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Abstract

The mean-variance theory of Markowitz (1952) indicates that large invest-

ment portfolios naturally provide better risk diversification than small ones.

However, due to parameter estimation errors, one may find ambiguous results

in practice. Hence, it is essential to identify relevant stocks to alleviate the im-

pact of estimation error in portfolio selection. To this end, we propose a linkage

condition to link the relevant and irrelevant stock returns via their conditional

regression relationship. Subsequently, we obtain a BIC selection criterion that

enables us to identify relevant stocks consistently. Numerical studies indicate

that BIC outperforms commonly used portfolio strategies in the literature.
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1. INTRODUCTION

In financial risk analysis, Markowitz (1952) proposed mean-variance portfolio selec-

tion, and this landmark study earned him the 1990 Nobel Prize in Economic Sciences

shared with Merton Miller and William Sharpe. Since then, risk diversification has

become an increasingly important tool for analyzing investments; see for example,

Jagannathan and Ma (2003), DeMiguel et al. (2009a) and DeMiguel et al. (2009b).

This topic is particularly relevant given the current financial market turbulence, which

motivates us to study portfolio selection.

In his seminal mean-variance theory, Markowitz (1952) uses two parameters to

characterize a portfolio’s performance: expected return and variance (i.e., risk). The

investor, therefore, commonly optimizes his/her investment portfolio with an appro-

priate trade-off between expected return and risk. Because investors have different

risk attitudes, the number of potentially optimal portfolios could be large. Among

various optimal portfolios, the one with minimal variance is of particular interest for

two reasons. First, the minimum-risk portfolio could be attractive to those investors

with strong risk aversion characteristics (e.g., governments, pension funds). Second,

although the criterion is minimal risk, the actual return remains competitive; see Ja-

gannathan and Ma (2003), DeMiguel et al. (2009a), and DeMiguel et al. (2009b). This

is because it is considerably more difficult to accurately estimate the mean of a stock’s

return than its variance; see Jorion (1986) and Jagannathan and Ma (2003). Testing

a portfolio’s mean-variance spanning is, therefore, important (Huberman and Kan-

del, 1987), and many researchers advocate for the minimal risk criterion in portfolio

selection (Jagannathan and Ma, 2003).

To effectively employ the minimum-risk criterion in practice, one needs to accurately

estimate covariance matrices. Following Markowitz (1952), diversification can reduce
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the overall risk of an investment portfolio, and this strategy naturally leads us to favor

larger portfolios. However, this notion induces high-dimension covariance matrices,

which are difficult to estimate accurately; see Bickel and Levina (2008) and Rothman

et al. (2009). Furthermore, past empirical evidence suggests that the sampling error

in the covariance estimation process can significantly deteriorate a portfolio’s out-of-

sample performance. Moreover, estimation errors also lead to considerable portfolio

instability. Accordingly, portfolio weights need to be adjusted frequently and apprecia-

bly, which yields non-negligible transaction costs. Hence, a good strategy should take

into account estimation errors.

In the last decade, some empirical researchers (Goetzmann and Kumar, 2001;

Polkovnichenko, 2003; Statman, 2004) have found that investors tend not to hold many

stocks in their portfolios; average portfolio size is 3 or 4 stocks. From statistical consid-

eration, this finding is sensible since a smaller portfolio size requires a fewer number of

unknown parameters to be estimated. This in turn reduces the estimation instability

and subsequently brings down the transaction or holding cost (Statman, 2004). These

findings motivate us to consider alleviating the estimation error effect by controlling

the size of the portfolio. To this end, we define relevant stocks (i.e, stocks that must

be included in the portfolio) and irrelevant stocks (i.e., stocks that cannot provide any

additional risk reduction given the existing relevant stocks). The optimal portfolio

is established by choosing relevant stocks that balance diversification and estimation

error. Therefore, the aim of this paper is to develop a selection criterion that enables

us to consistently differentiate relevant and irrelevant stocks.

The rest of the article is organized as follows. Section 2 defines relevant and ir-

relevant stocks and proposes a linkage condition to link the relevant and irrelevant

stock returns via their conditional regression relationship. Accordingly, we obtain the
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Bayesian information criterion (BIC) and demonstrate its consistency (i.e., the capa-

bility to consistently differentiate relevant and irrelevant stocks). Section 3 presents

numerical examples including Monte Carlo studies and an empirical analysis. The ar-

ticle concludes with a brief discussion in Section 4. All technical details are left to the

Appendix.

2. BAYESIAN INFORMATION CRITERION

2.1. Relevant and Irrelevant Stocks

Let Xtj (1 ≤ j ≤ d) be the return of the jth stock observed at time t and

Xt = (Xt1, · · · , Xtd)
⊤ ∈ Rd, where d is the number of candidate stocks. We further as-

sume that the Xt’s are independent and identically distributed random variables with

E(Xt) = 0 and cov(Xt) = Σ for t = 1, · · · , n. To minimize the portfolio variance,

one needs to find an optimal weight vector ω = (ω1, · · · , ωd)
⊤ ∈ Rd, such that the

variance var(ω⊤Xt) = ω⊤Σω can be minimized under the constraint ω⊤1 = 1, where

1 = (1, 1, · · · , 1)⊤ ∈ Rd. It has been shown that the optimal solution to this mini-

mization problem is ω0 = (ω01, · · · , ω0d)
⊤ = Σ−11{1⊤Σ−11}−1; see for example, Ledoit

and Wolf (2003). To assess the out-of-sample performance, we consider X0 ∈ Rd to be

an independent copy of Xt. Then, the resulting portfolio’s out-of-sample variance is

var(ω⊤
0 X0) = (1⊤Σ−11)−1.

For the sake of convenience, we introduce generic notation S = {j1, · · · , jd̃} to

represent the portfolio that includes the j1th, j2th, · · · , jd̃th stocks. We denote its

size as |S| = d̃. Let SF = {1, 2, · · · , d} be the full-size portfolio that contains all

candidate stocks. In addition, for any d-dimensional vector β ∈ Rd and d × d matrix

Ω ∈ Rd×d, let β(S) and Ω(S) represent their corresponding sub-vector and sub-matrix.

Accordingly, the return vector of the portfolio S at time t and its covariance matrix
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are given by Xt(S) = (Xtj : j ∈ S)⊤ ∈ R|S| and Σ(S) = (σj1j2)j1,j2∈S ∈ R|S|×|S|,

respectively. Moreover, for any two portfolios Sa and Sb, we use the notation Σ(Sa,Sb)

to represent the sub-matrix of Σ, where its rows and columns are determined by Sa and

Sb, correspondingly. For example, let Σ̂ = n−1
∑

XtX
⊤
t = n−1(X⊤X) be the sample

covariance matrix of the full-size portfolio SF , where X = (X1, · · · , Xn)
⊤. Then,

Σ̂(Sa,Sb) = (σ̂j1j2 : j1 ∈ Sa, j2 ∈ Sb) ∈ R|Sa|×|Sb| is the sample covariance between Sa and

Sb. The difference between the subscript with parentheses and without parentheses is

noteworthy. For example, ω0(S) denotes a sub-vector of ω0 ∈ Rd, where ω0 is the optimal

weight vector associated with the full-size portfolio SF . On the other hand, ω0S =

{Σ−1
(S)1(S)}{1⊤

(S)Σ
−1
(S)1(S)}−1 is the optimal weight vector computed via the portfolio S

only, which leads to ω0 = ω0SF
.

