arguments used in the proof of Theorem 2.1, we can

show that
Vall L Wl at) = W(ut=t, 1) Cy (ult, ut)

—W (1, ut)Co(ul =t ul) } A (u, t) du.
It is straightforward to verify that

¢

|Cl(u ’ut ul t| — ( A(t)) — O(ul/Z)

|Co(u' ", u)ut| = O(u?) = O(u'?)

|Cri (u! " uf)u? {1 —log u}| = O(uA®) = O(u'/?)
|Cao (ut, ut)u? log u| = O(uA®) = O(ul/?)
|Cro(ut, ut)u{l — logu}| = O(ur®) = O(u/?)

)
Ju

19

(5.23)

(5.24)



uniformly for u € [a,,1 — b,]. By Taylor expansion, we have
1-b, 1 1 _ _ h
I = an f71 f71 {Cl(ul Lutu! t(nil( - 817)1 4 # - 1)
+Ca(ul ™! uh)ut (3 (1 - 2yl (n+1 (sl

F30m () (1 + o(1)u? 2 (27 (1 — k)it L 1)?
o (5.25)

+%C22(u17t7ut)(1 + O( )) (n+1( - %)t + Dt — 1)2
+Cra(u' " ut) (1 4 0(1))u(%(1 — %)1 ty W —1)x
(2 (1= 22yt s — 1) Yh(s1)k(52)A(u, £) dsidsadu.

Consider the first term in the above expression. By (3.2),(5.22), (5.24) and the symmetry
of k(s), we have

A A Gl (= S b — )
xk‘(sl)k:( ))\(u t) dsidsadu
= f f Ci( ul)ul= t(nfLH( —%)1_t—1)k(51))\(u,t)dsldu

+itt S ”"C =ty A(u, t)du
= (@+o(1)) fl bnf Cr(u'™", u )uilitz(zlfn(l_t)(—t)S%k(Sﬁ)\(u,t) dsidu
ot f;n br Oy (=t ut) (1 — ul =) M (u, t)du

= O(h? f;;b" w32 \(u, t)du) + O(n~! fal;b” w2 \(u, t)du) = o(1/+/n).

Other terms of (5.25) can be handled in the same way, which results in

I, =o(1/yn)+0 ( St ot uyut (B 4 ) A )| du)
+0 (fl b |0 (! ut)u2_2t(h+(n+11)u)2>\(u,t)|du)
+0 (fl b | Gy (ult, utyu2t (B 4 U)QA(u,t)]du)
+0 (S ol ut)u(® + ot (B + )M w )l du)  (5.26)
—0(1/\F)+O<h?f1 br w32\ (u, t) du)
+0 (B2 f}7 " log u}~Lum 2 (u, ) du)
— o(1//n).

For the second term I in (5.17), by the mean value theorem we can write

I

/- t)(X ) Fl/(1 t)(le)k(ufﬁ‘i{(l_t)(le))
h

_ 1-b
— lan nZZ 12] 1{ nlz

Fl/(l t) X1 1/(1 t) X 1/(1-t) u l/t
(Car T TG g 5”” VK (=E A w, ) du,

(5.27)
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where &, ; j is between Fnl(Xj ) and Fn17,¢(Xj1). Using the equation

~ 1. 1
Fo1,-i(Xj1) — Fi(Xj) = ;Fnl(Xj ) — EI(Xu < Xj1),

we have
SUP; < j<p [ Fn1 (Xj1) — For,—i(Xj1)| < n 7, (5.28)
SUP1<; j<n |Fi{(17t) (le) - Fi{,(i;t) (le)‘ < %—tn_l’
Then uniformly for u € [a,, 1 — by],
u—g/ 1=
i1 2 (=1 < 1)
< S Y P((u— k)t = L < B (X1) < (wt h)E 4 L) (5.20)
< nx {(n-i-l)(u-‘rh);’t-&-(n-i-l)/n _ (n+1)(u—h)1:—(n+1)/n—1}
= O(u~'nh)
and . L/a—t)
ZI(]U | - (X; )| <1)=0(u"'h). (5.30)
j=1

Since k(s) is a density function with support on [—1, 1], it follows from (5.27), (5.29) and
(5.30) that

B =0 (W [ S i 1A ) < )G
+0 <h2n3 St S 15 < A du) (5:31)
~0 (ml S A, 1) du) = o(1/ /7).
Similarly we can show that
Iy =0(1/v/n) and Iy =o0(1/v/n). (5.32)
Hence, the Lemma follows from (5.23), (5.26), (5.31) and (5.32). O