Inspired by mean-variance spanning theory (Huberman and Kandel, 1987; Gibbons

et al, 1989; Kan and Zhou, 2001), we next define a stock to be relevant (irrelevant)

if its corresponding weight in ω0 is non-zero (zero). Then the optimal portfolio is

S0 = {j : ω0j ̸= 0} with size d0 = |S0|, while its complement is Sc
0 = SF\S0 with size

|Sc
0| = d − d0. Although the relevant and irrelevant stocks are clearly defined, they

are not directly useful for constructing the likelihood function of the portfolio. This

is because the conditional regression relationship between the relevant and irrelevant

stocks is not explicitly specified. To this end, we obtain the following theorem, whose

detailed technical proof can be found in Appendix A.

Theorem 1. Assume that Xt follows a multivariate normal distribution for t = 1, · · · , n.

Then, a necessary and sufficient condition for S ⊃ S0 is that, for any k ̸∈ S, we have∑
j∈S βkj = 1, where βkj are regression coefficients of Xtk on {Xtj, j ∈ S} .

The above theorem indicates that the condition
∑

j∈S βkj = 1 is crucial in deter-

mining whether S ⊃ S0. To further understand this condition, we present an insightful
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discussion below. For an arbitrary portfolio S and any given stock k ̸∈ S, we have

Xtk =
∑
j∈S

Xtjβkj + εtk, (2.1)

where (2.1) is stated in Appendix A for the proof of Theorem 1. It is noteworthy

that the error term εtk is assumed to be independent of Xtj for j ∈ S, and that such

an assumption is crucial for the implementation of our proposed method. Similar

assumption has been used in the mean-variance spanning literature; see for example

Huberman and Kandel (1987). If
∑

j∈S βkj = 1, then we can treat {βkj : j ∈ S} as

a set of portfolio weights for S. Thus, the return of S is
∑

j∈S Xtjβkj. This together

with (2.1) implies that the expected return of the kth stock is exactly the same as that

of the portfolio S, i.e., E(Xtk) = E(
∑

j∈S Xtjβkj). However, the kth stock has a larger

risk than that of S, i.e., var(Xtk) = var(
∑

j∈S Xtjβkj) + var(εtk) > var(
∑

j∈S Xtjβkj).

As a result, including the kth stock into portfolio S neither improves the portfolio’s

mean return nor reduces its risk. Consequently, we expect that S ⊃ S0.

Remark 1. It is noteworthy that Britten-Jones (1999) and Kempf and Memmel (2006)

also studied portfolios via the regression approach. Specifically, Britten-Jones (1999)

employed the regression approach to test the weights of efficient portfolio, while Kempf

and Memmel (2006) used it to obtain the distribution of the estimated weights of the

global minimum variance portfolio and then they made statistical inferences for the

efficient portfolio weights. In this article, however, our focus is to find the optimal

portfolio by identifying the relevant stocks in a large set of risky assets.

2.2. Maximum Likelihood Estimation

In the context of model selection, one often assumes that the candidate model

includes the true model. Adopting this assumption, the candidate portfolio consists of
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the optimal portfolio (i.e., S ⊃ S0). However, this heuristic assumption does not yield

a useful likelihood function for portfolio selection. Therefore, we obtain the necessary

and sufficient condition mentioned in Theorem 1, which links the relevant and irrelevant

stocks via their conditional regression relationship. For the sake of simplicity, we name∑
j∈S βkj = 1 the linkage condition.

Under the linkage condition, we are able to establish the joint likelihood function of

Xt = (X⊤
t(S), X

⊤
t(Sc))

⊤ ∈ Rd (t = 1, · · · , n) for the candidate portfolio S in the following

two steps. First, we obtain the marginal likelihood function of Xt(S),

ℓ(Σ(S)) =

(
1

2π

)n|S|/2 ∣∣∣Σ(S)

∣∣∣−n/2

exp

{
− 1

2

n∑
t=1

X⊤
t(S)Σ

−1
(S)Xt(S)

}
. (2.2)

We next get the conditional likelihood function of Xt(Sc) given Xt(S),

ℓ(ΣSc|S) =

(
1

2π

)n|Sc|/2 ∣∣∣ΣSc|S

∣∣∣−n/2

× exp

{
− 1

2

n∑
t=1

(
Xt(Sc) −B⊤

Sc|SXt(S)

)⊤
Σ−1

Sc|S

(
Xt(Sc) −B⊤

Sc|SXt(S)

)}
, (2.3)

where B⊤
Sc|S is defined in Appendix A and ΣSc|S = cov(Xt(Sc)|Xt(S)). As a result, the

joint likelihood function is ℓ(Σ(S),Σ(Sc)) = ℓ(Σ(S))ℓ(ΣSc|S).

Based on (2.2), we estimate the unknown parameter by maximizing ℓ(Σ(S)) with

respect to Σ(S), which leads to Σ̂(S) = n−1
∑n

t=1Xt(S)X
⊤
t(S). Furthermore, under the

constraint B⊤
Sc|S1(S) = 1(Sc) from Theorem 1, we maximize ℓ(ΣSc|S) in (2.2) with

respect to parameters BSc|S and ΣSc|S . The resulting constrained maximum likelihood

estimators are

B̃Sc|S =
(
X⊤

(S)X(S)

)−1(
X⊤

(S)X(Sc) − 1(S)λ̃
⊤
Sc

)
= Σ̂−1

(S)

(
Σ̂(S,Sc) − n−11(S)λ̃

⊤
Sc

)
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and

Σ̃Sc|S = n−1

n∑
t=1

(
Xt(Sc) − B̃⊤

Sc|SXt(S)

)(
Xt(Sc) − B̃⊤

Sc|SXt(S)

)⊤
= Σ̂(Sc) − Σ̂⊤

(S,Sc)Σ̂
−1
(S)Σ̂(S,Sc) + n−2λ̃Sc1⊤

(S)Σ̂
−1
(S)1(S)λ̃

⊤
Sc , (2.4)

where

λ̃⊤
Sc =

{
1⊤
(S)
(
X⊤

(S)X(S)
)−1X⊤

(S)X(Sc) − 1⊤
(Sc)

}{
1⊤
(S)
(
X⊤

(S)X(S)
)−1

1(S)

}−1

= n
{
1⊤
(S)Σ̂

−1
(S)Σ̂(S,Sc) − 1⊤

(Sc)

}{
1⊤
(S)Σ̂

−1
(S)1(S)

}−1

,

Σ̂(Sc) = n−1
∑n

t=1Xt(Sc)X
⊤
t(Sc), and Σ̂(S,Sc) = n−1

∑n
t=1 Xt(S)X

⊤
t(Sc). Accordingly, we

find the estimator of the joint likelihood function, ℓ̂(Σ(S))ℓ̂(ΣSc|S), by replacing those

unknown parameters in ℓ(Σ(S),Σ(Sc)) with their corresponding maximum likelihood

estimators.

2.3. A BIC Criterion

To study portfolio selection, we consider the joint likelihood function ℓ(Σ(Sc),Σ(S)).

Following Schwarz (1978), we then obtain the BIC criterion,

−2
(
log ℓ̂(Σ(S)) + log ℓ̂(ΣSc|S)

)
/n+ df × log n/n,

where df is the number of unknown parameters involved in both (2.2) and (2.3). Specif-

ically, we have

df =
1

2

(
|S|+ 1

)
|S|+ 1

2

(
d− |S|+ 1

)(
d− |S|

)
+
(
d− |S|

)(
|S| − 1

)
,

where the first, second, and third terms correspond to the unknown parameters in Σ(S),

ΣSc|S , and B⊤
Sc|S , respectively. It is noteworthy that the degrees of freedom associated

8



with B⊤
Sc|S is calculated by taking into account the constraint B⊤

Sc|S1(S) = 1(Sc). After

algebraic simplification, the degrees of freedom becomes df = d(d−1)/2+ |S|. Because

d(d−1)/2 is a constant and can be ignored, we have df = |S|. We further omit irrelevant

constants from ℓ̂(Σ(S)) and ℓ̂(ΣSc|S) and obtain

BIC(S) = log
∣∣Σ̂(S)

∣∣+ log
∣∣Σ̃Sc|S

∣∣+ |S| × log n/n. (2.5)

The optimal portfolio selected by BIC is Ŝbic = argminS⊂SF
BIC(S).

Remark 2. The literature generally considers two categories of selection criteria: loss

efficient (e.g., AIC, Akaike, 1973) and selection consistent (e.g., BIC, Schwartz, 1978).

Loss efficient criteria choose the best candidate model with minimum expected loss

in large samples when the true model is of infinite dimension. In contrast, selection

consistent criteria select the true model with probability tending to one in large samples

when the true model is of finite dimension and included in the set of candidate models.

Detailed discussions on both criteria can be found in Shao (1997) and McQuarrie and

Tsai (1998). In this paper, we assumed that the true model (i.e., optimal portfolio) S0

is of finite dimension and included in the list of candidate models. We further assumed

that the optimal portfolio weights ω0 is a fixed parameter and it is invariant as the

sample size n → ∞. Under the above settings, an ideal portfolio selection criterion

should be able to identify S0 consistently. As a result, BIC becomes a preferable choice.

However, if no true model S0 is assumed and/or the optimal portfolio weights ω0 is

changing with respect to the sample size n, the BIC might not be a good choice. Under

this situation, the loss efficient criteria should be considered.

Remark 3. The linkage condition allows us to define the relevant and irrelevant stocks.

As a result, we are able to construct a likelihood function, and then obtain the BIC
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criterion to select relevant stocks. Since BIC relies on the likelihood function, it is not

attainable without imposing this condition. After obtaining BIC, the optimal weight

is subsequently determined by minimizing var(ω⊤
(Ŝbic)

Xi(Ŝbic)), which is ω̂0Ŝbic
=

{Σ̂−1

(Ŝbic)
1(Ŝbic)}{1⊤

(Ŝbic)
Σ̂−1

(Ŝbic)
1(Ŝbic)}−1. Hence, Ŝbic and ω̂0Ŝbic

are simple to

calculate. Furthermore, we can employ the joint likelihood function given in section

2.2 to develop various useful selection criteria (e.g., see McQuarrie and Tsai, 1998),

which can be utilized to meet other purposes accordingly.

Remark 4. When the portfolio size, d, is large, it is impractical (often impossible) to

consider all of the 2d possible portfolios. To this end, we employ a backward elimination

algorithm to generate a searching path. The optimal portfolio is then selected from

this path. Furthermore, following an approach similar to that of Zhang and Wang

(2011), we are able to prove theoretically that the resulting path is consistent for

model selection.

To better understand the BIC portfolio, we show its asymptotic property. The

detailed technical proof can be found in Appendix B.

Theorem 2. Assume that Xt follows a multivariate normal distribution for t = 1, · · · , n.

Then, we have P (ŜBIC = S0) → 1 as n → ∞.

The above theorem indicates that BIC is able to identify the optimal portfolio S0

consistently, as long as the sample size is sufficiently large. In practice, however, a

large data set may not be available. Hence, it is sensible to evaluate the finite sample

performance of BIC empirically, which is done in the next section.

3. NUMERICAL STUDIES

To evaluate the finite sample performance of the BIC criterion, we present two

numerical examples. The first one is a simulation study, which allows us to assess the
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asymptotic result (i.e., Theorem 2). The second example is a real data set, for which

the underlying “true” model structure is not known a priori.

To assess the performance of BIC as well as make comparisons, we consider five

alternative methods that include NAIVE (the portfolio weights are equally distributed

across each of the stocks), MV (the portfolio weights are determined by minimizing

the in-sample variance), MU (the weights are determined by maximizing the in-sample

expected utility), SHORT (the portfolio weights are determined by minimizing the

in-sample risk under the shortsale constraint, ω0j ≥ 0 for every 1 ≤ j ≤ d), and

LASSO (the portfolio weights are determined by minimizing the in-sample variance

under an L1-type constraint with the tuning parameter selected by two-fold cross-

validation; see Tibshirani (1996) and DeMiguel et al. (2009a). Detailed illustrations

regarding MV, MU, and SHORT can be found in DeMiguel et al. (2009a,b); they

are also briefly described in the following remark. It is important to note that BIC,

SHORT, and LASSO select stocks and determine their corresponding optimal portfolio

weights, while NAIVE, MV, and MU only allocate optimal weights.

Remark 5. Based on the minimum variance portfolio (i.e., MV) approach, the optimal

weight can be obtained by solving the equation minω ω
⊤Σ̂ω s.t. ω⊤1 = 1, which yields

ωMV = Σ̂−11(1⊤Σ̂−11)−1. The setting of shortsale constraint portfolio (i.e., SHORT)

is similar to MV, except for adding one more constraint ωi ≥ 0 (i = 1, · · · , d). Fur-

thermore, the optimal weight of the MU portfolio can be obtained by maximizing the

in-sample expected utility, i.e., maxω ω
⊤µ̂ − κω⊤Σ̂ω, where κ is the risk aversion pa-

rameter and µ̂ is the in-sample average return. Accordingly, the optimal weight is

ω̃ = κ−1Σ̂−1µ̂. Since we only focus on risky assets, the resulting optimal weight of the

MU portfolio becomes ωMU = ω̃(ω̃⊤1)−1 = (1⊤Σ̂−1µ̂)−1Σ̂−1µ, where the normalization

constant ω̃⊤1 is to make sure that the sum of weights on risky assets equals 1. It is
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noteworthy that ωMU is not related to the risk aversion parameter κ, and it is the same

as the optimal weight obtained from the in-sample Sharpe Ratio (Chen et al, 2011).