Lemma 5.2. Under conditions of Theorem 3.1, we have

% Z?:l Q?(QO) RN (fOI{W(ul_t, ut) _ W(ul_t, 1)Cl(u1_t, ut)
—W (1, ut)Co(ul~t, ) YA (u, £) du)?

as n — o0.
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Proof. By (5.16), we can write

Q;(0)
= fal;b” ;nfb"{f/il(uh t)Vin (ua, t) + Vir (ur, t) Vo (ua, t) — Vi (ur, t)uf

+Via(u, 1) Vi (uz, ) + Via(ur, ) Via(ug, t) — Vig(ur, t)us
—uf Vi1 (ug, t) — u§Vig(ug, t) + uSul I X (u, ) A(uz, t) duy dus.

Using the similar arguments as in (5.27), we have

1 Zz 1 1=bn fal bn Vlg(’u,l,t)ViQ(’U,Q,t)/\(ul,t))\(UQ,t) dulduQ

1-b 1-b
= an nfann<7§:z 12] IZZI

B (X wi—EY =8 N~V
Fnl,—z(lef)L nl(XJl) llthl{(l t)(le)k( 1 Fnlh (le))K( 1 Fn}QL (XJZ))

A NN uiq/t ) U,Al/(l—t) )
+Fn2,*1(X]2) FnZ(Xﬂ)lF(l t)/t(ng)k( 1 Fni (XJ2))K( 1 Fnlh (le))}x

h
Fo1,—i(Xn)—F1(Xnn) 1 t/(l t)(Xll)k(uz—ﬁi{(;it)()(n))K(uz—ﬁiét(Xm))

h 1—t t
7 ) 0 “ w u 1/(1 t)
P mi(Xio)=FuaXia) 1 (101 3, 2= Pl (X e na=Faf (Xu))}) y

Aui, t)A(ug, t) durdug + op(1).

It is straightforward to check that

150 {Fu(@) — B —i(@)HEa () — Fa—i(y)}
= 2w Ay) — 2 Fa (@) Fa(y),

121 1{Fn2( ) — F n2 —i(w )}{Fn2(y)_Fn2,—i(y)}
= Ml Ea(w A y) — B2 Foa(z) Faly)

and
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Then (5.33) can be written as

5 i aln N Vi (u1, t) Vi (ug, )N (w1, £)A (w2, t) duy dug

1—bn (1—bn n
= an " Jan (ﬁ D i1 2ol
{(Fnl(le A X)) — Fnl(le)Fnl(Xll))i(ljt)z X
N N _pl/(A=t) 5
Ft/(l—t) (le)F;{(l—t) (Xll)k(%(xﬂ)) %

nl
A1/t s wo— FL/A=D) wo— P11
K(UI*Fn}QL (XJZ))k( 2 Fnl - (Xll))K( 2 Fn}f (XIQ))

—i—(F (ng N Xl2) - FnQ(X )FnQ(XIQ))t2 X
1/t
F(l t)/t( )F(l t)/t( )k(%ﬂxﬂ))x

e ) o) B

H(Cn(For (X 1), Fra(Xi2)) — Fnl(le)FnZ(XIQ))t(ll_t) X
. . A1/ (1-1)  y
Fﬁf(l_t)(Xﬂ)Fél_”/t(X (el
K(m—ﬁ%t(){ﬂ))k(w Fh (Xz2)) (u2—Fnl{(;_t)(Xu))

H(Cr(Fn1(Xn1), Fra(Xj2)) — Fnl(Xll)Fn2(Xj2))t(11_t) X
. - o o /A1)
1/(1 t)(Xll) (1 t)/t( )k(w)x

~1/(1—t) )
K (2= Fh (Xzz))k(m —F£y (Xﬂ)) (ul_Fm . (Xgl))}> %

A(ut, t)A(ug, t) duidug + op(1).

Based on the above decomposition, we can show that

D DT el Vzg(ul,t)ﬂg(uQ,t))\(ul,t))\(ug,t)dulduQ

= fo fo ({ % t/\ul t_ul t}Cl(u% B ul)Cl( " ub)
+{uf /\UQ — uhub}Co(uy ™", uh ) Coluy ™", ub) (5.34)
HC ™" ub) =y~ ub}Cr (uy ™" uf) o (uy ™ uh)
HC(uy™ 7Ut1) —uy~ uf }C1(uy ™" uh) Ca(ug ™" uf)) X
A(ut, t)A(ug, t) duidug + op(1).