Remark 6. Finding the optimal weight of the LASSO portfolio is different from those of

MV, SHORT, and MV. It is the solution by minimizing the in-sample variance together

with an additional penalty term, i.e., minω ω
⊤Σ̃ω + λ|ω|1 s.t. ω⊤1 = 1, where Σ̃ is

the sample covariance for the given portfolio, |ω|1 denotes the L1 norm of ω, and λ is

a tuning parameter which can be selected by two-fold cross-validation. Specifically, for

a given window with τ observations, we split them into two folds (one is for estimation

and the other one is for validation), where each fold consists of τ/2 sample returns.

We then choose the LASSO parameter using the following steps. First, compute the

sample covariance, Σ̃, from the first τ/2 observations. Second, obtain the optimal

weight of the LASSO portfolio, ωLASSOλ
, for each given tuning parameter λ. Third,

compute rλ,t = ω⊤
LASSOλ

µt, where µt is the t-th return from the second τ/2 observations.

Subsequently, calculate the sample variance σ2
λ of {rλ,t : t = τ/2 + 1, · · · , τ}, and then

choose the tuning parameter λ that minimizes σ2
λ.

3.1. A Simulation Example

We consider three different sizes of the true model and the full model, (d0, d) =

(5, 30), (10, 60), and (15, 90). For a given (d0, d), we assume that the first d0 stocks

(i.e., Xtj with 1 ≤ j ≤ d0) are relevant and they are simulated from a d0-dimensional

multivariate normal distribution with mean 0 and covariance matrix Σ(S0) = τ(A⊤A),

where S0 = {1, 2, · · · , d0}, A = (aj1j2) ∈ Rd0×d0 , and aj1j2 are independently generated

from a standard normal distribution. It is noteworthy that the constant τ ∈ R1 satisfies

1⊤
(S0)

Σ−1
(S0)

1(S0) = 1⊤Σ∗−11, where Σ∗ is the sample covariance matrix computed from

the real dataset in section 3.2. Hence, the theoretical minimum risk of this simulated

portfolio imitates what we observe from the empirical example. Conditional on the first
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d0 stocks, the rest of the stock returns are generated by Xtk = d−1
0

∑d0
j=1Xtj +0.1× εtk

for every d0 < k ≤ d, where εtk is a standard normal random variable. According to

Theorem 1, the stocks Xtk with d0 < k ≤ d are irrelevant for risk minimization.

In each of the above settings, 500 data sets are generated with sample sizes n = 120,

240 and 600. In each realization, we obtain Ŝ via BIC as well as the five other selection

criteria. Afterwards, we compute for each corresponding size |Ŝ| and the resulting

portfolio weights ω̂Ŝ = Σ̂−1

(Ŝ)1(Ŝ){1⊤
(Ŝ)Σ̂

−1

(Ŝ)1(Ŝ)}−1 ∈ R|Ŝ|. Accordingly, the out-of-sample

risks are given by σ̂ = (ω̂⊤
ŜΣ(Ŝ)ω̂Ŝ)

1/2. To assess the accuracy of BIC, SHORT and

LASSO in portfolio selection, we further compute the correct fit (CF = I(Ŝ = S0)),

the true rate (TR=|Ŝ
∩

S0|/|S0|), and the false rate (FR=|Ŝ
∩
Sc
0|/|Sc

0|). Note that

TR examines model underfitting, whereas FR measures model overfitting. Finally, the

average for each of the five performance measures across the 500 simulation realizations

are reported.

We begin by assessing the finite sample performance of BIC and then comparing

its selection ability with SHORT and LASSO. Table 1 demonstrates that, for a fixed

(d0, d)-specification, both CF and TR of BIC steadily increase as the sample size n

increases, while FR steadily decreases. In fact, our unreported simulation results show

that CF can be close to 100% when the sample size is sufficiently large. All of the

findings confirm that BIC is a consistent criterion, as stated in Theorem 2. Accordingly,

the portfolio size Ŝ selected by BIC is close to that of the true model. Table 1 also

indicates that BIC is considerably better than SHORT via the underfitting measure

TR, while it is somewhat inferior to SHORT via the overfitting measure FR in the case

of (d0, d) = (15, 90). Moreover, although LASSO underfits slightly less often than BIC,

it overfits substantially more often than BIC. As a result, BIC outperforms SHORT

and LASSO in identifying the true model correctly. In sum, BIC performs best.
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In addition to examining portfolio selection, we next compare BIC with the other

five approaches via the out-of-sample risk (i.e., σ̂). Because the simulation results

across different sample sizes are qualitatively similar, we mainly focus on the results

with n = 120. Table 1 shows that NAIVE and MU perform poorly, and SHORT is

better than both of them. It also indicates that MV and LASSO are superior to the

above three methods. However, BIC outperforms MV by a considerable margin. The

relative improvement can be as large as (5.97− 3.78)/3.78 = 57.9% when d = 90. It is

remarkable that such outstanding performance is achieved with a very small portfolio

size of 19.31, which accounts for only 19.31/90 = 21.5% of the total candidate stocks.

Moreover, LASSO is less competitive than BIC, although it performs better than MV.

Interestingly, LASSO selects the larger portfolio to attain the minimum risk, while

SHORTmight choose the smaller portfolio to mitigate risk. In conclusion, BIC balances

risk diversification and estimation error, which enables it to perform best.

3.2. An Empirical Example

We next consider a real dataset that records the monthly return (i.e., monthly

closing prices) of 100 US risky assets named “100 Portfolios Formed on Size and Book-

to-Market Ratio” collected from K. French’s online data library. After eliminating the

assets with missing values, we obtain a sample of 87 risky assets during the period of

01/1969–12/1998. The total number of observations is N = 30×12 = 360. For the sake

of convenience, we denote returns by {Xt : 121−N ≤ t ≤ 120}, where t = 0 corresponds

to 12/1988. Then, we employ {Xt : −n + 1 ≤ t ≤ 0} as the in-sample training data

with n = 120 and 240. Moreover, the last 10 years of data ({Xt : 1 ≤ t ≤ 120}) are

reserved for out-of-sample testing. It is also noteworthy that the return in the training

data is centralized. Following DeMiguel et al. (2009a,b), we assume that the investor

updates the portfolio weights in a monthly manner. Specifically, the investor selects an
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optimal portfolio (i.e., Ŝ) based on the training data {X1−t : 1 ≤ t ≤ n}, where n is the

sample size. Once Ŝ is selected, it is fixed throughout the testing period (i.e., 01/1989–

12/1998). However, for every observation in the testing period (i.e., 1 ≤ t ≤ 120), we

obtain an updated optimal portfolio weight based on the mostly recent n observations,

i.e., {Xt−s : 1 ≤ s ≤ n}. Accordingly, the resulting estimate ω̂t
Ŝ yields its realized

return rt = X⊤
t ω̂

t
Ŝ for 1 ≤ t ≤ 120.

To assess the out-of-sample performance of the selected portfolio, we consider three

performance measures, namely the portfolio size |Ŝ|, the sample mean (µ̂∗) of rt, and

the sample standard deviation (σ̂∗) of rt (1 ≤ t ≤ 120). Because the portfolio weights

are updated periodically, we further compute the transaction cost explained below. Let

the portfolio weight be ω̂t
Ŝ = (ω̂t

j,Ŝ : j ∈ Ŝ) ∈ R|Ŝ| for 1 ≤ t ≤ 120. After the portfolio

is held for a month, the actual weight assigned to the jth stock has changed from ω̂t
j,Ŝ

to ω̂t
j,Ŝ(1 + Xtj) for every j ∈ Ŝ, while the updated portfolio weight becomes ω̂t+1

j,Ŝ

obtained via the newly updated data. To adjust the portfolio weight from ω̂t
j,Ŝ(1+Xtj)

to ω̂t+1

j,Ŝ , the amount of change is |ω̂t
j,Ŝ(1 +Xtj)− ω̂t+1

j,Ŝ |. Hence, the total change across

the entire portfolio Ŝ is
∑

j |ω̂t
j,Ŝ(1+Xtj)− ω̂t+1

j,Ŝ |. As a result, the average change (i.e.,

Average Turnover, DeMiguel et al. (2009a,b)) across the entire testing period is

AT =
1

119

119∑
t=1

d∑
j=1

∣∣∣ω̂t
j,Ŝ(1 +Xtj)− ω̂t+1

j,Ŝ

∣∣∣.
Using µ̂∗, σ̂∗, and AT, we define the last performance measure, the Sharpe Ratio

(Sharpe et al., 2001), which is SR = (µ̂∗ − γ × AT)/σ̂∗, where γ is the parameter

that characterizes the transaction cost. For the sake of comparison, we consider three

different values of γ, which correspond to low (γ = 0.25%), median (γ = 0.5%), and

high (γ = 0.75%) transaction costs, respectively, although γ = 0.5% seems to be a

reasonable choice (Blanchett, 2007).
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Table 2 presents six portfolio strategies with seven performance measures. Because

NAIVE’s diversification is independent of the sample size, its associated performance

measures are identical across the two different sample sizes (i.e., n = 120 and n = 240).

In addition, the portfolio weights of NAIVE are constant. Hence, it is not surprising

that NAIVE yields the smallest AT, and its Sharpe Ratio is above 30%. Our results

corroborate the empirical findings of DeMiguel et al. (2009b). We next consider the

MV approach. Although it minimizes the in-sample risk, Table 2 shows that MV fails

to extend its outstanding in-sample performance to the out-of-sample validation. Its

standard deviation is larger than that of NAIVE when n = 120. Moreover, the average

turnover of MV is appreciable. Accordingly, if the sample size is small (i.e., n = 120)

or the transaction cost is high (i.e., γ = 0.75%), then MV’s Sharpe Ratios are worse

than those of NAIVE; see DeMiguel et al. (2009b) for a useful discussion.

In contrast to MV, MU yields the largest standard deviation although its average

return is very high when n = 240. This is because the mean return in an efficient capital

market (e.g., the US market) is difficult to estimate accurately and the resulting esti-

mation errors lead to unstable portfolio weights. Accordingly, the associated turnover

and transaction costs are very high. See Jorion (1986) for an excellent discussion and

references therein. It is, therefore, not surprising to find that MU’s out-of-sample

Sharpe Ratios in Table 2 are very low.

According to the theoretical analysis of Jagannathan and Ma (2003), imposing the

short sale constraint in the portfolio optimization process can lead to risk reduction.

Table 2 confirms their findings and indicates that SHORT has the third smallest risk,

σ̂∗. However, its mean returns are considerably worse than those of BIC. As a result,

the Sharpe Ratio measures are not the best. It is of interest to note that LASSO

yields the best out-of-sample risk performance. However, its average turnover is higher
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that of BIC. This is mainly because LASSO’s size is larger than the size of BIC.

Hence, the resulting Sharpe Ratio measures of LASSO are inferior to those of BIC.

This is particularly true when the transaction cost is high. The above findings are

more discernible when the sample size is 120. Furthermore, Table 2 indicates that BIC

yields the second smallest risk across the two different sample sizes, while yielding the

highest and second highest returns, respectively, for n = 120 and 240. Moreover, the

sizes of BIC are small (i.e., 11 for n = 120 and 8 for n = 240) so that the resulting AT

values are reasonable.

Finally, Table 3 presents the pairwise comparison between BIC and each of the other

five portfolio methods via three measures. The first measure is µ̃, which stands for the

difference between the BIC portfolio and one of its competing methods (e.g., Naive)

in terms of the out-of-sample mean return. The second is σ̃; it reflects the difference

in standard deviation. The third measure is SR, which represents the difference in

terms of Sharpe Ratio with γ = 0.50%. Based on these three measures, BIC generally

performs better than the rest of methods in terms of both the mean return and standard

deviation measures. In particular, the Sharpe Ratio differences between BIC and each

of the other methods are statistically significant at the 5% level. Consequently, BIC

performs best in Sharpe Ratios.

4. CONCLUSIONS

In portfolio selection, we introduce relevant and irrelevant stocks to balance di-

versification and estimation error. In addition, we propose the linkage condition to

establish a connection between the relevant and irrelevant stocks, which allows us to

obtain a Bayesian information criterion. To broaden the usefulness of this proposed

strategy, we identify three avenues for future research. The first is to adopt the ideas

of Bayesian model averaging (Hoeting et al., 1999) and adaptive mixing (Yang, 2001)
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to mitigate the instability of portfolio selection. Thus, the resulting strategy would

take into account not only the estimation error but also the selection process. The

second potential avenue would be extending Bayesian information criterion to study

high dimensional portfolios with d ≫ n (Wang, 2009). The third avenue would be to

relax the independence assumption, which was used to facilitate the theoretical devel-

opments of BIC; see also (Kan and Zhou, 2007) and Fan et al (2008). This area of

research is particularly important given the high degree of serial dependence found in

stock returns; see DeMiguel et al. (2009a) for a recent discussion of this issue). We

believe efforts in these areas would strengthen the field of portfolio selection.

APPENDIX: TECHNICAL DETAILS

Appendix A. The Proof of Theorem 1

Sufficiency. To show sufficiency, we need to demonstrate that including any addi-

tional stocks in the portfolio would increase the portfolio risk, i,e., the risk of the new

portfolio is larger than σ2
S = (1(S)Σ

−1
(S)1(S))

−1. To this end, we consider an arbitrary

portfolio weight vector ω ∈ Rd, and then evaluate its corresponding risk as follows,

var
(
ω⊤Xt

)
= var

(
ω⊤
(S)Xt(S) + ω⊤

(Sc)Xt(Sc)

)
,

where Xt(Sc) and ω(Sc) are the complements of Xt(S) and ω(S), respectively. It is

noteworthy that, under the normality assumption of Xt, we are able to show that

Xtk =
∑

j∈S Xtjβkj + εtk for any k ̸∈ S, where βkj are some regression coefficients, εtk

is a normally distributed random variable with mean zero and positive variance, and

εtk is independent of Xt(S). Accordingly, we have

ω⊤
(Sc)Xt(Sc) = ω⊤

(Sc)B
⊤
Sc|SXt(S) + ω⊤

(Sc)εtSc ,
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where B⊤
Sc|S = {βkj : k ∈ Sc, j ∈ S} ∈ R|Sc|×|S| and εtSc = {εtk : k ∈ Sc} ∈ R|Sc|.