Similarly, we have
IS =on faln_b" Vi1 (w1, t) Via(ug, t) duy dus
= fo fo {CO( ul ¢ utl)ulftCl(uéft,ug) — C’(uft /\u;t,uﬁ)cl(u%*t,ug) (5.35)

+C(ug ™ uf JubCa(ug ™" uh) — Cluy ™" uf A uh)Oa(uy ™, uh)yx
Aut, t)A(ug, t) duidug + op(1),
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L L L U () Vi (w2, )M (un, E) A (ua, 1) dus dus

n an

1l 1—t 1—t ¢ t (5.36)
= Jo Jo Clu;™" Nug ™" uf Aub)N(ur, t)A(uz, t) durdus + op(1),

1—bp, —bn 1)
% Z?:l an fln il(ul, t)ugo)\(ul, t))\(UQ, t) duldu2

a

(5.37)
= [ Ot wl)Cud ™t ub) Aur, ) A(us, t) durdus + 0p(1),

and

L [ s ()l A, ) A(ug, ) durdug = o0p(1). (5.38)

n an

Hence the lemma follows from (5.34)—(5.38) and the fact that

E ( S (A= ut) — Wl 1)Cy (ul ™ ut)
—W (1, ul)Co(ul =t ut) YA (u, ) du)?

—(C(ui™ " Auy ™ ud) — Clug ™" ud)uy ) O (uy " uh)

(uy
—(Cuy ™" uf Aub) = Cuy™ uf Jub) Coluy ™ uh
(uy (

(

(

(

(™" Ay =y Py O (g™ ul)Cr(ug ™ uh)
+H(C(uy " uh) — g uh)Cr (uy " ) Co (uy
—(Cluy™" uf A ub) = ufCluy™, uh))Colur ™", uf)

(Cluy " ub) = uy ™"l )Co(ug ™" uf ) O (uy ", ub)

( )

ul A ub — ubub)Co(uy ™t ul ) O (uy ™", b FA(ur, )M (ug, t) duydus.

O]

Proof of Theorem 3.1. Using similar expansions as in the proof of Lemma 5.1, we can
show that maxj<i<p |Q;(fo)| = 0,(n'/?). Hence, by using Lemmas 5.1-5.2 and standard
arguments in expanding the empirical likelihood ratio (see, for example, Owen (1988)),

we obtain that as n — oo,

1(0o) = {Zn: Qi(00)}2/ D" Q3(B0) + 0p(1) 5 X*(1).
i=1 i=1
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Figure 5.1: Ratios of the mean squared error of the new estimator A¥(t) to that

ACFG(4) for t = 0.1,0.2,-- - ,0.9.
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Table 5.1: Empirical coverage probabilities are reported for the proposed jackknife empiri-
cal likelihood confidence interval (JELCI) based on A(u,t) = u~*(— logu)~ min{ACFE(8),1}
and the confidence interval based on the multiplier method for AF¢(t) (MCI) with nom-
inal levels 0.9 and 0.95.

(n,t,Copula,d) level 0.9 level 0.9 level 0.95 level 0.95
JELCI MCI JELCI MCI
(100,0.1,Gumbel,2) 0.604 0.276 0.639 0.366
(100,0.1,Hiisler-Reiss,0.5) 0.845 0.566 0.899 0.655
(100,0.1,Tawn,0.25) 0.817 0.571 0.872 0.670
(100,0.5,Gumbel,2) 0871  0.722 0.941 0.784
(100,0.5,Hiisler-Reiss,0.5) 0.888 0.715 0.941 0.802
(100,0.5,Tawn,0.25) 0.886 0.750 0.941 0.825
(100,0.8,Gumbel,2) 0.841 0.531 0.889 0.599
(100,0.8,Hiisler-Reiss,0.5) 0.889 0.646 0.947 0.758
(100,0.8,Tawn,0.25) 0.884 0.677 0.938 0.758
(1000,0.1,Gumbel,2) 0.888 0.655 0.935 0.740
(1000,0.1,Hiisler-Reiss,0.5) 0.892 0.813 0.942 0.883
(1000,0.1,Tawn,0.25) 0.900 0.820 0.957 0.891
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