Subsequently,

var
(
ω⊤Xt

)
= var

{(
ω⊤
(S) + ω⊤

(Sc)B
⊤
Sc|S

)
Xt(S) + ω⊤

(Sc)εtSc

}

= var
{(

ω⊤
(S) + ω⊤

(Sc)B
⊤
Sc|S

)
Xt(S)

}
+ var

(
ω⊤
(Sc)εtSc

)
. (A.1)

Under the condition of B⊤
Sc|S1(S) = 1(Sc), we obtain

(
ω⊤
(S) + ω⊤

(Sc)B
⊤
Sc|S

)
1(S) = ω⊤

(S)1(S) + ω⊤
(Sc)1(Sc) = 1.

Hence, ω∗⊤
S = ω⊤

(S) + ω⊤
(Sc)B

⊤
Sc|S is also a portfolio weight (i,e., ω∗⊤

S 1(S) = 1). This,

together with (A.1), implies that the risk of ω⊤Xt is strictly larger than that of

ω∗⊤
S Xt(S), unless ω(Sc) = 0. In other words, if ω(Sc) ̸= 0, we must have var(ω⊤Xt) >

var(ω∗⊤
S Xt(S)) ≥ σ2

S , where the last inequality is due to the definition of σ2
S . Conse-

quently, portfolio S is sufficient for risk minimization (i.e, S ⊃ S0), and the proof for

sufficiency is complete.

Necessity. Assume
∑

βkj ̸= 1 for some k ̸∈ S, and we then show that S is not

sufficient for the risk minimization. We define S∗ = S
∪
{k}, X∗

t = Xt(S∗), and ω∗ =

{(1−ωk)ω
⊤
0S , ωk)

⊤ ∈ R|S|+1, where ωk is the weight assigned to the kth stock. We next

compute the variance of the portfolio S∗ below. After algebraic simplification,

var
(
ω∗⊤X∗

t

)
=
{
β⊤
k,SΣ(S)βk,S+var(εtk)+σ2

S−2σ2
Sβ

⊤
k,S1(S)

}
ω2
k−2σ2

S

(
1−β⊤

k,S1(S)

)
ωk+σ2

S

=
{
β⊤
k,SΣ

1/2
(S)

(
I(S) −M(S)

)
Σ

1/2
(S)βk,S + σ2

S

(
1− β⊤

k,S1(S)

)2
+ var(εtk)

}
ω2
k

−2σ2
S

(
1− β⊤

k,S1(S)

)
ωk + σ2

S , (A.2)
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where I(S) is the |S|×|S| identity matrix andM(S) = Σ
−1/2
(S) 1(S)(1

⊤
(S)Σ

−1
(S)1(S))

−11⊤
(S)Σ

−1/2
(S) .

Because the coefficient of ω2
k is positive, we obtain the minimum of var(ω∗⊤X∗

t ) at

ω̂k =
σ2
S(1− β⊤

k,S1(S))

β⊤
k,SΣ(S)β

⊤
k,S + var(εtk) + σ2

S − 2σ2
Sβ

⊤
k,S1(S)

.

Under the condition
∑

βkj ̸= 1, we have that ω̂k ̸= 0. However, (A.2) indicates that

ωk = 0 leads to σ2
S . This implies that var(ω̂∗⊤X∗

t ) < σ2
S , where ω̂∗ = (ω̂⊤

S , ω̂k)
⊤ and

ω̂S =
(
1− ω̂k

)
ω0S . Consequently, the risk of S can be further reduced by including the

kth stock into the portfolio. This completes the proof.

Appendix B. The Proof of Theorem 2

For any candidate portfolio S, we define Q+ = {S : S ⊃ S0,S ≠ S0} and Q− =

{S : S ̸⊃ S0}. To prove the theorem, we consider two different cases, namely overfitted

portfolios and underfitted portfolios, as given below.

Case 1. Overfitted (i.e., S ∈ Q+). The joint likelihood function of (Xt) for the

overfitted portfolio S is ℓ(Σ(S),Σ(Sc)) = ℓ(Σ(S))ℓ(ΣSc|S), where ℓ(Σ(S)) and ℓ(ΣSc|S) are

given in equations (2.2) and (2.3), respectively. Because S is overfitted, we can further

decompose the marginal likelihood function as follows,

ℓ(Σ(S)) = ℓ
(
Σ(S0)

)
ℓ
(
Σ(S\S0)|S0

)
,

where

log ℓ
(
Σ(S0)

)
= −1

2

(
n log |Σ(S0)|+

n∑
t=1

X⊤
t(S0)

Σ−1
(S0)

Xt(S0)

)
, (A.3)

log ℓ
(
Σ(S\S0)|S0

)
= −1

2

{
n log

∣∣∣Σ(S\S0)|S0

∣∣∣
+

n∑
t=1

(
Xt(S\S0) −B⊤

(S\S0)|S0
Xt(S0)

)⊤
Σ−1

(S\S0)|S0

(
Xt(S\S0) −B⊤

(S\S0)|S0
Xt(S0)

)}
, (A.4)
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B⊤
(S\S0)|S0

is a |S\S0| × |S| matrix with unknown regression coefficients, and some

irrelevant constants are omitted from equations (A.3) and (A.4). Accordingly,

ℓ(Σ(S),Σ(Sc)) = ℓ
(
Σ(S0)

)
ℓ
(
Σ(S\S0)|S0

)
ℓ
(
ΣSc|S

)
. (A.5)

Applying the first two likelihood functions on the right-hand side of (A.5), we obtain

their corresponding maximum likelihood estimators,

Σ̂(S0) = n−1

n∑
t=1

Xt(S0)X
⊤
t(S0)

, (A.6)

and

Σ̂(S\S0)|S0 = n−1

n∑
t=1

(
Xt(S\S0) − B̂⊤

(S\S0)|S0
Xt(S0)

)(
Xt(S\S0) − B̂⊤

(S\S0)|S0
Xt(S0)

)⊤
, (A.7)

where B̂(S\S0)|S0 = (X⊤
(S0)

X(S0))
−1(X⊤

(S0)
X(S\S0)). Furthermore, maximizing the third

term on the right-hand side of (A.5) with the constraint B⊤
Sc|S1(S) = 1(Sc) obtained

from Theorem 1 yields the constrained maximum likelihood estimator, Σ̃Sc|S , which is

given on equation (2.4). After algebraic simplification and then omitting the irrelevant

terms, the −2 log /n of the maximum of ℓ(Σ(S),Σ(Sc)) is

L(S) = −2 log
[
ℓ
(
Σ̂(S0)

)
ℓ
(
Σ̂(S\S0)|S0

)
ℓ
(
Σ̃Sc|S

)]
/n

= log
∣∣Σ̂(S0)

∣∣+ log
∣∣Σ̂(S\S0)|S0

∣∣+ log
∣∣Σ̃Sc|S

∣∣. (A.8)

We next consider the joint likelihood function of Xt for the optimal portfolio S0,

ℓ(Σ(S0),Σ(Sc
0)
) = ℓ(Σ(S0))ℓ(ΣSc

0 |S0), where ℓ(Σ(S0)) and ℓ(ΣSc
0 |S0) are given in equations

(2.2) and (2.3), respectively, except for replacing S with S0. Because S ⊃ S0 and
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S ̸= S0, we can further decompose the conditional likelihood function as follows,

ℓ(ΣSc
0 |S0) = ℓ

(
Σ(S\S0)|S0

)
ℓ
(
ΣSc|S

)
.

Accordingly,

ℓ(Σ(S0),Σ(Sc
0)
) = ℓ

(
Σ(S0)

)
ℓ
(
Σ(S\S0)|S0

)
ℓ
(
ΣSc|S

)
. (A.9)

It is noteworthy that (A.9) represents the joint likelihood function of (Xt) for the

portfolio S0, while (A.5) is the joint likelihood function of (Xt) for the portfolio S.

Hence, the resulting parameter estimator of Σ(S\S0)|S0 obtained from the second term

on the right-hand side of the above equation is different from that obtained from

(A.5), although the other two parameter estimators of Σ(S0) and ΣSc|S are the same

as those given in equations (A.6) and (2.4), respectively. Maximizing the conditional

likelihood function ℓ
(
Σ(S\S0)|S0

)
with the constraint B⊤

(S\S0)|S0
1(S0) = 1(S\S0) obtained

from Theorem 1 leads to the constrained maximum likelihood estimator

Σ̃(S\S0)|S0 = n−1

n∑
t=1

(
Xt(S\S0)−B̃⊤

(S\S0)|S0
Xt(S0)

)(
Xt(S\S0)−B̃⊤

(S\S0)|S0
Xt(S0)

)⊤
, (A.10)

where

B̃(S\S0)|S0 =
(
X⊤

(S0)
X(S0)

)−1(
X⊤

(S0)
X(S\S0) − 1(S)λ̃

⊤
(S\S0)

)
and

λ̃⊤
(S\S0)

=
{
1⊤
(S0)

(
X⊤

(S0)
X(S0)

)−1

X⊤
(S0)

X(S\S0) − 1⊤
(S\S0)

}{
1⊤
(S0)

(
X⊤

(S0)
X(S0)

)−1

1(S0)

}−1

.

After algebraic simplification and ignoring the irrelevant terms, the −2 log /n of the

22



maximum of ℓ(Σ(S0),Σ(Sc
0)
) is

L(S0) = −2 log
[
ℓ
(
Σ̂(S0)

)
ℓ
(
Σ̃(S\S0)|S0

)
ℓ
(
Σ̃Sc|S

)]
/n

= log
∣∣Σ̂(S0)

∣∣+ log
∣∣Σ̃(S\S0)|S0

∣∣+ log
∣∣Σ̃Sc|S

∣∣. (A.11)

Applying (A.7), (A.8), (A.10), (A.11), and BIC in (2.5), we obtain that

BIC(S)− BIC(S0) =
{
L(S)− L(S0)

}
+
(
|S| − |S0|

)
× log(n)/n

≥
{
L(S)− L(S0)

}
+ log(n)/n

= log
∣∣∣n−1

n∑
t=1

(
Xt(S\S0) − B̂⊤

(S\S0)|S0
Xt(S0)

)(
Xt(S\S0) − B̂⊤

(S\S0)|S0
Xt(S0)

)⊤∣∣∣
− log

∣∣∣n−1

n∑
t=1

(
Xt(S\S0) − B̃⊤

(S\S0)|S0
Xt(S0)

)(
Xt(S\S0) − B̃⊤

(S\S0)|S0
Xt(S0)

)⊤∣∣∣
+ log(n)/n. (A.12)

Following the definitions of B̂(S\S0)|S0 and B̃(S\S0)|S0 , we have that

B̃(S\S0)|S0 = B̂(S\S0)|S0

−
(
X⊤

(S0)
X(S0)

)−1

1(S0)

{
1⊤
(S0)

(
X⊤

(S0)
X(S0)

)−1

1(S0)

}−1

×
(
1⊤
(S0)

B̂(S\S0)|S0 − 1⊤
(S\S0)

)
. (A.13)

Furthermore, B̂(S\S0)|S0 − B(S\S0)|S0 = Op(n
−1/2). This together with B⊤

(S\S0)|S0
1(S0) =

1(S\S0) leads to 1⊤
(S0)

B̂(S\S0)|S0 − 1⊤
(S\S0)

= Op(n
−1/2). Moreover

(
X⊤

(S0)
X(S0)

)−1

1(S0)

{
1⊤
(S0)

(
X⊤

(S0)
X(S0)

)−1
1(S0)

}−1

→p Σ
−1
(S0)

1(S0)

(
1⊤
(S0)

Σ−1
(S0)

1(S0)

)−1

,
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as n → ∞. Substituting the above results into (A.13), we have that B̃(S\S0)|S0 =

B̂(S\S0)|S0 +Op(n
−1/2). Hence,

Σ̃(S\S0)|S0 = n−1

n∑
t=1

(
Xt(S\S0) − B̃⊤

(S\S0)|S0
Xt(S0)

)(
Xt(S\S0) − B̃⊤

(S\S0)|S0
Xt(S0)

)⊤

= n−1

n∑
t=1

(
Xt(S\S0) − B̂⊤

(S\S0)|S0
Xt(S0)

)(
Xt(S\S0) − B̂⊤

(S\S0)|S0
Xt(S0)

)⊤

+n−1

n∑
t=1

(
B̃⊤

(S\S0)|S0
Xt(S0) − B̂⊤

(S\S0)|S0
Xt(S0)

)(
B̃⊤

(S\S0)|S0
Xt(S0) − B̂⊤

(S\S0)|S0
Xt(S0)

)⊤
= Σ̂(S\S0)|S0 +Op(1/n), (A.14)

where the cross term in the derivation of the above equation vanishes and is omitted.

Consequently,

BIC(S)− BIC(S0) ≥ log
∣∣Σ̂(S\S0)|S0

∣∣− log
∣∣Σ̂(S\S0)|S0 +Op(1/n)

∣∣+ log(n)/n

≥ Op(1/n) + log(n)/n,

which indicates that, with probability tending to 1, BIC(S) > BIC(S0) for any over-

fitted portfolio S. Thus, we conclude that P{infS∈Q+ BIC(S) > BIC(S0)} → 1.

Case 2. Underfitted (i.e., S ∈ Q−). Define S∗ = S
∪
S0. Then, applying the

same techniques as used in obtaining (A.5), we have the joint likelihood function of Xt

for the portfolio S∗ as follows,

ℓ(Σ(S∗),Σ(S∗c)) = ℓ(Σ(S∗))ℓ(ΣS∗c|S∗)

= ℓ
(
Σ(S)

)
× ℓ
(
Σ(S∗\S)|S

)
× ℓ
(
Σ(S∗)c|S∗

)
, (A.15)
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where

log ℓ
(
Σ(S)

)
= −1

2

(
n log |Σ(S)|+

n∑
t=1

X⊤
t(S)Σ

−1
(S)Xt(S)

)
,

log ℓ
(
Σ(S∗\S)|S

)
= −1

2

(
n log

∣∣∣Σ(S∗\S)|S

∣∣∣
+

n∑
t=1

(
Xt(S∗\S) −B⊤

(S∗\S)|SXt(S)

)⊤
Σ−1

(S∗\S)|S

(
Xt(S∗\S) −B⊤

(S∗\S)|SXt(S)

))
,

log ℓ
(
ΣS∗c|S∗

)
= −1

2

(
n log

∣∣∣ΣS∗c|S∗

∣∣∣
+

n∑
t=1

(
Xt(S∗c) −B⊤

S∗c|S∗Xt(S∗)

)⊤
Σ−1

S∗c|S∗

(
Xt(S∗c) −B⊤

S∗c|S∗Xt(S∗)

))
,

and some irrelevant constants are omitted from the above equations. Following the

same discussion as given in (A.8), we obtain that

L(S∗) = log
∣∣∣Σ̂(S)

∣∣∣+ log
∣∣∣Σ̂(S∗\S)|S

∣∣∣+ log
∣∣∣Σ̃S∗c|S∗

∣∣∣,
where Σ̂(S), Σ̂(S∗\S)|S , and Σ̃S∗c|S∗ are defined as in equations (A.6), (A.7), and (2.4),

except for replacing S0 and S in those equations with S and S∗, respectively. Applying

the same approach used in the derivation of equation (A.11), we have that

L(S) = log
∣∣∣Σ̂(S)

∣∣∣+ log
∣∣∣Σ̃(S∗\S)|S

∣∣∣+ log
∣∣∣Σ̃S∗c|S∗

∣∣∣,
where Σ̃(S∗\S)|S is defined as in (A.10), except for replacing S0 and S in that equation

with S and S∗, respectively.

We next follow the same technique as in the derivation of (A.14) and obtain that

Σ̃(S∗\S)|S = Σ̂(S∗\S)|S + Ĉ, (A.16)
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where

Ĉ =
(
B̂⊤

(S∗\S)|S1(S) − 1(S∗\S)|S

)
1⊤
(S)Σ̂

−1
(S)1(S)

(
1⊤
(S)B̂(S∗\S)|S − 1⊤

(S∗\S)

)
.

Furthermore, with probability tending to 1

Ĉ →p C =
(
B⊤

(S∗\S)|S1(S) − 1(S∗\S)|S

)
1⊤
(S)Σ

−1
(S)1(S)

(
1⊤
(S) B(S∗\S)|S − 1⊤

(S∗\S)

)
.

Because S ̸⊃ S0, we have 1⊤
(S) B(S∗\S)|S ̸= 1⊤

(S∗\S). Hence, C is a non-zero positive

semi-definite matrix. Thus, there exists a positive constant c0 that satisfies

log
∣∣∣Σ̃(S∗\S)|S

∣∣∣− log
∣∣∣Σ̂(S∗\S)|S

∣∣∣ ≥ c0.

As a result,

BIC(S)− BIC(S∗) =
{
L(S)− L(S∗)

}
−
(
|S∗| − |S|

)
× log(n)/n

≥ c0 −
(
|S∗| − |S|

)
× log(n)/n →p≥ c0.

Consequently, with probability tending to 1, we have that

BIC(S) > BIC(S∗) (A.17)

for any underfitted portfolio S.

Because S∗ ⊃ S0, we must have either S∗ = S0 or both S∗ ⊃ S0 and S∗ ̸= S0.

When S∗ = S0, BIC(S∗) = BIC(S0) which leads to BIC(S) > BIC(S0). In the case of

S∗ ⊃ S0 and S∗ ̸= S0, we employ the result of Case 1 and obtain BIC(S∗) > BIC(S0)

with probability tending to 1. This together with (A.17) leads to BIC(S) > BIC(S0).
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In sum, we obtain that P (infS∈Q− BIC(S) > BIC(S0)) → 1. The results of Case 1

and Case 2 imply that P (Ŝbic = S0) → 1 as n → ∞, and the proof is complete.
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Table 2: The results of analysis for the real data example.

Sample Portfolio Standard Performance The Sharpe Ratio
Size Construction Measures with γ in (%)

Method |Ŝ| σ̂∗ (%) µ∗ (%) AT (%) 0.25 0.50 0.75
n=120 NAIVE 87.00 4.20 1.30 3.94 30.81 30.58 30.34

MV 87.00 5.64 1.49 420.51 7.76 -10.89 -29.54
MU 87.00 10.79 1.44 888.10 -7.25 -27.83 -48.40

SHORT 7.42 3.72 1.34 11.84 35.21 34.41 33.62
LASSO 14.71 3.37 1.44 113.71 34.37 25.95 17.52
BIC 11.00 3.49 1.89 21.75 52.63 51.07 49.51

n=240 NAIVE 87.00 4.20 1.30 3.94 30.81 30.58 30.34
MV 87.00 3.91 1.99 115.25 43.53 36.15 28.77
MU 87.00 6.67 2.42 259.45 26.58 16.85 7.12

SHORT 8.08 3.66 1.55 7.46 41.77 41.26 40.75
LASSO 17.04 3.23 1.91 44.80 55.49 52.03 48.56
BIC 8.00 3.43 2.21 12.84 63.55 62.61 61.68

Table 3: The pairwise comparisons between BIC and other five methods, where µ̃,
σ̃, and SR stands for, respectively, the differences in terms of mean return, standard
deviation, and Sharpe Ratio with γ = 0.50%.

Sample Size Method µ̃(%) p-value σ̃(%) p-value SR(%) p-value
n=120 BIC-Naive 0.59 0.10 -0.71 0.07 20.49 0.03

BIC-MV 0.40 0.37 -2.15 0.00 61.96 0.00
BIC-MU 0.45 0.64 -7.30 0.00 78.90 0.00
BIC-SC 0.55 0.04 -0.23 0.48 16.66 0.03
BIC-LASSO 0.36 0.07 0.18 0.47 19.42 0.00

n=240 BIC-Naive 0.91 0.01 -0.76 0.07 32.03 0.00
BIC-MV 0.23 0.32 -0.47 0.09 26.46 0.00
BIC-MU -0.21 0.72 -3.23 0.00 45.76 0.00
BIC-SC 0.67 0.01 -0.22 0.46 21.36 0.00
BIC-LASSO 0.36 0.01 0.17 0.32 13.08 0.00

32


